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Abstract. Since Mathematics really is about what mathematicians do,
in this paper, we will look at the mathematical practice of framing , in
which an object of interest is viewed in terms of well-understood math-
ematical structures. The new perspective not only allows to deepen the
understanding of a resp. object, it also facilitates new insights. We pro-
pose a model for framing in the context of theory graphs, and show how
framing can be exploited to enhance the interaction with MKM systems.
We use the framing extension of our SACHS system — a semantic help
system for MS Excel — as a concrete example.

1 Introduction

It has often been said that to understand mathematics one has to understand
what mathematicians do, and in fact the value of a mathematical education is
usually appraised more for the practices and abstract skills acquired with it,
than for the concrete knowledge gained. For the field of Mathematical Knowl-
edge Management (MKM) this suggests that we have to support mathematical
practices in our systems and representation formats (see [KK06] for a call to
arms to do just this).

A particular mathematical practice that comes to mind is to view objects
of interest in terms of already understood structures and make creative use of
this new perspective. For instance, we can understand certain point sets in three-
dimensional space by viewing them as zeroes of polynomials. Then we may derive
insights about these point sets by studying the algebraic properties of polyno-
mials. For the purposes of this paper we will say that we are framing the point
sets as algebraic varieties (sets of zeroes of polynomials). Other intuitive exam-
ples of framing in mathematics consist e.g. in equipping a differentiable manifold
with a (differentiable) group operation (arriving at a Lie group), or interpret-
ing a Boolean algebra as a field of sets via Stone’s representation theorem. The
practice of framing is so valuable, since it allows to transport insights between
seemingly disparate fields. Indeed, in mathematics many of the most famous
theorems earn their recognition because they establish profitable framings.

We adopt the term ‘framing’ for the mathematical practice we want to study
because we want to highlight the particular approach to context mathematicians



choose. In contrast to many MKM applications where ‘to contextualize’ means to
manipulate appearances (presentations), we are interested here in the potential
of manipulating substances (representations). We do not want to use the term
‘view’ since that is already taken in MKM and fails to address either the cognitive
process aspect or its collaborative aspect. The term ’frame’ has been used e.g.
in Communication Research as “schemata of interpretation that enable individuals

to locate, perceive, identify and label occurrences within their life space and the world

at large.” [SRWB86]; a frame is understood as a scaffolding of concepts that
influence the understanding of situations. Therefore it seems to sit well with our
demands.

In this paper, we will argue that framing in mathematics usually involves
some kind of mapping or even isomorphism between the participating struc-
tures. We will propose a model for the mathematical practice of framing in the
context of theory graphs, and we will show how framing can be exploited in the
interaction design with MKM systems using our extension of the SACHS system
— a semantic help system for MS Excel —- as an example.

2 Modelling the Practice of Framing

We will set the mathematical practice of framing in the context of theory graphs
following the “little theories approach” proposed in [FGT92], in which separate
mathematical contexts are represented by separate theories. Structural relation-
ships between contexts are represented as theory morphisms, which serve as con-
duits for passing information (e.g., axioms, definitions, and theorems) between
theories (see [Far00]).

2.1 Semi-formal Theory Graphs and Framing

Theory graphs are one of the theoretical underpinnings of what is sometimes
called Formal Digital Libraries (FDL), which have been a focus of the MKM
community. FDL have evolved from the libraries of theorem proving and verifica-
tion systems, and the theory graph structure is used there for modularization by
compartmentalizing knowledge about objects into modules (theories) and link-
ing them by inheritance links (morphisms). This aspect seems to be an appealing
starting point for modelling framing. But FDL are of rather limited use for math-
ematicians as most mathematics is not born formal. Indeed, formalization is a
very specialized framing practice, which is more often than not at the very end of
mathematical creative processes. Therefore, for our purposes we draw on Semi-
Formal Digital Libraries (SFDL), where axioms, definitions, theorems, and
even theories can be given as annotated text fragments. As semi-formal repre-
sentation formats like MathML, OpenMath, LATEX, XHTML+MathML, Math-
Lang [KWZ08], MathDox [CCB06] concentrate on mathematical formulae only
or lack theory-level features, we will use our OMDoc format [Koh06], which gen-
eralizes the structural invariants of theory graphs to an informal level [RK08],
but also accommodates fully formal representations. In the following, we will



assume an OMDoc-based background SFDL with a fine-grained theory graph
structure which acts as a content commons that contains our examples as the-
ory subgraphs.

We will use the formal techniques and results about modular theory graphs
from [MAH01,RK09] in an informal setting without checking the various category-
theoretic prerequisites. This is generally justifiable by current practice in math-
ematics (see [BC00] for an extensive discussion): Arguments are presented infor-
mally and are considered rigorous, if they could in principle be elaborated into a
formal system like first-order logic with set theory axioms which does meet the
formal prerequisites. Even though such an elaboration is almost never done in
practice, enough examples have been carried out that we can be confident that it
is possible in all informal but rigorous arguments (in this paper). Thus we use the
informal theory graph representation of the OMDoc format [Koh06], which pro-
vides an infrastructure for theory morphisms and inter-theory reasoning without
requiring formality.

Let us now briefly recap the salient features of semi-formal theory graphs
to make the paper self-contained. A theory consists of a signature — i.e.
a set of concepts or symbols — together with a set of axioms — i.e. distin-
guished members of the set of sentences induced by the signature — which act
as basic assumptions of the theory. A signature mapping is called a theory
morphism, iff all axioms of the source theory are consequences of the target
theory’s axioms. Thus we can use theory morphisms for the modularization
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Fig. 1. A Theory Graph for Rings

of mathematics: Consider the diagram on
the right where we have depicted theories
as boxes consisting of the theory name, sig-
nature, axioms and theorem morphisms as
arrows labeled with i:ϕ, where i is a name
and ϕ a signature morphism. In our example
we have a theory of monoids called Monoid
(i.e. structures 〈G, ◦〉, where G is a set and
◦:G × G → G an associative binary opera-
tion on G, such that there is an element e
with a◦e = a and e◦a = a). To extend this
to a theory of commutative groups, we only
have to add axioms for the existence of inverses and commutativity to the monoid
axioms. So in a theory graph we only have to represent these local axioms and
import the ones from Monoid. Note that the identity signature morphism induced
by the import becomes a theory morphism by fiat. But we can do even more:
to define the theory of rings called Ring, we can just import the Monoid axioms
into the Ring theory via a signature morphism σ: = {G 7→ R∗, ◦ 7→ ∗, e 7→ 1} and
the Comm Group axioms via τ : = {G 7→ R, ◦ 7→ +, e 7→ 0, ·−1 7→ −} and add the
distributivity axiom.

The distinguishing property of theory morphisms is that they preserve the-
orems, i.e. after translation, all theorems from the source theory are theorems
of the target theory. This is trivial for the definitional morphisms we have seen



above, but also holds for views: theory morphisms, where we prove all the proof
obligations (i.e. the translated axioms of the source) in the target theory. The
representation theorems alluded to above give rise to views in this sense. We
will need one more notion below: we will call a theory morphism σ:S → T
conservative, iff σ(s) is a theorem of T , iff s is one of S, i.e. the target the-
ory does not introduce new knowledge about objects that can be expressed in
terms of the source theory. Note that adding axioms to the target theory will
usually render a theory morphism non-conservative; an exception are definitions
like G∗: = G\{e} in Monoid. The significance of conservative theory morphisms
is that any theorem that can be expressed only in terms of the source language
can be transported back to the source theory.

Concretely, we model the framing practice by defining a framing to be the
establishment (creating or choosing) of a theory morphism from a source theory
(the framing theory) into the theory representing the problem (the framed
theory). The theory morphism itself is called a frame. In situations where
there is a unique morphism from a theory S to T , we will also say that S is a
frame for T in a slight abuse of terminology. But note that in many situations
we naturally have more than one morphism between two theories, for instance
above we have the morphisms m and k◦i (theory morphisms compose naturally to
theory morphisms). Mathematically, m frames Ring in terms of its multiplicative
monoid structure and k ◦ i as the additive one. Note that for every theory S,
the identity is a theory morphism, we call it the natural frame for S. Finally,
we will say that frames fi:S → Ti are frame variants, iff the Ti are pairwise
inconsistent. In most practical cases the theories Ti add a single axiom each, e.g.
specializing a parameter that was left unspecified in S in different ways. We will
call these axioms the loci of the variants. We assume that frame variant relations
(and their loci) are explicitly annotated in SFDL metadata; see [KMM07] for a
proposal to integrate such data into the OMDoc format.

To strengthen our intuition about framing and the suggested model, we will
have a closer look at three typical framing practices used in mathematics. From
them we will draw more general conclusions concerning SFDL formalization and
requirements for the interaction with frames.

2.2 Understanding Abstract Objects by Examples

A fine example of framing is the mathematical practice of supplying examples
for abstract concepts. For instance most expositions of the concept of a monoid
will give the natural numbers with addition as an example, and use it as a
“near-miss” counterexample for being a group.

In [Koh06, section 15.4] we had argued that examples are triples 〈o, P,A〉,
where o is a mathematical object (〈N,+〉 in our example), P is a property (being
a monoid), and A is an assertion establishing P (o). Re-interpreting examples as
theory morphisms allows to package the same information much more plausibly.
Consider the following theory graph fragment, where the theory N+Ex builds on
the natural numbers (specified e.g. by the Peano Axioms) and is connected by
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a view e to Monoid.
Note that e carries
with it a set of proof
obligations, which to-
gether state the fact
that the structure 〈N,+〉
is a monoid. To make
N+Ex into a coun-
terexample for a group
(not all natural numbers have additive inverses) we introduce a theory NonGrp-
Mon of non-group monoids with a local axiom that states that there is an element
x for which no y is an inverse (note that this is just the negation of the group
axiom). Then any framing c for N+Ex naturally acts as a counterexample to the
assumption that it is a group, since the local axioms of Group and NonGrpMon
are contradictory. In our terminology, the frames f and g are frame variants and
the local axioms are the variant loci — we show this by the dotted bidirectional
arrow.

2.3 Problem Solving

Another example of framing arises in word problems, i.e. mathematical problems
clothed in words. Problems like the following one appear in many high school
textbook on elementary trigonometry.

Problem 0.8.15: How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape measure at hand.

The standard solution is to assume that the tree
in question stands on flat ground, to mark the tree
at eye height and to use the protractor for sighting
the top of the tree and the mark to determine the
angle α between the sightings. The tape measure
can be used to determine the eye height (h0) and
the distance d between sighting point and the center
of the tree. Then the height h of the tree is h =

h0 + hα = h0 + d tan(α) according to the sketch on the right.
Even in this simple situation, framing is complex; consider what happens in

the solution process. The first step is to realize that certain concrete properties
of the problem do not matter, in this case the shape of the tree, its color, and
indeed that it is a tree at all; so in a first framing step, we map the problem to
a simpler one of determining the length of a mathematical line segment without
directly measuring it. The second step in solving the problem is to carefully add
further objects to the problem (e.g. the mark and the sighting point) so that a
solution can be found. And in a third step, the solution is mapped back to the
original problem and verified there.

In our example, we would posit a theory graph like the one on the right,
grounded in a theory “Planar Geometry (PG)”, which supplies knowledge



about right triangles, angles, and trigonometry. On this, we build a theory “Pla-
nar Geometry for our Problem (PGP)” that abstracts from all biological
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Fig. 2. Framing and Extending a Problem

details of trees (they come from
a Forestry theory) and only ex-
tends PG with two perpendicular
line segments l and g and a point
p at the end of l. This will be
framing theory for our problem;
the framing is given by the theory
morphism p:ϕ, where ϕmaps p to
the tree top, l to the center of the
tree’s trunk, and g to the ground
the tree stands on. Since our problem also inherits from the theory Forestry that
contains assumptions like the one that the trunks of (fir) trees are straight and
grow vertically, p is a view and thus constitutes a frame in our model. Note that
all the theory morphisms in the graph up to now are conservative, so by [MAH01,
Proposition 12] we can extend it by the union theory “Solution (SOL)” and
the two dashed theory morphisms p′ and q′, which are again conservative. SOL
contains the full information to understand the solution. As q′ is conservative
over Problem, the computed height is the correct one for the problem.

2.4 Problem Transformation

In the third example, we study the contribution of framing to understanding
and anchoring of mathematical structures using the well-studied “Mutilated
Checker Board Problem (MCBP)” (see [Win01,KP06] and references there).
The MCBP is based on a combinatorial problem, which we can formalize as a
pair covering problem which (following a formulation of McCarthy [Win01]),
we can pose as follows. Given a set S and a relation D on S, then we call a
relation R ⊆ D a partial covering, iff the pairs in R are pairwise disjoint, and
a covering of S, iff the union of all pairs in R is S. Now the “Pair Covering
Problem (PCP)” is to find a covering R for a given set S and relation D or to
show that no covering exists. We are going to look at two special PCP.

In the “Adjacent Fields Covering Problem (AFCP)”, S ⊆ N× N, and
〈〈i, j〉, 〈k, l〉〉 ∈ D, iff |i − k| + |j − l| = 1. In the “Disjoint Set Covering
Problem (DSCP)”, S is the disjoint union of sets B and W and D = B ×W .
In the MCBP S is a mutilated checker board (the squares of the board minus
the black ones in the corners) and D is the adjacency relation. Finally, the
“Matchmaker Problem (MMP)” is given as follows in [Sch09].

In a small but very proper Russian village, there were 32 bachelors and 32 un-

married women. Through tireless efforts, the village matchmaker succeeded in

arranging 32 highly satisfactory marriages. The village was proud and happy.

Then one drunken Saturday night, two bachelors in a test of strength, stuffed

each other with pirogies and died. Can the matchmaker, through some quick

arrangements come up with 31 satisfactory marriages among the 62 survivors?
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Obviously, the DSCP and AFCP specialize the PCP, and
the MMP specializes the DSCP, if we take the set B to
be the set of village bachelors and W the set of unmarried
women. Similarly, the MCBP specializes the AFCP if we iden-
tify checker board squares with their positions in N × N, so
we have the theory graph on the right. There are two crucial
insights that are important for solving the MCBP and that are driven by framing.
The first one is that the DSCP is unsolvable unless |B| = |W |, as framing the
problem as a matchmaking exercise will make clear even to non-mathematicians.
The other insight is that by mapping the sets B and W in DSCP with the set of
black and white squares respectively, then we obtain a view e into MCBP3. This
allows to transport the insight that DSCP is unsolvable to the MCBP.

2.5 Conclusions for SFDL Formats and Interaction with Frames

Let us now see how the theory-morphism based model fares with respect to the
different aspects of framing shown in the examples and which insights it provides
for SFDL formats as well as interaction design for implementing framing.

The first example uses frames to specialize abstract objects into concrete
examples, adding details by fixing the base set of the monoid to N and the
operation to the addition function. At the same time the frame can be used to
generalize 〈N,+〉 by abstraction. If we want to exploit frames for user interaction
in MKM systems, the user should be enabled to select and change frames. In a
theory graph a frame generalization can be seen as an extension from a frame f
to a frame f◦g. In this sense the framing e above can be seen as the generalization
c ◦ f, where we have generalized N+Ex from an example for a non-group monoid
to an example of a monoid. Here, the only possible frame specialization is taking
back this generalization since we cannot change the framed theory. The example
also shows that frame variants play an important role in understanding abstract
mathematical objects and theories, and should therefore be supported by the
interface (see for instance Figure 8 for a concrete example). If variant relations
and loci are annotated in a SFDL, the explication of mathematical objects may
become a simple planning exercise on theory graphs. Note that in our model of
framing we can interpret the practice of giving examples as supplying the reader
with a basic supply of prototypical framings (here Monoid is the framing theory
for N+Ex) that the reader can later draw upon for problem solving.

In the second example we see that the framing morphism drives problem
solving. It opens the real-world situation to methods from Planar Geometry,
identifies the salient features, and pulls back the geometric solution into the
original problem over a conservative morphism. We can also observe another
effect: the opportunity to model framing in the SFDL allows us to (partially)
tackle the formalization divide. The current practice in formal methods is that
informal problem descriptions remain as unstructured texts outside the (formal)

3 Note that even if we frame the set S in the AFCP as squares in a rectilinear grid,
they are still uncolored, therefore the target theory of the frame e has to be MCBP.



system. As a consequence, the relation between the original and the formal
representation of the problem remains unclear and has to be accepted by a leap
of faith. If we view formalization as a framing process in the SFDL, we can
support it by MKM systems and take the guessing out of formalization.

In the third example we have used framing in two facilities: for problem
solving via conservative extensions, but also in the form of views of the problems
into situations that appeal to the intuitions of the (human) reader. This allows
to anchor the abstract, mathematical concepts in the real world and thus trigger
insights that help problem solving. There is an interesting situation for user
interaction: say the user started out with the natural frame for MCBP, which
she then generalized to d to view it as an AFCP and then further generalized the
frame to d◦b to consider the original problem as a Pair Covering Problem. In this
situation she can specialize the PCP to a Disjoint Set Covering Problem via a.

A

A′
B

g

f

g′Formally, we call a frame change g 7→ g′ a frame specialization
via f, iff g′ ◦ f = g. And indeed d ◦ b 7→ e is one in our example.
But in the problem solving phase, framing is not safe, therefore in
the envisioned user interface, we need to allow speculative frame
specialization. In the example we might want to further specialize d ◦ b to c ◦ a
(beyond what is known in the theory graph) to study the Mutilated Checker
Board Problem as a Matchmaker Problem and possibly establish a suitable the-
ory morphism that justifies the frame specialization a posteriori.

Note that in all three examples the different, salient aspects of framing could
directly be tied to the existence of suitable theory morphisms in the underlying
content commons. In the following we will present a first MKM system that
illustrates how framing can extend the user interaction.

3 SACHS: A Semantic Help System for MS Excel

We will illustrate how framing can extend the user interaction in a semantic
help system under development at the German Center for Artificial Intelligence
(DFKI), Bremen. The SACHS system (Semantic Annotation for a Controlling
Help System [KK08a]), aims to address usability problems in spreadsheet-based
applications. For details about the ideas and design decisions behind the SACHS
system we refer the reader to our paper “Compensating the Computational Bias
of Spreadsheets with MKM Techniques” in this volume. We only recap those
aspects here that are relevant for our framing extension — which we refer to as
“framing-aware SACHS”.

A controlling system is a means for the organization to control finances, i.e.
to understand profits and losses and draw conclusions, thus a lack of overview
hampers the process: if users are not sufficiently informed they cannot optimize
the company outcome. Even though MS Excel spreadsheets have the potential to
serve well as an interface for a financial controlling system, they are more often
than not too complex in practice. Even longtime users cannot interpret all data
and are not certain about their origins.



A key observation in SACHS is that spreadsheets are active documents whose
surface structure can adapt to the environment and user input. For SACHS we
take a foundational stance and analyze spreadsheets as semantic documents,
where the formula representation is the computational part of the semantic re-
lations about how values were obtained. To compensate the diagnosed com-
putational bias we propose to augment the two existing semantic layers of a
spreadsheet — the surface structure and the formulae by one that makes the
intention of the spreadsheet author explicit. We encode this intention in SFDL
and can use it as a basis to provide multi-layered, semantic help services. As
we cannot disclose DFKI financial data, we will use the traditional spreadsheet
from [Win06] as a running example (see Figure 3).

Fig. 3. A Simple Spreadsheet after [Win06]

The central concept
we establish is that of a
functional block in a
spreadsheet, i.e. a rect-
angular region in the
grid where the cells can
be interpreted as in-
put/output pairs of a
function. For instance,
the cell range [E9:F9]
(highlighted with the se-
lection of [E9] by a bor-
derline) is a functional

block, since the cells represent projected salary costs as a function π of time;
the pair 〈1987, 0.617〉 of values of the cells [E4] and [E9] is one of the pairs of π.
The semantic help functionality of the SACHS system is based on an interpre-
tation, i.e. a meaning-giving function that maps functional blocks to concepts
in a SFDL. For instance our functional block [E9:F9] is interpreted to be the
function of the projected salaries in a year for a business which we assume to be
available as semantic background.

In [KK08a] we have presented the SACHS information and system architec-
ture, and have shown how the semantic background can be used to give semantic
help to the user on several levels like labels, explanations (as showcased in Fig-
ure 7) and dependency graphs (see Figure 4 on the right). For example, a user
may not be aware that the spreadsheet concerns the profit statement of “Se-
mAnteX Corp.”, but can learn this from SACHS’s dependency graph feature
presented in Figure 4 by selecting cell [E9].

While the information about functional blocks and the meaning of their val-
ues (e.g. units), the provenance of data, and the meaning of formulae provided
by the semantic background is a nice-to-have, in the development process it be-
came painfully obvious that the interpretation (hence the information provided
by the SACHS system to the user) is strongly dependent on the standpoint of
the author — how she frames the data. In fact even the interpretation into a
SFDL itself can be seen as a large frame. Therefore in the work reported in this



Fig. 4. Dependency Graph with ’uses’-Edges

paper we went one step further and integrated framing as part of the interface
to give the user of the spreadsheet more control over the interaction.

3.1 Framing in SACHS

Semantic help systems need various kinds of information: concepts of the sys-
tem, its user interface, input/output data, etc. For all of these, we need to know
a lot about the objects themselves and their relations, i.e. we need ontologies
about them. Generally, when we talk about interacting with knowledge-based
systems, we have to distinguish knowledge about the system itself from knowl-
edge structures about the domain the system addresses. We consider the first
kind of knowledge as part of the system ontology and the second kind part of
the domain ontology .

To distinguish between the system and domain ontologies, the following test
suggests itself: anything the system is parametric in must be part of the do-
main ontology, anything that is particular to the system belongs to the sys-
tem ontology. For instance, in SACHS the system ontology contains information
about concepts like spreadsheet cells, functional blocks, the interpretation, etc.
whereas domain ontologies include knowledge about monetary systems, account-
ing concepts, or prognosis. If the SACHS system were applied to grading spread-
sheets, the system ontology that is tied to the underlying spreadsheet application
would remain fixed, but the domain ontologies would need to talk about grades,
students, semesters, courses, etc. Accordingly in semantics-based systems like
SACHS, the domain-level functionality is driven by an explicit representation of
the domain ontology — in the case of the SACHS system as an OMDoc-based
SFDL.



Fig. 5. SACHS’s Functional Block Panel

As a consequence, we can also distinguish system- from domain-level framings
in semantic help systems. Domain-level framings are triggered by theory mor-
phisms in the SFDL, whereas the interaction design of the system must account
for system-ontology level framings directly. In Figure 5 we find the SACHS panel
extended by framing features. Once a cell is selected, the assigned definition in
the SFDL with its home theory is shown as the framed theory . The natural fram-
ing theory determines the framing theory in the first step and all the background
information is subsequently shown with respect to this frame. On the system-
level the user is offered to change the frame via frame generalization or frame
specialization. Moreover, in the field labeled “∼Definition” the corresponding
definition in the chosen framing theory is presented. The user might also choose
to recover domain-dependent variants from the semantic background.

prognosispolynomial

charpolynomial lagrangeinterpolation crystalball

linear-lagrange quadratic-lagrange cubic-lagrange

sax-salarycosts

sax-prognosisSemAnteX

sax-salarycosts-projected

Fig. 6. A Fragment of the SACHS Domain-
Ontology Theory Graph

To get a better understand-
ing of the role of framing in
the interaction with the SACHS
system, let us have a closer look
at the more specific use exam-
ple for cell [E9] bearing the de-
pendency graph in Figure 4 in
mind, which tells us (among
other stuff) that the number
0,617 was computed a) using
a prognosis function adapted
to SemAnteX, that is b) based
on the Quadratic Lagrange Ex-
trapolation function that is c) a Lagrange Extrapolation that is d) a function
used for prognosis. To illustrate the framing potential we have to turn to the the-
ory level of the semantic background sketched in Figure 6. Note that the home
theory of cell [E9] — i.e. the theory that contains the definition sax-salarycosts-



projected.def in the interpretation — is the theory sax-salarycosts-projected. It
imports the theories sax-salarycosts and sax-prognosis. These theories can hence
be used as frame generalizations. If we are more interested in the latter the-
ory, we select it and get a new choice of frame generalizations SemAnteX and
quadratic-lagrange. Choosing the latter the only available frame generalization
becomes lagrangeinterpolation. Finally, here we can select prognosis as a frame
for the projected salary costs at SemAnteX Corp.

Fig. 7. Explanations within Distinct Frames

Importantly, with each change of frame the semantic information given to the
user changes. For instance, in Figure 7 we can see different explanations for the
same selected cell with respect to the resp. distinct frames. Note that usually the
user can only get the information with respect to the author’s framing as the resp.
OMDoc document is fixed and consequently the imports-relation for the home
theory. Another author might have chosen to e.g. import the lagrangeinterpolation
theory directly instead of importing the more specific sax-prognosis. Here, the
SACHS panel broadens the user’s opportunities and takes back the rigor and
subjectivity of the author’s choice of framing.

The set of frame specializations wrt. a certain framing theory consists of all
theories that import this framing theory. Frame specializations can supply the
user with surprising insights. For example, the theory prognosis is imported by
the theory crystallball, which offers the prognosis method of sitting in front of a
crystal ball and — disregarding the data set — coming up with a mapping from
times to values. With this, the reader may realize that there are always worse
possible prognosis functions.

Another interesting service a framing-aware SACHS can offer is the display
of variants. That is, the concrete framing assumption reified in the MS Excel for-
mula for a cell can be changed. The conventional way to deal with such variants
in a spreadsheet is to just replace the formulae in the functional block with new



ones and see what the result is; a destructive and error-prone process at best.
Given enough background knowledge we can do better. In our example, we have
three theories specializing lagrangeinterpolation with concrete Lagrange extrapo-
lations of different order, from which we can derive spreadsheet formulae, which
in turn can be entered into the spreadsheet. In the example in Figure 8, we are
looking for variants for the ’∼Definition’ lagrangeinterpolation.def in the framing
theory for the definition sax-salarycostsperti-projected.def assigned by the author
to cell [E9]. Concretely, selecting the option “Variants” in the SACHS panel
shown in Figure 5 leads to the opening of the “Variants Panel” demonstrated in
Figure 8. We see that there are three possible variants for the Lagrange extrapo-

Fig. 8. Frame-based Variants

lation function: the linear, the quadratic, and the cubic Lagrange extrapolations.
Remember that the quadratic one was used as the SemAnteX prognosis func-
tion, this is marked by the arrow in front of this variant. In the example the user
selected the variant linear-extrapolator.def. Once the check box is checked the
SACHS system generates new space in the spreadsheet (the light grey row 10 in
Figure 8) enabling the presentation of the variant values for the entire functional
block. The according variant formula (in the MS Excel formula box at the top
of Figure 8) is evaluated. Note that framing influences which concrete variants
are available: if we have framed [E9] as the result of a Lagrange extrapolation,
we should be allowed to vary the order k of the Lagrange Polynomial (if we
have enough data points). If we have however framed [E9] only as the result of
a general prognosis function then we should also have crystal ball prognosis at
our disposition as a variant.

4 Conclusion

In this paper we have analyzed a common mathematical practice from an MKM
perspective, i.e. with an eye towards finding the underlying knowledge structures
and representing them in content markup formats so that they can be exploited
to support the practices in mathematical software systems. We model this prac-
tice of framing a mathematical object as establishing a theory morphism into a
theory describing it. We have shown that in many paradigmatic framing cases,
the model is able to account for the salient aspects of framing. The theory graph



based model is appealing for MKM, since it allows to leverage a large body of
existing work.

To test the model further, we have applied it in a situation that is only
loosely coupled with classical mathematics: a semantic help system based on
spreadsheets. The connection to our model of framing is that the semantic facil-
ities feed on a semiformal digital background library that is theory graph struc-
tured. We have shown that taking framings into account in the user interface
allows users to find their subjective perspective in the semantic help system. The
necessary framing possibilities were naturally present in the background theory
graph for our example. We attribute this to the fact that the theory graph was
developed as a comprehensive overview over the background knowledge and not
just tailored to the single spreadsheet application at hand.

Framing-aware interactions allow users to choose the right level of abstrac-
tion of explanations. But note that this is more than just another form of user-
adaptivity. Frame-driven interaction broadens the users’ opportunities as it al-
lows them to become independent of the author’s framing — e.g. her choice of
concepts and level of rigor — by framing the material to fit their own particular
background, their concrete situation, and their subjective goals. In a framing-
blind interface, the author dominates the choice of these parameters.

In [KK08b, Section 3.3] we have analyzed requirements for semantic formats
to be used in educational technology. In particular, we distinguished three con-
texts in educational situations: a “content context”, a “learner context” and an
“interaction context”. Usually only the first two are recognized and operational-
ized in systems. Here, the choice of frames and the navigation between framings
are part of the interaction context made explicit in the SACHS user interface.
Interestingly, theory graphs that have been thought of as exclusively belonging
to the content context now enable a simple formulation of a complex aspect of
the interaction context.

Incidentally various learning theories discuss the framing practice as the basis
for abstraction processes and ultimately as ‘causes’ for learning. For example,
Klaus Holzkamp argues that every human being engages in an ever-present
“inner dialogue” [Hol95, p. 25], the result of which turns into her specific actions.
The dialogue entertains the idea of at least two distinct frames that inform
the learning process. This suggests that framing is also an essential practice in
any learning environment, hence the application of this MKM technology might
reach much further than the application discussed in this paper.

Finally, framing-aware systems allow the user to explore variants afforded by
the background knowledge. In controlling systems this seems to be especially
useful to test variant modeling assumptions (like our prognosis functions), but
testing variants is a central practice in the sciences and engineering as well.

To close the circle to our introduction, we believe that eventually, the MKM
community should build systems that support what mathematicians do. In par-
ticular, they should exploit theory graphs to support the practice of framing in
the mathematical domain proper as we strongly conjecture that such systems
will be better suited to re-enliven reified mathematical knowledge.



References

[BC00] Henk Barendregt and Arjeh M. Cohen. Representing and handling math-
ematical concepts by humans and machines. In ISSAC ’00: Proceedings of
the 2000 international symposium on Symbolic and algebraic computation,
New York, NY, USA, 2000. ACM.

[BF06] Jon Borwein and William M. Farmer, editors. Mathematical Knowledge
Management, MKM’06, number 4108 in LNAI. Springer Verlag, 2006.

[CCB06] A.M. Cohen, H. Cuypers, and E. Reinaldo Barreiro. Mathdox: Mathematical
documents on the web. In OMDoc – An open markup format for mathe-
matical documents [Version 1.2] [Koh06], chapter 26.7, pages 278–282.

[Far00] William Farmer. An infrastructure for intertheory reasoning. In David
McAllester, editor, Automated Deduction – CADE-17, number 1831 in
LNAI, pages 115–131. Springer Verlag, 2000.

[FGT92] William Farmer, Josuah Guttman, and Xavier Thayer. Little theories. In
D. Kapur, editor, Proceedings of the 11th Conference on Automated De-
duction, volume 607 of LNCS, pages 467–581, Saratoga Springs, NY, USA,
1992. Springer Verlag.

[Hol95] Klaus Holzkamp. Lernen: Subjektwissenschaftliche Grundlegung. Campus
Verlag, 1995.

[KK06] Andrea Kohlhase and Michael Kohlhase. Communities of Practice in MKM:
An Extensional Model. In Borwein and Farmer [BF06], pages 179–193.

[KK08a] Andrea Kohlhase and Michael Kohlhase. Compensating the semantic bias
of spreadsheets. In Joachim Baumeister and Martin Atzmüller, editors,
Wissens- und Erfahrungsmanagement LWA (Lernen, Wissensentdeckung
und Adaptivität) Conference Proceedings, volume 448, 2008.

[KK08b] Andrea Kohlhase and Michael Kohlhase. Semantic knowledge management
for education. Proceedings of the IEEE; Special Issue on Educational Tech-
nology, 96(6):970–989, June 2008.

[KMM07] Michael Kohlhase, Achim Mahnke, and Christine Müller. Managing Variants
in Document Content and Narrative Structures. In Alexander Hinneburg,
editor, Wissens- und Erfahrungsmanagement LWA (Lernen, Wissensent-
deckung und Adaptivität) conference proceedings, pages 324–229. Martin-
Luther-University Halle-Wittenberg, 2007.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical
documents [Version 1.2]. Number 4180 in LNAI. Springer Verlag, 2006.

[KP06] Manfred Kerber and Martin Pollet. A tough nut for mathematical knowl-
edge management. In Michael Kohlhase, editor, Mathematical Knowledge
Management, MKM’05, number 3863 in LNAI, pages 81–95. Springer Ver-
lag, 2006.

[KWZ08] Fairouz Kamareddine, J.B. Wells, and Christoph Zenglere. Computerizing
mathematical text with mathlang. Electron. Notes Theor. Comput. Sci.,
205:5–30, 2008.

[MAH01] Till Mossakowski, Serge Autexier, and Dieter Hutter. Extending develop-
ment graphs with hiding. In H. Hußmann, editor, Fundamental Approaches
to Software Engineering (FASE 2001), number 2029 in LNCS, pages 269–
284. Springer Verlag, 2001.

[RK08] Florian Rabe and Michael Kohlhase. An exchange format for modular
knowledge. In Piotr Rudnicki and Geoff Sutcliffe, editors, Knowledge Ex-
change: Automated Provers and Proof Assistants (KEAPPA), November
2008.



[RK09] Florian Rabe and Michael Kohlhase. A web-scalable module system for
mathematical theories. Manuscript, to be submitted to the Journal of Sym-
bolic Computation, 2009.

[Sch09] Charles F. Schmidt. Productive thinking...the gestalt emphasis. http://

www.rci.rutgers.edu/~cfs/305_html/Gestalt/gestalt.html, 2009.
[SRWB86] David A. Snow, E. Burke Rochford, Steven K. Worden, and Robert D. Ben-

ford. Frame alignment processes, micromobilization, and movement partic-
ipation. American Sociological Review, 51(4):464–481, 1986.

[Win01] Wolfgang Windsteiger. On a solution of the mutilated checkerboard problem
using the theorema set theory prover. In S. Linton and R. Sebastiani, editors,
Proceedings of the Calculemus 2001 Symposium, pages 28–47, Siena, Italy,
2001.

[Win06] Terry Winograd. The spreadsheet. In Terry Winograd, John Bennett, Laura
de Young, and Bradley Hartfield, editors, Bringing Design to Software, pages
228–231. Addison-Wesley, 1996 (2006).


