
Transforming the arχiv to XML

Heinrich Stamerjohanns and Michael Kohlhase

Computer Science, Jacobs University Bremen
{h.stamerjohanns,m.kohlhase}@jacobs-university.de

Abstract. We describe an experiment of transforming large collections
of LATEX documents to more machine-understandable representations.
Concretely, we are translating the collection of scientific publications of
the Cornell e-Print Archive (arXiv) using the LATEX to XML converter
which is currently under development.

The main technical task of our arXMLiv project is to supply LaTeXML

bindings for the (thousands of) LATEX classes and packages used in the
arXiv collection. For this we have developed a distributed build system
that reiteratively runs LaTeXML over the arXiv collection and collects
statistics about e.g. the most sorely missing LaTeXML bindings and clus-
ters common error events. This creates valuable feedback to both the
developers of the LaTeXML package and to binding implementers. We
have now processed the complete arXiv collection of more than 400,000
documents from 1993 until 2006 (one run is a processor-year-size un-
dertaking) and have continuously improved our success rate to more
than 56% (i.e. over 56% of the documents that are LATEX have been
converted by LaTeXML without noticing an error and are available as
XHTML+MathML documents).

1 Introduction

The last few years have seen the emergence of various XML-based, content-
oriented markup languages for mathematics and natural sciences on the web,
e.g. OpenMath, Content MathML, or our own OMDoc. The promise of these
content-oriented approaches is that various tasks involved in “doing mathemat-
ics” (e.g. search, navigation, cross-referencing, quality control, user-adaptive pre-
sentation, proving, simulation) can be machine-supported, and thus the working
mathematician can concentrate in doing what humans can still do infinitely bet-
ter than machines.

On the other hand LATEX is and has been the preferred document source for-
mat for thousands of scientists who publish results that include mathematical
formulas. Millions of scientific articles have been written and published using
this document format. Unfortunately the LATEX language mixes content and
presentation and also allows to create additional macro definitions. Therefore
machines have great difficulties to parse and analyze LATEX documents and to
extract enough information to represent the written formulas in a XML repre-
sentation.

In this paper, we will present an experiment of translating a large corpus of
mathematical knowledge to a form that is more suitable for machine processing.
The sheer size of the arXiv [ArX07] poses a totally new set of problems for
MKM technologies, if we want to handle (and in the future manage) corpora of
this size. In the next section we will review the translation technology we build
on and then present the corpus-level build system which is the main contribution
of this paper.

2 TeX/LaTeX to XML Conversion

The need for translating LATEX documents into other formats has been long
realized and there are various tools that attempt this at different levels of so-
phistication. We will disregard simple approaches like the venerable latex2html
translator that cannot deal with user macro definitions, since these are essential
for semantic preloading. The remaining ones fall into two categories that differ
in the approach towards parsing the TEX/LATEX documents.

Romeo Anghelache’s Hermes [Ang07] and Eitan Gurari’s TeX4HT systems
use special TEX macros to seed the dvi file generated by TEX with semantic in-
formation. The dvi file is then parsed by a custom parser to recover the text and
semantic traces which are then combined to form the output XML document.
While Hermes attempts to recover as much of the mathematical formulae as
Content-MathML, it has to revert to Presentation-MathML where it does not
have semantic information. TeX4HT directly aims for Presentation-MathML.

The systems rely on the TEX parser for dealing with the intricacies of the TEX
macro language (e.g. TEX allows to change the tokenization (via “catcodes”) and
the grammar at run-time). In contrast to this, Bruce Miller’s LaTeXML [Mil07]
system and the SGLR/Elan4 system [vdBS03] re-implement a parser for a large
fragment of the TEX language. This has the distinct advantage that we can fully
control the parsing process: We want to expand abbreviative macros and recur-
sively work on the resulting token sequence, while we want to directly translate
semantic macros1, since they directly correspond to the content representations
we want to obtain. The LaTeXML and SGLR/Elan4 systems allow us to do just
this. In our conversion experiment we have chosen the LaTeXML system, whose
LATEX parser seems to have largest coverage.

The LaTeXML system consists of a TEX parser, an XML emitter, and a post-
processor. To cope with LATEX documents, the system needs to supply LaTeXML
bindings (i.e. special directives for the XML emitter) for the semantic macros
in LATEX packages. Concretely, every LATEX package and class must be accompa-
nied by a LaTeXML binding file, a Perl file which contains LaTeXML constructor-,
abbreviation-, and environment definitions, e.g.

DefConstructor (”\ Reals ”,”<XMTok name=’Reals ’/ >”) ;
DefConstructor (”\ SmoothFunctionsOn {}” ,

”<XMApp><XMTok name=’SmoothFunctionsOn ’/>#1</XMApp>”);
DefMacro (”\ SmoothFunctionsOnReals ” ,”\ SmoothFunctionsOn\Reals ”) ;

1 See [Koh08] for a discussion of semantic and abbreviative macros.

DefConstructor is used for semantic macros, whereas DefMacro is used for
abbreviative ones. The latter is used, since the latexml program does not read
the package or class file and needs to be told, which sequence of tokens to recurse
on. The LaTeXML distribution contains LaTeXML bindings for the most common
base LATEX packages.

For the XML conversion, the latexml program is run, say on a file doc.tex.
latexml loads the LaTeXML bindings for the LATEX packages used in doc.tex and
generates a temporary LTXML document, which closely mimics the structure
of the parse tree of the LATEX source. The LTXML format provides XML coun-
terparts of all core TEX/LATEX concepts, serves as a target format for LaTeXML,
and thus legitimizes the XML fragments in the LaTeXML bindings.

In the semantic post-processing phase, the LATEX-near representation is trans-
formed into the target format by the latexmlpost program. This program ap-
plies a pipeline of intelligent filters to its input. The LaTeXML program supplies
various filters, e.g. for processing HTML tables, including graphics, or con-
verting formulae to Presentation-MathML. Other filters like transformation to
OpenMath and Content-MathML are currently under development. The fil-
ters can also consist of regular XML-to-XML transformation process, e.g. an
XSLT style sheet. Eventually, post-processing will include semantic disambigua-
tion information like types, part-of-speech analysis, etc. to alleviate the semantic
markup density for authors.

3 The Build System

To test and give feedback to improve LaTeXML, and to extend our collection of
valid XHTML+MathML documents which are being used for other projects
such as our MathWebSearch [Mat08], we have chosen to use the articles that
have been published in the arXiv. This large heterogenous collection of scientific
articles is a perfect source for experiments with scientific documents that have
been written in LATEX.

The huge number of more than 400.000 documents (each one may include
figures and its own style files and is located in its own subdirectory) in this collec-
tion made simple manual handling of conversion runs impossible. To handle the
conversion process itself (invocation of ttlatexml and latexmlpost) Makefiles
have been automatically created by scripts. But the usage of make has also some
limitations: It does not easily allow to run distributed jobs on several hosts, a
feature that is essential to be able to massively convert thousands of documents
in one day. While distributed make utilities (such as dmake) or other grid tools
may support distributed builds, all these tools are of limited use when only
a restricted set of specific documents with certain error characteristics should
be converted again, which would require complex and continuous rewriting of
makefiles.

To overcome these limitations we have developed an arXMLiv build sys-
tem which allows make jobs to be distributed among several hosts, extracts and
analyzes the conversion process of each document and stores results in its own

Queue Manager
- adds and removes documents
 to/from workqueue
- manages document files
- priority handling

SQL database
- workqueue
- statistics

Document files
(each article

in subdirectory)

Makefiles

- handle conversion
- call latexml and latexmlpost

clean:
remove result files

Build Manager
- operates on workqueue
- schedules make jobs
 on distributed host

- analyzes log files

manages entries
 in workqueue
 - state and priority

reads
workqueue

invokes make
stores analyzed

log data

 default:
 create result files

 and log files

reads log files

Fig. 1. Schematic overview of the arXMLiv build system

SQL database. The database allows to easily cluster documents which include
a macro that is only partially supported or to gather statistics about the build
process.

The arXMLiv build system consists of a file system which is shared among
all hosts, a queue manager, a build manager, and a relational database, which
stores a workqueue and results statistics about each single converted file. The
file system contains all the documents (≈ 150 Gigabytes), classified by topic and
each one located in its own subdirectory. The file system is exported via NFS to
all hosts which take part in the build process.

To schedule conversion jobs, we operate the queue manager via the com-
mand line. A command like php workqueue.php default cond-mat will add
all documents inside the cond-mat subdirectory — the arXiv section for pa-
pers concerning condensed matter — to the current work queue, which is stored
in the relational database.

The build manager is implemented in PHP, where SQL databases as well as
process control functions can be easily used. It keeps an internal list of available
hosts, reads the files to be converted next from the workqueue and distributes
jobs to remote hosts. For each document that is to be converted the build man-
ager forks off a new child process on the local machine. The child sets a timer
to enable a limiting timeout of 180 s for the conversion process and then creates
another child (the grandchild) which then calls the make on a host via remote
ssh execution. The make process will then invoke latexml and latexmlpost to

Fig. 2. The web interface shows the current state of the build system

convert a TEX file to XML and XHTML. LaTeXML logs the inclusion of style
files and also reports problems while converting from latex to xml to special log
files.

After a timeout or the completion of the conversion process the build man-
ager is notified via typical Unix signal handling. The build manager then parses
and analyzes log files, extracts information about the result state of conversion
and collects the names of missing macros that are not yet supported. If the con-
version has failed, the error message given by LaTeXML is also extracted. For each
processed document the analyzed result data is then stored into the database
for later use. With the stored result data it is also possible to instruct the queue
manager to rerun specific documents which use a certain macro or to rerun all
documents which resulted in a fatal error in the conversion process. The queue
manager will then take care of removing the appropriate files and reset the status
and add these files to the workqueue again. This has been especially useful when
changes to the binding files have been applied or when an improved version of
latexml becomes available.

Developers are able to retrieve the results via a web-interface which is avail-
able at http://arxmliv.kwarc.info. The main page describes the number of docu-
ments, the number of converted files in the last 24 hours and the current state of
the build system. Since the binding files as well as LaTeXML are being developed
in distributed environments, subversion is being used as a version control sys-
tem. The current release version of the binding files and LaTeXML are also shown.

Furthermore the active hosts that are currently being used for the conversion
process is also displayed. For our experiment we have used 13 different hosts on
24 processors.

Fig. 3. The result status of con-
verted documents

A further table gives detailed information
about the results of the conversion process.
The most important states are success where
latexml has only issued some minor warn-
ings, missing macros, where the conversion
has been successfully completed, but some
macro definitions could not be resolved. In
this case the rendered layout may contain un-
expected elements or not properly displayed
elements. The status fatal error is returned
from the conversion process if there are too
many unresolved macros or if some internal
error condition during the LaTeXML conver-
sion process has been triggered.

Fig. 4. Documents that could not be successfully
converted

All these states are
clickable and lead to a
list of recently converted
files with the specified
status. The clickable file
name leads to the source
directory of the docu-
ment where the docu-
ment can be investigated
in all its different rep-
resentations, such as the
TEX source, as an inter-
mediate XML file that
LaTeXML produces or as
the XHTML+MathML
form. Also the full log file

containing detailed error messages can be easily be retrieved via the web browser.

The backend behind the web interface is also able to analyze the database
content and create cumulated statistics. It applies some regular expressions to
the error messages and clusters and cumulates these. By creating this information
the backend is able to gather statistics such as a list of Top Fatal Errors and
Top Missing Macros on-the-fly. Especially these two lists have proven to give
valuable information not only the developer of the LaTeXML system but also to
the implementers of binding files that are needed to support the conversion from
LATEX to XML. With this information one can easily determine the most severe
bugs in the still evolving conversion tool as well as determine the macros that
are being used by many documents and that need further support.

Fig. 5. Lists of Top fatal errors and of macros that are currently not supported

The arXiv articles use a total of more than 6000 different LATEX packages.
Some of these style files are well known ones which are widely used, while other
are private enhancements which are used only once or very few times. While
same macro names for different things are not a problem, since the binding files
are created for each LATEX package, there might be a problem that authors add
private additions to well-known style files. We have chosen to ignore this problem
since it is statistically insignificant.

With these statistics we have been able to focus on the most important
macros and have been able to improve the success rate to now more than 58%.
Although another 29% of the documents have also been successfully converted
and are available as XHTML+MathML, we do not currently count them as
full successes since support for some macros is still lacking and the layout that
is rendered in a web browser might not be fully appropriate.

4 Conclusion and Outlook

By using the LaTeXML tool with our arXMLiv build system to support the con-
version process of large document collections, we have been able to successfully
convert more than half of the more than 400,000 scientific articles of the arXiv
written in LATEX to a semantically enriched XHTML+MathML representation.
We have been able to expand our collection of scientific MathML documents
which we need for further studies by more than 200,000 (real-world) documents.
The build system has enabled us to cope with the conversion process of this
huge collection of documents and helped us to improve our binding files that are
needed to support various style files. The statistics the build system gathers have
also been valuable contribution to the developer of LaTeXML since they clearly
point to bugs and give hints where to enhance the software.

Although still under development, LaTeXML has shown to be a very promis-
ing tool to convert LATEX documents to XML and hence XHTML+MathML.
Many existing LATEX documents can already be fully converted to an

Fig. 6. The history of return values in our conversion experiment

XHTML+MathML representation which may then be nicely rendered in-
side a browser. The possibility to render and fully integrate these documents
inside a browser will enable us to add features on top of existing articles and
offer added-value services which we might not even think of yet.

Up to now, the work in the arXMLiv project has focused on driving up the
coverage of the translation process and build a tool set that allows us to handle
large corpora. With a conversion rate of over 80% we consider this phase as com-
plete. We are currently working to acquire additional corpora, e.g. Zentralblatt
Math2 [ZBM07].

The next steps in the analysis of the arXiv corpus will be to improve the
LaTeXML post-processing, and in particular the OpenMath/MathML gener-
ation. Note that most of the contents in LATEX documents are presentational
in nature, so that content markup generation must be heuristic or based on
linguistic and semantic analysis. Rather than relying on a single tool like the
latexmlpost processor for this task we plan to open up the build system and
compute farm to competing analysis tools. These get access to our corpus and
we collect the results in a analysis database, which will be open to external
tools for higher-level analysis tasks or end-user MKM services like semantic
search [Mat08]. For this, we will need to generalize many of the build system
features that are currently hard-wired to the translation task and the LaTeXML
system. We also plan to introduce facilities for ground-truthing (i.e. for establish-
ing the intended semantics of parts of the corpus, so that linguistic analysis can
be trained on this). For the arXiv corpus this will mean that we add feedback

2 First tests show that due to the careful editorial structure of this collection and the
limited set of macros that need to be supported, our system can reach nearly perfect
translation rates.

features to the generated XHTML+MathML that allow authors to comment
on the generation and thus the arXMLiv developers to correct their LaTeXML
bindings.

To allow manual tests for the developers, the build system also includes an
additional interface (available at http://tex2xml.kwarc.info) where LATEX files
can be manually uploaded and then converted. It allows to test the conversion
without the need to install LaTeXML and also makes use of the many additional
binding files that we have created to support additional style files and are not
part of the standard LaTeXML distribution. This interface may also be used to
convert private LATEX files to XHTML+MathML, but because of limited re-
sources only few users can concurrently use this system.

The build system itself is open source software and can be obtained from the
authors upon request.

References

[Ang07] Romeo Anghelache. Hermes - a semantic xml+mathml+unicode e-
publishing/self-archiving tool for latex authored scientific articles. web page
at http://hermes.roua.org/, 2007.

[ArX07] arXiv.org e-Print archive, seen December2007. web page at
http://www.arxiv.org.

[Koh08] Michael Kohlhase. sTEX: Using TEX/LATEX as a semantic markup format.
Mathematics in Computer Science; Special Issue on“Management of Mathe-
matical Knowledge”, 2008. in press.

[Mat08] Math Web Search. web page at http://kwarc.info/projects/mws/, seen Oc-
tober 2008.

[Mil07] Bruce Miller. LaTeXML: A LATEX to xml converter. Web Manual at
http://dlmf.nist.gov/LaTeXML/, seen September2007.

[vdBS03] Mark van den Brand and Jürgen Stuber. Extracting mathematical semantics
from latex documents. In Proc. Intl. Workshop on Principles and Practice
of Semantic Web Reasoning (PPSWR 2003), number 2901 in LNCS, pages
160–173, Mumbai, India, 2003. Springer.

[ZBM07] Zentralblatt MATH, seen December2007. web page at
http://www.zentralblatt-math.org.

