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Abstract. We propose an infrastructure for collaborative content man-
agement and version control for structured mathematical knowledge.
This will enable multiple users to work jointly on mathematical theo-
ries with minimal interference.
We describe the API and the functionality needed to realize a cvs-like
version control and distribution model. This architecture extends the cvs

architecture in two ways, motivated by the specific needs of distributed
management of structured mathematical knowledge on the Internet. On
the one hand the one-level client/server model of cvs is generalized to
a multi-level graph of client/server relations, and on the other hand the
underlying change-detection tools take the math-specific structure of the
data into account.

Versioning is a can of worms.

But what good is a can of worms if you never open it?

Norm Walsh on the www-tag mailing list, 11 Sep. 2002

1 Introduction

In the last years we have seen the birth of a new research area: “Mathemati-
cal Knowledge Management” (MKM), which is concerned with representation
formalisms for mathematical knowledge, such as MathML [CIMP01], Open-

Math [CC98] or OMDoc [Koh00], mathematical content management sys-
tems [FK00,ABC+02,APCS01], as well as publication and education systems for
mathematics. The perceived interest in the domain of general knowledge manage-
ment tools applied to mathematics is that mathematics is a very well-structured
and well-conceptualized subject. The main focus of the MKM techniques is to
recover the content/semantics of mathematical knowledge and exploit it for the
application of automated knowledge management techniques, with an emphasis
on web-based and distributed access to the knowledge.

In this paper, we extend the focus of MKM techniques from the distributed
access to mathematical knowledge to the creation process of mathematical knowl-
edge, which is — for the most part — a distributed and collaborative process. Af-
ter all, even if mathematicians often develop individual contributions alone (e.g.



in single-authored papers), the progress of a mathematical theory or sub-field
involves a multitude of authors — communicating via meetings, messages and
publications. Moreover, in contrast to the “knowledge access” scenario, where
the mathematics is relatively static, the “knowledge creation” scenario involves
managing the change of resources. We claim that MKM techniques have the
potential of supporting this scenario as well, and that the “knowledge creation”
scenario is potentially even more important for applications, as knowledge can
only be accessed after it has been created. In fact, we expect the implementations
of techniques like the ones presented in this paper, to play a similarly facilitating
role in the development of open repositories of formal mathematical knowledge
as the code management systems like the cvs system [CVS] have had for the
creation of the wealth of open-source software we know today.

Currently, MKM systems either support simple monotonic addition of math-
ematical content or are specialized to particular applications, e.g. the Maya sys-
tem [AHMS02] which is specialized to formal software engineering and verifica-
tion. The “development graph” model for a management of theory change [Hut00]
employed in this system uses a rich set of relations among theories to trace log-
ical dependencies among mathematical objects and propagate/limit the effects
of changes to the theories.

Our own MKM system MBase [FK00,KF01] is currently a member of the
first class, but it can communicate with the Maya system via the joint inter-
face language OMDoc [Koh00]. As an effect, MBase/Maya support theory
management on the fragment of OMDoc that corresponds to the Maya devel-
opment graph. In fact, in [KF01] we have proposed to distinguish two kinds of
MBases, different in their data changing policies.

– An archive MBase which is epitomized by the Journal MBase MJ in our
scenario below, it archives unchanging mathematical knowledge and is ref-
erenced by many other MBases.

– A scratch-pad MBase like the personal MBasesMR andMR′, that do not
have any dependents and are primarily used for theory development.

To get a feeling of the requirements for the functionality addressed in this
paper, let us take a look at a likely research communication scenario: We will
first describe the communication pattern in a neutral way — say as it could have
happened in the era of mathematics done with pen and paper (around 2001),
and then model it using distributed MKM (about 2010).

classical, see Figure 1 Researcher R works on theory T together with his col-
league R′ at institute I. The theory T is a body of mathematics laid down
in an article A published in journal J . Now, R extends theory T by a new
definition D (say for a mathematical object O), proves a set P of theorems
about O, and calls the resulting extended theory E. After that, R tells her
colleague R′ at I about D and P (say by circulating a memo in I), who gets
interested and proves a set P ′ of useful properties of O. Together, R and R′

put the theory E into final form F , and submit it to journal J . This accepts
F and publishes it.
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Fig. 1. Classical Research Cooperation

with MKM, see Figure 2 In 2005, the publisher of journal J has established
an MBase server MJ for J which now contains theory T . Furthermore, the
institute has its own departmental MBaseMI and the researchers R and R′

have the personal MBasesMR andMR′. Now R develops the formalization
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Fig. 2. Research Cooperation with distributed MKM

FD of O, stores it inMR and formalizes the set P of theorems by formalizing
them and formally proving them1 (yielding FP in MR). Instead of sending
around an internal note about D and P in I, R moves their formalizations
FD and FP into the institute MBase serverMI, from where R′ can import
them into his personal MBaseMR′2. On this basis R′ formally proves FP ′,
and adds it to theory FE, yielding FF the formal version of theory F . Then
R and R′ submit F to journal J , who evaluates it (possibly via his own

1 To do so, R may need to revise the initial version of D several times in order to
be able to prove the desired theorems (reproving the already obtained results that
depended on a previous version of D every time). This process is supported by
MBase/Maya based on techniques presented in [AHMS02]

2 Alternatively, R could leave FD and FP in MR and tell R
′ personally about them,

allowing him to import them from MR into MR
′; but this is a matter of institute

policy, which we will not address here.



personal MBase) it and finally accepts F . To publish F on MJ , it requests
FF from MI, which moves it there.

1.1 Contribution of this paper

As we have seen in the scenario above, a strict division into archive and scratch-
pad knowledge bases is unrealistic, since it does not reflect the current and an-
ticipated nature of scientific communication and publication: Collaboration and
theory change occurs at every level and should be supported by an infrastructure
for collaborative content management and version control which enables multiple
users to work jointly on mathematical theories with minimal interference.

We will develop a general architecture for a collaborative content manage-
ment extending the cvs architecture and specialize it for mathematical knowl-
edge by taking into account the structure of mathematical documents. For the
second task we will build on both the work on structural diff/patch/merge
utilities in Xml, as well on the semantic management of change in the Maya

system [AHMS02].
Even though the work reported in this paper is motivated by the MBase sys-

tem, it is much more general, since it only depends on the communication format
used by the system. The methods are not even specific to the OMDoc format,
we will only assume that the knowledge base systems use a similar Xml-based
format for communication and provide a way to re-create the original inter-
face documents. This would for instance cover the the HELM system [APCS01],
which employs a lightweight infrastructure based mainly on Xml documents and
XslT stylesheets for MKM.

2 An Infrastructure for Managing distributed

mathematical knowledge cooperatively

The proposed infrastructure for collaborative theory management is largely based
on the cvs (Concurrent Versions System [CVS]) architecture. This system is
widely used to support collaborative software development, since it combines
software versioning with controlled concurrent access to the resources under cvs

control. We will briefly review the basic notions of cvs, and describe our multi-
level architecture with reference to it.

2.1 Cooperative Version Control in cvs

cvs is a server-based system for concurrent version control, used mainly for
software development. The cvs server provides a so-called cvs repository R,
which keeps a representation of all committed versions (called revisions) of the
software together with logging information.

A cvs client C can then check out a working copy of the software and
work on it. Let us for simplicity assume that C checks out the most recent
revision in the repository, the so-called head. After completing the development



task, C can commit the changes ∆ to the repository, creating a new (current)
revision in the repository. She will usually accompany the commit with a short
description of the changes; this is also logged in the repository, eventually adding
up to a changelog for the software development.

It is a distinguishing feature of cvs that the repository is not locked when a
working copy is checked out. So another client C ′ can also have active working
copies of the software and work on them. When C commits, the working copy
of C ′ which was based on the (old) head, is no longer up to date with the
repository. As a consequence, the changes C ′ has made to the software cannot
be committed to the repository. C ′ can not simply check out a new working copy
from R, since she would lose her work; therefore (upon C ′s request) cvs merges
the changes ∆ into C ′s working copy to keep it up to date with respect to the
head of R. Now (after resolving any conflicts introduced by the merge) C ′ can
commit her changes to the repository. Even though conflicts can occur in the
merging operation, they are sufficiently infrequent in practice.

We have seen above that version control in cvs protocol is based on the
computation, communication and management of differences (changes) to files.
cvs uses the unix utilities

diff for determining the changes in a working copy to be committed to the
repository

patch for updating old revisions
merge for merging changes into a working copy to keep it up to date with the

repository.

To facilitate the functionality described above, the cvs server represents
committed non-head revisions of files internally as reverse diffs from the head
revision (which is stored explicitly). Thus the head revision can be served im-
mediately, whereas older revisions can be computed by applying the respective
reverse diffs. In this model, a version can be represented as a specific sequence
of transformations (edit scripts).

2.2 A multi-level Client/Server Architecture

cvs has a one-level client-server architecture, i.e. all the cvs clients can only
communicate with a dedicated cvs server. In the distributed MKM settings like
in Figure 2, we have a knowledge base MI that acts both as a repository for
MR and MR′ and as a client for MJ .

We will say that a knowledge base A is downstream from an knowledge
base B, iff A is a cvs client of B or any knowledge base C that is downstream
from B. The relation of being upstream is the converse relation to down-
stream. In Figure 2, MR, MR′, and MI are downstream from MJ . Note that
commit actions push information upstream and update actions pull information
downstream.

A multi-level client-server architecture has inherent advantages: it can, for
instance simulate cvs branching: In cvs a branch is used, if a set of clients want



to make changes to software that are either too disruptive or too extensive for
the usual update/commit cycle. In essence a branch acts as a virtual repository
for the development and allows controlling revisions without disturbing the main
development (the so-called trunk).

In our multi-level architecture, a branch in repository A for clients S1, . . . , Sn

can be simulated by creating a new knowledge base B downstream from A and
upstream from the Si. B is initialized by checking out a working copy from A,
and the Si can track their revisions in B and eventually commit the result to B.
Closing the branch corresponds to deleting the knowledge base B and updating
the Si.

2.3 An Atomized Version Control Relation

The cvs protocol is based on the file system hierarchy for grouping and anchoring
user interaction. For instance, update and commit commands issued without
reference to a particular file will be applied to all registered files in the current
directory.

The file system hierarchy is replaced with a document-centered (given by
omgroup in the OMDoc representation) or semantic hierarchies (given by theo-
ries or development graphs). The notion of a file (or equivalently of an OMDoc

document) is only a secondary concept — if present at all — in the conceptual
hierarchy of mathematical knowledge management systems. In particular, the
level of a file is not the lowest level of an object under version control. This role
is taken up by the notion of a mathematical object represented by a top-level
OMDoc element. As a consequence, the client/server relation is atomized to
mathematical objects instead of files. We speak of the version control rela-
tion that relates working copies of mathematical objects with their repository
instances. Of course this relation must be acyclic.

Just as a file system can contain working copies from multiple repositories, a
knowledge base can contain objects that are working copies checked out different
repositories, though for each mathematical object, the version control relation
is a tree, i.e. every object has at most one server it can be committed to and
updated from. Intuitively, a math object is — for the parent element — as a file
for a directory; and files have attributes like creation time, modification time,
permissions; so should the math objects, which can be stored in the Dublin Core
metadata of OMDoc elements.

2.4 Interaction of Version Control with Distribution and Knowledge
Base Consistency

In [KF01] we have identified four tasks necessary for distributing mathematical
knowledge bases: caching, moving, changing, and deleting mathematical objects.
Before we give them interpretations in our architecture, let us re-examine the
assumptions we based the analysis on; they include (paraphrased):

A3 all mathematical elements have a unique “defining” realization in the net-
work of knowledge bases.



A4 mathematical objects are never changed.

Assumption A3 is directly related to distribution: every object has a unique
description: a pair consisting of the URL of the knowledge base and the unique
identifier of the object there. All other copies of the object are just cached copies
of it.

Assumption A4 was useful for distribution, since it makes caching and main-
tenance very simple. Relaxing A4 — which is the task at hand in this paper
— has two aspects: How do we ensure consistency in situations where e.g. a
definition or theorem that other mathematical objects depend on are changed in
mathematically significant ways3. We will not deal with this problem here, since
it is already studied in great detail in the development graph model [Hut00].

The question we will address in this paper is purely at a protocol level: it can
largely be framed in terms of the interaction betweenA3 and version control. We
will study this with respect to the three distribution tasks identified in [KF01].

Caching Mathematical Objects: We used assumption A4 to allow trivial caching.
In the new architecture, we identify the caching relation to be the version control
relation: to cache a copy of a mathematical object, it is simply checked out from
the repository as a working copy. Note that objects that are working copies
can never be defining instances of mathematical objects in our model. In the
new model cache-consistency is a well-understood problem, since an object can
always be updated from its repository. The ensuing conflicts can be resolved by
the standard three-way merge methods described e.g. in [Lin01].

Moving Mathematical Objects One of the most basic procedures is that of moving
objects between knowledge bases, e.g. of the theory FF from MI to MJ after
the submission described in our scenario. This action can be modeled by adding
FF as a defining instance to MJ , deleting FF in MI, and checking out FF
from MJ to MI, which acts as a cvs client for MJ for this object. Note that
with this construction, we can only move mathematical objects upstream, which
is the natural direction.

Deleting and Changing Mathematical Objects: Since we leave the question of
maintaining knowledge base consistency to the development graph techniques
which entail re-examining mathematical objects that depend on the changed
ones, augmenting the “pull” technology of our cvs-like architecture with a
“push” component seems advantageous. Note that mathematical objects are
always upstream from ones that logically depend upon them. Therefore a knowl-
edge base M keeps a record of all the upstream knowledge bases, so that these
can be notified of any changes and trigger propagation of the change. Apart
from notification of dependents this information can be used for optimizations
like the following: Whenever M moves the defining instance of an object O to

3 Of course changes like correcting typos or changing explanatory text are unproblem-
atic from a consistency point of view.



some knowledge base M′′, then it can send the new location of O to all up-
stream knowledge bases, asking them to update their reference objects and thus
shielding itself from future requests to O.

3 Computing Differences and Managing Change

In this section we will describe the computational utilities underlying our col-
laboration architecture. cvs uses the line-based diff/patch/merge utilities to
compute differences between versions, update files, and merge differences into
modified working copies. In applications like ours, where we know more about
the structure of the data, we can do better, and arrive at more compact, less in-
trusive edit scripts4. For instance, if we know that whitespace carries no meaning
in a document format, two documents are considered equal, even if they differ
(with respect to the distribution of whitespace characters) in every single line;
as a consequence, the computed difference would be empty.

We will look at different document models and their impact on computing
differences between documents in this section. Before we do this, let us briefly
clarify what we mean by a document model by comparison to mathematical
models. In mathematics, when we define a class of mathematical objects (e.g.
vector spaces), we have to say which objects belong to this class, and when they
are to be considered equal (e.g. vector spaces are equal, iff they are isomorphic).
For document models, we do the same, only that the objects are documents.
Xml supports the first task by allowing us to specify a document type definition
(DTD) or an Xml Schema, which can be used for mechanical document valida-
tion, but leaves the second to be clarified in the (informal) format specifications.

Listing 1. An OMDoc definition.

<d e f i n i t i o n id=”comm−de f ” f o r=”comm”>
<CMP xml : lang=”en”>An operat i on <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>

i s c a l l e d commutative , i f f
<OMOBJ id=”comm1”>
<OMA><OMS cd=”r e l a t i o n 1 ” name=”eq”/>
<OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>
<OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>

</OMA>
</OMOBJ> f o r a l l <OMOBJ id=”x”><OMV name=”X”/></OMOBJ>
and <OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.

</CMP>
<CMP xml : lang=”de”>

Eine Operation <OMOBJ x r e f=”op”/> he ißt kommutativ , f a l l s
<OMOBJ x r e f=”comm1”/> f ü r a l l e <OMOBJ x r e f=”x”/> und <OMOBJ x r e f=”y”>.

</CMP>

4 Compactness of edit scripts is important for storage and query efficiency in MKM
systems, while minimal intrusiveness (patching does not disrupt document structure)
is important for humans to track and understand changes.



</d e f i n i t i o n>

Of course, the stronger the equality modulo which differences are computed, the
better the edit scripts become. The conceptual core of the MBase data model is
given by the OMDoc format [Koh00,OMD], which is also used as an interface
representation for communication between MBases and their clients. We will
base our discussion in this section concretely on the OMDoc document model,
building up to it by discussing the underlying Xml document model. We will
discuss generalizations to other document formats for MKM in section 3.4.

Let us call two documents M-equal, iff they are equal with respect to the
document modelM, analogously we will call an algorithm anM-diff algorithm,
iff it computes differences modulo M-equality. In the rest of this section, we will
use the OMDoc element in Listing 1 as a running example.

3.1 Using the tree structure of Xml Documents

As OMDoc is an Xml application, we can make use of the generic tree struc-
ture of Xml documents. For instance, Xml specifies that the order of attribute
declarations in Xml elements is immaterial, double and signle quotes can be
used interchangeably for strings, Xml comments (<!−−...−−>) are ignored,
and whitespace characters in the UniCode serialization is only meaningful in
text nodes. As a consequence, the serialization in Listing 2 is Xml-equal to the
one in Listing 1, but not to the one in Listing 4.

Listing 2. An Xml-equal serialization for Listing 1

<d e f i n i t i o n f o r=”comm” id=”comm−de f ” >
. . .
<CMP xml : lang=’de ’> <!−− note the unabbreviated empty element −−>
Eine Operation <OMOBJ x r e f=”op”></OMOBJ> he ißt kommutativ , f a l l s
<OMOBJ x r e f =’comm1’/> f ü r a l l e <OMOBJ x r e f=”x”/> und <OMOBJ x r e f =’y ’> .
</CMP>

</d e f i n i t i o n>

There is a large body of work on using the Xml tree structure to compute
differences of Xml documents modulo Xml-equality (see e.g. [WDC02]). The al-
gorithms (see [CRGMW96] for an introduction) compute partial tree matchings5

and express these as so-called “edit scripts” that add and delete Xml elements
and attributes in the source tree to arrive at the target tree. The work has been
mainly concerned with finding algorithms for optimal (least-cost) edit scripts
and complexity issues. Formats like XUpdate [LM00] (see Listing 3 for an exam-
ple) use XPath [Cla99] expressions to identify the elements the instructions act
upon.

The central problem of finding corresponding nodes in trees critically depends
on the notion of tree-similarity employed. If the document is strongly keyed (e.g.

5 Which nodes correspond to each other modulo a given notion of tree similarity?



all elements have unique ID attributes, which cannot be changed by the user6

or the knowledge management system employs some node numbering system
like the one proposed in [CTZZ01]), then the key structure gives a very natural
notion of node correspondence, and differencing becomes relatively simple. For
the un-keyed case, only the notion of structural isomorphism and of ordered and
un-ordered trees has been considered e.g. in [CRGMW96].

Listing 3. An XUpdate edit script (partly) updating Listing 1 to Listing 4

<xu : mod i f i c a t i on s xmlns : xu=”http ://www. xmldb . org /xupdate”>
<xu : v a r i ab l e name=”c ” s e l e c t=”d e f i n i t i o n /CMP[ 0 ] /OMOBJ[ @id=’comm1’]”/>
<xu : remove s e l e c t=”d e f i n i t i o n /CMP[ 0 ] /OMOBJ[ @id=’comm1 ’ ] / @xref”/>
<xu : append s e l e c t=”d e f i n i t i o n /CMP[ 0 ] /OMOBJ[ @id=’comm1 ’ ] ” ch i l d=”1”>
<xu : value−o f s e l e c t=”$c”/>

</xu : append>
<xu : remove s e l e c t=”d e f i n i t i o n /CMP[ 0 ] /OMOBJ[ @xref=’comm1’]/∗”/>
<xu : update s e l e c t=”d e f i n i t i o n /CMP[ 0 ] /OMOBJ[ @xref=’comm1 ’ ] / @xref”>
<xu : value−o f s e l e c t =”’comm1’”/>
</xu : update>

</xu : mod i f i c a t i on s>

3.2 The OMDoc Document Model

Let us now take a look at how the OMDoc document model can be used for
more semantic differencing (OMDoc-diff7).

Listing 4. An OMDoc-equal representation for Listings 1 and 2

<d e f i n i t i o n id=”comm−de f ” f o r=”comm”>
<CMP xml : lang=”de”>Eine Operation <OMOBJ x r e f=”op”/> he ißt kommutativ , f a l l s
<OMOBJ id=”comm1”>
<OMA><OMS cd=”r e l a t i o n 1 ” name=”eq”/>
<OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>
<OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>

</OMA>
</OMOBJ> f ü r a l l e <OMOBJ x r e f=”x”/> und <OMOBJ x r e f=”y”>.

</CMP>
<CMP xml : lang=”en”>An operat i on <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>

i s c a l l e d commutative , i f f <OMOBJ x r e f=”comm1”/> f o r a l l
<OMOBJ id=”x”><OMV name=”X”/></OMOBJ> and

6 The action of changing keys in the data, can lead to un-intuitive and computationally
sub-optimal edit scripts, but does not compromise the method per se.

7 Note that we are not proposing to use mathematical equality here, which would make
the formula X+Y = Y +X (the OMOBJ with id=”comm1” in Listing 4 instantiated
with addition for op) mathematicallly equal to the trivial condition X +Y = X +Y ,
obtained by exchaning the right hand side Y + X of the equality by X + Y , which
is mathematically equal (but not OMDoc-equal).



<OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.
</CMP>

</d e f i n i t i o n>

The OMDoc document model extends the Xml document model in various
ways. For instance8, the order of CMP children of an omtext element does not
matter, and the distribution of whitespace is irrelevant even in text nodes. More
generally, as OMDoc documents have both formal and informal aspects, they
can contain data-set-based as well as document-structured information. At one
extreme an OMDoc document contains a formalization of a mathematical the-
ory, as a reference for automated theorem proving systems. There, logical depen-
dencies play a much greater role than the order of serialization in mathematical
objects. We call such documents data set based and specify the value DataSet
in the Type element of the OMDoc metadata for such documents. On the other
extreme we have human-oriented presentations of mathematical knowledge, e.g.
for educational purposes, where didactic considerations determine the order of
presentation. We call such documents document-structured and specify this
by the value Text. Note that since OMDoc allows to specify Dublin Core meta-
data [WKLW99] at many levels, document-structured and data set based parts
can interleave in the same document, allowing OMDoc-diff algorithms to take
this into account.

Moreover OMDoc uses a variant of OpenMath objects [CC98] that can
be represented as directed acyclic graphs (DAGs; using ID/IDREF links) rather
than regular trees: an empty element with an xref attribute is OMDoc-equal to
the element that carries the corresponding id attribute. As a consequence, the
representations in Listings 1 and 2 are OMDoc-equal to the one in Listing 4,
and an OMDoc-diff algorithm must generate the empty edit script between
all three, while an Xml-diff algorithm should generate an extension of the
XUpdate script in Listing 3.

In particular, the process of exploding the DAG to a tree representation or
sharing a tree to a DAG should not result in a difference computation. The
same applies to the OMDoc representation of proofs, where an additional level
of structure sharing is possible. A case where the underlying structure of the
data is not tree-like, that is, not based on structure-sharing, is the development
graph itself, which can even be cyclic. Here, first steps for defining a correspon-
dence relation and for determining changes have been taken in [AHMS00] and
implemented in the Maya system.

3.3 Challenges for OMDoc-diff Algorithms

As we have shown, taking advantage of OMDoc-equality in computing differ-
ences leads to more concise edit-scripts, which is essential in an environment
where document processing applications manipulate mathematical content by
acting on internal data structures and generate target documents from these. In

8 As an introduction to the OMDoc format is beyond the scope of this paper, we will
assume a basic knowledge of [Koh00] and the material at [OMD].



such situations, it is impossible to predict which of the possibly many OMDoc-
equal representations will be generated. Since in a cvs-like collaborative protocol
any diff can lead to a conflict that will require human intervention for resolu-
tion, the availability of such algorithms will be crucial for adoption.

Of course extending Xml-equality to OMDoc-equality in computing dif-
ferences breaks the underlying assumptions of the algorithms described in sec-
tion 3.1. For instance, the DAG-nature of OMDoc documents requires the differ-
encing algorithms to (virtually) expand the objects to tree form while processing
them9.

It seems that techniques from [BKTT02] can be used to get around the obvi-
ous computational difficulties involved in differencing modulo equality. [BKTT02]
trivialize the tree matching problem by assuming that all tree representations
are “strongly keyed”, employing a generalized notion of data base keys to deter-
mine element correspondence in Xml documents. They claim that sensible data
formats are almost always strongly keyed up to data in Xml text nodes. We have
not verified this for OMDoc yet, but for instance even though CMP nodes do not
have ID attributes, they are keyed, since they have xml:lang attributes, which
must be unique among their siblings. However, CMP content however is not keyed,
since it is generic text data (which is trivially un-keyed) mixed with representa-
tions of mathematical object represented as content MathML or OpenMath

objects (this also caused some addressing problems in the XUpdate script in
Listing 3). Note that in OMDoc documents managed by MKM systems (as op-
posed to directly written by hand), the OMDoc mid attributes can be used for
keying, alleviating the higher computational costs of the un-ordered algorithms
somewhat.

Obviously, we need a combination of the Xml tree-based un-keyed algorithms
with key-sensitive techniques for our application; such algorithms have been
requested, but to the author’s knowledge not been reported on so far.

3.4 Modular M-diff Algorithms

Given that most of the OMDoc document model is rather standard (DAGs
vs. trees, sets vs. lists of children, etc.), it is appealing to develop general M-
diff algorithms, where the notion of M-equality is specified externally, e.g. by
extending the document schema to a full document model.

Note that Xml Schema so far only specifies full document models (i.e. in-
cluding equality) for so-called data types (e.g. ”100” and ”1.0E2” are equal
as members of the data type float). Thus we could define the notion of Xml-
Schema-diff, which would take these into account, but this is only marginally
relevant for our problem here, since it only concerns the leaves of the trees we
are dealing with.

Listing 5. Specifying Order in Xml Schema using xs:appinfo

<xs:complexType name=”omtextType”>

9 In the file system metaphor, this would correspond to following symbolic links



. . .
<xs : sequence>
<xs :annotat ion><xs :app in fo><mdi f f :unordered/></xs :app in fo></xs :annotat ion>
<xs : e l ement name=”CMP” type=”inCMPtype” maxOccurs=”unbounded”/>
<xs : e l ement name=”FMP” type=”FMP” minOccurs=”0” maxOccurs=”unbounded”/>

</xs : sequence>
. . .

</xs:complexType>

A more promising avenue seems to be to make use of the xs:appinfo10

element to specify document models for complex types in Xml Schemata — as
opposed to just content models for validation. Based on the examination of the
OMDoc document model in section 3.2, it seems plausible to assume that we
could go a long way by specifying

document order e.g. by an element mdiff:unordered in Listing 5, and
link semantics e.g. as in Listing 6 where we specify that the xref attribute

of an OpenMath object means that it represents a copy of the object that
carries the corresponding id attribute.

Listing 6. Specifying DAG attributes in Xml Schema using xs:appinfo

<xs : attr ibuteGroup name=”DAG. a t t r i b”>
<xs : a t t r i b u t e name=”x r e f ” type=”xs : anyURI” use=”opt i ona l”>
<xs : annotat ion><xs : appinfo><mdi f f : dag−source/></xs : appinfo></xs : annotat ion>

<xs : a t t r i bu t e>
<xs : a t t r i b u t e name=”id ” type=”xs : ID” use=”opt i ona l”>
<xs : annotat ion><xs : appinfo><mdi f f : dag−t a r g e t/></xs : appinfo></xs : annotat ion>

<xs : a t t r i bu t e>
</xs : attr ibuteGroup>

So, if an Xml document (fragment) is an instance of a schema that containts
document model specifications like the ones in Listings 5 and 6, then a modular
diff algorithm can read the schema and customize — multiple times during the
parsing process if necessary — the comparison criteria used by the algorithm.

4 Conclusion

We have laid down first ideas for a collaborative version control model for MKM
systems, based on the OMDoc format. We have sketched the overall archi-
tecture, and determined some of the requirements for OMDoc-diff algorithms
that come from the respective structural invariants of the data in MKM systems.

We have seen that the architecture can be kept quite close to that of the well-
known cvs system11, and interacts well with the requirements for distribution

10 The xs:appinfo is introduced in Xml Schema expressly for such purposes.
11 Actually, [BKTT02] propose a repository organization that is not diff-based, which

would be interesting to experiment with, but integrating it into a collaborative version
control environment is not trivial



identified in [KF01], which is encouraging from an implementation point of view.
In particular, we are currently experimenting with the idea to annotate all infor-
mation necessary for a cvs-like file-based formalism in the metadata elements of
mathematical objects. We could for instance use the existing Dublin Core Date
and Identifier element for timestamping, and keeping version information.
Further information, such as pointers to the repository in working copy objects
can be kept in the metadata/extradata element provided by OMDoc expressly
for this purpose. We will experiment with a HELM [APCS01]-like setup based
on OMDoc files on web-servers and implement merging by server-side XslT

processing.
The main item for further research is an OMDoc-diff algorithm as de-

scribed in section 3.2. In the literature on version management in Xml, we
often hear the argument that difference-computation is not needed in practice,
since documents are generated by Xml structure editors, but this only moves
the burden from an independent postprocess (implement once) to a module in
every editor. Moreover, this would penalize authors for using general Xml edi-
tors, since they could only incorporate Xml-diff algorithms. Finally, the actual
editing process employed by the user may not correspond to the optimal edit
script.

Given a good difference computation algorithm, merging can be obtained by
relatively simple extensions, especially since our cvs-like architecture allows the
usage of the so-called three-way merge (see [Lin01]), where two revisions are
compared with respect to a known base revision, from which they have been
created. Here, edit scripts for the changes from the base can be computed for
both revisions. These can be analyzed and combined to a joint edit script which
updates the base revision to the merged revision. [Man01,Lin01] present algo-
rithms for three-way merge of Xml documents and there are even commercial
implementations (e.g. the one described in [LF02]). Since the merge operation
only depends on the edit scripts which act on the generic Xml structure, and not
on the particular structure of the OMDoc format, we can use these algorithms
and implementations off the shelf.
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