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Abstract. We discuss formula search in highly modular libraries, such
as the LATIN atlas. In such libraries, statements can be inherited (and
thus need not be explicitly represented) via morphisms that can include
translations. This is good for knowledge management as the number of
induced (i.e. not explicitly represented) statements can grow exponen-
tially in the explicitly represented ones. But this bad for accessibility,
since conventional (computer supported) access methods only work on
explicitly represented materials.
In this paper we note that if the representation framework of the modu-
lar library provides a systematic naming scheme for induced statements
and the library system implements a flattening operation that gener-
ates all induced statements, then we can use this for access. We present
the FlatSearch extension of MathWebSearch system and show this
access method in action.

1 Introduction

In the last two decades the way we access information has been completely trans-
formed by search engines. If we want to know the birthdate of Barak Obama,
the first hit of a Google query for “obama birthdate” leads us to a wikipedia
page that has the information in the first line of text: August 4. 1961. But not
all information can be directly queried: to the best of our knowledge there is no
standard search engine that can directly answer the question who was US pres-
ident when Barak Obama was born, because the answer combines two pieces of
information, Obamas birthdate and the fact that John F. Kennedy was in office
in January 1961 until his assassination in November 1963. In fact, the question
breaks one of the basic assumptions of search engines: i.e. that it is enough to
return links to relevant web pages, which have the answer (as part of the text).
Indeed, there is apparently no page on the wide web that explicitly answers our
question (and if there were, we could easily find a question whose answer isn’t
represented). But of course, the answer is induced by knowledge explicit on the
web. If we call the space of induced answers the knowledge space, then we
would like to (but currently cannot) search the knowledge space induced by the
web. Humans naturally build up a knowledge space from the facts they learn,
and can answer queries based on it, but are – compared to search engines –
severely limited in the breadth of information they can process.

There are search engines that attempt to search the knowledge space. For
instance DBPedia extracts facts from Wikipedia, represents them as RDF triples,



and can answer queries that can be expressed by chaining relations that occur
as predicates of the triples; see e.g. [AL07] for details. Even though the RDF
formalization of Wikipedia facts as well as the expressivity of queries is rather
limited, it can answer (a suitable version of) the Obama president question
above.

But the space of mathematical knowledge cannot suitably be expressed in
RDF triples, since it contains mathematical formulae (see [Lan11a] for a dis-
cussion), makes non-trivial use of quantifications and introduces concepts and
vocabulary dynamically. Here a question that cannot be answered by mathemat-
ical search engines is the following situation: we have identified a structure (S, ])
as an associative, unital, idempotent magma, and we are interested whether ]
is commutative. To find out, we would like to search for x ] y = y ] x and

find this as an instance of the fact that idempotent monoids are Abelian, which
we proved in our Algebra 101 course, even though the statement of the theorem
does not involve the operator ].

In this paper we also present a method for searching the mathematical knowl-
edge space that allows to answer such questions. In comparison with DBPedia,
a) we start out from fully formal knowledge, so that the need for (automated)
formalization is alleviated, and b) we only allow for a controlled regime of in-
ducing knowledge items in the knowledge space: inheritance of statements via
theory morphisms. We will see that in the context of mathematical knowledge,
the second restriction is very natural (if the modularity framework is sufficiently
strong), and the first restriction can be alleviated by automated semantization
methods that are researched independently of the work presented in this paper.

This paper picks up ideas introduced in [Lau07] under the first author’s
supervision. Bastian Laubner’s system was based on a partial formalization of
Bourbaki’s Algebra [Bou74] in the OMDoc format [Koh06], which supported
modular formalization in theory graphs, but did not provide naming conven-
tions for induced statements and did not support flattening. In the time since
2007, we have developed the Mmt format [RK11b] and system [MMT], which
does, and what is more, we now have a Mmt theory graph of more than 800
modules: the LATIN Logic Atlas [Cod+11]. As the atlas grows, it becomes more
and more difficult to read the atlas, since most of the theories are specified by
inclusion reference to other theories, and the actual statements are only reached
by long and confusing walks through the graph. This problem can be solved by
technology: incremental, in-place flattening in the Mmt front-end. At the same
time, it becomes more and more difficult to avoid duplication and maintain a
maximally shared structure, for this we need a search system that takes induced
statements (these are the ones we want to share) into account.

In this paper we specify such a search system for the LATIN atlas as an
extension of our MathWebSearch formula search engine [KMP12]. In section 2
we briefly introduce MathWebSearch, Mmt and the LATIN atlas. In section
3 we discuss the problem of generating and accessing induced statements in
Mmt. Then, in section 4 we describe how MathWebSearch can be leveraged



to search for induced statements. Finally, in section 5 we discuss future work
and conclude.

2 Preliminaries

2.1 MathWebSearch

MathWebSearch (MWS)[KP] is an open-source, open-format, content-oriented
search engine for mathematical expressions.

The MWS system consists of three components:

– A crawler subsystem collects data from a mathematical knowledge repos-
itory and converts the mathematical expressions into MathWebSearch
harvests. The harvests are files containing mathematical expressions encoded
in a MWS-specific XML-based format (see [KP] for details).

– The core system builds the search index from MWS harvests and processes
search queries.

– The RESTful interface provides a public HTTP API for interacting with the
core system (i.e. submitting queries and receiving results).

Therefore, with respect to MathWebSearch, our FlatSearch approach
involves providing a MWS crawler that generates MWS harvests from flattened
Mmt libraries and a MWS frontent for submitting queries that will interact with
the MWS RESTful interface.

2.2 MMT

Mmt [RK11a] is a generic, formal module system for mathematical knowledge.
The Mmt language is designed to be applicable to a large collection of declarative
formal base languages and all Mmt notions are fully abstract in the choice of
the base language.

We will only give a brief introduction to Mmt here and then discuss the
concepts using examples in section 3. We refer to [RK11a] for further details.

The central notion is that of a theory graph containing theories and views
(morphisms between theories). Note that Mmt libraries actually contain (possi-
bly nested) collections of documents which in turn contain modules but we omit
this here for simplicity and focus on theory graphs instead.

Theories S are formed from a set of typed symbols and axioms describing
their properties. Views v : S → T are morphisms between theories which map
axioms of the source theory (S) to theorems of the target theory (T ). This
property ensures that all theorems of the source theory induce theorems of the
target theory and induces a homomorphic translation from S-terms to T -terms
by replacing every occurrence of an S-axiom with is corresponding T -theorem.

In addition to views, the module level structure in Mmt theory graphs is
given by theory inheritance. The most general kind of inheritance in Mmt is
represented by structures which are (possibly) partial named imports (and de-
fined using theory morphisms). Includes are trivial structures which are unnamed



and total while metas are distinguished includes representing the meta-theory
(each theory can have at most one meta-theory).

Every Mmt declaration is identified by a canonical, globally unique URI.
Theories and views can be referenced relative to the URI U of the theory graph
that contains them by U?〈〈theory-name〉〉 and U?〈〈view-name〉〉, respectively.

Symbol declarations can be referenced relative to the URI of their con-
taining theory T by T?〈〈symbol-name〉〉, where 〈〈symbol-name〉〉 is of the form
〈〈m1〉〉/. . . 〈〈mn〉〉/〈〈const〉〉, where the mi are the names of morphisms inducing
the symbol 〈〈const〉〉 into T . Similarly, assignment declarations can be referenced
relative to the URI of their containing view v by v?〈〈symbol-name〉〉.

The Mmt system provides an API to the Mmt data structures described
above and the Mmt implementation [Rab08; RK11a] provides a Scala-based
[OSV07] open source implementation of the Mmt API. The Mmt system can
also generate MWS harvests from Mmt libraries so, from the perspective of
MathWebSearch, it can be seen as a MWS crawler. Therefore, with respect
to Mmt our FlatSearch approach involves generating the flattened version on
a library and then exporting it as MWS harvests.

2.3 LATIN

The LATIN project (Logic Atlas and Integrator) [KMR09; LATIN] aims at
developing tools for interfacing logics and proof systems. It focuses on develop-
ing a knowledge representation framework that is foundationally unconstrained
and thus allows for the representation of most meta-theoretic foundations of
mathematical knowledge in the same format.

The LATIN logic graph is built as an Mmt library and already contains work
related to first-order logic (TPTP [SS98], CASL [Ast+02; Mos04] and Mizar
[TB85; UB06]), higher-order logic (PVS [ORS92], Isabelle/HOL [NPW02] and
HasCASL [SM02]), logical frameworks (LF [Pfe91] and Isabelle [Wen+09]) and
mathematics (set theory, natural and rational numbers, algebraic structures and
others). Furthermore, whenever possible, these representations are structured
and related using logic morphisms.

The LATIN library currently contains 449 theories and 382 views between
them. The theories themselves contain a total of 2310 symbol declarations and
1072 direct imports (including metas) resulting in an average of 5.14 declarations
and 2.39 direct imports per theory. This amounts to a size of 123.9 MB in its
native OMDoc format and 25.2 MB when converted to MWS harvests.

3 Induced Statements in MMT Libraries

To understand the situation in modular libraries, consider the theory graph
in Figure 1. The right side of the graph introduces the elementary algebraic
hierarchy building up algebraic structures step by step up to rings; the left side



contains a construction of the integers. In this graph, the nodes are theories 1,
the solid edges are imports and the dashed edges are views.
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Fig. 1. A Mmt Graph for Elementary Algebra

In Mmt theory graphs, theory morphisms can carry a name, and inherited
constants can be disambiguated via the inclusion that induced them. An ap-
plication of this is in the definition of the ring theory, which inherits all of its
operators (and their axioms) via the two inclusions m (for the multiplicative
operations) and a (for the additive operations). To complete the ring we only
need to add the two distributivity axioms in the inherited operators m/◦ and a/◦.

Furthermore, morphisms can carry an assignment which maps symbols and
axioms from the source theory to terms in the target theory. We see this in the
view e from Monoid to NatArith, which assigns N to the base set G, multiplication
(·) to ◦ and the number 1 to the unit e. The document theory morphism property,
e also contains proofs for all Monoid axioms in NatArith.

1 We have left out the quantifiers for the variables x, y, and z from the axioms to reduce
visual complexity. The always range over the respective base set. Furthermore, all
axioms are named; but we only state the names we actually use in the examples.



It is a special feature of Mmt that assignments can also map morphisms into
the source theory to morphisms into the target theory. We use this to specify
the morphism c modularly (in particular, this allows to re-use the proofs from e
and c).

Note that already in this small graph, there are a lot of induced statements.
For instance, the associativity axiom is inherited in seven times (via inclusions;
twice into Ring) and induced four times (via views; twice each into NatArith and
IntArith). All in all, we have more than an hundred induced statements from
the axioms alone. If we assume just 5 theorems proven per theory (a rather
conservative estimation), then we obtain a number of induced statements that
is an order of magnitude higher.

Another crucial ingredient of Mmt for the endeavor of searching for induced
statements is the fact that, as discussed in section 2.2, Mmt supplies names
(called Mmt URIs) for all induced statements. For example, if we take u to be the
URI of the theory graph in Figure 1, the statement ∀x, y, z : Z.(x+ y) + z = x+
(y+z) induced by the view c in IntArith has the Mmt URI u?IntArith?c/g/assoc.
Note that given a theory graph, the Mmt system can dereference valid Mmt
URIs and return the induced statements, even though they are not explicitly
represented in the graph.

Generating Induced Statements Following the example above we can formally
define the process of flattening a theory (or a theory graph).

Definition 1. Given a theory graph γ the flattening of a theory T in γ is a
theory T with the same URI as T containing:

– all symbol declarations that are in T .
– all symbol declarations that are imported into T .
– for every view v : S → T the projection of every S-based declaration over

view v. Here, by S-based declaration we refer to the declarations in S and in
theories that import S.

The URIs of the induced declarations are based on the definition of Mmt
URIs from section 2.2 (see also the example above) and permit recovering the ori-
gin of induced declarations. Specifically, symbol declarations from T or imported
in T by the meta or an include preserve their name while symbol declarations
imported in T by a structure or induced by a view are additionally qualified
with the name of that structure or view.

Definition 2. The flattening of theory graph γ is a theory graph γ with the
same URI as γ containing the following module declarations :

– for every theory T in γ the theory T
– every view v : S → T in γ

Note that, since theory flattening preserves theory URIs and doesn’t add new
axioms (only new theorems) any view from S to T is also a view from S to T so
the views in γ are still valid.



An important observation is that the flattening operation for theory graphs
is not idempotent and flattening can be applied repeatedly to a theory graph
to generate new induced symbol declarations. Effectively this generates symbol
declarations induced not only by one view but by a chain (composition) of views.
More precisely, a theory graph flattened n times will all contain declarations
induced by view chains of length at most n. Clearly, if there is a view cycle (e.g.
v1 : S → T and v2 : T → S) this process can continue indefinitely yielding ever
bigger content libraries.

Induced statements in the LATIN library We implemented library flattening as
described above in Mmt and tested it on the LATIN library. The flattening
(once) of the LATIN library increases the number of declarations from 2310
to 58847 (a factor of 25.4) and the total size of the library from 123.9 MB to
1.8 GB (a factor of 14.8). As expected, the multiplication factor depends on
the level of modularity of the library. For instance, the highly modular math
sub-library containing mainly algebraic structures increases from 2.3 MB to 79
MB thus having a multiplication factor of 34.3, more than double the library
average. The size of the MWS harvests also increases considerably, from 25.2
MB to 539.0 MB.

4 Searching for Induced Statements

To search for induced statements, we use our MathWebSearch system [KMP12],
which indexes formula-URL pairs and provides a web interface querying the for-
mula index via unification. This can be used for
Instance Search e.g. to find all instance of associativity we can issue the query

∀x, y, z : S .(x op y) op z = x op (y op z), where the - are query variables

that can be instantiated in the query. In the library from Figure 1 we would
find the commutativity axiom SemiGrp/assoc, its directly inherited versions
in Monoid, to Ring and in particular the version u?IntArith?c/g/assoc.

Applicable Theorem Search where universal variables in the index can be
instantiated as well; this was introduced for a non-modular formal libraries

in [Ian+11]. Here we could search for 3 + 4 = R and find the induced
statement u?IntArith?c/comm with the substitution R 7→ 4+3, which allows
the user to instantiate the query and obtain the equation 3 + 4 = 4 + 3
together with the justification u?IntArith?c/comm that can directly be used
in a proof.

The implementation of a web service that conducts such searches is very sim-
ple: instead of harvesting formulae directly from a formal digital library directly
as in [Ian+11], we flatten the library first, and then harvest formulae. Conve-
niently,Mmt flattening gives the included constants and axioms local names that
are syntactically identical to the respective symbol paths in Mmt URIs, so that
the generation of Mmt URIs for the formula harvests is trivial.

The only non-trivial part of the implementation is the search human-oriented
front-end, i.e. the input of search queries and the presentation of search results.



The LATIN atlas is written in an extension of the TWELF encoding [RS09]
of LF [HHP93], so it is natural to use an extension of LF notation with query
variables for input. Therefore, we use the Mmt notation language and interpre-
tation service described in [IR12] to transform LF-style input into Mmt objects
and subsequently to MWS queries.

The presentation of the Mmt URIs requires some work as well: while the
Mmt system can directly dereference the Mmt URI and thus be used to present
the induced statement, humans want a justification that is more understandable
than a Mmt URI. Fortunately, this can be generated from the Mmt URI by a
simple template-based algorithm.

Let us consider the search result u?IntArith?c/g/assoc from the instantiation
search above, where we take u to be http://cds.omdoc.org/cds/elal. The
first step is to localize the result in the theory u?IntArith with the sentence

Induced statement ∀x, y, z : Z.(x + y) + z = x + (y + z)
found in http://cds.omdoc.org/cds/elal?IntArith (subst,
justification).

(1)

Here the underlined fragments carries hyperlinks, the second pointing to the
justification:

IntArith is a CGroup if we interpret ◦ as + and G as Z. (2)

which can be directly from the information associated to the morphism c in the
Mmt URI. Then we skip over g, since its assignment is trivial and generate the
sentence.

CGroups are SemiGrps by construction (3)

and finally we ground the explanation by the sentence

In SemiGrps we have the axiom
assoc : ∀x, y, z : G.(x ◦ y) ◦ z = x ◦ (y ◦ z) (4)

The sentences (1) to (4) can be generated from templates, since the Mmt system
gives access to the necessary information: source and target theory as well as the
assignment ψ′ for (2), the fact that the path from SemiGrp to CGroup only con-
sists of inclusion that triggers the template for (3) and the original formulation
of the axiom assoc.

Note that we make use of another peculiarity of the Mmt system in this ex-
planation: all constants in the theory graph carry notation declarations [KMR08],
which can be used to generate human-readable presentations of arbitrary formal
objects in the graph.

5 Conclusion and Future Work

We have presented an extension of a formula search search engine to modular
formal libraries. In our application case, most of the services that are needed
for this extension: i) compositional naming of induced statements, ii) flattening,
iii) transformation of formulae to content MathML, and iv) presentation of ar-
bitrary objects already came with the Mmt system. Any other system (e.g. the



Fig. 2. The FlatSearch Web Interface for LATIN

Isabelle system [NPW02] for the Isabelle library [Isa]) would have to implement
similar functionality. Our experience with querying shows that the statements
induced by views are by far more useful than those induced by inclusions, be-
cause (as in our graph in Figure 1) the interest is in inducing statements from the
abstract part to concrete structures. As a consequence, FlatSearch becomes
more and more useful as the graph acquires more and more views.

Currently, our FlatSearch is restricted to fully formal modular libraries,
since flattening is only understood for those. With a notion of flattening of flex-
iformal representations (representations of mathematical knowledge at flexible
levels of formality; see [KK11]) we could extend FlatSearch to modular flexi-
formalizations of traditional mathematical documents. Indeed Laubner’s study of
the first 35 pages of Bourbaki’s Algebra mentioned in the introduction revealed
an underlying theory graph with 51 theory nodes and 107 theory morphisms
of which 12 were views, but 63 had non-trivial assignments. Especially the last
number shows the value of the FlatSearch method. Indeed one of the problems
readers face with the Bourbaki books (which are otherwise well-liked for their
structured approach) is that particular mathematical structures and objects can
only be understood, if one already knows all the material they depend on. One
author even said that

Bourbaki was a dinosaur, the head too far away from the tail. Explaining:
[. . . ] You could say “Dieudonné what is the result about so and so?” and
he would go to the shelf and take down the book and open it to the right
page. After Dieudonné retired no one was able to do this. So Bourbaki
lost awareness of his own body [Ric]

A flexiformalization of the Bourbaki books together with an extension of MMT
that can deal with flattening of informal texts would go a long way to alleviate
these problems.



FlatSearch queries are currently restricted to pure unification queries, for a
more expressive user experience, we plan to embed it into a more comprehensive
mathematical query language, most probably starting with [Rab12].

Finally note that our query method is similar in spirit to “Semantic Web
Queries”, where queries for RDF triples that are induced by a background on-
tology from explicitly represented RDF facts are possible. The inferencing in-
volved in this corresponds to the flattening step in FlatSearch. However, DL-
reasoners like Racer [HM03] answer queries by performing inferences on the fly,
and do not have the efficiency of a search index at their disposal, and can only
deal with relatively small A-boxes as a result. Current high-efficiency triple stores
that do employ (database) indexing techniques only support a very restricted
subset of ontologies (as a typical example, Virtuoso [Olv] supports transitive
closures of selected relations, but not a lot more).
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[Ric] Émilie Richter. Nicolas Bourbaki. url: http://planetmath.org/
NicolasBourbaki.html.

[RK11a] F. Rabe and M. Kohlhase. “A Scalable Module System”. see http:

//arxiv.org/abs/1105.0548. 2011.
[RK11b] Florian Rabe and Michael Kohlhase. “A Scalable Module System”.

Manuscript, submitted to Information & Computation. 2011. url:
http://kwarc.info/frabe/Research/mmt.pdf.
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