
THEUN
IVERSIT
YOFBI
RMINGH
AM

Schoo
lofC
omput
erSci
ence

Edgbasto
n,Birmin
ghamB15
2TT,Eng
land

URL:http
://www.cs.
bham.ac.uk
/

Mechanising Partiality withoutRe-ImplementationManfred Kerber and Michael KohlhasePublished as: Proceedings of the 21st Annual German Con-ference on Arti�cial Intelligence, KI'97, p.123{134, Springer Verlag, LNAI 1303

Mechanising Partiality withoutRe-ImplementationManfred Kerber1 and Michael Kohlhase21 The University of Birmingham, School of Computer ScienceBirmingham, B15 2TT, Englande-mail: M.Kerber@cs.bham.ac.ukWWW: http://www.cs.bham.ac.uk/~mmk2 Universit�at des Saarlandes, FB InformatikD-66041 Saarbr�ucken, Germanye-mail: kohlhase@cs.uni-sb.deWWW: http://jswww.cs.uni-sb.de/~kohlhaseAbstract. Even though it is not very often admitted, partial functionsdo play a signi�cant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago. This approach allows rejectingcertain unwanted formulae as faulty, which the simpler two-valued onesaccept. We have developed resolution and tableau calculi for automatedtheorem proving that take the restrictions of the three-valued logic intoaccount, which however have the severe drawback that existing theo-rem provers cannot directly be adapted to the technique. Even recentlyimplemented calculi for many-valued logics are not well-suited, since inthose the quanti�cation does not exclude the unde�ned element. In thiswork we show, that it is possible to enhance a two-valued theorem proverby a simple strategy so that it can be used to generate proofs for the the-orems of the three-valued setting. By this we are able to use an existingtheorem prover for a large fragment of the language.1 IntroductionMany practical applications of deduction systems in mathematics, philosophicallogic and computer science rely on the correct and e�cient treatment of par-tiality. For instance, in order to describe formally the semantics of computerprograms, the logic has to be able to model that real programs may crash (i.e,are only partial functions from inputs to outputs). For example, one would like todistinguish the faulty type description of the tail function \l : list) tail(l): list"from the correct one \l : list l 6= []) tail(l): list". Such di�erences can be madeformal in the VDM language (see for instance [Jon90, p.68�] or [BFL*94, p.3]).Unfortunately up to now there is no e�cient mechanisation of reasoning withpartiality in VDM.There are di�erent approaches { ranging from workarounds for concrete situ-ations to a proper general treatment { to model partiality. For an overviewi, wei For a more detailed discussion of the di�erent approaches compare [Far90].

will introduce the main approaches and exemplify their advantages and disad-vantages by some trivial examples from arithmetic. We have chosen this domainfor its clarity, even though for mathematics a logical treatment of partialitymight successfully be replaced by a workaround.We will recall the four main options of treating partiality and then advocatethe fourth one. In the �rst approach, unde�ned expressions like 1=0 are syntac-tically excluded, for instance by using a sorted logic. In the second approach,partiality is either disregarded or bypassed, for instance, a value is assigned to1=0, either a �xed value (e.g. 0) or an undetermined one. In both cases it isnecessary to tolerate undesired theorems, in the �rst case, for instance, 1=0 = 0,or in the second case from 0 � x = 0 the instance 0 � 1=0 = 0. This approachis not satisfying if such theorems are unwanted and that is normally the case inmathematics.In the third and fourth, partiality is taken seriously and this is reected inthe semantics and the calculus. While the third considers unde�ned terms only,but atomic formulae are evaluated either to false or true, in the fourth, atomicformulae can be unde�ned too, that is, be evaluated to a third truth value \un-de�ned". Concretely, in the third approach terms of the form 1=0 are treated asunde�ned and all atomic formulae containing such a meaningless term are evalu-ated to false. This has the advantage that partial functions can be handled withinthe classical two-valued framework. However, the serious drawback is that theresults of these logic systems can be un-intuitive to the working mathematician.For instance in elementary arithmetic the following sentence8xIR; yIR; zIR z = xy) x = y � zis a theorem of such systems since the scope is true for the case y 6= 0 and forthe case y = 0, the formula z = x=0 obtains the truth value f which in turnmakes the implication true, too. However, it is mathematical consensus that theequation should only hold provided that y is not 0. In the fourth approach, whichhas, in particular, been investigated by Kleene in [Kle52], this is not a theorem.In this approach atomic formulae containing meaningless terms are evaluated tounde�ned. In particular, the example above is not a theorem in the three-valuedapproach, since for the instantiation y = 0 the formula evaluates to unde�ned.Now we address the question which price has to be paid for the propertreatment in the three-valued approach. Indeed in unsorted mechanisations ofKleene's approach by Tichy [Tic82], Lucio-Carrasco and Gavilanes-Franco [LG89],it is necessary to pay a high computational price. In [KK94,KK96] we havedeveloped a sorted three-valued logic SKL3 and corresponding resolution andtableau calculi RPF3 and TPF3 carefully integrating ideas from sorted dy-namic logics as introduced by Weidenbach [WO90,Wei95] and from many-valuedtruth-functional logics as mechanised by H�ahnle [H�ah94] as well as by Baazand Ferm�uller [BF95]. In these logics the additional computations are relativelymodest and in many cases proofs in the two-valued logic can be the structurallyisomorphically transformed into proofs in the three-valued logic.The main contribution of this paper is the result that for a large class ofSKL3-theorems (which are also classical theorems by construction) the TPF32

and RPF3 proofs can be transformed into classical sorted tableau and resolutionproofs and vice versa conserving the structure and size of the proofs. Furthermorewe can show that by adding a simple strategy in proof search for two-valuedtheorems, it is possible to use a two-valued theorem prover for proving SKL3-theorems. However, unlike to the �rst of the four above-mentioned approaches,ours does not trivialise unde�nedness information in a way that it would becomedecidable.2 Strong Sorted Kleene Logic (SKL3)In [Kle52] Kleene presents a logic, which he calls strong three-valued logic forreasoning about partial recursive predicatesii on the set of natural numbers. Heargues that the intuitive meaning of the third truth value should be \unde�ned"or \unknown" and introduces the truth tables shown in De�nition 1. SimilarlyKleene enlarges the universe of discourse by an element ? denoting the unde�nednumber. In his exposition the quanti�ers only range over natural numbers, inparticular he does not quantify over the unde�ned individual (number).In [KK94] we have made Kleene's meta-level discussion of de�ned and unde-�ned individuals explicit and presented a formal syntax and semantics that wewill now present informally.The universe of discourse is structured into the sort � for all de�ned indi-viduals and an error element ?; all functions and predicates are strict, that is,if one of the arguments of a compound term or an atom evaluates to ?, thenthe term evaluates to ? or the truth value of the atom is u respectively. Justas in Kleene's system, our quanti�ers only range over individuals in �, that is,individuals that are not unde�ned. Since SKL3 needs the sort � for boundedquanti�cation anyway, it is no further e�ort to give the full sorted system. Thefurther use of sorts gives the well-known advantages of sorted logics for theconciseness of the representation and the reduction of search spaces.Terms in SKL3 are ordinary �rst-order terms. Atomic formulae are de�nedas usual, in addition, there are atomic formulae of the kind t<�S, where t is aterm and S a sort symbol. Here, t<�S stands for \t has sort S". Formulae arebuilt up from atomic formulae by the usual connectives, and a unary connective! with the intended meaning that !A is true, whenever the value of A is notu. Furthermore, all quanti�cations are bound by a sort S (i.e., are of the form8xS A or 9xS A).The three-valued semantics for SKL3 has a \unde�ned individual" ? in theuniverse of discourse. Note that this is similar to the classical at CPO con-struction [Sco70], but Kleene's interpretation of truth values does not make uii Most logic-based accounts of partiality only treat partiality for functions correspond-ing to the mathematical notion of a partial function, de�ned as a right-unique rela-tion opposed to a total function which is left-total and right-unique. Indeed, at �rstglance there seems to be no need for having partial relations as well, since relationsare de�ned as subsets of Cartesian products. However, most mathematicians wouldagree that the relation x > y does not make much sense for arbitrary complex num-bers (rather than saying that it is false for most complex numbers), while x > y isperfectly well-de�ned for real numbers. 3

minimal. The standard notion of value function, �-algebra and assignments di-rectly carry over to the partial-function case. The only interesting part is thenon-classical truth functions for the connectives and quanti�ers.De�nition 1. The value of a formula dominated by a connective is obtainedfrom the value(s) of the subformula(e) in a truth-functional way. Therefore itsu�ces to de�ne the truth tables for the connectives:^ f u tf f f fu f u ut f u t _ f u tf f u tu u u tt t t t) f u tf t t tu u u tt f u t :f tu ut f !f tu ft tAs usual the semantics of formulae with respect to an interpretation I and anassignment ' is de�ned recursively. The atomic formulae of the form t<�S aretreated like expressions of the form S(t). For the quanti�ers it is de�ned withthe help of function e8 and e9 from the non-empty subsets of the truth values inthe truth values. We de�neI'(QxS A) := eQ(fI';[a=x](A) �� I(S)(a) = tg);where Q 2 f8; 9g and '; [a=x] coincides with ' away from x and maps x to a.Furthermore we de�nee8(T) := 8<: t for T = ftg or T = ;u for T = ft; ug or fugf for f 2 T e9(T) :=8<: t for t 2 Tu for T = ff ; ug or fugf for T = ffg or T = ;Note that with this de�nition quanti�cation is separated into a truth-functionalpart eQ and an instantiation part that considers members of the universe ac-cording to the sort S (that is, those members for which I(S)(a) = t). Notefurthermore, that although there is no semantical di�erence between sorts andunary predicates, by the de�nition of the semantics of the quanti�ers, only thoseelements are considered where the sort is de�ned and evaluates to t. Accordingto this semantics, the relativisation <(8xS A) is 8x S(x)^!S(x)) <(A) andnot just 8x S(x)) <(A).Finally, quanti�cation never considers unde�ned values and therefore can-not be truth-functional even for the unsorted case. As a consequence, we can-not directly use the methods developed for truth-functional many-valued logicsfrom [H�ah94,BF95].Finally, the \tertium non datur" principle of classical logic is no longer valid,since formulae can be unde�ned, in which case they are neither true nor false. Wedo, however, have a \quartum non datur" principle, that is, formulae are eithertrue, false, or unde�ned, which allows us to derive the validity of a formula byrefuting that it is false or unde�ned. We will use this observation in our calculi.While in classical logic, the consequence relation is directly connected tothe implication by the deduction theorem, in SKL3 things are a little bit moredi�cult, since the classical deduction theorem is not valid. In particular, when4

proving mathematical theorems, it is quite usual to do this with respect to somebackground theory (axioms and de�nitions), which can no longer simply be takenin the antecedent of an implication. Actually, the SKL3 deduction theorem hasthe form � [fAg j= B i� � j= A^!A) B.Now, the de�nedness connective ! for formulae does not have an explicitcounterpart in informal mathematical practice, instead de�nedness assumptionsare implicitly made in the assumptions. Hence for mathematical applications wewill consider so-called consequents, that is, pairs consisting of a set of formulae� and a formula A, in which all formulae in � are assumed to be de�ned. Wecall a consequent � j= A valid if A is entailed by � in all �-models.In fact the tautologies in the !-free fragment of SKL3, i.e., valid consequents ofthe form ; j= A, where A does not contain any !, are very limited. The only atomsthat are de�ned in an empty context are of the form t<��. Therefore the set oftautologies can be generated by adding disturbances to classical propositionaltautologies, where the propositional variables have been replaced by such atoms,for instance (t<��) t<��) _ A for arbitrary formulae A.Now we can come back to the example from the exposition. The assertionis not a theorem of SKL3, since the instance 1 = 10) 1 = 0 � 1 is not a validformula (in any reasonable axiomatisation of elementary arithmetic). While theantecedent of the implication evaluates to u, the succedent evaluates to f, hencethe whole expression to u.Example 2 (Extended Example). We will formalise an extended examplefrom elementary algebra that shows the basic features of SKL3. Here the sort IR�denotes the real numbers without zero. Note that we use the sort information toencode de�nedness information for inversion: 1x is de�ned for all x 2 IR�, sincethe formula A2 is taken as an axiom. Naturally, we give only a reduced formali-sation of real number arithmetic that is su�cient for our example. Consider theconsequent fA1;A2;A3;A4;A5g j= T withA1 8xIR x 6= 0) x<�IR�A2 8xIR� 1x<�IR�A3 8xIR� x2 > 0 A4 8xIR 8yIR x� y<�IRA5 8xIR 8yIR x� y = 0) x = yT 8xIR 8yIR x 6= y) � 1x�y�2 > 0In an informal mathematical argumentation why T is entailed by fA1; : : : ;A5g,the Ai are assumed to be true, that is, neither false nor unde�ned. Let x andy be arbitrary elements of IR. If x = y, the premise of T is false, hence thewhole expression true (in this case the conclusion evaluates to u). For x 6= y theconclusion � 1x�y�2 > 0 can be derived from A1 through A5.3 TableauIn our tableau calculus, a labeled formula A� means that A has the truth value �.For the purposes of this paper, it is essential to make use of multi-indices [H�ah94](semantically A�� is equivalent to A�_A� , however syntactically, on the calculuslevel it is treated specially.). This not only gives us notational conciseness, butalso drastically improves our calculus over a single-index variant, since we canintroduce special rules for their treatment. So in general we think of the labels �5

as truth value sets, which may be singletons. Note that we normally do not haveto treat triple-indices as in Afut, since that would correspond to a three-valuedtautology, which cannot contribute to a refutation.De�nition 3 (Tableau Rules). The tableau rules consist of the traditionaltableau rules for the propositional connectives, augmented by the case of thelabel u.(A _ B)tAt �� Bt (A _ B)uAfuBfuAu �� Bu (A _B)fAfBf (A _B)utAut �� But (A _ B)fuAfuBfuThe negation rules just ip the labels in the intuitive way.(:A)tAf (:A)uAu (:A)fAt (:A)utAfu (:A)fuAutThe ! rule for the u case closes the branch (we use an explicit symbol � for that),since (!A)u is unsatis�able in SKL3.(!A)tAft (!A)u� (!A)fAu (!A)utAft (!A)fuAu AftAf �� AtThe last rule is a splittingiii rule reecting the de�nition of multi-index ft asa disjunction. We only need this one splitting rule, since we have treated themulti-indices ut and fu explicitly in the rules.The quanti�er rules for the classical truth values and multi-indices are verysimilar to the standard rules (fxS ; y1; : : : ; yng are the free variables of A and f isa new function symbol of arity n), with the exception that the sort of the Skolemfunction has to be speci�ed. The rule for the case u has a mixed existential anduniversal character: for yS the value of A is unde�ned or true (that is there isno instance, which makes the formula false) and there is at least one de�nedwitness for the unde�nedness.(8xS A)t[yS=xS]At (8xS A)u[f(y1; : : : ; yn)=xS]Au(f(y1; : : : ; yn)<�S)t[yS=xS]Aut (8xS A)f[f(y1; : : : ; yn)=xS]Af(f(y1; : : : ; yn)<�S)t(8xS A)ut[yS=xS]Aut (8xS A)fu[f(y1; : : : ; yn)=xS]Afu(f(y1; : : : ; yn)<�S)tiii Note that the inverse rule that merges literals A� and A� into a multi-literal A�[�is not present in the calculus and merging is also not carried out implicitly.6

The rules for connectives and quanti�ers above can now be used to reduce com-plex labeled formulae to literals.Now we only need tableau closureiv rules: Unde�ned de�nedness literals canbe used to close the tableau due to the fact that the predicate � is de�nedeverywhere. In the rules total, cut and strict(t<��)u�(t<��)� A�B�A�\� �� SC(�) � C(t<��)f� �� SC(�) �we require that � fftg and � = [t1=x1S1]; : : : ; [tn=xnSn] is the most generaluni�er of A and B or the most general uni�er of the term t and a subterm s ofC, respectively. Note that the cut rule is only non-redundant if �\� is a propersubset of both � and �; we will assume this in the following.In both cases the sort constraint SC(�) = ((t1<�S1)^ : : :^ (tn<�Sn))fu insuresthe correctness of the instantiations. We have employed the notation of writingthe substitution � next to the tableau schema, to indicate that the whole tableauis instantiated by � during the application of the rule.A tableau is built up by constructing a tree with the tableau rules startingwith an initial tree without branchings. We call a tableau closed i� all of itsbranches end in �. Note that the disjunct � in the succedent of the rules aboveis only needed if the set of sort constraints is empty. Then this rule closes thebranch without residuating.De�nition 4 (Tableau Proof). A tableau proof for a formula A is a closedtableau constructed from the initial tree consisting of the labeled formula Afu.A tableau proof for a consequent � j= A is a closed tableau constructed from�t [�Afu	.The tableau proof of a consequent � j= A essentially refutes the possibility thatA can be unde�ned or false under the assumption that all formulae in � aretrue. By the quartum non datur rule, we can then conclude that A is entailedby �. The soundness of the TPF3 rules can be veri�ed by a tedious recourseto the semantics of the quanti�ers and connectives. Completeness is proved bythe standard argument using a model existence theorem for SKL3. For detailssee [KK96].Example 5 (continuing Example 2). Taking the above example we give aproof for fA1;A2;A3;A4;A5g j= T using the above tableau rules. The proofis shown in Fig. 1. Applying the closure rule in the case of non-empty sortconstraints, we omit the � branch for simplicity reasons. Note that the unsorteduni�ers [c� d=uIR], [c=xIR], and [d=yIR] have to be applied to the whole tableau.For display reasons, however, we only add the relevant formulae to the tableauinstead of replacing them, that is, correctly (F8) and (F13) have to replace (F3)and (F9) respectively.iv We de�ne that a literal A; closes a branch of the tableau and denote it with �.7

The proof in Fig. 1 shows an interesting feature, namely it corresponds inlength and structure to a proof of the theorem in a two-valued variant of TPF3.This observation has a more general background: [H�ah94] shows that for so-called regular truth functional logics (all our connectives and quanti�ers exceptfor ! are regular), the sets-of-signs method allows a presentation of the tableausystem in Smullyan's universal notation, varying only the closure conditions, i.e.,the structure is isomorphic to the classical tableau system. However, this resultis not directly applicable, since SKL3 is not truth-functional (we have to considerbounded quanti�ers) and we assume strictness.De�nition 6 (TPF2). Formally this proof system (we will call it TPF2) canbe obtained from TPF3 by removing all inference rules for the ! connective, thetotal rule and all connective and quanti�er rules that contain the label u. Thisis essentially a tableau variant of [WO90] in the style of [Wei95].r(A1) 8xIR x 6= 0) x<�IR�)t...r(A5) (8xIR 8yIR x� y = 0) x = y)tr(T) (8xIR 8yIR x 6= y) � 1x�y�2 > 0)fur(A10) (uIR 6= 0) uIR<�IR�)t 8t(A1)r(A20) (1vIR� <�IR�)t 8t(A2)r(A30) (w2IR� > 0)t 8t(A3)r(A40) (sIR � tIR<�IR)t 8t(A4) (2 times)r(A50) (xIR � yIR = 0) xIR = yIR)t 8t(A5) (2 times)r(T1) (c<�IR)t 8fu(T) (2 times)r(T2) (d<�IR)t 8fu(T) (2 times)r(T3) (c = d _ � 1c�d�2 > 0)fu 8fu(T) (2 times)r(T30) (c = d)fu _fu(T3)r(T300) (� 1c�d�2 > 0)fu _fu(T3)r(F1) (1c�d<�IR�)fu �(T300,A30)rHH(F2) (c� d<�IR�)fu �(F1,A20)r(F3) (uIR = 0)t r(F4) (uIR<�IR�)t _t(A10)r����� @@(F5) ((c� d)<�IR)fu �(F4,F2)rr(F6) (c<�IR)fu �(F5,A40)� rr � �(F6,T1), �(F7,T2)(F7) (d<�IR)fu �(F5,A40)rHH(F8) (c� d = 0)t �(F3,[c� d=u])r(F9) (xIR � yIR = 0)f (F10) (xIR = yIR)t _t(A50)r����� @@(F11)(c<�IR)fu (F12) (d<�IR)fu �(F10,T30)r rr r� � �(F11,T1), �(F12,T2)rr(F13) (c� d = 0)f �(F9,[c=x]; [d=y])� �(F13,F8)Fig. 1 Tableau proof sketch 8

The correspondence mentioned above can be realised by replacing all multi-indices fu in TPF3 by the truth value f in TPF2. The formal reason that thisis possible, lies in the fact that in TPF3 the tableau rules for R� and R�u haveexactly the same structure for � 2 ff; tg and R 2 f_;:;8g.In other words the simple measure of using rules for truth-value sets providesproofs that are as short as in the two-valued case. If, however, truth-value setsare not used, certain parts of the proofs must be duplicated. This relationshipcan only hold for so-called normal problems of course, that is, problems which donot contain any ! connective, since formulae containing a ! do not make any sensein classical two-valued logic. Let now SFL2 be a two-valued sorted logic, that is,the same logic as SKL3 with two truth values and without the ! connective.Theorem 7 (Conservativity). Each TPF3-tableau proof for a normal prob-lem � j= A in SKL3 can be transformed into a TPF2-tableau proof in SFL2.Remark 8. Obviously, the converse of the above theorem does not hold. Noteach TPF2 proof can be transformed into an TPF3 proof even if there is a TPF3proof. Consider for example the relation fAg j= A _ (B _ :B) which holds inSKL3 as well as in SFL2. An TPF2-proof is given in Fig. 2.r(A) (A)tr(T) (A _ (B _ :B))fr(F1) (A)f _f(T)r(F2) (B _ :B)f _f(T)r(F3) (B)f _f(F2)r(F4) (:B)f _f(F2)r(F5) (B)t :f(F4)r � �(F5,F3)Fig. 2. Counterexample to the converse conservativityThis proof cannot be transferred since in SKL3 (T), (F1), (F2), (F3), (F4), and(F5) are labeled by the truth value u in addition, hence applying the closureto (F5) and (F3) leaves a label u in SKL3 and does not lead to �. This comesfrom the fact that B _ :B is not a tautology in SKL3. However, the otherstraightforward closure of the tableau by applying the closure rule to (A) and(F1) can be applied in SFL2 as well as in SKL3.Certainly it would be nice to have the property that for each classical SFL2proof there exists an SKL3 proof which is as short as the classical (of course onlyif the classical theorem is also an SKL3 theorem). The example above shows thatthis property does not hold in general, for instance, replace the assumption setfAg by a set from which A can be derived in 20 steps only. On the other handthis example is rather arti�cial insofar as the theorem would normally not bestated in this form in mathematics, because mathematical theorems are normallynot redundant in the way that two true statements are linked by an _", on thecontrary usual mathematical theorems employ preconditions as weak as possibleand consequences as strong as possible. For instance, in a mathematical context9

we would expect theorems like A, B _ :B, A ^ (B _ :B). While a proof for the�rst (from the assumptions A) can be transferred from SFL2 to SKL3, the lattertwo are not theorems in SKL3. Hence we expect that for usual mathematicaltheorems the proof e�ort in SKL3 will not be bigger then in SFL2.If we look again at the counterexample above, we see a general principle,how it is possible to generate a classical proof that cannot be lifted to a TPF3proof, essentially closing the tableau by two complementary formulae, which bothstem from the theorem. In such a case the branch can be closed on two formulae,labeled t and f in the two-valued setting, but in the three-valued setting theyare labeled by tu and uf , so the closure results in a formula labeled by u only.In the following, we want to give a formal de�nition of a control strategyfor TPF3 that avoids these pitfalls. For this, we mark theorem nodes with Uand leave assumption nodes unmarked. Marking the nodes generated by theapplication of a TPF3 rule � is carried out as follows: Add the truth value uto the labels of the premises and apply �, then mark the new nodes with U , i�their formulae contain the truth value u. It is a simple exercise to check, that thelabeling of a node in a TPF3 tableau only depends on its origin (i.e., whether itdescends from the theorem or not).De�nition 9 (U3-Strategy). The applicability of all rules except cut remainsunrestricted by U3, while the cut rule is restricted to the case, where at mostone of the parent nodes is in U .Lemma 10 (Completeness of U3). U3 is a complete strategy for TPF3 onthe normal fragment of SKL3.Note that in U3-tableaux no node can have the singleton label u, and thathence the connective and quanti�er rules for that label are redundant in TPF3for the normal fragment of SKL3.Since, the TPF3 and TPF2 rules are identical in structure, and the marksU only depend on the origin of formulae, they can also be computed for TPF2-tableaux, if we leave formulae of the form t<�� unmarked, irrespective of theirorigin. This move imitates an application of the total rule that does not exist inTPF2. Let U2 be that strategy for TPF2-tableaux that forbids cut on formulaemarked with U .Theorem 11 (Lifting). Each U2-tableau can be lifted to an isomorphic U3-tableau.Obviously, the strategy U2 is not complete for SFL2, and indeed we do notwant it to be, since SKL3 was developed to eliminate formulae from the set offormulae that are provable in SFL2 and thus in classical �rst-order logic, but thatare generally not considered as mathematical theorems (like 1=0 = 0_ 1=0 6= 0).Actually, we show the adequacy of U2-tableau for the normal fragment ofSKL3. To see that U2 is sound let T be a closed U2-tableau for a consequent� j= A, then it can be lifted to a closed U3-tableau by Theorem 11, by thesoundness of TPF3 the consequent must be unsatis�able. The completeness ofU3-tableau, Lemma 10, for the normal fragment of SKL3, directly entails the10

completeness of U2 with respect to the three-valued (mathematical) semanticsby conservativity, Theorem 7.Theorem 12. The TPF2 calculus with the U2 restriction strategy is an adequatecalculus for the normal fragment of SKL3.Now, we can ask, what is lost by restricting ourselves to the normal fragmentof SKL3. It is not that we cannot specify de�nedness assumptions for the math-ematical objects. This is always possible in the assumption part of consequents,even without an explicit !-connective since (!A)t is equivalent to (A _ :A)t. Inthe theorem part, this is not possible, since the presence of the label u blocks theequivalence. Thus it is not possible to prove theorems about the unde�nednessof formulae such as 1=06<�� j= :!P (1=0). Note that we can still prove assertionsabout the de�nedness of terms, like in 1=06<�� j= f(1=0) 6<��. So in fact SFL2with U2-tableau is a very good approximation of SKL3.As discussed in Remark 8 proofs in SKL3 may be inevitably longer thanproofs in SFL2. This, however, does not mean that short proofs are excluded bythe U2-strategy if they exist in the three-valued calculus, since the truth valueset tf in TPF3 proofs does not occur for the normal fragment of SKL3.In the resolution calculus RPF3 [KK94], we have a similar conservativityand strategy result. One reason for that is that the clause normal form trans-formations directly correspond to the analytic tableau rules for connectives andquanti�ers. For details see [KK97].4 ConclusionIn this paper we have refuted the common assumption, that a three-valued treat-ment of partial functions following the ideas of Kleene is impractical, since itrequires a fundamental redesign of the current theorem proving technology. Thistacit assumption has led to a practical preference of the simpler (but less ade-quate) two-valued treatment of partial functions. The results in this paper showa simple way towards a practical implementation: In an existing theorem proverfor dynamic sorts like SPASS [WGR96], only the strategy U2 has to be imposedv.As we have stated in Remark 8, for most mathematical theorems, this doesnot even result in a loss of e�ciency (proof length). However, the experimentin SPASS should not be regarded as a full-blown implementation of the normalfragment of SKL3, since the interaction with equality and the interaction of theU3-strategy with the other strategies (e.g. reduction) has not been addressed inthis paper. We leave this problem to future work.From another perspective, the U3 strategy can be seen as a substitute (thatis easier to implement) for the third truth value, whose presence is adequatelyrepresented by marking a two-valued literal by U . Note that this underlines theintuition, that strong Kleene logic is a variant of classical �rst-order logic thatonly adds a de�nedness check for the application of partial functions to the logicwithout changing the logic proper. In particular, it is plausible that results asthose presented in this paper will not in general hold for multi-valued logics.v Christoph Weidenbach has added the necessary extensions to the pure resolutionpart of SPASS [WGR96] in a matter of a few hours.11

Note that it is essential for the theorem prover to be able to treat dynamicsorts, for the conservativity results break down with most relativisation tech-niques. The only counterexample is the technique of term relativisation [Sti86],where in the case of static tree-ordered sorts a conservativity theorem holds.If this could be extended to dynamic sorts, then any existing theorem provercould (without loss of e�ciency) be augmented by partial functions by a termrelativisation pre-process and U2.References[BF95] Matthias Baaz and Christian G. Ferm�uller. Resolution-based theorem prov-ing for many-valued logics. Journal of Symbolic Computation, 19(4):353{391,April 1995.[BFL*94] Juan C. Bicarregui, John S. Fitzgerald, Peter A. Lindsay, Richard Moore,and Brian Ritchie. Proof in VDM: A Practitioner's Guide. Springer, London,United Kingdom, 1994.[Far90] William M. Farmer. A partial functions version of Church's simple theoryof types. The Journal of Symbolic Logic, 55(3):1269{1291, 1990.[H�ah94] Reiner H�ahnle. Automated Deduction in Multiple-Valued Logics, OxfordUniversity Press, 1994.[Jon90] Cli� B. Jones. Systematic Software Development using VDM. Prentice Hall,New York, USA, second edition, 1990.[KK94] Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleenelogic for partial functions. In Proc. CADE-12, pp. 371{385, 1994. SpringerLNAI 814.[KK96] Manfred Kerber and Michael Kohlhase. A tableau calculus for partial func-tions. Collegium Logicum { Annals of the Kurt G�odel Society, 2:21{49, 1996.[KK97] Manfred Kerber and Michael Kohlhase. Mechanising Partiality with-out Re-Implementation. Technical Report CSRP-97-10, School of Com-puter Science, The University of Birmingham, Birmingham, England, 1997ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/CSRP-97-10.ps.gz.[Kle52] Stephen C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.[LG89] Francisca Lucio-Carrasco and Antonio Gavilanes-Franco. A �rst order logicfor partial functions. In Proceedings STACS'89, pages 47{58. Springer, LNCS349, 1989.[Sco70] Dana Scott. Outline of a mathematical theory of computation. In Proc.Fourth Annual Princeton Conference on Information Sciences and Systems,pages 169{176. Princeton University, 1970.[Sti86] Mark E. Stickel Schubert's Steamroller Problem: Formulations and Solu-tions, Journal of Automated Reasoning, 2:89{101, 1986.[Tic82] Pawel Tichy. Foundations of partial type theory. Reports on MathematicalLogic, 14:59{72, 1982.[WO90] Christoph Weidenbach and Hans J�urgen Ohlbach. A resolution calculus withdynamic sort structures and partial functions. Proceedings of the 9th ECAI,pages 688{693, 1990. Pitman.[Wei95] Christoph Weidenbach. First-order tableaux with sorts. Journal of theInterest Group in Pure and Applied Logics, IGPL, 3(6):887{906, 1995.[WGR96] Christoph Weidenbach, Bernd Gaede and Georg Rock. Spass & Flotter,Version 0.42, In Proc. CADE-13 pages 141{145, 1996. Springer LNAI 1104.12

