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t. The introdu
tion of sorts to �rst-order automated dedu
tionhas brought greater 
on
iseness of representation and a 
onsiderable gainin eÆ
ien
y by redu
ing sear
h spa
es. This suggests that sort infor-mation 
an be employed in higher-order theorem proving with similarresults. This paper develops a sorted �-
al
ulus suitable for automati
theorem proving appli
ations. It extends the simply typed �-
al
ulus by ahigher-order sort 
on
ept that in
ludes term de
larations and fun
tionalbase sorts. The term de
laration me
hanism studied here is powerfulenough to subsume subsorting as a derived notion and therefore gives ajusti�
ation for the spe
ial form of subsort inferen
e. We present a set oftransformations for sorted (pre-) uni�
ation and prove the nondetermin-isti
 
ompleteness of the algorithm indu
ed by these transformations.1 Introdu
tionIn the quest for 
al
uli best suited for automating logi
 on 
omputers, the in-trodu
tion of sorts has been one of the most important 
ontributions. Sort te
h-niques 
onsist in synta
ti
ally distinguishing between obje
ts of di�erent 
lassesand then assigning sorts (spe
ifying the membership in some 
lass) to obje
tsand restri
ting the range of variables to parti
ular sorts. Sin
e a good part of theset membership and subset information 
an be 
oded into the sorted signature,sorted logi
s lead to a more 
on
ise representation of problems and proofs thanthe unsorted variants. The exploitation of this information during proof sear
h
an dramati
ally redu
e the sear
h spa
e asso
iated with theorem-proving andmake the resulting sorted 
al
uli mu
h more eÆ
ient. In the 
ontext of �rst-order logi
 sort information has been su

essfully employed by C. Walther [21℄,M. S
hmidt-S
hau� [19℄, A. Cohn [6℄, C. Weidenba
h [22℄ and others.On the other hand there is an in
reasing interest in dedu
tion systems forhigher-order logi
, sin
e many problems in mathemati
s are inherently higher-order. Current automated dedu
tion systems for higher-order logi
 like TPS [2℄are rather weak on the �rst-order fragment, whi
h is in part due to the fa
t thatmany of the advan
es of �rst-order dedu
tion (like sorted 
al
uli) have not yetbeen transported to higher-order logi
. Thus the question about the behavior of? This work was supported by the Deuts
he Fors
hungsgemeins
haft in SFB 314 (D2)



higher-order logi
 under the 
onstraints of a full sorted type stru
ture is a natu-ral one to ask, in parti
ular sin
e 
al
uli in this system promise the developmentof more powerful dedu
tion systems for real mathemati
s. G. Huet proposed thestudy of a sorted version of higher-order logi
 in an appendix to [7℄. The uni�
a-tion problem in extensions of this system have sin
e been studied by Nipkow andQian [16℄ and by Pfenning and the author [14℄. Furthermore typed �-
al
uli withorder-sorted type stru
tures have been of interest in the programming language
ommunity as a theoreti
al basis for obje
t-oriented programming and for moreexpressive formalisms for higher-order algebrai
 spe
i�
ations [18, 4, 3, 17℄.Here we present a �-
al
ulus �HOL that di�ers from the abovementionedin that we do not 
onsider fun
tion restri
tion as a \built-in" of the system,sin
e we take the mathemati
al intuition that fun
tions have uniquely spe
i-�ed domains seriously. Consequently our subsort relation is not 
ovariant in thedomain sort (this prin
iple semanti
ally 
orresponds to impli
it fun
tion restri
-tion). Furthermore the term de
laration me
hanism is mu
h more powerful thanthe de
laration s
hemas proposed in those logi
al systems. This paper is an ex-tension of the results presented in [8, 9℄. This subsystem of �HOL only allowssignatures 
onsisting of 
onstant de
larations and thus treats the intera
tion offun
tional base sorts and extensionality in isolation. In 
ontrast to this subsystemthe powerful me
hanism of term de
larations in �HOL allows a straightforwardspe
i�
ation of many mathemati
al 
on
epts (
f. Example 28). This paper also
orre
ts an earlier attempt [11℄ to solve the problem. We have 
orre
ted the rel-evant de�nitions of [11℄ and with these were able to prove all the results 
laimedthere. For details and proofs we refer the reader to [12℄.In the following we will shortly motivate the primary features of �HOL. Inunsorted logi
s the only way to express the knowledge that an obje
t is a mem-ber of a 
ertain 
lass of obje
ts is through the use of unary predi
ates, su
has the predi
ate N�!o in the formulae (N2�), i.e. \2 is a natural number", or:(NPeter�), i.e. \Peter is not a natural number". This leads to a multitude ofunit 
lauses (S�!oA) in the dedu
tion that only 
arry the sort information forA. Sin
e quanti�
ation is unrestri
ted in unsorted logi
s, the restri
ted quan-ti�
ation has to be simulated by formulae like 8X� (NX� ) ) (��!�!o X�0�).This approa
h is unsatisfa
tory be
ause inter alia the derivation of the nonsen-si
al formula (NPeter)) (� Peter 0) is permitted, even though (� Peter 0) 
annever be derived be
ause of :(NPeter). Sorted logi
s remedy this situation byassigning sorts to 
onstants and variables and by restri
ting quanti�
ation tosorts. Furthermore formulae have to meet 
ertain (sort) restri
tions to denotemeaningful obje
ts.In typed �-
al
uli the idea of de
laring sort information is very natural,as all obje
ts are already typed, whi
h amounts to a { very 
oarse { divisionof the universe into 
lasses. The type system is merely re�ned by 
onsideringthe sorts as additional base types. For example the last formula above wouldread 8XN (� X0), where � is a binary relation on N and 0 is of sort N inthe signature. Sorting the universe of individuals gives rise to new 
lasses offun
tions, namely fun
tions, where domains and 
odomains are just the sorts. In



addition to this essentially �rst-order way of sorting the fun
tion universes, the
lasses of fun
tions de�ned by domains and 
odomains 
an be further dividedinto sub
lasses that we represent by base sorts of fun
tional type. As an examplefor the sort restri
tions on formulae 
onsider the appli
ation (AB). Here, theremust be sorts A and B , su
h that A is of sort A , B is of sort B and B is a subsortof the domain sort of A . The sort of the appli
ation (AB) is de�ned to be the
odomain sort of A .In �HOL we relax the impli
it 
ondition that only the sorts of 
onstants andvariables 
an be de
lared, and allow de
larations of the form [8�A::A ℄ 
alledterm de
larations, where A 
an be an arbitrary formula of appropriate typeand � is a variable 
ontext. The idea of term de
larations is that there 
an besort information within the stru
ture of a term, if the term mat
hes a 
ertains
hemati
 term (a term de
laration).Consider for instan
e the addition fun
tion, whi
h we (semanti
ally) wouldlike to have the sort N � N ! N where N is the sort of natural numbers. Ifwe also have a sort for the even numbers E , then we might want to spe
ifythat the expression [+aa℄ is an even number, even if a is not. This information
an be formalized by de
laring the term [+XNXN℄ to be of sort E using a termde
laration. We might also want to give the addition fun
tion the sort E�E ! E ,however sin
e we insist that terms have unique domain sorts, we 
annot de
larethis dire
tly in the signature. Closer inspe
tion of the semanti
s behind ourexample reveals that it is 
onsistent with our program to de
lare the restri
tionof the addition fun
tion to the even numbers has 
odomain in the evens, whi
hwe 
an legally do with a term de
laration [8[X ::E ℄; [Y ::E ℄ +XY ::E ℄.In this expressive system term de
larations of the form [8[X ::A ℄X ::B ℄ entailthat A is a subsort of B and indu
e the intended subsort ordering on the set ofsorts.2 Sorted �-Cal
ulusWe assume the reader to be familiar with the syntax and semanti
s of simplytyped �-
al
ulus (�!) [5, 1℄. The set T of types (�; �; 
 : : :) is built up from aset BT of base types by 
losure under !. We assume a set of typed 
onstants� := S�2T �� and a 
ountably in�nite set V� of variables for ea
h type � 2 T .Well-formed formulae are built up from variables and 
onstants as appli
ationsand �-abstra
tions in the usual way.Another mathemati
al notion whi
h will play a great role in this paper isthat of a partial fun
tion �:A �! B. With this we will mean a relation � �A � B, su
h that for all pairs (a; b) and (
; d) in � we have a 6= 
. For partialfun
tions that 
an be presented by a �nite set of pairs (e.g. substitutions orvariable 
ontexts), we will often use a notation like � := [b1=a1℄; : : : ; [bn=an℄ if� = f(a1; b1); : : : ; (an; bn)g. Furthermore, if 	 is that partial fun
tion, su
h that	(a) = b but 	(
) = �(
) for all 
 6= a, then we will denote 	 by �; [b=a℄. If therestri
tions of � and 	 to Dom(�) \Dom(	) are identi
al, then we say thatthey agree (�����	). In this 
ase � [	 is again a partial fun
tion.



De�nition 21 (Sort System) A sort system is a quintuple (S;BS; r; d; �), whereBS is a �nite set of symbols, 
alled base sorts and the set of sorts S is the
losure of BS under !. We will denote sorts with symbols like A , B , C , Dand have B ! A 2 S, whenever A ; B 2 S. The fun
tions r; d and � spe
-ify the sorts of the 
odomain, domain and the type of a sort and we requirethat �(A ) = �(d(A )) ! �(r(A )) for all sorts A 2 S. The type �(A ) 2 T is
alled the type of the sort A . We will denote the set of sorts of type � withS�, 
all a sort A 2 S�!� a fun
tional sort and denote the set of fun
tionalsorts by Sf (non-fun
tional sorts by Snf ). Note that the sets BS and Snf arein general distin
t (see example 28). Furthermore let ln(A ) := 0, i� A 2 BS andln(A ! B ) := 1 + ln(B ). We will use the shorthands ri(A ) and ri(A ) de�ned byr0(A ) = A ri+1(A ) = r(ri(A )) d0(A ) = A di+1(A ) = d(ri(A ))It will be important that the signatures over whi
h our well-sorted terms arebuilt \respe
t fun
tion domains,", i.e. that for any term A and any sorts A andB of A, the identity d(A ) = d(B ) holds. The proof that signatures indeed satisfythis property depends on the 
onsisten
y 
onditions for valid signatures, given interms of the equivalen
e relation Rdom , where A Rdom B , i� di(A ) = di(B )for all i � k, su
h that rk(A ) and rk(B ) are of the same base type.Next, we will introdu
e the 
on
ept of well-sortedness for formulae. A termA will be 
alled well-sorted with respe
t to a signature � and a 
ontext �,if the judgment � `� A::A is derivable in the inferen
e system �HOL. Herethe 
ontext gives lo
al sort information for the variables, whereas the signature
ontains sort information given by term s
hemata (the term de
larations). Oneof the diÆ
ulties in devising a formal system with term de
larations is thatthe signature needed for de�ning well-sortedness in itself 
ontains terms thathave to be well sorted. Therefore we need to 
ombine the inferen
e systemsfor the judgment `sig � (� is a a valid signature) and that for well-sortedness(� `� A::A ) into one large system �HOL. Another diÆ
ulty is that we also haveto treat a sorted ��-
onversion judgment � `� A=��B in �HOL, sin
e we want��-
onversion to be sort preserving.De�nition 22 (Variable Context) Let X� be a variable and A a sort, thenwe 
all a pair [X ::A ℄ a variable de
laration for X , i� �(A ) = �. We 
all a �niteset of variable de
larations a (variable) 
ontext (`
tx �), if it is a partial fun
tioni.e. � � V� � S�. Note that with our 
onvention for partial fun
tions we have�(X) = A for � := �0; [X ::A ℄, even if �0(X) = B .De�nition 23 (Well-Sorted Formulae and Valid Signatures) For a �xedsignature � and a 
ontext � we say that a formulaA is of sort A , i� the judgment



� `� A::A is derivable in the following inferen
e system.`sig � `
tx � �(X) = A� `� X ::A [8�A::A ℄ 2 � `sig � � � �� `� A::A� `� A::A � `� B::d(A ) ������� [ � `� (AB)::r(A ) �; X ::B `� A::A� `� (�XB A)::B ! A� `� A::A � `� B::B � `� A=��B� `� B::AThe following inferen
e rules de�ne the the judgment `sig � by spe
ifying thatit is legal to add term de
larations to valid signatures, if either they are the �rstde
larations for new 
onstants, or if the formula A is well-sorted and the newsort A respe
ts fun
tion domains.`sig � 
 =2 � 
 2 �� A 2 S �(A ) = �`sig �; [
::A ℄`sig ; � `� A::A � ` A Rdom B`sig �; [8�A::B ℄Finally let � `� A=��B be the 
ongruen
e judgment indu
ed by the redu
tionjudgment. � `� A::A� `� (�Xd(A) AX)!� A �; [X ::B ℄ `� A::A � `� B::B ������� [� `� (�XB A)B!� [B=X ℄AIn the de�nition of sorted �-redu
tion we have taken 
are to identify the sup-porting sort d(A ) of A (whi
h will turn out to be unique in theorem 24), sin
ethe formula (�XB AX) denotes the restri
tion of the fun
tion A to sort B , if Bis a subsort of d(A ) and 
an therefore not be equal to A.It is easy to see that the judgments de�ned above respe
t well-typedness, i.e.that the information des
ribed by �HOL merely re�nes the type information. Inparti
ular sorted ��-
onversion is a sub-relation of typed 
onversion. As a dire
t
onsequen
e sorted ��-redu
tion is terminating. The 
on
uen
e result dependson the following theorem



Theorem 24 If � `� A::A and � `� A::B , then A Rdom B .In fa
t the formal system �HOL is designed to 
apture informal mathemati
alpra
ti
e, where fun
tions have unique domains asso
iated with them.If we only have one base sort per base type, then the set of well-sortedformulae is isomorphi
 to the set of well-typed formulae, therefore �HOL is ageneralization of �!. It is an important property of our system, that any validsignature is subterm-
losed, that is ea
h subterm of a well-sorted term is againwell-sorted. This fa
t is natural, sin
e it does not make sense to allow ill-formedsubexpressions in well-formed expressions.De�nition 25 Let � and � be variable 
ontexts, then we 
all a substitution �a �-substitution (� 2 wsSub(�; ! )), i� the judgment � `� �::� is derivablein the following inferen
e system.; `� ;::; � `� �::� �0 `� A::A ������0 X =2 Dom(�)� `� �; [A=X ℄::�; [X ::A ℄Let � `� �::�. We 
an show that if � [ � `� A::A , then � [ � `� �(A)::Aand furthermore Dom(�) = Dom(�) and Dom(�) \ Dom(�) = ;. Thus �-substitutions are idempotent and their appli
ation 
onserves sets of sorts. As a
onsequen
e we 
an show that if � `� A=��B, then A and B have the sameset of sorts. Thus the fundamental operations of sorted higher-order dedu
tionsystems do not allow the formation of ill-sorted terms from well-sorted ones.This will ensure that su
h systems never have to handle ill-sorted terms, evenintermediately.Let � `� X ::B but �(X) = A (we abbreviate this by � `� A �� B ), thenfor all formulae � `� A::A we also have � `� A::B , sin
e � `� [A=X ℄X ::B .This is just the situation that is 
aptured with the notion of sort in
lusionin traditional sorted logi
s, where the subsort relation is the smallest partialordering that 
ontains a set of subsort de
larations. The subsort relation playssu
h a 
entral role in these systems that they are 
olle
tively 
alled \order-sorted". Sin
e subsorting is a derived relation in �HOL (
f. theorem 27), we donot have to treat it in our meta-logi
al development. On the obje
t level (and for
omputation) however it is a useful notion to employ, sin
e it allows to spe
ifytaxonomi
 hierar
hies of sorts, whi
h play a great role in intuitive mathemati
s.In 
ontrast to the �rst-order systems the subsort relation is not �nite, evenwith a �nite set of base sorts. Thus the relation 
annot be pre-
omputed inadvan
e. On the other hand it is not 
lear, whether the sort-
he
king problemis de
idable (in fa
t this problem 
an be seen to be equivalent to the higher-order mat
hing problem, where de
idability is known only for restri
ted 
lassesof formulae), whi
h is another reason for limited pra
ti
al usefulness of the fullsubsorting relation. One way out of this situation is to approximate the subsortrelation by a sub-relation 
omputed from a �nite set of subsort de
larations with
ertain indu
tion prin
iples.



De�nition 26 (Sort In
lusion) LetR be a binary relation on sorts, su
h that[X ::A ℄ `� X ::B , whenever R(A ; B ), then we 
all R an approximation of thesubsort relation in �. We will 
all term de
larations of the form [8XA X ::B ℄subsort de
larations and abbreviate them with [A � B ℄. The following inferen
esystem is 
alled the �HOL subsort inferen
e system for RR(A ; B ) `sig �� ` A �R B `sig �� ` A �R A `sig �� ` A �R d(A ) ! r(A )� ` A �R B � ` B �R C� ` A �R C � ` A �R B� ` C ! A �R C ! BWe will 
all the relationR� de�ned byR�(A ; B ), i� � ` A �R B is the orderingrelation for R. For a given, valid signature � we will denote subsorting judgmentfor the subsort de
larations simply with � ` A � B .Theorem 27 If R is an approximation of the subsort relation of �, then therelation R� is also an approximation.The subsort judgment intera
ts with well-sorted formulae by the 
lassi
al weak-ening rule, whi
h allows to weaken the sort information.� `� A::A � ` A �R B� `� A::BAs a 
onsequen
e of Theorem 27 we 
an see that if R is an approximationof the subsort relation in �, then the weakening rule is admissible in �HOL.Furthermore we have A Rdom B whenever � ` A �R B . In parti
ular �(A ) =�(B ) in this situation and therefore, the sets fA 2 S �� �(A ) = �g are mutuallyin
omparable.Example 28 Let BS := fR; C ; D ;Pg where the intended meaning of R is theset of real numbers, that of C and D the sets of 
ontinuous and di�erentiablefun
tions and �nally that of P the set of polynomials. Therefore the types haveto be �(R) = �, �(C ) = �(D ) = �(P) = � ! � and r(C ) = d(C ) = R; : : : Inthis example we want to model a taxonomy for elementary 
al
ulus, so let �be the set 
ontaining the subsort de
larations [P � D ℄; [D � C ℄, and the termde
larations[�XRX ::P℄; [�XRYR::P℄; [�XR + (FPX)(GPX)::P)℄; [�XR � (FPX)(GPX)::P℄for polynomials and furthermore [�::D ! C ℄; [�::P ! P℄ for the di�erentiationoperator �, then it is easy to 
he
k that � is a valid signature. We 
an see that



we have 
oded a great deal of information about polynomials and di�erentiationinto the term de
larations of �. Note that up to (elementary arithmeti
) anypolynomial is indeed of sort P. The pra
ti
al advantage of this formalization ofelementary algebra is that this 
an be used in the uni�
ation during proof sear
hin refutation 
al
uli and thus 
onsiderably redu
e the sear
h for proofs.3 Stru
ture Theorem and General BindingsThe key tool for the investigation of well-sorted formulae will be the stru
turetheorem whi
h we are about to prove. The prin
ipal diÆ
ulty of �HOL is thatthe property of well-sortedness is highly non-stru
tural, whi
h makes the 
lassi-
al dedu
tion methods, su
h as uni�
ation that analyze the stru
ture of formulaediÆ
ult. The stru
ture theorem re
overs stru
tural properties of well-sorted for-mulae by linking the sort information (the existen
e of 
ertain term de
larations)with stru
tural information about normal forms.Theorem 31 (Stru
ture Theorem) Let A be a well-sorted formula with longhead normal form [�Xk hUn℄ and � `� A::A . Furthermore let �j be the variable
ontext [X1::d(A )℄; : : : ; [Xj ::dj(A )℄ and l = ln(A ), then1. h is a variable with �;�k(h) = B , su
h that rn(B ) = rk(A ), �;�k `�Ui::di(B ) for 1 � i � n.2. there is a term de
laration [8�B::B ℄ 2 �, a �-substitution � and well-sortedformulae Di, su
h that(a) � `� A=��(�X ldl(A) �(B)Dm), where m := l+ ln(�(B ))� ln(�(A )) � 0.(b) �;�l `� �::�, �;�l `� Di::di(B ) for all i � m and rm(B ) = rl(A ).(
) If h is a 
onstant, then head(B) = Z 2 Dom(�) and head(�(Z)) = hor else head(B) = h.(d) dp(Di) < dp(hUn) and dp(�) < dp(hUn).Here the depth of a substitution � is the maximum of the dp(�(X)) for all X 2Dom(�) and the depth of a formula is the depth of the 
orresponding tree.One of the key steps in sort 
omputation and uni�
ation is solving the followingproblem: given a sort A and an atomC, �nd the most general well-sorted formulaof sort A that has head C. Su
h formulae are 
alled general bindings of sort A forthe head C. In �HOL, this problem requires a more 
areful investigation thanin �!. For instan
e 
onsider a 
ontext �, su
h that �(Z) = B ! B , �(X) =�(Y ) = B and �(W ) = A and � 
onsists of the following term de
larations [A �B ℄; [a::A ℄; [b::B ℄; [f ::(B ! B ! B )℄; [8[X ::B ℄ (faX)::A ℄; [8[X ::B ℄ (fXb)::A ℄ then themost general formulae with the head f and sort B is fXY , of sort A are faXand fXb and �nally of sort (B ! A ) are �XB fa(ZX) and �XB f(ZX)b. In �!these general bindings are unique and 
onsist only of the head and of variables.In order-sorted type-theory ea
h term de
laration, that has the appropriate headand meets 
ertain 
onditions will 
ontribute a general binding.



De�nition 32 (General Binding) For the de�nitions of general bindings wehave two possibilities, 
orresponding to the two 
ases of the stru
ture theorem.The �rst (
lassi
al) one obtains the sort information from the head variable,whereas the se
ond one obtains the sort information from a term de
laration.Let � be a 
ontext and A and B be sorts, su
h that1. l = ln(A ) and m = l + ln(�(A ))� ln(�(B )) � 02. rm(B ) = rl(A )3. Vi = (H iX1 : : : X l), where H i are variables not in Dom(�)4. H := [H1::dl(A ) ! d1(B )℄; : : : ; [Hm::dl(A ) ! dm(B )℄,then the formula G := (�X1d1(A) : : : X ldl(A) hV1 : : :Vm) is 
alled a general bindingof sort A and head h if h = Xj or h 2 Dom(�) and �(h) = B . We 
all H the
ontext of variables introdu
ed for G.Let [8[Y t::C n ℄B::B ℄ 2 � and A , B and Vi as above and furthermore5. Wi := (KiX1 : : :X l), where Ki are variables not in � [H6. K := [K1::dl(A ) ! C 1 ℄; : : : ; [Kt::dl(A ) ! C t ℄7. B0 = [Wt=Y n℄B and h := head(B0)then the formula G := (�X1d1(A) : : : X ldl(A) B0V1 : : :Vm) is 
alled a general bind-ing of sort A and head h. In this 
ase the 
ontext of variables introdu
ed forG isH[K. Now we de�ne the set GhA (�;�; C) to be the set of all general bindings ofsort A and head h and introdu
ed 
ontext C. If the head of G is bound, then we
all G a proje
tion binding, if h is a variable in Dom(�) or a 
onstant imitationbinding and if h 2 Dom(K) (G is indu
ed by a 
exible term de
laration in this
ase), then we 
all G a general weakening binding of sort A . We will denote theset of all su
h bindings with WA (�;�; C).It is easily veri�ed that �; C `� G::A and head(G) = h, provided that G 2GhA (�;�; C), whi
h explains the naming in the de�nition above. The followingtheorem is a 
onsequen
e of the stru
ture theorem and the basis of the uni�
ationtransformations given below.Theorem 33 (General Binding Theorem) Let A = �Xk hUn be a long��-normal form with � `� A::A , then there exists a general binding G 2GhA (�;�; C) [ WA (�;�; C) and a �-substitution � 2 wsSub(C ! �;�), su
hthat dp(�) < dp(A) and C;� `� �(G)=��A.4 Uni�
ationBuilding upon the notion of general bindings we give a set of transformationsfor (pre-)uni�
ation, whi
h we will prove 
orre
t and 
omplete with the methodsof [20℄.



De�nition 41 (Uni�
ation Problem) A uni�
ation problem is a formula inthe language E ::= A := B j 9[X ::A ℄ E j 8[X ::A ℄ E j E1 ^ E2 j >. In orderto simplify the presentation of the algorithm, we assume that all uni�
ationformulae are in 98-form E := 9�8�E 0. Ea
h formula is equivalent to one in thisform by raising [15℄. We 
all a �-substitution �, su
h that � `� �::� and � `��(A)=���(B) for all pairsA := B in E 0 a �-uni�er for E and we will denote the setof �-uni�ers of E with wsU(�; E). We 
all a subset 	 � wsU(�; E) a 
ompleteset of �-uni�ers of E , i� for all � 2 wsU(�; E) there is a � 2 	 that is moregeneral than �, i.e. there is a �-substitution �, su
h that � `� �(X)=���(�(X))for all X 2 Dom(�) = Dom(�). If the singleton set f�g is a 
omplete set ofuni�ers of E , then we 
all � a most general uni�er for E .Note that �-uni�ability does not entail that both formulae of a pair have iden-ti
al sets of sorts, sin
e these sets may grow as more term de
larations be
omeappli
able with instantiation. Nevertheless �-uni�able pairs must have the sametypes and furthermore the sorts must obey the Rdom relation.De�nition 42 (�-Solved Form) A uni�
ation problem E := 9�8� E 0 is in �-solved form if all of its pairs are in solved form, i.e. of the form X := A, su
hthat �(X) = A , � `� A::A , neither X nor any Y 2 Dom(�) is free in A,and X is not free elsewhere in E . These 
onditions are suÆ
ient to ensure that�E = [A1=X1; : : : ;An=Xn℄ is a most general uni�er for E provided that E is insolved form with matrix X1 := A1 ^ : : : ^Xn := AnDe�nition 43 (SIM: Simpli�
ation of �-Uni�
ation Problems)9� 8�(�XA A) := (�YA B)9�8�; [X ::A ℄A := [X=Y ℄B 9� 8�(�XA A) := B � `� B::B d(B ) = A9�8�; [X ::A ℄A := (BX)We apply these rules with the understanding that the operators ^ and := are
ommutative and asso
iative, that trivial pairs may be dropped and that va
uousquanti�
ations 
an be eliminated from the pre�x. It is easy to see that thesesimpli�
ations 
onserve the sets of �-uni�ers.De�nition 44 (�UT : Transformations for �-Uni�
ation)Let �UT be the system SIM augmented by the following inferen
e rules9� 8�hUn := hVn ^ E h 2 � [Dom(�) [Dom(�)9�8�U1 := V1 ^ : : : ^Un := Vn ^ E



together with the following rules where G is a general binding of sort A inGh(�;�; C) [ Gj(�;�; C) [ Gw(�;�; C)9� 8�FU := hV ^ E �(F ) = A �9� [ C 8�F := G ^ [G=f ℄(FU := hV ^ E)9� 8�FU := hV ^ E �(F ) = A �(h) = B ��9� [ C 8�F := G ^ [G=F ℄(FU := hV ^ E)Just as in SIM leave the asso
iativity and 
ommutativity of ^ and := impli
it.Note that the 
on
ept of a weakening transformation for uni�
ation is new to��!, where we use term de
larations to model subsorting. We have 
ombinedit with the 
lassi
al imitation (G has head h) and proje
tion (G is a proje
tionbinding) transformations (see [20℄) into �. This set of rules is used with the
onvention that all formulae are eagerly redu
ed to �-normal form.Sin
e we have 
aptured the relevant features of �HOL in the stru
ture andgeneral binding theorems (both of whi
h are nearly trivial in �!), we 
an nowuse the standard te
hniques (
f. [20, 9℄) to soundness and 
ompleteness.Theorem 45 (Completeness Theorem for �UT ) For any well-sorted uni-�
ation problem E and any � 2 wsU(�; E), there is a sequen
e of transfor-mations in �UT , su
h that E `� UT E 0, where E 0 is in �-solved form and�E0 ��� �[Free(E)℄.As for uni�
ation in �!, the rule �� gives rise to a serious explosion of thesear
h spa
e for uni�ers. Huet's solution to this problem was to rede�ne thehigher-order uni�
ation problem to a form suÆ
ient for refutation purposes: Forthe pre-uni�
ation problem 
ex-
ex pairs are 
onsidered already solved, sin
ethey 
an always be trivially solved by binding the head variables to spe
ial
onstant fun
tions that identify the formulae by absorbing their arguments.However in �HOL the solution to the 
ex-
ex problem is not as simple asin the unsorted 
ase, sin
e the heads of 
ex-
ex pairs 
an be variables of fun
-tional base sorts A . In this 
ase 
ex-
ex-pairs are not solvable independentlyof their arguments, sin
e in general the 
onstant fun
tions needed for absorb-ing the arguments are not of sort A . Our solution to this problem is to modifythe de�nition of pre-solved pairs and to keep the guess rule, but restri
t its ap-pli
ation to the problemati
 
ex-
ex 
ases. Furthermore �-pre-uni�
ation onlymakes sense for regular signatures, where formulae have a unique least sort(with respe
t to the full subsort relation). Consider the non-regular signaturegiven by S := fA ; B g, �(A ) = �(B ) = �, � := f
�g and � := f[
::A ℄; [
::B ℄g. The�-substitution [
=X ℄; [
=Y ℄ is a �-uni�er of the pair 9[X ::A ℄; [Y ::B ℄X := Y , butit 
an only be found by applying some kind of �� transformation. Therefore wewill only 
onsider regular signatures for pre-uni�
ation.



De�nition 46 Let A be a 
exible formula with ��-normal form �X FUn and�(F ) = A n ! B , then we 
all A fun
tionally 
exible with target sort B . Let =pbe the least 
ongruen
e relation on well-sorted formulae that 
ontains =�� andall fun
tional 
exible pairs. Let E := 9�8�E 0 be an equational system, then a�-substitution � is 
alled a �-pre-uni�er of the pair A := B 2 E 0, i� � `� �::�and � `� �(A) =p �(B). We denote the set of �-pre-uni�ers by wsPU(�; E).De�nition 47 (Pre-Solved Form) Let E := 9�8�E 0 be an equational sys-tem, then we 
all a formula FUkY fun
tionally 
exible in E with target sort B ,i� �(F ) = A k ! B and Y i 2 Dom(�). A pair in E 0 is in �-pre-solved form inE , i� it is in solved form, or if it is a pair of fun
tionally 
exible formulae withidenti
al target sorts.This de�nition is tailored to guarantee that �-pre-uni�ers 
an always be ex-tended to �-uni�ers by �nding trivial uni�ers for the 
exible pairs and thatequational problems in �-pre-solved form always have most general uni�ers.Therefore an equational system E is �-pre-uni�able, i� it is �-uni�able.De�nition 48 (�PT :Transformations for �-Pre-Uni�
ation) We de�ne theset �PT of transformations for well-sorted pre-uni�
ation by modifying the�UT rules for de
omposition and the rule � by requiring that they may notbe performed on a pair A := B, if head(A) 2 Free(A), and restri
ting �� tothe 
ase, where the variable it a
ts on is the head of a 
exible pair that is notfun
tionally 
exible.With these de�nitions we obtain a 
ompleteness result for �PT similar to 45with the same methods, sin
e most of the te
hni
al diÆ
ulties are en
apsulatedin the general binding theorem. In fa
t these methods 
an also be extended toyield a �-uni�
ation algorithm for higher-order patterns (
f. [12℄).5 Con
lusion and Further WorkWe have presented a sorted version �HOL of �! that in
orporates the notionsof fun
tional base sorts and term de
larations, whi
h is a a good basis for thedevelopment of higher-order automated theorem provers, sin
e it greatly en-han
es the pra
ti
al expressive power of �! as a logi
 system. We have studiedthe subtle intera
tions of fun
tional base sorts, fun
tion restri
tion and exten-sionality, and of term de
larations with sorted �-
onversion. We have presented
orre
t and 
omplete sets of transformations for uni�
ation and pre-uni�
ationin �HOL, whi
h form the basis of a sorted higher-order resolution 
al
ulus de-s
ribed in [13℄.In �rst-order predi
ate logi
, the introdu
tion of term de
larations has been amajor step to the development of dynami
 sorted logi
s [22℄, where variables arerestri
ted to sorts, but where the sorts 
an also be treated as unary predi
atesin the logi
; thus the signature is no longer �xed a
ross the dedu
tion, as sortinformation 
an appear in the dedu
tion pro
ess. Extensions of these ideas have



been utilized to formalize and me
hanize a general �rst-order Kleene logi
 forpartial fun
tions [10℄. In both systems the resolution rule always uses sorteduni�
ation with respe
t to the signature spe
i�ed by the 
urrent state of theproof. Sin
e predi
ates are primary obje
ts of type theory, a generalization of themethods in [22, 10℄ may yield very powerful 
al
uli for me
hanizing mathemati
sand in parti
ular analysis, whi
h was the original motivation for the resear
hreported in this paper.Referen
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