
Uni�ation in a Sorted �-Calulus with TermDelarations and Funtion SortsMihael Kohlhase?FB Informatik, Universit�at des Saarlandes, 66041 Saarbr�uken, Germany+49-681-301-4627 kohlhase�s.uni-sb.dehttp://js-sfbsun.s.uni-sb.de/pub/wwwAbstrat. The introdution of sorts to �rst-order automated dedutionhas brought greater oniseness of representation and a onsiderable gainin eÆieny by reduing searh spaes. This suggests that sort infor-mation an be employed in higher-order theorem proving with similarresults. This paper develops a sorted �-alulus suitable for automatitheorem proving appliations. It extends the simply typed �-alulus by ahigher-order sort onept that inludes term delarations and funtionalbase sorts. The term delaration mehanism studied here is powerfulenough to subsume subsorting as a derived notion and therefore gives ajusti�ation for the speial form of subsort inferene. We present a set oftransformations for sorted (pre-) uni�ation and prove the nondetermin-isti ompleteness of the algorithm indued by these transformations.1 IntrodutionIn the quest for aluli best suited for automating logi on omputers, the in-trodution of sorts has been one of the most important ontributions. Sort teh-niques onsist in syntatially distinguishing between objets of di�erent lassesand then assigning sorts (speifying the membership in some lass) to objetsand restriting the range of variables to partiular sorts. Sine a good part of theset membership and subset information an be oded into the sorted signature,sorted logis lead to a more onise representation of problems and proofs thanthe unsorted variants. The exploitation of this information during proof searhan dramatially redue the searh spae assoiated with theorem-proving andmake the resulting sorted aluli muh more eÆient. In the ontext of �rst-order logi sort information has been suessfully employed by C. Walther [21℄,M. Shmidt-Shau� [19℄, A. Cohn [6℄, C. Weidenbah [22℄ and others.On the other hand there is an inreasing interest in dedution systems forhigher-order logi, sine many problems in mathematis are inherently higher-order. Current automated dedution systems for higher-order logi like TPS [2℄are rather weak on the �rst-order fragment, whih is in part due to the fat thatmany of the advanes of �rst-order dedution (like sorted aluli) have not yetbeen transported to higher-order logi. Thus the question about the behavior of? This work was supported by the Deutshe Forshungsgemeinshaft in SFB 314 (D2)



higher-order logi under the onstraints of a full sorted type struture is a natu-ral one to ask, in partiular sine aluli in this system promise the developmentof more powerful dedution systems for real mathematis. G. Huet proposed thestudy of a sorted version of higher-order logi in an appendix to [7℄. The uni�a-tion problem in extensions of this system have sine been studied by Nipkow andQian [16℄ and by Pfenning and the author [14℄. Furthermore typed �-aluli withorder-sorted type strutures have been of interest in the programming languageommunity as a theoretial basis for objet-oriented programming and for moreexpressive formalisms for higher-order algebrai spei�ations [18, 4, 3, 17℄.Here we present a �-alulus �HOL that di�ers from the abovementionedin that we do not onsider funtion restrition as a \built-in" of the system,sine we take the mathematial intuition that funtions have uniquely spei-�ed domains seriously. Consequently our subsort relation is not ovariant in thedomain sort (this priniple semantially orresponds to impliit funtion restri-tion). Furthermore the term delaration mehanism is muh more powerful thanthe delaration shemas proposed in those logial systems. This paper is an ex-tension of the results presented in [8, 9℄. This subsystem of �HOL only allowssignatures onsisting of onstant delarations and thus treats the interation offuntional base sorts and extensionality in isolation. In ontrast to this subsystemthe powerful mehanism of term delarations in �HOL allows a straightforwardspei�ation of many mathematial onepts (f. Example 28). This paper alsoorrets an earlier attempt [11℄ to solve the problem. We have orreted the rel-evant de�nitions of [11℄ and with these were able to prove all the results laimedthere. For details and proofs we refer the reader to [12℄.In the following we will shortly motivate the primary features of �HOL. Inunsorted logis the only way to express the knowledge that an objet is a mem-ber of a ertain lass of objets is through the use of unary prediates, suhas the prediate N�!o in the formulae (N2�), i.e. \2 is a natural number", or:(NPeter�), i.e. \Peter is not a natural number". This leads to a multitude ofunit lauses (S�!oA) in the dedution that only arry the sort information forA. Sine quanti�ation is unrestrited in unsorted logis, the restrited quan-ti�ation has to be simulated by formulae like 8X� (NX� ) ) (��!�!o X�0�).This approah is unsatisfatory beause inter alia the derivation of the nonsen-sial formula (NPeter)) (� Peter 0) is permitted, even though (� Peter 0) annever be derived beause of :(NPeter). Sorted logis remedy this situation byassigning sorts to onstants and variables and by restriting quanti�ation tosorts. Furthermore formulae have to meet ertain (sort) restritions to denotemeaningful objets.In typed �-aluli the idea of delaring sort information is very natural,as all objets are already typed, whih amounts to a { very oarse { divisionof the universe into lasses. The type system is merely re�ned by onsideringthe sorts as additional base types. For example the last formula above wouldread 8XN (� X0), where � is a binary relation on N and 0 is of sort N inthe signature. Sorting the universe of individuals gives rise to new lasses offuntions, namely funtions, where domains and odomains are just the sorts. In



addition to this essentially �rst-order way of sorting the funtion universes, thelasses of funtions de�ned by domains and odomains an be further dividedinto sublasses that we represent by base sorts of funtional type. As an examplefor the sort restritions on formulae onsider the appliation (AB). Here, theremust be sorts A and B , suh that A is of sort A , B is of sort B and B is a subsortof the domain sort of A . The sort of the appliation (AB) is de�ned to be theodomain sort of A .In �HOL we relax the impliit ondition that only the sorts of onstants andvariables an be delared, and allow delarations of the form [8�A::A ℄ alledterm delarations, where A an be an arbitrary formula of appropriate typeand � is a variable ontext. The idea of term delarations is that there an besort information within the struture of a term, if the term mathes a ertainshemati term (a term delaration).Consider for instane the addition funtion, whih we (semantially) wouldlike to have the sort N � N ! N where N is the sort of natural numbers. Ifwe also have a sort for the even numbers E , then we might want to speifythat the expression [+aa℄ is an even number, even if a is not. This informationan be formalized by delaring the term [+XNXN℄ to be of sort E using a termdelaration. We might also want to give the addition funtion the sort E�E ! E ,however sine we insist that terms have unique domain sorts, we annot delarethis diretly in the signature. Closer inspetion of the semantis behind ourexample reveals that it is onsistent with our program to delare the restritionof the addition funtion to the even numbers has odomain in the evens, whihwe an legally do with a term delaration [8[X ::E ℄; [Y ::E ℄ +XY ::E ℄.In this expressive system term delarations of the form [8[X ::A ℄X ::B ℄ entailthat A is a subsort of B and indue the intended subsort ordering on the set ofsorts.2 Sorted �-CalulusWe assume the reader to be familiar with the syntax and semantis of simplytyped �-alulus (�!) [5, 1℄. The set T of types (�; �;  : : :) is built up from aset BT of base types by losure under !. We assume a set of typed onstants� := S�2T �� and a ountably in�nite set V� of variables for eah type � 2 T .Well-formed formulae are built up from variables and onstants as appliationsand �-abstrations in the usual way.Another mathematial notion whih will play a great role in this paper isthat of a partial funtion �:A �! B. With this we will mean a relation � �A � B, suh that for all pairs (a; b) and (; d) in � we have a 6= . For partialfuntions that an be presented by a �nite set of pairs (e.g. substitutions orvariable ontexts), we will often use a notation like � := [b1=a1℄; : : : ; [bn=an℄ if� = f(a1; b1); : : : ; (an; bn)g. Furthermore, if 	 is that partial funtion, suh that	(a) = b but 	() = �() for all  6= a, then we will denote 	 by �; [b=a℄. If therestritions of � and 	 to Dom(�) \Dom(	) are idential, then we say thatthey agree (�����	). In this ase � [	 is again a partial funtion.



De�nition 21 (Sort System) A sort system is a quintuple (S;BS; r; d; �), whereBS is a �nite set of symbols, alled base sorts and the set of sorts S is thelosure of BS under !. We will denote sorts with symbols like A , B , C , Dand have B ! A 2 S, whenever A ; B 2 S. The funtions r; d and � spe-ify the sorts of the odomain, domain and the type of a sort and we requirethat �(A ) = �(d(A )) ! �(r(A )) for all sorts A 2 S. The type �(A ) 2 T isalled the type of the sort A . We will denote the set of sorts of type � withS�, all a sort A 2 S�!� a funtional sort and denote the set of funtionalsorts by Sf (non-funtional sorts by Snf ). Note that the sets BS and Snf arein general distint (see example 28). Furthermore let ln(A ) := 0, i� A 2 BS andln(A ! B ) := 1 + ln(B ). We will use the shorthands ri(A ) and ri(A ) de�ned byr0(A ) = A ri+1(A ) = r(ri(A )) d0(A ) = A di+1(A ) = d(ri(A ))It will be important that the signatures over whih our well-sorted terms arebuilt \respet funtion domains,", i.e. that for any term A and any sorts A andB of A, the identity d(A ) = d(B ) holds. The proof that signatures indeed satisfythis property depends on the onsisteny onditions for valid signatures, given interms of the equivalene relation Rdom , where A Rdom B , i� di(A ) = di(B )for all i � k, suh that rk(A ) and rk(B ) are of the same base type.Next, we will introdue the onept of well-sortedness for formulae. A termA will be alled well-sorted with respet to a signature � and a ontext �,if the judgment � `� A::A is derivable in the inferene system �HOL. Herethe ontext gives loal sort information for the variables, whereas the signatureontains sort information given by term shemata (the term delarations). Oneof the diÆulties in devising a formal system with term delarations is thatthe signature needed for de�ning well-sortedness in itself ontains terms thathave to be well sorted. Therefore we need to ombine the inferene systemsfor the judgment `sig � (� is a a valid signature) and that for well-sortedness(� `� A::A ) into one large system �HOL. Another diÆulty is that we also haveto treat a sorted ��-onversion judgment � `� A=��B in �HOL, sine we want��-onversion to be sort preserving.De�nition 22 (Variable Context) Let X� be a variable and A a sort, thenwe all a pair [X ::A ℄ a variable delaration for X , i� �(A ) = �. We all a �niteset of variable delarations a (variable) ontext (`tx �), if it is a partial funtioni.e. � � V� � S�. Note that with our onvention for partial funtions we have�(X) = A for � := �0; [X ::A ℄, even if �0(X) = B .De�nition 23 (Well-Sorted Formulae and Valid Signatures) For a �xedsignature � and a ontext � we say that a formulaA is of sort A , i� the judgment



� `� A::A is derivable in the following inferene system.`sig � `tx � �(X) = A� `� X ::A [8�A::A ℄ 2 � `sig � � � �� `� A::A� `� A::A � `� B::d(A ) ������� [ � `� (AB)::r(A ) �; X ::B `� A::A� `� (�XB A)::B ! A� `� A::A � `� B::B � `� A=��B� `� B::AThe following inferene rules de�ne the the judgment `sig � by speifying thatit is legal to add term delarations to valid signatures, if either they are the �rstdelarations for new onstants, or if the formula A is well-sorted and the newsort A respets funtion domains.`sig �  =2 �  2 �� A 2 S �(A ) = �`sig �; [::A ℄`sig ; � `� A::A � ` A Rdom B`sig �; [8�A::B ℄Finally let � `� A=��B be the ongruene judgment indued by the redutionjudgment. � `� A::A� `� (�Xd(A) AX)!� A �; [X ::B ℄ `� A::A � `� B::B ������� [� `� (�XB A)B!� [B=X ℄AIn the de�nition of sorted �-redution we have taken are to identify the sup-porting sort d(A ) of A (whih will turn out to be unique in theorem 24), sinethe formula (�XB AX) denotes the restrition of the funtion A to sort B , if Bis a subsort of d(A ) and an therefore not be equal to A.It is easy to see that the judgments de�ned above respet well-typedness, i.e.that the information desribed by �HOL merely re�nes the type information. Inpartiular sorted ��-onversion is a sub-relation of typed onversion. As a diretonsequene sorted ��-redution is terminating. The onuene result dependson the following theorem



Theorem 24 If � `� A::A and � `� A::B , then A Rdom B .In fat the formal system �HOL is designed to apture informal mathematialpratie, where funtions have unique domains assoiated with them.If we only have one base sort per base type, then the set of well-sortedformulae is isomorphi to the set of well-typed formulae, therefore �HOL is ageneralization of �!. It is an important property of our system, that any validsignature is subterm-losed, that is eah subterm of a well-sorted term is againwell-sorted. This fat is natural, sine it does not make sense to allow ill-formedsubexpressions in well-formed expressions.De�nition 25 Let � and � be variable ontexts, then we all a substitution �a �-substitution (� 2 wsSub(�; ! )), i� the judgment � `� �::� is derivablein the following inferene system.; `� ;::; � `� �::� �0 `� A::A ������0 X =2 Dom(�)� `� �; [A=X ℄::�; [X ::A ℄Let � `� �::�. We an show that if � [ � `� A::A , then � [ � `� �(A)::Aand furthermore Dom(�) = Dom(�) and Dom(�) \ Dom(�) = ;. Thus �-substitutions are idempotent and their appliation onserves sets of sorts. As aonsequene we an show that if � `� A=��B, then A and B have the sameset of sorts. Thus the fundamental operations of sorted higher-order dedutionsystems do not allow the formation of ill-sorted terms from well-sorted ones.This will ensure that suh systems never have to handle ill-sorted terms, evenintermediately.Let � `� X ::B but �(X) = A (we abbreviate this by � `� A �� B ), thenfor all formulae � `� A::A we also have � `� A::B , sine � `� [A=X ℄X ::B .This is just the situation that is aptured with the notion of sort inlusionin traditional sorted logis, where the subsort relation is the smallest partialordering that ontains a set of subsort delarations. The subsort relation playssuh a entral role in these systems that they are olletively alled \order-sorted". Sine subsorting is a derived relation in �HOL (f. theorem 27), we donot have to treat it in our meta-logial development. On the objet level (and foromputation) however it is a useful notion to employ, sine it allows to speifytaxonomi hierarhies of sorts, whih play a great role in intuitive mathematis.In ontrast to the �rst-order systems the subsort relation is not �nite, evenwith a �nite set of base sorts. Thus the relation annot be pre-omputed inadvane. On the other hand it is not lear, whether the sort-heking problemis deidable (in fat this problem an be seen to be equivalent to the higher-order mathing problem, where deidability is known only for restrited lassesof formulae), whih is another reason for limited pratial usefulness of the fullsubsorting relation. One way out of this situation is to approximate the subsortrelation by a sub-relation omputed from a �nite set of subsort delarations withertain indution priniples.



De�nition 26 (Sort Inlusion) LetR be a binary relation on sorts, suh that[X ::A ℄ `� X ::B , whenever R(A ; B ), then we all R an approximation of thesubsort relation in �. We will all term delarations of the form [8XA X ::B ℄subsort delarations and abbreviate them with [A � B ℄. The following inferenesystem is alled the �HOL subsort inferene system for RR(A ; B ) `sig �� ` A �R B `sig �� ` A �R A `sig �� ` A �R d(A ) ! r(A )� ` A �R B � ` B �R C� ` A �R C � ` A �R B� ` C ! A �R C ! BWe will all the relationR� de�ned byR�(A ; B ), i� � ` A �R B is the orderingrelation for R. For a given, valid signature � we will denote subsorting judgmentfor the subsort delarations simply with � ` A � B .Theorem 27 If R is an approximation of the subsort relation of �, then therelation R� is also an approximation.The subsort judgment interats with well-sorted formulae by the lassial weak-ening rule, whih allows to weaken the sort information.� `� A::A � ` A �R B� `� A::BAs a onsequene of Theorem 27 we an see that if R is an approximationof the subsort relation in �, then the weakening rule is admissible in �HOL.Furthermore we have A Rdom B whenever � ` A �R B . In partiular �(A ) =�(B ) in this situation and therefore, the sets fA 2 S �� �(A ) = �g are mutuallyinomparable.Example 28 Let BS := fR; C ; D ;Pg where the intended meaning of R is theset of real numbers, that of C and D the sets of ontinuous and di�erentiablefuntions and �nally that of P the set of polynomials. Therefore the types haveto be �(R) = �, �(C ) = �(D ) = �(P) = � ! � and r(C ) = d(C ) = R; : : : Inthis example we want to model a taxonomy for elementary alulus, so let �be the set ontaining the subsort delarations [P � D ℄; [D � C ℄, and the termdelarations[�XRX ::P℄; [�XRYR::P℄; [�XR + (FPX)(GPX)::P)℄; [�XR � (FPX)(GPX)::P℄for polynomials and furthermore [�::D ! C ℄; [�::P ! P℄ for the di�erentiationoperator �, then it is easy to hek that � is a valid signature. We an see that



we have oded a great deal of information about polynomials and di�erentiationinto the term delarations of �. Note that up to (elementary arithmeti) anypolynomial is indeed of sort P. The pratial advantage of this formalization ofelementary algebra is that this an be used in the uni�ation during proof searhin refutation aluli and thus onsiderably redue the searh for proofs.3 Struture Theorem and General BindingsThe key tool for the investigation of well-sorted formulae will be the struturetheorem whih we are about to prove. The prinipal diÆulty of �HOL is thatthe property of well-sortedness is highly non-strutural, whih makes the lassi-al dedution methods, suh as uni�ation that analyze the struture of formulaediÆult. The struture theorem reovers strutural properties of well-sorted for-mulae by linking the sort information (the existene of ertain term delarations)with strutural information about normal forms.Theorem 31 (Struture Theorem) Let A be a well-sorted formula with longhead normal form [�Xk hUn℄ and � `� A::A . Furthermore let �j be the variableontext [X1::d(A )℄; : : : ; [Xj ::dj(A )℄ and l = ln(A ), then1. h is a variable with �;�k(h) = B , suh that rn(B ) = rk(A ), �;�k `�Ui::di(B ) for 1 � i � n.2. there is a term delaration [8�B::B ℄ 2 �, a �-substitution � and well-sortedformulae Di, suh that(a) � `� A=��(�X ldl(A) �(B)Dm), where m := l+ ln(�(B ))� ln(�(A )) � 0.(b) �;�l `� �::�, �;�l `� Di::di(B ) for all i � m and rm(B ) = rl(A ).() If h is a onstant, then head(B) = Z 2 Dom(�) and head(�(Z)) = hor else head(B) = h.(d) dp(Di) < dp(hUn) and dp(�) < dp(hUn).Here the depth of a substitution � is the maximum of the dp(�(X)) for all X 2Dom(�) and the depth of a formula is the depth of the orresponding tree.One of the key steps in sort omputation and uni�ation is solving the followingproblem: given a sort A and an atomC, �nd the most general well-sorted formulaof sort A that has head C. Suh formulae are alled general bindings of sort A forthe head C. In �HOL, this problem requires a more areful investigation thanin �!. For instane onsider a ontext �, suh that �(Z) = B ! B , �(X) =�(Y ) = B and �(W ) = A and � onsists of the following term delarations [A �B ℄; [a::A ℄; [b::B ℄; [f ::(B ! B ! B )℄; [8[X ::B ℄ (faX)::A ℄; [8[X ::B ℄ (fXb)::A ℄ then themost general formulae with the head f and sort B is fXY , of sort A are faXand fXb and �nally of sort (B ! A ) are �XB fa(ZX) and �XB f(ZX)b. In �!these general bindings are unique and onsist only of the head and of variables.In order-sorted type-theory eah term delaration, that has the appropriate headand meets ertain onditions will ontribute a general binding.



De�nition 32 (General Binding) For the de�nitions of general bindings wehave two possibilities, orresponding to the two ases of the struture theorem.The �rst (lassial) one obtains the sort information from the head variable,whereas the seond one obtains the sort information from a term delaration.Let � be a ontext and A and B be sorts, suh that1. l = ln(A ) and m = l + ln(�(A ))� ln(�(B )) � 02. rm(B ) = rl(A )3. Vi = (H iX1 : : : X l), where H i are variables not in Dom(�)4. H := [H1::dl(A ) ! d1(B )℄; : : : ; [Hm::dl(A ) ! dm(B )℄,then the formula G := (�X1d1(A) : : : X ldl(A) hV1 : : :Vm) is alled a general bindingof sort A and head h if h = Xj or h 2 Dom(�) and �(h) = B . We all H theontext of variables introdued for G.Let [8[Y t::C n ℄B::B ℄ 2 � and A , B and Vi as above and furthermore5. Wi := (KiX1 : : :X l), where Ki are variables not in � [H6. K := [K1::dl(A ) ! C 1 ℄; : : : ; [Kt::dl(A ) ! C t ℄7. B0 = [Wt=Y n℄B and h := head(B0)then the formula G := (�X1d1(A) : : : X ldl(A) B0V1 : : :Vm) is alled a general bind-ing of sort A and head h. In this ase the ontext of variables introdued forG isH[K. Now we de�ne the set GhA (�;�; C) to be the set of all general bindings ofsort A and head h and introdued ontext C. If the head of G is bound, then weall G a projetion binding, if h is a variable in Dom(�) or a onstant imitationbinding and if h 2 Dom(K) (G is indued by a exible term delaration in thisase), then we all G a general weakening binding of sort A . We will denote theset of all suh bindings with WA (�;�; C).It is easily veri�ed that �; C `� G::A and head(G) = h, provided that G 2GhA (�;�; C), whih explains the naming in the de�nition above. The followingtheorem is a onsequene of the struture theorem and the basis of the uni�ationtransformations given below.Theorem 33 (General Binding Theorem) Let A = �Xk hUn be a long��-normal form with � `� A::A , then there exists a general binding G 2GhA (�;�; C) [ WA (�;�; C) and a �-substitution � 2 wsSub(C ! �;�), suhthat dp(�) < dp(A) and C;� `� �(G)=��A.4 Uni�ationBuilding upon the notion of general bindings we give a set of transformationsfor (pre-)uni�ation, whih we will prove orret and omplete with the methodsof [20℄.



De�nition 41 (Uni�ation Problem) A uni�ation problem is a formula inthe language E ::= A := B j 9[X ::A ℄ E j 8[X ::A ℄ E j E1 ^ E2 j >. In orderto simplify the presentation of the algorithm, we assume that all uni�ationformulae are in 98-form E := 9�8�E 0. Eah formula is equivalent to one in thisform by raising [15℄. We all a �-substitution �, suh that � `� �::� and � `��(A)=���(B) for all pairsA := B in E 0 a �-uni�er for E and we will denote the setof �-uni�ers of E with wsU(�; E). We all a subset 	 � wsU(�; E) a ompleteset of �-uni�ers of E , i� for all � 2 wsU(�; E) there is a � 2 	 that is moregeneral than �, i.e. there is a �-substitution �, suh that � `� �(X)=���(�(X))for all X 2 Dom(�) = Dom(�). If the singleton set f�g is a omplete set ofuni�ers of E , then we all � a most general uni�er for E .Note that �-uni�ability does not entail that both formulae of a pair have iden-tial sets of sorts, sine these sets may grow as more term delarations beomeappliable with instantiation. Nevertheless �-uni�able pairs must have the sametypes and furthermore the sorts must obey the Rdom relation.De�nition 42 (�-Solved Form) A uni�ation problem E := 9�8� E 0 is in �-solved form if all of its pairs are in solved form, i.e. of the form X := A, suhthat �(X) = A , � `� A::A , neither X nor any Y 2 Dom(�) is free in A,and X is not free elsewhere in E . These onditions are suÆient to ensure that�E = [A1=X1; : : : ;An=Xn℄ is a most general uni�er for E provided that E is insolved form with matrix X1 := A1 ^ : : : ^Xn := AnDe�nition 43 (SIM: Simpli�ation of �-Uni�ation Problems)9� 8�(�XA A) := (�YA B)9�8�; [X ::A ℄A := [X=Y ℄B 9� 8�(�XA A) := B � `� B::B d(B ) = A9�8�; [X ::A ℄A := (BX)We apply these rules with the understanding that the operators ^ and := areommutative and assoiative, that trivial pairs may be dropped and that vauousquanti�ations an be eliminated from the pre�x. It is easy to see that thesesimpli�ations onserve the sets of �-uni�ers.De�nition 44 (�UT : Transformations for �-Uni�ation)Let �UT be the system SIM augmented by the following inferene rules9� 8�hUn := hVn ^ E h 2 � [Dom(�) [Dom(�)9�8�U1 := V1 ^ : : : ^Un := Vn ^ E



together with the following rules where G is a general binding of sort A inGh(�;�; C) [ Gj(�;�; C) [ Gw(�;�; C)9� 8�FU := hV ^ E �(F ) = A �9� [ C 8�F := G ^ [G=f ℄(FU := hV ^ E)9� 8�FU := hV ^ E �(F ) = A �(h) = B ��9� [ C 8�F := G ^ [G=F ℄(FU := hV ^ E)Just as in SIM leave the assoiativity and ommutativity of ^ and := impliit.Note that the onept of a weakening transformation for uni�ation is new to��!, where we use term delarations to model subsorting. We have ombinedit with the lassial imitation (G has head h) and projetion (G is a projetionbinding) transformations (see [20℄) into �. This set of rules is used with theonvention that all formulae are eagerly redued to �-normal form.Sine we have aptured the relevant features of �HOL in the struture andgeneral binding theorems (both of whih are nearly trivial in �!), we an nowuse the standard tehniques (f. [20, 9℄) to soundness and ompleteness.Theorem 45 (Completeness Theorem for �UT ) For any well-sorted uni-�ation problem E and any � 2 wsU(�; E), there is a sequene of transfor-mations in �UT , suh that E `� UT E 0, where E 0 is in �-solved form and�E0 ��� �[Free(E)℄.As for uni�ation in �!, the rule �� gives rise to a serious explosion of thesearh spae for uni�ers. Huet's solution to this problem was to rede�ne thehigher-order uni�ation problem to a form suÆient for refutation purposes: Forthe pre-uni�ation problem ex-ex pairs are onsidered already solved, sinethey an always be trivially solved by binding the head variables to speialonstant funtions that identify the formulae by absorbing their arguments.However in �HOL the solution to the ex-ex problem is not as simple asin the unsorted ase, sine the heads of ex-ex pairs an be variables of fun-tional base sorts A . In this ase ex-ex-pairs are not solvable independentlyof their arguments, sine in general the onstant funtions needed for absorb-ing the arguments are not of sort A . Our solution to this problem is to modifythe de�nition of pre-solved pairs and to keep the guess rule, but restrit its ap-pliation to the problemati ex-ex ases. Furthermore �-pre-uni�ation onlymakes sense for regular signatures, where formulae have a unique least sort(with respet to the full subsort relation). Consider the non-regular signaturegiven by S := fA ; B g, �(A ) = �(B ) = �, � := f�g and � := f[::A ℄; [::B ℄g. The�-substitution [=X ℄; [=Y ℄ is a �-uni�er of the pair 9[X ::A ℄; [Y ::B ℄X := Y , butit an only be found by applying some kind of �� transformation. Therefore wewill only onsider regular signatures for pre-uni�ation.



De�nition 46 Let A be a exible formula with ��-normal form �X FUn and�(F ) = A n ! B , then we all A funtionally exible with target sort B . Let =pbe the least ongruene relation on well-sorted formulae that ontains =�� andall funtional exible pairs. Let E := 9�8�E 0 be an equational system, then a�-substitution � is alled a �-pre-uni�er of the pair A := B 2 E 0, i� � `� �::�and � `� �(A) =p �(B). We denote the set of �-pre-uni�ers by wsPU(�; E).De�nition 47 (Pre-Solved Form) Let E := 9�8�E 0 be an equational sys-tem, then we all a formula FUkY funtionally exible in E with target sort B ,i� �(F ) = A k ! B and Y i 2 Dom(�). A pair in E 0 is in �-pre-solved form inE , i� it is in solved form, or if it is a pair of funtionally exible formulae withidential target sorts.This de�nition is tailored to guarantee that �-pre-uni�ers an always be ex-tended to �-uni�ers by �nding trivial uni�ers for the exible pairs and thatequational problems in �-pre-solved form always have most general uni�ers.Therefore an equational system E is �-pre-uni�able, i� it is �-uni�able.De�nition 48 (�PT :Transformations for �-Pre-Uni�ation) We de�ne theset �PT of transformations for well-sorted pre-uni�ation by modifying the�UT rules for deomposition and the rule � by requiring that they may notbe performed on a pair A := B, if head(A) 2 Free(A), and restriting �� tothe ase, where the variable it ats on is the head of a exible pair that is notfuntionally exible.With these de�nitions we obtain a ompleteness result for �PT similar to 45with the same methods, sine most of the tehnial diÆulties are enapsulatedin the general binding theorem. In fat these methods an also be extended toyield a �-uni�ation algorithm for higher-order patterns (f. [12℄).5 Conlusion and Further WorkWe have presented a sorted version �HOL of �! that inorporates the notionsof funtional base sorts and term delarations, whih is a a good basis for thedevelopment of higher-order automated theorem provers, sine it greatly en-hanes the pratial expressive power of �! as a logi system. We have studiedthe subtle interations of funtional base sorts, funtion restrition and exten-sionality, and of term delarations with sorted �-onversion. We have presentedorret and omplete sets of transformations for uni�ation and pre-uni�ationin �HOL, whih form the basis of a sorted higher-order resolution alulus de-sribed in [13℄.In �rst-order prediate logi, the introdution of term delarations has been amajor step to the development of dynami sorted logis [22℄, where variables arerestrited to sorts, but where the sorts an also be treated as unary prediatesin the logi; thus the signature is no longer �xed aross the dedution, as sortinformation an appear in the dedution proess. Extensions of these ideas have
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