Unification in a Sorted A-Calculus with Term
Declarations and Function Sorts

Michael Kohlhase*

FB Informatik, Universitat des Saarlandes, 66041 Saarbriicken, Germany
+49-681-301-4627 kohlhase@cs.uni-sb.de
http://js-sfbsun.cs.uni-sb.de/pub/www

Abstract. The introduction of sorts to first-order automated deduction
has brought greater conciseness of representation and a considerable gain
in efficiency by reducing search spaces. This suggests that sort infor-
mation can be employed in higher-order theorem proving with similar
results. This paper develops a sorted A-calculus suitable for automatic
theorem proving applications. It extends the simply typed A-calculus by a
higher-order sort concept that includes term declarations and functional
base sorts. The term declaration mechanism studied here is powerful
enough to subsume subsorting as a derived notion and therefore gives a
justification for the special form of subsort inference. We present a set of
transformations for sorted (pre-) unification and prove the nondetermin-
istic completeness of the algorithm induced by these transformations.

1 Introduction

In the quest for calculi best suited for automating logic on computers, the in-
troduction of sorts has been one of the most important contributions. Sort tech-
niques consist in syntactically distinguishing between objects of different classes
and then assigning sorts (specifying the membership in some class) to objects
and restricting the range of variables to particular sorts. Since a good part of the
set membership and subset information can be coded into the sorted signature,
sorted logics lead to a more concise representation of problems and proofs than
the unsorted variants. The exploitation of this information during proof search
can dramatically reduce the search space associated with theorem-proving and
make the resulting sorted calculi much more efficient. In the context of first-
order logic sort information has been successfully employed by C. Walther [21],
M. Schmidt-Schauf [19], A. Cohn [6], C. Weidenbach [22] and others.

On the other hand there is an increasing interest in deduction systems for
higher-order logic, since many problems in mathematics are inherently higher-
order. Current automated deduction systems for higher-order logic like TPS [2]
are rather weak on the first-order fragment, which is in part due to the fact that
many of the advances of first-order deduction (like sorted calculi) have not yet
been transported to higher-order logic. Thus the question about the behavior of

* This work was supported by the Deutsche Forschungsgemeinschaft in SFB 314 (D2)

higher-order logic under the constraints of a full sorted type structure is a natu-
ral one to ask, in particular since calculi in this system promise the development
of more powerful deduction systems for real mathematics. G. Huet proposed the
study of a sorted version of higher-order logic in an appendix to [7]. The unifica-
tion problem in extensions of this system have since been studied by Nipkow and
Qian [16] and by Pfenning and the author [14]. Furthermore typed A-calculi with
order-sorted type structures have been of interest in the programming language
community as a theoretical basis for object-oriented programming and for more
expressive formalisms for higher-order algebraic specifications [18,4, 3,17].

Here we present a A-calculus YXHOL that differs from the abovementioned
in that we do not consider function restriction as a “built-in” of the system,
since we take the mathematical intuition that functions have uniquely speci-
fied domains seriously. Consequently our subsort relation is not covariant in the
domain sort (this principle semantically corresponds to implicit function restric-
tion). Furthermore the term declaration mechanism is much more powerful than
the declaration schemas proposed in those logical systems. This paper is an ex-
tension of the results presented in [8,9]. This subsystem of ¥HOL only allows
signatures consisting of constant declarations and thus treats the interaction of
functional base sorts and extensionality in isolation. In contrast to this subsystem
the powerful mechanism of term declarations in XHOL allows a straightforward
specification of many mathematical concepts (cf. Example 28). This paper also
corrects an earlier attempt [11] to solve the problem. We have corrected the rel-
evant definitions of [11] and with these were able to prove all the results claimed
there. For details and proofs we refer the reader to [12].

In the following we will shortly motivate the primary features of XHOL. In
unsorted logics the only way to express the knowledge that an object is a mem-
ber of a certain class of objects is through the use of unary predicates, such
as the predicate N,_,, in the formulae (N2,), i.e. “2 is a natural number”, or
—(NPeter,), i.e. “Peter is not a natural number”. This leads to a multitude of
unit clauses (S,,A) in the deduction that only carry the sort information for
A. Since quantification is unrestricted in unsorted logics, the restricted quan-
tification has to be simulated by formulae like VX ,.(NX,) = (>,5,50 X,0,).
This approach is unsatisfactory because inter alia the derivation of the nonsen-
sical formula (NPeter) = (> Peter 0) is permitted, even though (> Peter 0) can
never be derived because of —(NPeter). Sorted logics remedy this situation by
assigning sorts to constants and variables and by restricting quantification to
sorts. Furthermore formulae have to meet certain (sort) restrictions to denote
meaningful objects.

In typed A-calculi the idea of declaring sort information is very natural,
as all objects are already typed, which amounts to a very coarse division
of the universe into classes. The type system is merely refined by considering
the sorts as additional base types. For example the last formula above would
read YXn.(> X0), where > is a binary relation on N and 0 is of sort N in
the signature. Sorting the universe of individuals gives rise to new classes of
functions, namely functions, where domains and codomains are just the sorts. In

addition to this essentially first-order way of sorting the function universes, the
classes of functions defined by domains and codomains can be further divided
into subclasses that we represent by base sorts of functional type. As an example
for the sort restrictions on formulae consider the application (AB). Here, there
must be sorts A and B, such that A is of sort A, B is of sort B and B is a subsort
of the domain sort of A. The sort of the application (AB) is defined to be the
codomain sort of A.

In YHOL we relax the implicit condition that only the sorts of constants and
variables can be declared, and allow declarations of the form [VI.A:A] called
term declarations, where A can be an arbitrary formula of appropriate type
and T is a variable context. The idea of term declarations is that there can be
sort information within the structure of a term, if the term matches a certain
schematic term (a term declaration).

Consider for instance the addition function, which we (semantically) would
like to have the sort N x N — N where N is the sort of natural numbers. If
we also have a sort for the even numbers E, then we might want to specify
that the expression [+aa] is an even number, even if a is not. This information
can be formalized by declaring the term [+XyXy] to be of sort E using a term
declaration. We might also want to give the addition function the sort EXE — E,
however since we insist that terms have unique domain sorts, we cannot declare
this directly in the signature. Closer inspection of the semantics behind our
example reveals that it is consistent with our program to declare the restriction
of the addition function to the even numbers has codomain in the evens, which
we can legally do with a term declaration [V[X:E], [Y :E]. + XY :E].

In this expressive system term declarations of the form [V[X:A]. X :B] entail
that A is a subsort of B and induce the intended subsort ordering on the set of
sorts.

2 Sorted \-Calculus

We assume the reader to be familiar with the syntax and semantics of simply
typed A-calculus (A7) [5,1]. The set T of types (o, 8,7y ...) is built up from a
set BT of base types by closure under —. We assume a set of typed constants
Y= UQGTEQ and a countably infinite set V, of variables for each type a € T.
Well-formed formulae are built up from variables and constants as applications
and A-abstractions in the usual way.

Another mathematical notion which will play a great role in this paper is
that of a partial function ®: A — B. With this we will mean a relation ® C
A x B, such that for all pairs (a,b) and (¢,d) in ® we have a # ¢. For partial
functions that can be presented by a finite set of pairs (e.g. substitutions or
variable contexts), we will often use a notation like ® := [b*/a'],..., [b"/a"] if
® = {(a",b"),...,(a",b")}. Furthermore, if ¥ is that partial function, such that
¥(a) = b but ¥(c) = ®(c) for all ¢ # a, then we will denote ¥ by ®,[b/a]. If the
restrictions of ® and ¥ to Dom(®) N Dom(¥) are identical, then we say that
they agree (<I>‘ ‘\I') In this case ® U ¥ is again a partial function.

Definition 21 (Sort System) A sort system is a quintuple (S, BS,t,0, 1), where
BS is a finite set of symbols, called base sorts and the set of sorts S is the
closure of BS under —. We will denote sorts with symbols like A, B, C, D
and have B — A € S, whenever A,B € S. The functions t,0 and 7 spec-
ify the sorts of the codomain, domain and the type of a sort and we require
that 7(A) = 7(0(A)) — 7(¢(A)) for all sorts A € S. The type 7(A) € T is
called the type of the sort A. We will denote the set of sorts of type a with
Sa, call a sort A € S,,3 a functional sort and denote the set of functional
sorts by S (non-functional sorts by S”f). Note that the sets BS and S™f are
in general distinct (see example 28). Furthermore let In(A) := 0, iff A € BS and
In(A — B) := 1+ In(B). We will use the shorthands t'(A) and t'(A) defined by

(A) = A A =e(rf(A) %(A) = A TI(A) =0(r'(A))

It will be important that the signatures over which our well-sorted terms are
built “respect function domains,”, i.e. that for any term A and any sorts A and
B of A, the identity 0(A) = 9(B) holds. The proof that signatures indeed satisfy
this property depends on the consistency conditions for valid signatures, given in
terms of the equivalence relation Rdom , where A Rdom B, iff 9'(A) = 2/(B)
for all i < k, such that t*(A) and t*(B) are of the same base type.

Next, we will introduce the concept of well-sortedness for formulae. A term
A will be called well-sorted with respect to a signature ¥ and a context T,
if the judgment I' Fy A=A is derivable in the inference system X HOL. Here
the context gives local sort information for the variables, whereas the signature
contains sort information given by term schemata (the term declarations). One
of the difficulties in devising a formal system with term declarations is that
the signature needed for defining well-sortedness in itself contains terms that
have to be well sorted. Therefore we need to combine the inference systems
for the judgment g, ¥ (X is a a valid signature) and that for well-sortedness
(T Fy; A:A) into one large system LHOL. Another difficulty is that we also have
to treat a sorted 3n-conversion judgment I' Fy; A=, B in YHOL, since we want
fBn-conversion to be sort preserving.

Definition 22 (Variable Context) Let X, be a variable and A a sort, then
we call a pair [X:A] a variable declaration for X, iff 7(A) = a. We call a finite
set of variable declarations a (variable) context (¢, T'), if it is a partial function

ie. ' C VYV, x S,. Note that with our convention for partial functions we have
I'(X)=Afor I' =TI",[X:A], even if ["(X) = B.

Definition 23 (Well-Sorted Formulae and Valid Signatures) For a fixed
signature ¥ and a context I we say that a formula A is of sort A, iff the judgment

I' Fx A:A is derivable in the following inference system.

FsigX Fea I T'(X)=A VAA:Al €Y X ACT
T'Fy X:A T'Fy AzA
[y AzA Ay B:o(A) T)|A [, X:Bls AzA
AUT Fx (AB):t(A) [y (A XpA):B — A

'ty AtA THyB:B I'tky A=g,B
I ks B:A

The following inference rules define the the judgment ,;, ¥ by specifying that
it is legal to add term declarations to valid signatures, if either they are the first
declarations for new constants, or if the formula A is well-sorted and the new
sort A respects function domains.

FsigY c¢g¢X ce€X, A€eS 7(A) =a
Fsig X, [cz4]

ks AzA Y+ A Rdom B
l_sig @ l_sig Z, [VFAIB]

Finally let ' Fy; A=g,B be the congruence judgment induced by the reduction
judgment.

[y AzA [,[X:B] by, AzA A Fy B:B FHA

'y (/\XB(A\)AX) —p A TUA by ()\X]B;A)B —3 [B/X]A

In the definition of sorted 7-reduction we have taken care to identify the sup-
porting sort 0(A) of A (which will turn out to be unique in theorem 24), since
the formula (AXg.AX) denotes the restriction of the function A to sort B, if B
is a subsort of 9(A) and can therefore not be equal to A.

It is easy to see that the judgments defined above respect well-typedness, i.e.
that the information described by YHOL merely refines the type information. In
particular sorted 8n-conversion is a sub-relation of typed conversion. As a direct
consequence sorted fn-reduction is terminating. The confluence result depends
on the following theorem

Theorem 24 IfI'ty AzA and I’ by A:B, then A Rdom B.

In fact the formal system XHOL is designed to capture informal mathematical
practice, where functions have unique domains associated with them.

If we only have one base sort per base type, then the set of well-sorted
formulae is isomorphic to the set of well-typed formulae, therefore YHOL is a
generalization of A™. It is an important property of our system, that any valid
signature is subterm-closed, that is each subterm of a well-sorted term is again
well-sorted. This fact is natural, since it does not make sense to allow ill-formed
subexpressions in well-formed expressions.

Definition 25 Let I' and A be variable contexts, then we call a substitution o

a X-substitution (0 € wsSub(X, —)), iff the judgment I' -y o:A is derivable
in the following inference system.

Ikyo:A I'Fg AzA T|I' X ¢ Dom(I)

0ty 0:0 by o, [A/ XA [X 4]

Let ' by 0:A. We can show that if ZU A by A:A, then ZUT Fy o(A):A
and furthermore Dom(A) = Dom(o) and Dom(A) N Dom(l') = (). Thus X-
substitutions are idempotent and their application conserves sets of sorts. As a
consequence we can show that if I' F», A=g,B, then A and B have the same
set of sorts. Thus the fundamental operations of sorted higher-order deduction
systems do not allow the formation of ill-sorted terms from well-sorted ones.
This will ensure that such systems never have to handle ill-sorted terms, even
intermediately.

Let I' Fy, X=B but ['(X) = A (we abbreviate this by I' Fs; A <y, B), then
for all formulae I' Fy, A:zA we also have T' Fy; A:B, since T' by, [A/X]X:B.
This is just the situation that is captured with the notion of sort inclusion
in traditional sorted logics, where the subsort relation is the smallest partial
ordering that contains a set of subsort declarations. The subsort relation plays
such a central role in these systems that they are collectively called “order-
sorted”. Since subsorting is a derived relation in YHOL (cf. theorem 27), we do
not have to treat it in our meta-logical development. On the object level (and for
computation) however it is a useful notion to employ, since it allows to specify
taxonomic hierarchies of sorts, which play a great role in intuitive mathematics.

In contrast to the first-order systems the subsort relation is not finite, even
with a finite set of base sorts. Thus the relation cannot be pre-computed in
advance. On the other hand it is not clear, whether the sort-checking problem
is decidable (in fact this problem can be seen to be equivalent to the higher-
order matching problem, where decidability is known only for restricted classes
of formulae), which is another reason for limited practical usefulness of the full
subsorting relation. One way out of this situation is to approximate the subsort
relation by a sub-relation computed from a finite set of subsort declarations with
certain induction principles.

Definition 26 (Sort Inclusion) Let R be a binary relation on sorts, such that
[X:A] by X:B, whenever R(A,B), then we call R an approzimation of the
subsort relation in ¥. We will call term declarations of the form [VX,.X:B]
subsort declarations and abbreviate them with [A < B]. The following inference
system is called the SHOL subsort inference system for R

R(AB) kg 2 Faig X Fsig X
YFA<R B YFA<g A YFA<gOA) —(d)
YFA<zB YXFB<pC YFA<R B

YFA<LizC YFCo>A<zC-—>B

We will call the relation RS defined by R<(A, B), iff ¥ F A < B is the ordering
relation for R. For a given, valid signature ¥ we will denote subsorting judgment
for the subsort declarations simply with ¥ F A < B.

Theorem 27 If R is an approzimation of the subsort relation of X, then the
relation RS is also an approzimation.

The subsort judgment interacts with well-sorted formulae by the classical weak-
ening rule, which allows to weaken the sort information.
F'kxy AtA YFA<zB
'y A:B

As a consequence of Theorem 27 we can see that if R is an approximation
of the subsort relation in ¥, then the weakening rule is admissible in YHOL.
Furthermore we have A Rdom B whenever ¥ F A <x B. In particular 7(A) =
7(B) in this situation and therefore, the sets {A € S | 7(A) = a} are mutually
incomparable.

Example 28 Let BS := {R,C,D,P} where the intended meaning of R is the
set of real numbers, that of C and ID the sets of continuous and differentiable
functions and finally that of P the set of polynomials. Therefore the types have
to be 7(R) = ¢, 7(C) = 7(D) = 7(P) =+ — ¢ and t(C) = o(C) = R,... In
this example we want to model a taxonomy for elementary calculus, so let X
be the set containing the subsort declarations [P < D], [D < C], and the term
declarations

[AXRX[PL [AXRYR]P] [AXR + (FPX)(GPX)IP)L [AXR * (FPX)(GPX)[P]

for polynomials and furthermore [0:D — C], [0:P — P] for the differentiation
operator J, then it is easy to check that ¥ is a valid signature. We can see that

we have coded a great deal of information about polynomials and differentiation
into the term declarations of ¥. Note that up to (elementary arithmetic) any
polynomial is indeed of sort IP. The practical advantage of this formalization of
elementary algebra is that this can be used in the unification during proof search
in refutation calculi and thus considerably reduce the search for proofs.

3 Structure Theorem and General Bindings

The key tool for the investigation of well-sorted formulae will be the structure
theorem which we are about to prove. The principal difficulty of YHOL is that
the property of well-sortedness is highly non-structural, which makes the classi-
cal deduction methods, such as unification that analyze the structure of formulae
difficult. The structure theorem recovers structural properties of well-sorted for-
mulae by linking the sort information (the existence of certain term declarations)
with structural information about normal forms.

Theorem 31 (Structure Theorem) Let A be a well-sorted formula with long
head normal form [AX*.hU"] and T Fx. A:A. Furthermore let 57 be the variable
context [X1:0(A)],...,[X7:0/(A)] and | = In(A), then

1. h is a variable with T,ZF(h) = B, such that t"(B) = t*(A), I,E* Fy
Ui:0i(B) for 1 <i<n.

2. there is a term declaration VA.B:B| € ¥, a X-substitution 6 and well-sorted
formulae D?, such that

(a) T Fx A:BW(AXQI(A).G(B)W), where m == [+ In(7(B)) — In(7(A)) > 0.

(b) T,2 by 0:A, T2y, DU:0Y(B) for all i < m and t™(B) = t!(A).

(¢) If h is a constant, then head(B) = Z € Dom(f) and head(8(Z)) = h
or else head(B) = h.

(d) dp(D?) < dp(hU") and dp() < dp(hU™).

Here the depth of a substitution 6 is the mazimum of the dp(6(X)) for all X €
Dom(f) and the depth of a formula is the depth of the corresponding tree.

One of the key steps in sort computation and unification is solving the following
problem: given a sort A and an atom C, find the most general well-sorted formula
of sort A that has head C. Such formulae are called general bindings of sort A for
the head C. In XHOL, this problem requires a more careful investigation than
in A7. For instance consider a context I', such that I'(Z) = B — B, T'(X) =
I'(Y) =B and I'(W) = A and ¥ consists of the following term declarations [A <
B, [a:A], [b:B], [f=(B — B — B)], [V[X:B.(faX):A], [V[X :BJ.(fXb):A] then the
most general formulae with the head f and sort B is fXY, of sort A are faX
and fXb and finally of sort (B — A) are AXp.fa(ZX) and AXp.f(ZX)b. In A~
these general bindings are unique and consist only of the head and of variables.
In order-sorted type-theory each term declaration, that has the appropriate head
and meets certain conditions will contribute a general binding.

Definition 32 (General Binding) For the definitions of general bindings we
have two possibilities, corresponding to the two cases of the structure theorem.
The first (classical) one obtains the sort information from the head variable,
whereas the second one obtains the sort information from a term declaration.
Let T be a context and A and B be sorts, such that

. l=1In(A) and m =1+ In(7(A)) — In(7(B)) >0

v (B) = /(A)

Vi=(H'X'...X"), where H" are variables not, in Dom(I")
H = [H":(A) = ' (B)],...,[H™:0(A) — 0™ (B)],

B =

then the formula G == (AX3,) ... Xé,(A\).h,V1 ... V™) is called a general binding
of sort A and head h if h = X7 or h € Dom(I') and I'(h) = B. We call H the

context of variables introduced for G.
Let [V[Y?:C"].B:B] € ¥ and A, B and V'’ as above and furthermore

5 Wi = (KiX1 . X"), where K are variables not in I' UH
= [K(A) » €Y, [K500(A) - O]
7 B’ = [Wt/Y”]B and h := head(B’)

then the formula G := (AX3y) - ..Xé,(A).B’V1 ... V™) is called a general bind-
ing of sort A and head h. In this case the context of variables introduced for G is
H UK. Now we define the set G (3, T',C) to be the set of all general bindings of
sort, A and head h and introduced context C. If the head of G is bound, then we
call G a projection binding, if h is a variable in Dom(T') or a constant imitation
binding and if h € Dom(K) (G is induced by a flexible term declaration in this
case), then we call G a general weakening binding of sort A. We will denote the
set of all such bindings with W4 (X, T,C).

It is easily verified that [',C by, G:A and head(G) = h, provided that G €
GM(¥,T,C), which explains the naming in the definition above. The following
theorem is a consequence of the structure theorem and the basis of the unification
transformations given below.

Theorem 33 (General Binding Theorem) Let A = AXERU" be a long
Bn-normal form with T Fy, A:A, then there exists a general binding G €
Gh(Z,T,C) UWa(X,T,C) and a X-substitution p € wsSub(C — I,¥), such
that dp(p) < dp(A) and C,T b5, p(G)=p,A.

4 Unification

Building upon the notion of general bindings we give a set of transformations
for (pre-)unification, which we will prove correct and complete with the methods
of [20].

Definition 41 (Unification Problem) A wunification problem is a formula in
the language & == A = B | J[X=ALE | V[X:ALE | & A& | T. In order
to simplify the presentation of the algorithm, we assume that all unification
formulae are in dV-form £ := ITVA.E'. Each formula is equivalent to one in this
form by raising [15]. We call a E-substitution 6, such that I' Fy; 8:A and T Fy,
0(A)=p,0(B) for all pairs A = B in £’ a X-unifier for £ and we will denote the set
of Y-unifiers of £ with wsU(X,&). We call a subset ¥ C wsU(X, &) a complete
set of X-unifiers of £, iff for all § € wsU(X,E) there is a 0 € ¥ that is more
general than 6, i.e. there is a E-substitution p, such that I' by, 0(X)=3,p(0(X))
for all X € Dom(A) = Dom(o). If the singleton set {o} is a complete set of
unifiers of £, then we call o a most general unifier for £.

Note that Y-unifiability does not entail that both formulae of a pair have iden-
tical sets of sorts, since these sets may grow as more term declarations become
applicable with instantiation. Nevertheless Y-unifiable pairs must have the same
types and furthermore the sorts must obey the Rdom relation.

Definition 42 (X-Solved Form) A unification problem £ := IT'VA.E' is in -
solved form if all of its pairs are in solved form, i.e. of the form X = A, such
that T'(X) = A, T Fy, A:A, neither X nor any ¥ € Dom(A) is free in A,
and X is not free elsewhere in £. These conditions are sufficient to ensure that
og = [A'/Xy,...,A"/X"] is a most general unifier for £ provided that £ is in
solved form with matrix X! = AT A...A X" = A"

Definition 43 (SZM: Simplification of ¥-Unification Problems)

JAVY.(AXA) = (AYaB) 3AVY.(AXs,A)=B T'FyB:B o(B) =A
JAVY, [X:ALA = [X/Y]B JAVY, [X:ALA = (BX)

We apply these rules with the understanding that the operators A and = are
commutative and associative, that trivial pairs may be dropped and that vacuous
quantifications can be eliminated from the prefix. It is easy to see that these
simplifications conserve the sets of X-unifiers.

Definition 44 (XU T: Transformations for X-Unification)
Let XUT be the system STM augmented by the following inference rules

JAVY.RU™ = hV? AE h € ¥ UDom(A)UDom(Y)

JAVY U = VIA... AU =V"AE

together with the following rules where G is a general binding of sort A in

GM(Z,A,C) UG/ (X, A,C)UGH(E,A,0)

JAVY.FU = hVAE A(F)=A

*

JAUCYY.F = G A[G/f|(FU = hV A€)

JAVY.FU=hVAE A(F)=A A(h)=B

kk

JAUCYY.F =G A[G/F](FU = hV A€)

Just as in STM leave the associativity and commutativity of A and = implicit.

Note that the concept of a weakening transformation for unification is new to
Y A7, where we use term declarations to model subsorting. We have combined
it with the classical imitation (G has head h) and projection (G is a projection
binding) transformations (see [20]) into *. This set of rules is used with the
convention that all formulae are eagerly reduced to 8-normal form.

Since we have captured the relevant features of YHOL in the structure and
general binding theorems (both of which are nearly trivial in A7), we can now
use the standard techniques (cf. [20,9]) to soundness and completeness.

Theorem 45 (Completeness Theorem for SUT) For any well-sorted uni-
fication problem & and any 6 € wsU(X,E), there is a sequence of transfor-
mations in XUT, such that € Fs UTE', where £ is in X-solved form and
g <py G[Free(c‘:)]

As for unification in A7, the rule *x gives rise to a serious explosion of the
search space for unifiers. Huet’s solution to this problem was to redefine the
higher-order unification problem to a form sufficient for refutation purposes: For
the pre-unification problem flex-flex pairs are considered already solved, since
they can always be trivially solved by binding the head variables to special
constant functions that identify the formulae by absorbing their arguments.

However in XHOL the solution to the flex-flex problem is not as simple as
in the unsorted case, since the heads of flex-flex pairs can be variables of func-
tional base sorts A. In this case flex-flex-pairs are not solvable independently
of their arguments, since in general the constant functions needed for absorb-
ing the arguments are not of sort A. Our solution to this problem is to modify
the definition of pre-solved pairs and to keep the guess rule, but restrict its ap-
plication to the problematic flex-flex cases. Furthermore Y-pre-unification only
makes sense for regular signatures, where formulae have a unique least sort
(with respect to the full subsort relation). Consider the non-regular signature
given by S := {A, B}, 7(A) = 7(B) =, ¥ = {c} and ¥ := {[c=A], [czB]}. The
Y-substitution [¢/X], [¢/Y] is a L-unifier of the pair [X=A], [V :BL.X =Y, but
it can only be found by applying some kind of *x transformation. Therefore we
will only consider regular signatures for pre-unification.

Definition 46 Let A be a flexible formula with Sn-normal form AX.FU" and
['(F) = A" — B, then we call A functionally flexible with target sort B. Let =P
be the least congruence relation on well-sorted formulae that contains =3, and
all functional flexible pairs. Let £ := ATVA.E' be an equational system, then a
Y-substitution ¢ is called a Y-pre-unifier of the pair A =B € £’ iff T by 0:A
and I' g 0(A) =P 0(B). We denote the set of X-pre-unifiers by wsPU(X, £).

Definition 47 (Pre-Solved Form) Let £ := IIVA.E' be an equational sys-
tem, then we call a formula FUY functionally flexible in £ with target sort B,
iff [(F) = A* — B and Y’ € Dom(A). A pair in &' is in X-pre-solved form in
&, iff it is in solved form, or if it is a pair of functionally flexible formulae with
identical target sorts.

This definition is tailored to guarantee that X-pre-unifiers can always be ex-
tended to X-unifiers by finding trivial unifiers for the flexible pairs and that
equational problems in Y-pre-solved form always have most general unifiers.
Therefore an equational system &£ is Y-pre-unifiable, iff it is X-unifiable.

Definition 48 (XP7:Transformations for ¥-Pre-Unification) We define the
set XPT of transformations for well-sorted pre-unification by modifying the
YUT rules for decomposition and the rule x by requiring that they may not
be performed on a pair A = B, if head(A) € Free(A), and restricting *x to
the case, where the variable it acts on is the head of a flexible pair that is not
functionally flexible.

With these definitions we obtain a completeness result for XP7 similar to 45
with the same methods, since most of the technical difficulties are encapsulated
in the general binding theorem. In fact these methods can also be extended to
yield a ¥-unification algorithm for higher-order patterns (cf. [12]).

5 Conclusion and Further Work

We have presented a sorted version YHOL of A~ that incorporates the notions
of functional base sorts and term declarations, which is a a good basis for the
development of higher-order automated theorem provers, since it greatly en-
hances the practical expressive power of A~ as a logic system. We have studied
the subtle interactions of functional base sorts, function restriction and exten-
sionality, and of term declarations with sorted g-conversion. We have presented
correct and complete sets of transformations for unification and pre-unification
in XHOL, which form the basis of a sorted higher-order resolution calculus de-
scribed in [13].

In first-order predicate logic, the introduction of term declarations has been a
major step to the development of dynamic sorted logics [22], where variables are
restricted to sorts, but where the sorts can also be treated as unary predicates
in the logic; thus the signature is no longer fixed across the deduction, as sort
information can appear in the deduction process. Extensions of these ideas have

been utilized to formalize and mechanize a general first-order Kleene logic for
partial functions [10]. In both systems the resolution rule always uses sorted
unification with respect to the signature specified by the current state of the
proof. Since predicates are primary objects of type theory, a generalization of the
methods in [22,10] may yield very powerful calculi for mechanizing mathematics
and in particular analysis, which was the original motivation for the research
reported in this paper.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Academic Press, 1986.

. Peter B. Andrews, Eve Longini-Cohen, Dale Miller, and Frank Pfenning. Automat-

ing higher order logics. Contemp. Math, 29:169-192, 1984.

Kim B. Bruce and Giuseppe Longo. A modest model of records, inheritance and
bounded quantification. Information and Computation, 87:196—240, 1990.

Luca Cardelli. A semantics of multiple inheritance. In G. Kahn and G. Plotkin
D.G. MacQueen, editors. Semantics of Data Types, volume 173 of LNCS. Springer
Verlag, 1984.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

A. G. Cohn. Taxonomic reasoning with many-sorted logics. Artificial Intelligence
Review, 3:89-128, 1989.

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

Patricia Johann and Michael Kohlhase. Unification in an extensional lambda calcu-
lus with ordered function sorts and constant overloading. SEKI-Report SR-93-14,
Universitat des Saarlandes, 1993.

Patricia Johann and Michael Kohlhase. Unification in an extensional lambda cal-
culus with ordered function sorts and constant overloading. In Proc. CADE’94,
LNCS,Springer Verlag, 1994.

Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic
for partial functions. In Proc. CADE’94, LNCS Springer Verlag, 1994.

Michael Kohlhase. Unification in order-sorted type theory. In Proc. LPAR’92,
pages 421-432, volume 624 of LNAI Springer Verlag, 1992.

Michael Kohlhase. Automated Deduction in Order-Sorted Type Theory. PhD thesis,
Universitat des Saarlandes, 1994. to appear.

Michael Kohlhase. Higher-order order-sorted resolution. Seki Report SR-94-01,
FB Informatik, Universitat des Saarlandes, 1994.

Michael Kohlhase and Frank Pfenning. Unification in a A-calculus with intersection
types. In Proc. ILPS’93, pages 488 505. MIT Press, 1993.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
pages 321 358, 1992.

Tobias Nipkow and Zhenyu Qian. Reduction and unification in lambda calculi with
subtypes. In Proc. CADE’92 volume 607 of LNCS, pages 66-78, 1992. Springer
Verlag.

Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymor-
phism. PhD thesis, Carnegie Mellon University, 1991.

18.

19.

20.
21.

22.

Zhenyu Qian. FEztensions of Order-Sorted Algebraic Specifications: Parameteriza-
tion, Higher-Functions and Polymorphism. PhD thesis, Universitat Bremen, 1991.
Manfred Schmidt-Schaufl. Computational Aspects of an Order-Sorted Logic with
Term Declarations, volume 395 of LNAIL Springer Verlag, 1989.

Wayne Sunyder. A Proof Theory for General Unification. Birkh&user, 1991.
Christoph Walther. A Many-Sorted Calculus Based on Resolution and Paramodu-
lation. Pitman, London. Morgan Kaufman Publishers, Inc, 1987.

C. Weidenbach. Unification in sort theories and its applications. MPI-Report
MPI-1-93-211, MPI Informatik, Saarbriicken, 1993.

