
The Journal of Symbolic Logic

Volume 69, Number 4, Dec. 2004

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY

CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Abstract. In this paper we re-examine the semantics of classical higher-order logic with the purpose

of clarifying the role of extensionality. To reach this goal, we distinguish nine classes of higher-order

models with respect to various combinations of Boolean extensionality and three forms of functional

extensionality. Furthermore, we develop a methodology of abstract consistency methods (by providing the

necessary model existence theorems) needed to analyze completeness of (machine-oriented) higher-order

calculi with respect to these model classes.

§1. Motivation. In classical first-order predicate logic, it is rather simple to assess
the deductive power of a calculus: first-order logic has a well-established and
intuitive set-theoretic semantics, relative towhich completeness can easily be verified
using, for instance, the abstract consistency method (cf. the introductory textbooks
[6, 22]). This well understoodmeta-theoryhas supported the development of calculi
adapted to special applications—such as automated theorem proving (cf. [16, 47]
for an overview).
In higher-order logics, the situation is rather different: the intuitive set-theoretic
standard semantics cannot give a sensible notion of completeness, since it does
not admit complete (recursively axiomatizable) calculi [24, 6]. There is a more
general notion of semantics [26], the so-called Henkin models, that allows complete
(recursively axiomatizable) calculi and therefore sets the standard for deductive
power of calculi.
Peter Andrews’ Unifying Principle for Type Theory [1] provides a method of
higher-order abstract consistency that has become the standard tool for complete-
ness proofs in higher-order logic, even though it can only be used to show complete-
ness relative to a certain Hilbert style calculus Tâ . A calculus C is called complete
relative to a calculus Tâ iff (if and only if) C proves all theorems of Tâ . Since Tâ is
not complete with respect to Henkin models, the notion of completeness that can
be established by this method is a strictly weaker notion thanHenkin completeness.
The differences between these notions of completeness can largely be analyzed in
terms of availability of various extensionality principles, which can be expressed
axiomatically in higher-order logic.
As a consequence of the limitations of Andrew’s Unifying Principle, calculi for
higher-order automated theorem proving [1, 32, 33, 34, 42, 36, 37] and the cor-
responding theorem proving systems such as Tps [7, 8], or earlier versions of the
Leo [14] system are not complete with respect to Henkin models. Moreover, they

Received February 23, 1998; final version March 29, 2004.

c© 2004, Association for Symbolic Logic

0022-4812/04/6904-0004/$7.20

1027

1028 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

are not even sound with respect to Tâ , since they (for the most part) employ
ç-conversion, which is not admissible in Tâ . In other words, their deductive power
lies somewhere between Tâ and Henkin models. Characterizing exactly where re-
veals important theoretical properties of these calculi that have direct consequences
for the adequacy in various application domains (see the discussion in section 8.1).
Unlike calculi without computational concerns, calculi for mechanized reasoning
systems cannot be made complete by simply adding extensionality axioms, since
the search spaces induced by their introduction grow prohibitively. Being able to
compare and characterize the methods and computational devices used instead is a
prerequisite for further development in this area.
In this situation, the aim of this article is to provide a semantical meta theory
that will support the development of higher-order calculi for automated theorem
proving just as the corresponding methodology does in first-order logic. To reach
this goal, we need to establish:

(1) classes ofmodels that adequately characterize the deductive power of existing
theorem-proving calculi (providing semantics with respect to which they are
sound and complete), and

(2) amethodology of abstract consistencymethods (by providing for thesemodel
classes the necessary model existence theorems, which extend Andrews’ Uni-
fying Principle), so that the completeness analysis for higher-order calculi
will become almost as simple as in first-order logic.

We fully achieve the first goal in this article, and take a large step towards the
second. In the model existence theorems presented in this article, we have to
assume a new condition called saturation, which limits their utility in completeness
proofs for machine-oriented calculi. Fortunately, the saturation condition can be
lifted by extensions of the methods presented in this article (see the discussion in
the conclusion 8.2 and [12]).
Due to the inherent complexity of higher-order semantics we first give an informal
exposition of the issues covered and the techniques applied. In Section 4, we will
investigate the properties of the model classes introduced in Section 3 in more detail
and corroborate them with example models in Section 5. We prove model existence
theorems for the model classes in Section 6. Finally, in Section 7 we will apply
the model existence theorems from Section 6 to the task of proving completeness
of higher-order natural deduction calculi. Section 8 concludes the article with a
discussion of related work, possible applications, and the saturation assumption we
introduced for the model existence theorems.
The work reported in this article is based on [15] and significantly extends the
material presented there.

§2. Informal exposition. Before we turn to the exposition of the semantics in
Section 2.3, let us specify what we mean by “higher-order logic”: any simply typed
logical system that allows quantification over function and predicate variables.
Technically, we will follow tradition and employ a logical system HOL based on
the simply typed ë-calculus as introduced in [18]; this does not restrict the generality
of the methods reported in this article, since the ideas can be carried over. A related
logical system is discussed in detail in [6].

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1029

2.1. Simply typed ë-calculus. To formulate higher-order logic we start with a
collection of typesT. We assume there are some basic types inT and thatwhenever
α, â ∈ T, then the function type (α → â) is in T. Furthermore, we assume the
types are generated freely, so that (α1 → â1) ≡ (α2 → â2) implies α1 ≡ α2 and
â1 ≡ â2.
HOL -formulae (or terms) are built up from a set V of (typed) variables and
a signature Σ (a set of typed constants) as applications and ë-abstractions. We
assume the set Vα of variables of type α is countably infinite for each type α. The
set wffα(Σ) of well-formed formulae consists of those formulae which have type α.
The type of formula Aα will be annotated as an index, if it is not clear from the
context. We will denote variables with upper-case letters (Xα , Y, Z,X 1â , X

2
ã , . . .),

constants with lower-case letters (cα , fα→â , . . .) and well-formed formulae with
upper-case bold letters (Aα ,B,C1, . . .). Finally, we abbreviatemultiple applications

and abstractions in a kindof vector notation, so thatAUk denotesk-fold application

(associating to the left), ëX k A denotes k-fold ë-abstraction (associating to the
right) and we use the square dot ‘ ’ as an abbreviation for a pair of brackets, where
‘ ’ stands for the left one with its partner as far to the right as is consistent with the
bracketing already present in the formula. Wemay avoid full bracketing of formulas
in the remainder if the bracketing structure is clear from the context.
We will use the terms like free and bound variables or closed formulae in their
standard meaning and use free(A) for the set of free variables of a formula A. In
particular, alphabetic change of names of bound variables is built into HOL : we
consider alphabetic variants to be identical (viewing the actual representation as a
representative of an alphabetic equivalence class) and use a notion of substitution
that avoids variable captureby systematically renamingboundvariables.1 Wedenote
a substitution that instantiates a free variable X with a formula A with [A/X] and
write ó, [A/X] for the substitution that is identical with ó but instantiates X with
A. For any term A we denote by A[B]p the term resulting by replacing the subterm
at position p in A by B.
A structural equality relation ofHOL terms is induced by âç-reduction

(ëX A)B →â [B/X]A (ëX CX)→ç C

where X is not free in C . It is well-known that the reduction relations â , ç, and
âç are terminating and confluent on wff(Σ), so that there are unique normal forms
(cf. [9] for an introduction). We will denote the â-normal form of a term A by A

y

â
,

and the âç-normal form of A by A↓âç. If we allow both reduction and expansion
steps, we obtain notions of â-conversion, ç-conversion, and âç-conversion. We say
A and B are â-equal [ç-equal, âç-equal] (written A≡âB [A≡çB, A≡âçB]) when A is
â-convertible [ç-convertible, âç-convertible] to B.

2.2. Higher-order logic (HOL). InHOL , the set of base types is {o, é} for truth
values and individuals. We will call a formula of type o a proposition, and a sentence
if it is closed. We will assume that the signature Σ contains logical constants for
negation (¬o→o), disjunction (∨o→o→o), and universal quantification (Πα(α→o)→o) for

each type α. Optionally, Σ may contain primitive equality (=αα→α→o) for each type

1We could also have used de Bruijn’s indices [19] as a concrete implementation of this approach at
the syntax level.

1030 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

α. All other constants are called parameters, since the argumentation in this article
is parametric in their choice.
We write disjunctions and equations, i.e., terms of the form ((∨A)B) or ((= A)B),
in infix notation as A ∨ B and A = B. As we only assume the logical constants ¬,
∨, and Πα (and possibly =α) as primitive, we will use formulae of the form A ∧ B,
A⇒ B, and A⇔ B as shorthand for the formulae ¬((¬A) ∨ (¬B)), and (¬A) ∨ B,
and (A⇒ B)∧(B ⇒ A), respectively. For eachA ∈ wff o(Σ), the standardnotations
∀Xα A and ∃Xα A for quantification are regarded as shorthand for Πα(ëXα A) and
¬(Πα(ëXα ¬A)). Finally, we extend the vector notation for ë-binders to k-fold

quantification: we will use ∀X k A and ∃X k A in the obvious way.
We often need to distinguish between atomic andnon-atomic formulae inwff o(Σ).
A non-atomic formula is any formula whose â-normal form is either of the form
¬A,A∨B, orΠαC (whereA, B ∈ wffo(Σ) andC ∈ wffα→o(Σ)). An atomic formula
is any other formula in wffo(Σ)—including primitive equations A =α B in case of
the presence of primitive equality.
It is matter of folklore that equality can directly be expressed in HOL . A
prominent example is the Leibniz formula for equality

Qα := (ëXαYα ∀Pα→o PX ⇒ PY).

With this definition, the formula (QαAB) (expressing equality of two formulae A
andB of typeα) â-reduces to ∀Pα→o (PA)⇒ (PB), which can be read as: formulae
A andB are not equal iff there exists a discerning propertyP.2 In otherwords,A and
B are equal, if they are indiscernible. We will use the notationA

.
=α B as shorthand

for the â-reduct ∀Pα→o (PA) ⇒ (PB) of (QαAB) (where P /∈ free(A) ∪ free(B)).3

There are alternative ways to define equality in terms of the logical connectives
([6, p. 203]) and the techniques for equality introduced in this article carry over to
them (cf. Remark 4.4).
In this article we use several different notions of equality. In order to prevent
misunderstandings we explain these different notions together with their syntactical
representation here:
If we define a concept we use := (e.g., let D := {T, F}). ≡ represents identity.
We refer to a representative of the identity relation on Dα as an object of the
semantical domain Dα→α→o with qα . Note that we possibly have one, several, or
no qα in Dα→α→o for each domain Dα . The remaining two notions are related to
syntax. =α may occur as a constant symbol of type α → α → o in a signature Σ.
Finally,

.
=α andQα are used for Leibniz equality as described above.

2.3. Notions of models forHOL . Amodel ofHOL is a collection of non-empty
domains Dα for all types α together with a way of interpreting formulae. The
model classes discussed in this article will vary in the domains and specifics of
the evaluation of formulae. The relationships between these classes of models are
depicted as a cube in Figure 1. We will discuss the model classes from bottom to
top, from the most specific notion of standard models (ST) to the most general
notion of õ-complexes, motivating the respective generalizations as we go along. In
Section 3, where we develop the theory formally based on the intuitions discussed

2Note that this is symmetric by considering complements and hence it is sufficient to use⇒ instead
of⇔.
3Note that A

.
=α B is â-normal iff A and B are â-normal. The same holds for âç-equality.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1031

ST

Mâfb ' H

MâçbMâîbMâf∇f

Mâî∇î Mâç ∇ç Mâb ∇b

Mâ ∇c ,∇â ,∇¬,∇∨,∇∧,∇∀,∇∃,∇sat

î

ç

ç

çî

f

î

f

b

b

b

b

îç

full

Figure 1. The landscape of higher-order semantics.

here, we will proceed the other way around, specializing the notion of a Σ-model
more and more.
The symbols in the boxes in Figure 1 denote model classes, the symbols labeling
the arrows indicate the properties inducing the corresponding specialization, and
the ∇-symbols next to the boxes indicate the clauses in the definition of abstract
consistency classes (cf. Definition 6.5) that are needed to establish amodel existence
theorem for this particular class of models (cf. Theorem 6.34).

2.3.1. Standard and Henkin models [ST,H,Mâfb]. A standard model (ST, cf.
Definition3.51) forHOL provides afixed setDé of individuals anda setDo := {T, F}
of truth values. All the domains for the function types are defined inductively: Dα→â
is the set of functionsf : Dα −→ Dâ . The evaluation function Eϕ with respect to an
assignment ϕ of variables is obtained by the standard homomorphic construction
that evaluates a ë-abstraction with a function.
One can reconstruct the key idea behind Henkin models (H isomorphic toMâfb,
cf. Definitions 3.50, and Theorem 3.68) by the following observation. If the setDé is
infinite, the setDé→o of sets of individualsmust be uncountably infinite. On the other
hand, any reasonable semantics of a languagewith a countable signature that admits

1032 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

sound and complete calculi must have countable models. Leon Henkin generalized
the class of admissible domains for functional types [26]. Instead of requiring
Dα→â (and thus in particular,Dé→o) to be the full set of functions (predicates), it is
sufficient to require thatDα→â has enough members that any well-formed formula
can be evaluated (in other words, the domains of function types are rich enough to
satisfy comprehension). Note thatwith this generalized notion of amodel, there are
fewer formulae that are valid in all models (intuitively, for any given formula there
are more possibilities for counter-models). The generalization to Henkin models
restricts the set of valid formulae sufficiently so that all of them can be proven by a
Hilbert-style calculus [26].
Of course our picture in Figure 1 is not complete here; we can axiomatically
require the existence of particular (classes of) functions, e.g., by assuming the de-
scription or choice operators. We will not pursue this here; for a detailed discussion
of the semantic issues raised by the presence of these logical constants see [3]. Note
that even though we can consider model classes with richer and richer function
spaces, we can never reach standard models where function spaces are full while
maintaining complete (recursively axiomatizable) calculi.

2.3.2. Models without boolean extensionality [Mâ ,Mâî ,Mâç ,Mâf]. The next gen-
eralization of model classes comes from the fact that we want to have logics where
the axiom of Boolean extensionality can fail. For instance, in the semantics of nat-
ural language we have so-called verbs and adjectives of “propositional attitude” like
believe or obvious . We may not want to commit ourselves to a logic where the sen-
tence “John believes that Phil is a woodchuck” automatically entails “John believes
that Phil is a groundhog” since John might not be aware that “woodchuck” is just
anotherword for “groundhog”. The axiom ofBoolean extensionality does just that;
it states that whenever two propositions are equivalent, they must be equal, and can
be substituted for each other. Similarly, the formulae obvious(O) and obvious(F)
where O := 2 + 2 = 4 and F := ∀n > 2 xn + yn = zn ⇒ x = y = z = 0 should
not be equivalent, even if their arguments are. (BothO and F are true over the nat-
ural numbers, but Fermat’s last theorem F is non-obvious to most people). These
phenomena have been studied under the heading of “hyper-intensional semantics”
in theoretical semantics; see [39] for a survey.
To account for this behavior, we have to generalize the class of Henkin models
further so that there are counter-models to the examples above. Obviously, this
involvesweakening the assumption thatDo ≡ {T, F} since this entails that the values
ofO and F are identical. We call the assumption thatDo has two elements property
b. In our Σ-models without property b (Mâ , Mâî , Mâç , Mâf, cf. Definitions 3.41
and 3.49) we only insist that there is a division of the truth values into “good” and
“bad” ones, which we express by insisting on the existence of a valuation õ of Do,
i.e., a function õ : Do −→ {T, F} that is coordinated with the interpretations of the
logical constants ¬, ∨, and Πα (for each type α). Thus we have a notion of validity:
we call a sentence A valid in such a model if õ(a) ≡ T, where a ∈ Do is the value
of the sentence A. For example, there is a Σ-model (see Examples 5.4 and 5.5)
where woodchuck(phil), groundhog(phil) and believe(john,woodchuck(phil)) are
all valid, but believe(john, groundhog(phil)) is not. In this model, the value of
woodchuck(phil) is different from the value of groundhog(phil) in Do.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1033

2.3.3. Models without functional extensionality [Mâ , Mâç , Mâî , Mâb, Mâçb,
Mâîb]. In mathematics (and as a consequence in most higher-order model the-
ories), we assume functional extensionality, which states that two functions are
equal, if they return identical values on all arguments. In many applications we
want to use a logic that allows a finer-grained modeling of properties of functions.
For instance, if we want to model programs as (higher-order) functions, we might
be interested in intensional4 properties like run-time complexity. Consider for in-
stance the two functions I := ëX X and L := ëX rev(rev(X)), where rev is the
self-inverse function that reverses the order of elements in a list. While the identity
function has constant complexity, the function rev is linear in the length of its ar-
gument. As a consequence, even though L behaves like I on all inputs, they have
different time complexity. A logic with a functionally extensional model theory
(which is encoded as property f, cf. Definitions 3.5, 3.41 and 3.46) would conflate I
and L semantically and thus hide this difference rendering the logic unsuitable for
complexity analysis.
To arrive at a model theory which does not require functional extensionality
(which we will a call non-functional model theory in the remainder) we need to
generalize the notion of domains at function types and evaluation functions. This
is because the usual construction already uses sets of (extensional) functions for the
domains of function type and the property of functionality to construct values for
ë-terms.
We build on the notion of applicative structures (cf. Definition 3.1) to define Σ-
evaluations (cf.Definition 3.18), where the evaluation function is assumed to respect
application and â-conversion. In such models, a function is not uniquely deter-
mined by its behavior on all possible arguments. Such models can be constructed,
for example, by labeling for functions (e.g., a green and a red version of a func-
tion f) in order to differentiate between them, even though they are functionally
equivalent (cf. Example 5.6). Property b may or may not hold for non-functional
Σ-Models.
We can factor functional extensionality (property f) into two independent prop-
erties, property ç and property î. A model satisfies property ç if it respects ç-
conversion. Amodel satisfies property î if we can conclude the values of ëX M and
ëX N are identical whenever the values ofM andN are identical for any assignment
of the variable X . We will show that a model satisfies property f iff it satisfies both
property ç and property î (cf. Lemma 3.24).

2.3.4. Andrews’ models and õ-complexes [Mâ ,Mâç]. Peter Andrews has pio-
neered the construction of non-functional models with his õ-complexes in [1] based
on Kurt Schütte’s semi-valuation method [50]. These constructions, where both
functional and Boolean extensionality fail, are Σ-models as defined in Defini-
tion 3.41. (Typically they will not even satisfy the property that Leibniz equality
corresponds to identity in the model, but they will have a quotient by Theorem 3.62
which does satisfy this property.)

2.4. Characterizing the deductive power of calculi. These model classes discussed
in the previous section characterize the deductive power of many higher-order

4Just as in the linguistic application, theword“intensional” is used as a synonymfor “non-extensional”
even though totally different properties are intended.

1034 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

theorem provers on a semantic level. For example, Tps [8] can be used in modes
in which the deductive power is characterized byMâç (or evenMâ if ç-conversion
is disallowed). Note that in particular Tps is not complete with respect to Henkin
models. It is not even complete forMâçb, although it can be used in modes with
some ‘extensionality treatment’ built into the proof procedure.
The incompleteness of Tps for Henkin models5 can be seen from the fact that
it fails to refute formulae such as cAo ∧ ¬c(¬¬A), where c is a constant of type
o → o, or to prove formulae like p(ëXα BX ∧ AX) ⇒ p(ëXα AX ∧ BX), where
p is a constant of type (α → o) → o. The problem in the former example is that
the higher-order unification algorithm employed by Tps cannot determine that A
and ¬¬A denote identical semantic objects (by Boolean extensionality as already
mentioned before), and thus returns failure instead of success. In the second
example both functional and Boolean extensionality are needed in order to prove
the theorem.
[21] discusses a presentation of higher-order logic in a first-order logic based on
an approach called theorem proving modulo. It is easy to check that this approach
is also incomplete for model classes with property b. For instance the approach
cannot prove the formula

∀Po→oXoYo (PX ∧ PY)⇒ P(X ∧ Y)

which is valid in Henkin models and which requires b. As a result, the theorem
provingmodulo approach of representing higher-order logic in a first-order logic [21]
can only be used for logics without Boolean extensionality in its current form.

2.4.1. Model existence theorems. For all the notions of model classes (except,
of course, for standard models, where such a theorem cannot hold for recursively
axiomatizable logical systems) we present model existence theorems tying the differ-
entiating conditions of the models to suitable conditions in the abstract consistency
classes (cf. Section 6.3).
A model existence theorem for a logical system S (i.e., a logical language LS
together with a consequence relation |=S⊆ LS ×LS) is a theorem of the form:

If a set of sentences Φ of S is a member of an abstract consistency class
Γ, then there exists a S -model for Φ.

For the proof we can use the classical construction in all cases: abstract consistent
sets are extended to Hintikka sets (cf. Section 6.2), which induce a valuation on
a term structure (cf Definition 3.35). We then take a quotient by the congruence
induced by Leibniz equality in the term model.

2.4.2. Completeness of calculi. Given a model existence theorem as described
above we can show the completeness of a particular calculus C (i.e., the derivability
relation `S⊆ LS ×LS) by proving that the class Γ of sets of sentences Φ that are
C -consistent (i.e., cannot be refuted in C) is an abstract consistency class. Then the
model existence theorem tells us that C -consistent sets of sentences are satisfiable
in S . Now we assume that a sentence A is valid in S , so ¬A does not have a
S -model and is therefore C -inconsistent. Hence, ¬A is refutable in C . This shows

5In case the extensionality axioms are not available in the search space. Note that one can add
extensionality axioms to the calculus in order to achieve—at least in theory—Henkin completeness. But
this increases the search space drastically and is not feasible in practice.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1035

refutation completeness of C . For many calculi C , this also shows A is provable,
thus establishing completeness of C .
Note that with this argumentation the completeness proof for C condenses to
verifying that Γ is an abstract consistency class, a task that does not refer to S -
models. Thus the usefulness of model existence theorems derives from the fact that
it replaces the model-theoretic analysis in completeness proofs with the verification
of some proof-theoretic conditions. In this respect a model existence theorem is
similar to a Herbrand Theorem, but it is easier to generalize to other logic systems
like higher-order logic. The technique was developed for first-order logic by Jaakko
Hintikka and Raymond Smullyan [29, 52, 53].

§3. Semantics for higher-order logic. In this section we will introduce the seman-
tical constructions and discuss their relationships. We will start out by defining
applicative structures and Σ-evaluations to give an algebraic semantics for the sim-
ply typed ë-calculus. To obtain a model for higher-order logic, we use a Σ-valuation
to determine whether propositions are true or false.

3.1. Applicative structures.

Definition 3.1 ((Typed) Applicative structure). A collection D := DT :=
{Dα | α ∈ T } of non-empty sets Dα , indexed by the set T of types, is called
a typed collection (of sets). Let DT and ET be typed collections, then a col-
lection f := { fα : Dα −→ Eα | α ∈ T } of functions is called a typed function
f : DT −→ ET . We will write F (A;B) for the set of functions from A to B and
FT (DT ;ET) for the set of typed functions. In the following we will also use the
notion of a typed function extended to the n-ary case in the obvious way.
We call the pair (D ,@) a (typed) applicative structure if D ≡ DT is a typed
collection of sets and

@ := {@αâ : Dα→â ×Dα −→ Dâ | α, â ∈ T }.

Each (non-empty) setDα is called the domain of type α and the family of functions
@ is called the application operator. We write simply f@a for f@αâa when f ∈ Dα→â
and a ∈ Dα are clear in context.

Remark 3.2. Often an applicative structure is defined to also include an inter-
pretation of the constants in a given signature (for example, in [44]). We prefer this
signature-independent definition (as in [30]) for our purposes.

Remark 3.3 (Currying). The application operator @ in an applicative structure
is an abstract version of function application. It is no restriction to exclusively use
a binary application operator, which corresponds to unary function application,
since we can define higher-arity application operators from the binary one by setting
f@(a1, . . . , an) := (. . . (f@a1) . . .@an) (“Currying”).

Definition 3.4 (Frame). An applicative structure (D ,@) is called a frame, if
Dα→â ⊆ F (Dα ;Dâ) and @

αâ is application for functions for all types α and â .

Definition 3.5 (Functional/full/standard applicative structures). Let A :=
(D ,@) be an applicative structure. We say that A is functional if for all types
α and â and objects f, g ∈ Dα→â , we have f ≡ g whenever f@a ≡ g@a for every

1036 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

a ∈ Dα .6 We sayA is full if for all types α and â and every function f : Dα −→ Dâ
there is an object f ∈ Dα→â such that f@a ≡ f(a) for every a ∈ Dα . Finally, we say
A is standard if it is a frame and Dα→â ≡ F (Dα ;Dâ) for all types α and â . Note
that these definitions impose restrictions on the domains for function types only.

Remark 3.6. It is easy to show that every frame is functional. Furthermore, an
applicative structure is standard iff it is a full frame.

Example 3.7 (Applicative singleton structure). We choose a single element a and
define Dα := {a} for all types α. The pair (DT ,@a), where a@aa = a is a (trivial)
example of a functional applicative structure. It is called the singleton applicative
structure.

Example 3.8 (Applicative term structures). If we define A@B := (AB) for A ∈
wffα→â(Σ) and B ∈ wffα(Σ), then @: wffα→â (Σ) × wffα(Σ) −→ wffâ(Σ) is a
total function. Thus (wff(Σ),@) is an applicative structure. The intuition behind
this example is that we can think of the formula A ∈ wffα→â(Σ) as a function
A : wffα(Σ) −→ wffâ(Σ) that maps B to (AB).
Analogously, we can define the applicative structure (cwff(Σ),@) of closed for-
mulae (when we ensure Σ contains enough constants so that cwffα(Σ) is non-empty
for all types α).

Definition 3.9 (Homomorphism). Let A 1 := (D 1,@1) and A 2 := (D 2,@2)
be applicative structures. A homomorphism from A 1 to A 2 is a typed function
κ : D 1 −→ D 2 such that for all types α, â ∈ T , all f ∈ D 1α→â , and a ∈ D 1α we have

κ(f)@2κ(a) ≡ κ(f@1a). We write κ : A 1 −→ A 2. The two applicative structures
A 1 and A 2 are called isomorphic if there are homomorphisms i : A 1 −→ A 2 and
j : A 2 −→ A 1 which are mutually inverse at each type.

The most important method for constructing structures (and models) with given
properties in this article is well-known for algebraic structures and consists of
building a suitable congruence and passing to the quotient structure. We will now
develop the formal basis for it.

Definition 3.10 (Applicative structure congruences). LetA := (D ,@)beanap-
plicative structure. A typed equivalence relation ∼ is called a congruence on A iff
for all f, f′ ∈ Dα→â and a, a′ ∈ Dα (for any types α and â), f ∼ f′ and a ∼ a′ imply
f@a ∼ f′@a′.
The equivalence class [[a]]∼ of a ∈ Dα modulo∼ is the set of all a′ ∈ Dα , such that

a ∼ a′. A congruence∼ is called functional iff for all types α and â and f, g ∈ Dα→â ,
we have f ∼ g whenever f@a ∼ g@a for every a ∈ Dα .

Lemma 3.11. The â-equality and âç-equality relations≡â and≡âç are congruences
on the applicative structures wff(Σ) and cwff .

Proof. The congruence properties are a direct consequence of the fact that âç-
reduction rules are defined to act on subterm positions. a

6This is called “extensional” in [44]. We use the term “functional” to distinguish it from other forms
of extensionality.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1037

Definition 3.12 (Quotient applicative structure). Let A := (D ,@) be an ap-
plicative structure, ∼ a congruence on A , and D∼α := {[[a]]∼ | a ∈ Dα}. Further-
more, let @∼ be defined by [[f]]∼@∼[[a]]∼ := [[f@a]]∼. (To see that this definition
only depends on equivalence classes of ∼, consider f′ ∈ [[f]]∼ and a′ ∈ [[a]]∼. Then
f ∼ f′ and a ∼ a′ imply f@a ∼ f′@a′. Thus, [[f@a]]∼ ≡ [[f′@a′]]∼. So, @∼ is
well-defined.) A /∼ := (D

∼,@∼) is also an applicative structure. We call A /∼ the
quotient structure of A for the relation ∼ and the typed function ð∼ : A −→ A /∼
that maps a to [[a]]∼ its canonical projection.

Theorem 3.13. Let A be an applicative structure and let ∼ be a congruence onA ,
then the canonical projection ð∼ is a surjective homomorphism. Furthermore, A /∼ is
functional iff ∼ is functional.

Proof. Let A := (D ,@) be an applicative structure. To convince ourselves
that ð∼ is indeed a surjective homomorphism, we note that ð∼ is surjective by the
definition of D∼. To see that ð∼ is a homomorphism let f ∈ Dα→â , and a ∈ Dâ ,
then ð∼(f)@∼ð∼(a) ≡ [[f]]∼@∼[[a]]∼ ≡ [[f@a]]∼ ≡ ð∼(f@a).
The quotient construction collapses ∼ to identity, so functionality of ∼ is equiv-
alent to functionality of A /∼. Formally, suppose [[f]]∼ and [[g]]∼ are elements of
D∼α→â such that [[f]]∼@

∼[[a]]∼ ≡ [[g]]∼@∼[[a]]∼ for every [[a]]∼ in D∼α . This is equiv-
alent to [[f@a]]∼ ≡ [[g@a]]∼ for every a ∈ Dα and hence f@a ∼ g@a for all a ∈ Dα .
By functionality of ∼, we have f ∼ g. That is, [[f]]∼ ≡ [[g]]∼. a

Lemma 3.14. ≡âç is a functional congruence on wff(Σ). If Σα is infinite for all
types α ∈ T , then ≡âç is also functional on cwff .

Proof. By Lemma 3.11, ≡âç is a congruence relation. To show functionality let
A,B ∈ wffã→α(Σ) such that AC≡âçBC for all C ∈ wffã(Σ) be given. In particular,
for any variable X ∈ Vã that is not free in A or B, we have AX≡âçBX and
ëX AX≡âçëX BX . By definition we have A≡çëXã AX≡âçëXã BX≡çB.
To show functionality of âç-equality on closed formulae, suppose A and B are
closed. With the same variable X as above, letM andN be the âç-normal forms of
AX and BX , respectively. We cannot conclude thatM ≡ N since X is not a closed
term. Instead, choose a constant cã ∈ Σã that does not occur in A or B. (Such a
constant must exist, since we have assumed that Σã is infinite.) An easy induction
on the length of the âç-reduction sequence from AX to M shows that c does not
occur in M and Ac ≡ [c/X](AX) âç-reduces to [c/X]M . Similarly, c does not
occur in N and Bc âç-reduces to [c/X]N . Since c is a constant, substituting c for
X cannot introduce new redexes. So, simple inductions on the sizes of M and N
show [c/X]M and [c/X]N are âç-normal. By assumption, we know Ac≡âçBc.
Since normal forms are unique, we must have [c/X]M ≡ [c/X]N . Using the fact
that c does not occur in eitherM orN , an induction on the size ofM readily shows
M ≡ N . So, we have A≡çëXã AX≡âçëXãM ≡ ëXã N≡âçëXã BX≡çB a

Remark 3.15. Suppose we have a signature Σ with a single constant cé . In this
case, c is the only closed âç-normal form of type é. Since ëX X 6≡âç ëX c even
though (ëX X)c≡âçc≡âç(ëX c)c we have a counterexample to functionality of≡âç
on cwff . The problem here is that we do not have another constant dé to distinguish
the two functions. In wff(Σ) we could always use a variable.

1038 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 3.16 (Assumptions on Σ). From nowon, we assume Σα to be infinite for
each type α. Furthermore, we assume there is a particular cardinal ℵs such that Σα
has cardinality ℵs for every type α. Since V is countable, this implies wffα(Σ) and
cwffα have cardinality ℵs for each type α. Also, whether or not primitive equality
is included in the signature, there can only be finitely many logical constants in Σα
for each particular type α. Thus, the cardinality of the set of parameters in Σα is
also ℵs . In the countable case, ℵs is ℵ0.

3.2. Σ-evaluations. Σ-evaluations are applicative structures with a notion of eval-
uation for well-formed formulae in wff(Σ).

Definition 3.17 (Variable assignment). Let A := (D ,@) be an applicative
structure. A typed function ϕ : V −→ D is called a variable assignment into A .
Given a variable assignment ϕ, variable Xα , and value a ∈ Dα , we use ϕ, [a/X] to
denote the variable assignment with (ϕ, [a/X])(X) ≡ a and (ϕ, [a/X])(Y) ≡ ϕ(Y)
for variables Y other than X .

Definition 3.18 (Σ-evaluation). Let E : FT (V ;D) −→ FT (wff(Σ),D) be a
total function, where FT (V ;D) is the set of variable assignments andFT (wff(Σ),
D) is the set of typed functions mapping terms into objects in D. We will write the
argument of E as a subscript. So, for each assignment ϕ, we have a typed function
Eϕ : wff(Σ) −→ D. E is called an evaluation function for A if for any assignments
ϕ and ø into A , we have

(1) Eϕ
∣

∣

V
≡ ϕ.

(2) Eϕ(FA) ≡ Eϕ(F)@Eϕ(A) for any F ∈ wffα→â(Σ) and A ∈ wffα(Σ) and types
α and â .

(3) Eϕ(A) ≡ Eø(A) for any type α and A ∈ wffα(Σ), whenever ϕ and ø coincide
on free(A).

(4) Eϕ(A) ≡ Eϕ(A

y

â
) for all A ∈ wffα(Σ).

We callJ := (D ,@,E) a Σ-evaluation if (D ,@) is an applicative structure and E is
an evaluation function for (D ,@). We call Eϕ(Aα) ∈ Dα the denotation of Aα inJ
for ϕ. (Note that since E is a function, the denotation inJ is unique. However, for
a given applicative structure A , there may be many possible evaluation functions.)
If A is a closed formula, then Eϕ(A) is independent of ϕ, since free(A) = ∅. In
these cases we sometimes drop the reference to ϕ from Eϕ(A) and simply write
E (A).
We call a Σ-evaluationJ := (D ,@,E) functional [full, standard] if the applicative
structure (D ,@) is functional [full, standard]. We say J is a Σ-evaluation over a
frame if (D ,@) is a frame.

Σ-evaluations generalizeΣ-evaluationsover frames, whichare thebasis forHenkin
models, to the non-functional case. The existence of an evaluation function that
meets the conditions above seems to be theweakest situationwhere onewould like to
speak of a model. We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality. For example,
two evaluation functions E and E ′ on the same applicative structure may agree on
all constants, but give a different value to the term (ëXé X). Such an example is
constructed and discussed later in Remark 5.7.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1039

Remark 3.19 (Σ-evaluations respect â-equality). Let J := (D ,@,E) be a Σ-
evaluation and A≡âB. For all assignments ϕ into (D ,@), we have Eϕ(A) ≡
Eϕ(A

y

â
) ≡ Eϕ(B

y

â
) ≡ Eϕ(B).

We can easily show Σ-evaluations satisfy a Substitution-Value Lemma.

Lemma 3.20 (Substitution-value lemma). Let J := (D ,@,E) be a Σ-evaluation
and ϕ be an assignment into J . For any types α and â , variables Xâ , and formulae
A ∈ wffα(Σ) and B ∈ wffâ(Σ), we have Eϕ,[Eϕ (B)/X](A) ≡ Eϕ([B/X]A).

Proof. Using the fact that E respects â-equality (cf. Remark 3.19) and the other
properties of E (cf. Definition 3.18), we can compute

Eϕ,[Eϕ (B)/X](A) ≡ Eϕ,[Eϕ (B)/X]((ëX A)X)

≡ Eϕ,[Eϕ (B)/X](ëX A)@Eϕ,[Eϕ(B)/X](X)

≡ Eϕ(ëX A)@Eϕ(B)

≡ Eϕ((ëX A)B)

≡ Eϕ([B/X]A). a

We will consider two weaker notions of functionality. These forms are often
discussed in the literature (cf. [28]).

Definition 3.21 (Weakly functional evaluations). Let J ≡ (D ,@,E) be a Σ-
evaluation. We say J is ç-functional if Eϕ(A) ≡ Eϕ(A↓âç) for any type α, formula

A ∈ wffα(Σ), and assignment ϕ. We say J is î-functional if for all α, â ∈ T ,
M ,N ∈ wffâ (Σ), assignments ϕ, and variables Xα , Eϕ(ëXαMâ) ≡ Eϕ(ëXα Nâ)
whenever Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα .

We will now establish that functionality is equivalent to ç-functionality and î-
functionality combined. We prepare for this by first proving two lemmas about
functional Σ-evaluations.

Lemma 3.22. Let J := (D ,@,E) be a functional Σ-evaluation. For any assign-
ment ϕ into J and F ∈ wffα→â(Σ) where Xα /∈ free(F), we have

Eϕ(ëXα FX) ≡ Eϕ(F).

Proof. Let a ∈ Dα be given. Since Xα /∈ free(F), we have Eϕ,[a/X](F) ≡ Eϕ(F).
Since E respects â-equality (cf. Remark 3.19), we can compute

Eϕ(ëX FX)@a ≡ Eϕ,[a/X]((ëX FX)X) ≡ Eϕ,[a/X](FX) ≡ Eϕ(F)@a.

Generalizing over a, we conclude Eϕ(ëX FX) ≡ Eϕ(F) by functionality. a

Lemma 3.23. Let J := (D ,@,E) be a functional Σ-evaluation. If a formula A
ç-reduces to B in one step, then for any assignment ϕ into J , Eϕ(A) ≡ Eϕ(B).

Proof. We prove this by induction on the structure of the term A. For the
base case when A is the ç-redex which is reduced, we apply Lemma 3.22. When
A ≡ (FC), then the ç-reduction either occurs in F or C . So, B ≡ (GD) where F
ç-reduces to G in one step (or G ≡ F) and D ≡ C (or C ç-reduces to D in one
step). So, by induction we have Eϕ(F) ≡ Eϕ(G) and Eϕ(C) ≡ Eϕ(D). It follows
that Eϕ(A) ≡ Eϕ(B).
When A is a ë-abstraction, we must use functionality. Suppose for some type α,
A ≡ (ëXα C) (and this is not the ç-redex reduced to obtain B). Then B ≡ (ëXαD)

1040 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

where C ç-reduces in one step to D. By the induction hypothesis, for any a ∈ Dα ,
Eϕ,[a/X](C) ≡ Eϕ,[a/X](D). Since E is an evaluation function, we have

Eϕ(ëX C)@a ≡ Eϕ,[a/X]((ëX C)X) ≡ Eϕ,[a/X](C)

≡ Eϕ,[a/X](D) ≡ Eϕ,[a/X]((ëX D)X) ≡ Eϕ(ëX D)@a.

By functionality, Eϕ(A) ≡ Eϕ(ëX C) ≡ Eϕ(ëX D) ≡ Eϕ(B). a

Lemma 3.24 (Functionality). Let J := (D ,@,E) be a Σ-evaluation. Then J is
functional iff it is both ç-functional and î-functional.

Proof. The fact that functionality implies ç-functionality now follows from a
simple induction on the number of âç-reduction steps using Lemma 3.23 and
Remark 3.19.
To show functionality implies î-functionality, letM ,N ∈ wffâ(Σ), an assignment
ϕ and a variable Xα be given. Suppose Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα .
We need to show Eϕ(ëX M) ≡ Eϕ(ëX N). This follows from functionality since

Eϕ(ëX M)@a ≡ Eϕ,[a,X]((ëX M)X) ≡ Eϕ,[a/X](M)

≡ Eϕ,[a/X](N) ≡ Eϕ,[a,X]((ëX N)X) ≡ Eϕ(ëX N)@a

for every a ∈ Dα .
To show functionality from ç-functionality and î-functionality, let f, g ∈ Dα→â
such that f@a ≡ g@a for all a ∈ Dα be given. We need to show that f ≡ g. Let
Fα→â , Gα→â and Xα be variables and ϕ be any assignment such that ϕ(F) ≡ f

and ϕ(G) ≡ g. Then for any a ∈ Dα we have Eϕ,[a/X](FX) ≡ f@a ≡ g@a ≡
Eϕ,[a/X](GX), and thus Eϕ(ëX FX) ≡ Eϕ(ëX GX) by î-functionality. Hence,

f ≡ Eϕ(F) ≡ Eϕ(ëX FX) ≡ Eϕ(ëX GX) ≡ Eϕ(G) ≡ g

by ç-functionality. a

Lemma 3.25 (î-functionality and replacement). LetJ := (D ,@,E)beaî-func-
tional Σ-evaluation and B,C ∈ wffâ(Σ). Suppose Eϕ(B) ≡ Eϕ(C) for every assign-
ment ϕ into J . Then for all formulae A ∈ wffα(Σ), positions p, and assignments ϕ
into J , Eϕ(A[B]p) ≡ Eϕ(A[C]p).

Proof. We show the assertion by an induction on the structure of A. If p is the
top position, we have

Eϕ(A[B]p) ≡ Eϕ(B) ≡ Eϕ(C) ≡ Eϕ(A[C]p).

In particular, if A is a constant or a variable, then p must be the top position and
we are done. Otherwise, assume p is not the top position. IfA is an application FD,
we have to consider two cases: A[B]p = F[B]qD and A[B]p = F(D[B]r) for some
positions q and r. Since the second case is analogous we only show the first case.
By the inductive hypothesis we have

Eϕ(A[B]p) ≡ Eϕ(F[B]qD) ≡ Eϕ(F[B]q)@Eϕ(D)

≡ Eϕ(F[C]q)@Eϕ(D) ≡ Eϕ(F[C]qD) ≡ Eϕ(A[C]p).

If A[B]p = ëXã D[B]q , then we get the assertion from î-functionality. By the induc-
tive hypothesis, we know Eø(D[B]q) ≡ Eø(D[C]p) for every assignment ø. In par-
ticular, for any assignmentϕ and c ∈ Dã , we haveEϕ,[c/X](D[B]q) ≡ Eϕ,[c/X](D[C]p).

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1041

By î-functionality, we have

Eϕ(A[B]p) ≡ Eϕ(ëX D[B]q) ≡ Eϕ(ëX D[C]q) ≡ Eϕ(A[C]p).

Thus we have completed all the cases and proven the assertion. a

Example 3.26 (Singleton evaluation). The singletonapplicative structure (cf.Ex-
ample 3.7) is a Σ-evaluation if for any assignment ϕ and formula A we take
Eϕ(A) ≡ a, where a is the (unique) member of Dα . Note that in this Σ-evaluation
E (ëX X) ≡ Eϕ(ëX Y) for any assignment ϕ.

For a detailed discussion on the closure conditions needed for the domains for
function types to be rich enough for evaluation functions to exist, we refer the reader
to [2, 4].
Note that the applicative term structure wff(Σ) fromExample 3.8 cannot be made
into a Σ-evaluation by providing an evaluation function. To see this, suppose E is
an evaluation function for wff(Σ) and F := E (ëXα X) ∈ wffα→α(Σ). Since E is
assumed to be an evaluation function, we must have

Eϕ(A) ≡ Eϕ((ëXα X)A) ≡ F@A ≡ FA

for every A ∈ wffα(Σ). In particular, for any constant aα ∈ Σα , we must have
Fa ≡ Eϕ(a) ≡ E ((ëXα X)a) ≡ E (ëXα X)@E (a) ≡ F(Fa). But clearly Fa 6≡
F(Fa) no matter what F ∈ wffα→α(Σ) we choose. In particular, the “obvious”
choice of E (ëXα X) ≡ (ëXα X) does not work. This example suggests that we need
to consider â-convertible terms equal before we can obtain a term evaluation (cf.
Definition 3.35).

Definition 3.27 (Σ-evaluation congruences). A congruence on a Σ-evaluation
J ≡ (D ,@,E) is a congruence on the underlying applicative structure (D ,@).
Given any two variable assignments ϕ and ø into (D ,@), we will use the notation
ϕ ∼ ø to indicate that ϕ(X) ∼ ø(X) for every variable X .

A typed equivalence relation was defined to be a congruence if it respects appli-
cation. In order to form a quotient of a Σ-evaluation, we must be able to define
an evaluation function E ∼ on the quotient structure. But E ∼ interprets all terms,
including ë-abstractions. It is not obvious that one can find a well-defined E ∼ that
is really an evaluation function. In fact, the property one needs in order to show
E ∼ will be a well-defined evaluation function is Eϕ(A) ∼ Eø(A) for all A ∈ wffα(Σ)
and assignments ϕ and ø with ϕ ∼ ø. One can show this by an easy induction
on the term A if the congruence ∼ is functional. However, without the assumption
that ∼ is functional, this direct proof will fail when A is a ë-abstraction. This is a
general problem with trying to prove properties of evaluations since many objects
in Dα→â may represent the same function from Dα to Dâ . Fortunately, there is a
way to use combinators to reduce such inductions to terms which only have very
special ë-abstractions.

Definition 3.28 (SK-combinatory formulae). For all typesα, â , and ã , we define
two families of closed formulae we call combinators:

Kα→â→α := ëXαYâ X

S(α→â→ã)→(α→â)→α→ã := ëUα→â→ãVα→âWα (UW (VW)).

1042 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

We define the set of SK-combinatory formulae to be the least subset of the set
⋃

α∈T wffα(Σ) containing every K and S, every constant c ∈ Σ and every variable,
that is closed under application.

As shown in [3], every formula canbeâ-expanded toanSK-combinatory formula.

Lemma 3.29. For every type α and A ∈ wffα(Σ), there is an SK-combinatory
formula A′ ∈ wffα(Σ) such that A′ â-reduces to A.

Proof. See Proposition 1 in [3]. Themain difference to this setup is the signature,
and this plays no role in the proof. a

Now, we can show Eϕ(A) ∼ Eø(A) for SK-combinatory A whenever ϕ ∼ ø.

Lemma 3.30. Let J ≡ (D ,@,E) be a Σ-evaluation, ∼ a congruence on J , and ϕ
and ø assignments into J with ϕ ∼ ø. For every SK-combinatory formula A, we
have Eϕ(A) ∼ Eø(A).

Proof. The proof is by induction on the SK-combinatory formula A. If A is
a variable X , we have Eϕ(X) ≡ ϕ(X) ∼ ø(X) ≡ Eø(X). If A is closed (e.g., a
constant in Σ or a combinator), then Eϕ(A) ≡ Eø(A), so certainly Eϕ(A) ∼ Eø(A).
Finally, if A is an application of two SK-combinatory formulae F and B, then by
the inductive hypothesis we have Eϕ(F) ∼ Eø(F) and Eϕ(B) ∼ Eø(B). Since ∼
respects application, Eϕ(FB) ≡ Eϕ(F)@Eϕ(B) ∼ Eø(F)@Eø(B) ≡ Eø(FB). a

We can use this result to show the same property holds for all formulae.

Lemma 3.31. Let J ≡ (D ,@,E) be a Σ-evaluation, ϕ and ø assignments into J
withϕ ∼ ø, and∼ a congruence onJ . For every formulaA, we haveEϕ(A) ∼ Eø(A).

Proof. Let A ∈ wffα(Σ) for some type α. By Lemma 3.29 there is an SK-
combinatory formula A′ that â-reduces to A. By Remark 3.19 and Lemma 3.30,
we have Eϕ(A) ≡ Eϕ(A′) ∼ Eø(A′) ≡ Eø(A). a

Remark 3.32 (Correspondence with logical relations). Lemma3.31 is essentially
an instance of the “Basic Lemma” for logical relations (Lemma 8.2.5 in [44]). In
fact, ∼ is functional, iff ∼ is a logical relation over the applicative structure. If ∼
is not functional, it still satisfies this “Basic Lemma” property, which makes it a
pre-logical relation in the sense of [31].

Definition 3.33 (Quotient Σ-evaluation). LetJ ≡ (D ,@,E) be aΣ-evaluation,
∼ a congruence on J and let (D∼,@∼) be the quotient applicative structure of
(D ,@) with respect to ∼.
For each A ∈ D∼α , we choose a representative A∗ ∈ A. So, [[A∗]]∼ ≡ A. Note
that [[a]]∗∼ ∼ a for every a ∈ Dα . For any assignment ϕ into J /∼, let ϕ∗ be the
assignment into J given by ϕ∗(X) := ϕ(X)∗. Note that ϕ ≡ ð∼ ◦ ϕ∗. So we can
define E∼ϕ as ð∼ ◦Eϕ∗ , and callJ /∼ := (D∼,@∼,E ∼) the quotient Σ-evaluation of

J modulo∼. (By Lemma 3.31, the definition of E ∼ does not depend on the choice
of representatives.)

This definition is justified by the following theorem.

Theorem 3.34 (Quotient Σ-evaluation theorem). If J is a Σ-evaluation and ∼ is
a congruence on J , then J /∼ is a Σ-evaluation.

Proof. We prove that E ∼ is an evaluation function by verifying the conditions
in Definition 3.18. For any assignment ϕ into the quotient applicative structure, let

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1043

ϕ∗ be the assignment with ϕ ≡ ð∼ ◦ ϕ∗ as in Definition 3.33. First, we compute
E ∼ϕ

∣

∣

V
≡ (ð∼ ◦ Eϕ∗)

∣

∣

V
≡ ð∼ ◦Eϕ∗

∣

∣

V
≡ ð∼ ◦ϕ∗ ≡ ϕ. Since ð∼ is a homomorphism

we have

E∼ϕ (FA) ≡ ð∼(Eϕ∗(FA))

≡ ð∼(Eϕ∗(F)@Eϕ∗(A))

≡ ð∼(Eϕ∗(F))@∼ð∼(Eϕ∗(A))

≡ E ∼ϕ (F)@
∼E∼ϕ (A).

If ϕ and ø coincide on free(A), then E ∼ϕ (A) ≡ [[Eϕ∗(A)]]∼ ≡ [[Eø∗(A)]]∼ ≡ E∼ø (A)

since this entails that ϕ∗ and ø∗ coincide on free(A) too (as we have chosen par-
ticular representatives for each equivalence class). Finally, E ∼ϕ (A) ≡ [[Eϕ∗(A)]]∼ ≡

[[Eϕ∗(A

y

â
)]]∼ ≡ E ∼ϕ (A

y

â
). a

Definition 3.35 (Term evaluations for Σ). Let cwff(Σ)

y

â
be the collection of

closed well-formed formulae in â-normal form and A@âB be (AB)

y

â
. For the

definition of an evaluation function let ϕ be an assignment into cwff(Σ)

y

â
. Note

that ó := ϕ
∣

∣

free(A)
is a substitution, since free(A) is finite. Thus we can choose

E
â
ϕ (A) := ó(A)

y

â
. We call TE(Σ)

â
:= (cwff

y

â
,@â ,E â) the â-term evaluation

for Σ.
Analogously, we can defineTE(Σ)

âç
:= (cwff↓âç ,@

âç,E âç) the âç-term evalua-
tion for Σ.

The name term evaluation in the previous definition is justified by the following
lemma.

Lemma 3.36. TE(Σ)
â
is a Σ-evaluation andTE(Σ)

âç
is a functional Σ-evaluation.

Proof. The fact that (cwff(Σ)

y

â
,@â) is an applicative structure is immediate:

For each type α, cwffα(Σ)

y

â
is non-empty (by the assumption in Remark 3.16) and

@â : cwffα→â(Σ)

y

â
× cwffα(Σ)

y

â
−→ cwffâ(Σ)

y

â
.

We next check that E â is an evaluation function.

(1) E âϕ (X) ≡ ϕ
∣

∣

free(X)
(X) ≡ ϕ(X).

(2) E âϕ respects application since ó(FA)

y

â
≡

(

ó(F)

y

â
ó(A)

y

â

)

y

â
where ó ≡

ϕ
∣

∣

free(FA)
.

(3) E âϕ (A) ≡
(

ϕ
∣

∣

free(A)
(A)

)

y

â
≡

(

ϕ′
∣

∣

free(A)
(A)

)

y

â
≡ E âϕ′(A) whenever ϕ and ϕ′

coincide on free(A).

(4) E âϕ (A) ≡ ó(A)

y

â
≡ ó(A

y

â
)

y

â
≡ E âϕ (A

y

â
) where ó ≡ ϕ

∣

∣

free(A)
.

A similar argument shows that TE(Σ)
âç
is a Σ-evaluation. Also, one can show

TE(Σ)
âç
is functional using an argument similar to Lemma 3.14 since Σ is infinite

at all types by Remark 3.16. (Alternatively, one can simply apply Lemma 3.14
and Theorem 3.13 to note that the applicative structure cwff(Σ)/≡âç is functional.
The applicative structure cwff(Σ)/≡âç is isomorphic to the applicative structure

1044 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

(cwff(Σ)

y

âç
,@âç). One can easily show that functionality is preserved under iso-

morphism.) a

Remark 3.37. Note that TE(Σ)
â
is not a functional Σ-evaluation since, for in-

stance, for any constant hã→ä ∈ Σ

(ëXã hã→äX)@
âCã ≡ h@

âC

for all C in TEã (Σ)
â
but ëX hX 6≡ h.

Remark 3.38. One can show that an evaluation function E for an applicative
structure (D ,@) is uniquely determined by its values E (c) on the constants c ∈ Σ
and its values E (S) and E (K) on the combinators S and K . When the applicative
structure is functional, even the values of each E (S) and E (K) are determined, so
that E is uniquely determined by its values E (c) for c ∈ Σ.

Definition 3.39 (Homomorphism on Σ-evaluations). Let J 1 := (D 1,@1,E 1)
and J 2 := (D 2,@2,E 2) be Σ-evaluations. A Σ-homomorphism is a typed function
κ : D 1 −→ D 2 such that κ is a homomorphism from the applicative structure
(D 1,@1) to the applicative structure (D 2,@2) and κ

(

E 1ϕ (A)
)

≡ E 2κ◦ϕ(A) for every

A ∈ wffα(Σ) and assignment ϕ for J 1.

3.3. Σ-models. The semantic notions so far are independent of the set of base
types. Now, we specialize these to obtain a notion ofmodels by requiring specialized
behavior on the type o of truth values. For this we use the notion of a Σ-valuation
which gives a truth-value interpretation to the domain Do of a Σ-evaluation con-
sistent with the intuitive interpretations of the logical constants. Since models are
semantic entities that are constructed primarily to make a statement about the truth
or falsity of a formula, the requirement that there exists a Σ-valuation is perhaps the
most general condition under which one wants to speak of a model. Thus we will
define ourmost general notion of semantics as Σ-evaluations that have Σ-valuations.

Definition 3.40. Fix two values T 6≡ F. Let J := (D ,@,E) be a Σ-evalua-
tion and õ : Do −→ {T, F} be a (total) function. We define several properties that
characterize logical operators with respect to õ in the table shown in Figure 2.

prop. where holds when for all

L¬(n) n ∈ Do→o õ(n@a) ≡ T iff õ(a) ≡ F a ∈ Do
L∨(d) d ∈ Do→o→o õ(d@a@b) ≡ T iff õ(a) ≡ T or õ(b) ≡ T a, b ∈ Do
L∧(c) c ∈ Do→o→o õ(c@a@b) ≡ T iff õ(a) ≡ T and õ(b) ≡ T a, b ∈ Do
L⇒(i) i ∈ Do→o→o õ(i@a@b) ≡ T iff õ(a) ≡ F or õ(b) ≡ T a, b ∈ Do
L⇔(e) e ∈ Do→o→o õ(e@a@b) ≡ T iff õ(a) ≡ õ(b) a, b ∈ Do
Lα
∀
(ð) ð ∈ D(α→o)→o õ(ð@f) ≡ T iff ∀a ∈ Dα õ(f@a) ≡ T f ∈ Dα→o

Lα∃(ó) ó ∈ D(α→o)→o õ(ó@f) ≡ T iff ∃a ∈ Dα õ(f@a) ≡ T f ∈ Dα→o
Lα=(q) q ∈ Dα→α→o õ(q@a@b) ≡ T iff a ≡ b a, b ∈ Dα

Figure 2. Logical properties in Σ-models.

Definition 3.41 (Σ-model). Let J := (D ,@,E) be a Σ-evaluation. A function
õ : Do −→ {T, F} is called a Σ-valuation for J if L¬(E (¬)) and L∨(E (∨)) hold,

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1045

and for every type α Lα∀(E (Π
α)) holds. In this case,M := (D ,@,E , õ) is called a

Σ-model.
For the case of (the optional) primitive equality, i.e., when =α∈ Σα→α→o for all
types α, we sayM is a Σ-model with primitive equality if Lα=(E (=

α)) holds for every
type α.
We say that ϕ is an assignment intoM if it is an assignment into the underlying
applicative structure (D ,@). Furthermore, ϕ satisfies a formula A ∈ wffo(Σ) inM
(we writeM |=ϕ A) if õ(Eϕ(A)) ≡ T. We say thatA is valid inM (andwriteM |= A)
ifM |=ϕ A for all assignments ϕ. When A ∈ cwffo(Σ), we drop the reference to the
assignment and use the notationM |= A. Finally, we say thatM is a Σ-model for a
set Φ ⊆ cwffo(Σ) (we writeM |= Φ) ifM |= A for all A ∈ Φ.
AΣ-modelM := (D ,@,E , õ) is called functional [full, standard] if the applicative
structure (D ,@) is functional [full, standard]. Similarly, M is called ç-functional
[î-functional] if the evaluation (D ,@,E) is ç-functional [î-functional]. We say M
is a Σ-model over a frame if (D ,@) is a frame.

Remark 3.42 (Adding primitive equality). In the definition of Σ-model above,
the addition of propertyLα=(E (=

α)) addressing the case of primitive equality above
has a purely practical motivation: calculi with a primitive treatment of equality,
see for instance [10, 11], may provide a more effective approach to equational
reasoning in higher-order logic than the exclusive use of Leibniz equality. Therefore
we enrich our theory to automatically also address the situationwhere (always built-
in) Leibniz equality and (optional) primitive equality are simultaneously present
in the language. The generalization to primitive equality is less trivial than the
generalization to other (optional) primitive logical connectives such as ∧ or ⇒.
This is the main reason why we built primitive equality directly into our theory
while we omit other logical primitives (cf. also Remarks 3.47 and 6.9).

Lemma 3.43 (Truth and falsity in Σ-models). Let M := (D ,@,E , õ) be a Σ-
model andϕ an assignment. LetTo := ∀Po P ∨ ¬P andFo := ¬To. Then õ(Eϕ(To))
≡ T and õ(Eϕ(Fo)) ≡ F.

Proof. LetP be a variable of type o. We have õ(Eϕ(To)) ≡ T, iff õ(Eϕ(P∨¬P)) ≡
T for every assignment ϕ. The properties of õ show that this statement is equivalent
to õ(ϕ(P)) ≡ T or õ(ϕ(P)) ≡ F, which is always true since õ maps into {T, F}. Note
further that õ(Eϕ(Fo)) ≡ F since õ(Eϕ(To)) ≡ T. a

Remark 3.44. Let M := (D ,@,E , õ) be a Σ-model. By Lemma 3.43, Do must
have at least the two elements Eϕ(To) and Eϕ(Fo), and õ must be surjective.

Remark 3.45. In contrast to the case of Henkin models, Definition 3.41 only
constrains the functional behavior of the values of the logical constants with respect
to õ. This does not fully specify these values since

• M need not be functional,
• and there can be more than two truth values.

We will now introduce semantical properties called q, ç, f, and b, which we will
use to characterize different classes of Σ-models.

Definition 3.46 (Properties q, ç, î, f and b). Given a Σ-model M := (D ,@,E ,
õ), we say thatM has property

1046 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

q: iff for all α ∈ T there is some qα ∈ Dα→α→o such that Lα=(q
α) holds.

ç: iffM is ç-functional.
î: iffM is î-functional.
f: iffM is functional. (This is generally associated with functional extensionality.)
b: iff Do has at most two elements. By Lemma 3.44 we can assume without loss
of generality that Do ≡ {T, F}, õ is the identity function, Eϕ(To) ≡ T and
Eϕ(Fo) ≡ F. (This is generally associated with Boolean extensionality.)

Remark 3.47 (Choice of logical constants). The work presented in this article is
based on the choice of the primitive logical constants ¬, ∨, and Πα . We have
also introduced shorthand for formulas constructed using ∧,⇒,⇔, and existential
quantification. One can (easily; cf. Lemma 3.48) verify that in any Σ-model M ≡
(D ,@,E , õ), each of the propertiesL∧(E (ëXoYo X ∧Y)), L⇒(E (ëXoYo X ⇒ Y)),
L⇔(E (ëXoYo X ⇔ Y)) and Lα∃(E (ëPα→o ∃Xα PX)) (for each type α) hold with
respect to õ. In this sense, our choice of logical constants and shorthand for
other logical constants is sufficient. However, Leibniz equality Qα will only satisfy
Lα=(E (Q

α)) for each type α iff the model satisfies property q (cf. Remark 3.52 and
Theorem 3.63).
On the other hand, in the absence of extensionality, one can gain some (limited)
expressive power by including extra logical constants such as ∧ in the signature.
This is the case since there may be several objects in c ∈ Do→o→o such that L∧(c)
holds. So, one could have a Σ-modelM ≡ (D ,@,E , õ) (where ∧ is also in Σ) such
that L∧(E (∧)) holds, but E (∧) 6≡ E (ëXoYo ¬(¬X ∨ ¬Y)). We will not investigate
this possibility here.
Our choice of logical constants differs from Andrews’ choice [6] who considers
primitive equality as the only logical primitive fromwhich all other logical operators
are defined using the definitions in Figure 3. For the sake of clarity, we write
qα for =α when =α is not being written in infix notation. For Henkin models,
the definitions in Figure 3 are appropriate. However, without extensionality, the
situation is quite different. SupposeJ ≡ (D ,@,E) is a Σ-evaluation where =α∈ Σ
for every type α. Let õ : Do −→ {T, F} be a function such thatLα=(E (=

α)) holds for
each typeα. The fact that õ(E (To)) ≡ T follows directly fromLo→o→o= (E (=o→o→o))
and reflexivity of (meta-level) equality. Unfortunately, this is the last definition
which is clearly appropriate without further assumptions. So long as Do has more
than one element, one can show õ(E (Fo)) ≡ F. So, let us explicitly assume Do

To := qo =o→o→o qo

Fo := (ëXo To) =o→o (ëXo X)
¬o→o := qoFo
Πα := qα→o(ëXα To)

∧o→o→o := ëXoYo (ëGo→o→o GToTo) =(o→o→o)→o (ëGo→o→o GXY)
⇒o→o→o := ëXoYo (X =o (X ∧ Y))
∨o→o→o := ëXoYo ¬(¬X ∧ ¬Y)
Σα := ëPα→o (¬ΠαëXα ¬(PX))

Figure 3. A definition of logical constants from equality in
Henkin models.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1047

has more than one element, which is anyway met by Σ-models (cf. Remark 3.44).
Next, we investigate whether L¬(E (¬)) holds. Let a ∈ Do be given. By Lo=(E (=

o)),
we know õ(E (=o)@E (Fo)@a) ≡ T is equivalent to E (Fo) ≡ a. So, if õ(E (=o)@
E (Fo)@a) ≡ T, then õ(a) ≡ õ(E (Fo)) ≡ F. For the converse, suppose õ(a) ≡ F.
This, in general, does not imply E (Fo) ≡ a. However, if we assume a is the
unique member of Do such that õ(a) ≡ F, then we can conclude E (Fo) ≡ a. In
particular, ifDo has only two elements, then õmust be injective andwe can conclude
E (Fo) ≡ a. So, Boolean extensionality is required to ensure that L¬(E (¬)) holds
for this definition of ¬.
We now investigate whether Lα∀(E (Π

α)) holds for Πα defined as in Figure 3.
Let f ∈ Dα→o be given. Suppose õ(E (=α→o)@E (ëXα To)@f) ≡ T. Then, by
Lα→o= (E (=α→o)), we know E (ëXα To) ≡ f. This does guarantee E (To) ≡ f@a and
hence õ(f@a) ≡ T for every a ∈ Dα . However, showing the converse requires that
M is functional (i.e., strong functional extensionality is given). Suppose õ(E (=α)@
E (ëXα To)@f) ≡ F. We can conclude E (ëXα To) 6≡ f, but this is of little value. IfJ
is not functional, then these may be different representatives in Dα→o of the same
function. If J is functional, there must be some a ∈ Dα such that E (To) 6≡ f@a.
However, this still does not imply õ(f@a) ≡ F. IfDo has only two elements, then the
facts thatE (To) 6≡ f@a and E (To) 6≡ E (Fo) imply E (Fo) ≡ f@a, hence õ(f@a) ≡ F.
Similar observations apply to the other definitions in Figure 3. These definitions
do show that at least To and Fo are definable from primitive equality (so long asDo
has at least two elements). Furthermore, ifDo has exactly two elements¬ is definable
from primitive equality. We conjecture that this is asmuch as one can define in terms
of primitive equality without extensionality assumptions. That is, we conjecture
that without assumingDo has two elements, there may be no object n ∈ Do→o such
that L¬(n) holds. Furthermore, we conjecture that without assuming functionality
and thatDo has two elements, there may be no object d ∈ Do→o→o such that L∨(d)
holds, and there may be no object ð ∈ D(α→o)→o such that L

α
∀(ð) holds.

The next lemma formally verifies thatL⇔(E (ëXoYo X ⇔ Y)) holds with respect
to the valuation of a Σ-model, as indicated in the remark above.

Lemma 3.48 (Equivalence). Let M := (D ,@,E , õ) be a Σ-model, ϕ an assign-
ment intoM , and A,B ∈ wffo(Σ). õ(Eϕ(A⇔ B)) ≡ T iff õ(Eϕ(A)) ≡ õ(Eϕ(B)).

Proof. Suppose õ(Eϕ(A ⇔ B)) ≡ T. This implies õ(Eϕ(¬A ∨ B)) ≡ T and
õ(Eϕ(¬B∨A)) ≡ T. If õ(Eϕ(A)) ≡ T, then õ(Eϕ(¬A∨B)) ≡ T implies õ(Eϕ(B)) ≡ T,
so õ(Eϕ(A)) ≡ T ≡ õ(Eϕ(B)). If õ(Eϕ(A)) ≡ F, then õ(Eϕ(¬B ∨ A)) ≡ T implies
õ(Eϕ(B)) ≡ F, so õ(Eϕ(A)) ≡ F ≡ õ(Eϕ(B)). Since these are the only two possible
values for õ(Eϕ(A)), we have õ(Eϕ(A)) ≡ õ(Eϕ(B)).
Suppose õ(Eϕ(A)) ≡ õ(Eϕ(B)). Either õ(Eϕ(A)) ≡ õ(Eϕ(B)) ≡ T or õ(Eϕ(A)) ≡
õ(Eϕ(B)) ≡ F. An easy consideration of both cases verifies õ(Eϕ(¬A∨B)) ≡ T and
õ(Eϕ(¬B ∨ A)) ≡ T. Hence, õ(Eϕ(A⇔ B)) ≡ T. a

We next define classes of Σ-models in which certain properties hold. These classes
are denoted byM∗ where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. The subscript â is
always included to emphasize that â-equal terms are interpreted to be identical
elements in all models (cf. Remark 3.19). The subscripts ç, î, f and b indicate when
the corresponding properties must hold (cf. Definition 3.46). Note that we are not
including property q as an explicit subscript. The only Σ-models we need to consider

1048 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

which do not satisfy property q are term models. It will turn out (cf. Theorem 3.62)
thatwe canobtain amodel satisfying propertyq fromamodel that does notby taking
a quotient. However, this may not preserve properties î or f. Consequently, we omit
q as a subscript and define the setsM∗ (for ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}) so
that every model inM∗ satisfies property q. (This choice will be discussed further
in Remark 3.52.)

Definition 3.49 (Higher-order model classes). We will denote the class of Σ-
models that satisfy property q byMâ , and we will use subclasses ofMâ depending
on the validity of the properties ç, î, f, and b. We obtain the specialized classes
of Σ-models Mâç , Mâî , Mâf, Mâb, Mâçb, Mâîb, and Mâfb by requiring that the
properties specified in the index are valid.
If primitive equality is in the signature, i.e., if =α∈ Σα→α→o , then we require the
models to be Σ-models with primitive equality. Note that in this case property q is
automatically ensured.

We can group these eight classes in two dimensions as in Figure 4 based on the
“amount of extensionality” required.

functional

Boolean
none weak (ç) weak (î) strong (f)

none Mâ Mâç Mâî Mâf

b Mâb Mâçb Mâîb Mâfb

Figure 4. Extensional model classes.

Definition 3.50 (Σ-Henkin models). A Σ-Henkin model is a model M over a
frame with M ∈ Mâfb. We denote the class of all Σ-Henkin models by H. (Such
models are called general models in [2] and [6]. We avoid this terminology here since
we consider models which are more general than these.)

Definition 3.51 (Σ-standard models). A Σ-standard model is a Σ-Henkin model
that is also full (i.e., a model M ∈ Mâfb over a standard frame). The class of all
Σ-standard models is denoted by ST.

Remark 3.52 (Property q). The purpose of property q is to ensure that for all
types α there is an object qα in Dα→α→o representing meta equality for the do-
main Dα . This ensures the existence of objects representing unit sets {a} for each
a ∈ Dα in the domains Dα→o , which in turn makes Leibniz equality the intended
equality relation. This is because membership in these unit sets can be used as
an appropriately strong criterion to distinguish between different elements of Dα .
This aspect is discussed in detail by Peter Andrews in [2]. He notes that Leon
Henkin unintentionally introduced in [26] a class of models which need not satisfy
property q instead of the class of Henkin models in the sense above. As Andrews
shows, a consequence is that such a model may fail to satisfy the principle of strong
functional extensionality (cf. Definition 4.5) given by the formula

∀Fé→é ∀Gé→é (∀Xé FX
.
=
é
GX)⇒ F

.
=
é→é
G

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1049

even though the model (as a model over a frame) is functional. Andrews fixed
this problem by introducing property q. Here, we have followed this by requiring
property q in all our model classesM∗.

Now let us extend the notion of a quotient evaluation to Σ-models.

Definition 3.53 (Σ-model congruences). A congruence on a Σ-model M ≡ (D ,
@,E , õ) is a congruence on the underlying Σ-evaluation (D ,@,E) such that õ(a) ≡
õ(b) for all a, b ∈ Do with a ∼ b.

Definition 3.54 (Quotient Σ-model). LetM ≡ (D ,@,E , õ) be a Σ-model, ∼ be
a congruence onM , and (D∼,@∼,E ∼) be the quotient Σ-evaluation of (D ,@,E)
with respect to∼ (cf. Definition 3.33). Using the notation for representativesA∗ ∈ A

for A ∈ D∼α as in Definition 3.33, we define õ
∼ : D∼o −→ {T, F} by õ∼(A) := õ(A∗)

for every A ∈ D∼o . (Since õ(a) ≡ õ(b) whenever a ∼ b in Do, this definition
of õ∼ does not depend on the choice of representatives and õ∼([[a]]∼) ≡ õ(a) for
every a ∈ Do.) We callM/∼ := (D∼,@∼,E ∼, õ∼) the quotient Σ-model ofM with
respect to ∼.

Theorem 3.55 (Quotient Σ-model theorem). Let M ≡ (D ,@,E , õ) be a Σ-
model and∼ be a congruence onM . The quotientM/∼ is a Σ-model.
Furthermore, if for every type α, =α∈ Σα and we have õ(E (=α)@a@b) ≡ T iff

a ∼ b for every a, b ∈ Dα , thenM/∼ is a Σ-model with primitive equality.

Proof. We check the conditions of Definition 3.41, again using the A∗ notation
for representatives. To check condition L¬(E∼(¬)) for õ∼, for all A ∈ D∼o we
need to show that õ∼(E ∼(¬)@∼A) ≡ T iff õ∼(A) ≡ F. Let A ∈ D∼o be given.
Since M is a Σ-model we have õ(E (¬)@A∗) ≡ T iff õ(A∗) ≡ F. Since [[A∗]]∼ ≡ A

and [[E (¬)@A∗]]∼ ≡ E ∼(¬)@∼A, we have õ∼(E ∼(¬)@∼A) ≡ T iff õ∼(A) ≡ F.
Checking condition L∨(E ∼(∨)) for õ∼ is analogous.
To check condition Lα∀(E

∼(Πα)) for õ∼, suppose we have G ∈ D∼α→o . For every
A ∈ D∼α , õ

∼(G@∼A) ≡ õ(G∗@A∗). So, if õ∼(G@∼A) ≡ T for every A ∈ D∼α , then
õ(G∗@a) ≡ õ(G∗@[[a]]∗∼) ≡ T for every a ∈ Dα , and we conclude õ(E (Πα)@G∗) ≡
T. Hence, õ∼(E ∼(Πα)@∼G) ≡ T. Conversely, suppose õ∼(E∼(Πα)@G) ≡ T.
Then õ(E (Πα)@G∗) ≡ T and hence õ∼(G@A) ≡ õ(G∗@A∗) ≡ T for everyA ∈ D∼α .
Suppose primitive equality is in the signature and õ(E (=α)@a@b) ≡ T iff a ∼ b

for every a, b ∈ Dα . To verify Lα=(E
∼(=α)) holds for õ∼, we simply note that

õ∼(E ∼(=α)@∼A@∼B) ≡ T, iff õ(E (=α)@A∗@B∗) ≡ T, iff A∗ ∼ B∗, iff A ≡ B. a

We can define properties of a congruence analogous to those defined for models
in Definition 3.46.

Definition 3.56 (Properties ç, î, f and b for congruences). Given a Σ-model
M := (D ,@,E , õ) and a congruence ∼ onM , we say∼ has property

ç: iff Eϕ(A) ∼ Eϕ(A↓âç) for any type α, A ∈ wffα(Σ), and assignment ϕ.

î: iff for all α, â ∈ T , M ,N ∈ wffâ(Σ), assignment ϕ, and variables Xα ,
Eϕ(ëXαMâ) ∼ Eϕ(ëXα Nâ) whenever Eϕ,[a/X](M) ∼ Eϕ,[a/X](N) for every
a ∈ Dα .

f: iff ∼ is functional.
b: iff Do has at most two equivalence classes with respect to ∼. (By Remark 3.44
there are always at least two.)

1050 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 3.57. It follows trivially from reflexivity of congruences that if a model
satisfies property ç, then any congruence on themodel satisfies property ç. Similarly,
if a model has only two elements in Do, then Do can have at most two equivalence
classes with respect to any congruence ∼. So, if a model satisfies property b, then
any congruence on the model satisfies property b. This is not true for properties î
or f. For an example, we refer to the functional model (satisfying property f, hence
property î) constructed by Andrews in [2]. Using the results we prove below, one
can show Leibniz equality must induce a congruence failing to satisfy properties î
and f on this functional model.

Lemma 3.58. Let M be a Σ-model, Φ ⊆ cwffo(Σ), and ∼ be a congruence onM .
We have M/∼ |= Φ iff M |= Φ. Furthermore, if ∗ ∈ {ç, î, f, b} and ∼ satisfies
property ∗, thenM/∼ satisfies property ∗.

Proof. LetAo ∈ Φ. Since A is closed,M |= A, iff õ(E (A)) ≡ T, iff õ∼(E ∼(A)) ≡
T, iffM/∼ |= A. So,M |= Φ iffM/∼ |= Φ.
Suppose ∼ satisfies property ç. Let A ∈ wffα(Σ), and an assignment ϕ intoM/∼
be given. Let ϕ∗ be a corresponding assignment intoM (cf. Definition 3.33). Since
∼ satisfies property ç, we know Eϕ∗(A) ∼ Eϕ∗(A↓âç). Taking equivalence classes,

we have E∼ϕ (A) ≡ E
∼
ϕ (A↓âç).

Suppose ∼ satisfies property î. Let M ,N ∈ wffâ (Σ), a variable Xα and an
assignment ϕ into M/∼ be given. Again, let ϕ

∗ be a corresponding assignment
into M . Suppose E ∼ϕ,[A/X](M) ≡ E ∼ϕ,[A/X](N) for every A ∈ D∼α . This means

Eϕ∗,[A∗/X](M) ∼ Eϕ∗,[A∗/X](N) for every A ∈ D∼α . For any a ∈ Dα , using
Lemma 3.31, we know

Eϕ∗,[a/X](M) ∼ Eϕ∗,[A∗/X](M) ∼ Eϕ∗ ,[A∗/X](N) ∼ Eϕ∗,[a/X](N)

where A ∈ D∼α is the equivalence class of a. Since ∼ satisfies property î, we
know that Eϕ∗(ëX M) ∼ Eϕ∗(ëX N). Taking equivalence classes, we see that
E ∼ϕ (ëX M) ≡ E

∼
ϕ (ëX N).

If ∼ is functional (satisfies property f), we know M/∼ is functional (satisfies
property f) by Theorem 3.13.
Finally, if∼ satisfies property b, then clearlyD∼o has only two elements. So,M/∼
satisfies property b. a

Definition 3.59 (Congruence relation
.
∼). LetM ≡ (D ,@,E , õ) be a Σ-model.

Let qα ∈ Dα→α→o be E (Q
α), i.e., the interpretation of Leibniz equality at type α.

We define a
.
∼ b in Dα iff õ(qα@a@b) ≡ T.

Before checking
.
∼ is a congruence, we first show that it is at least reflexive.

Lemma 3.60. LetM be a Σ-model. For each type α and a ∈ Dα , we have a
.
∼ a.

Proof. We need to check õ(E (Qα)@a@a) ≡ T. Let Xα be a variable of type α
and ϕ be some assignment with ϕ(X) ≡ a. Let r := Eϕ(ëPα→o ¬(PX) ∨ PX)).
For any p ∈ Dα→o , since E is an evaluation function, we have

õ(r@p) ≡ õ(Eϕ,[p/P](¬(PX) ∨ PX)).

AsM is a Σ-model, we have õ(Eϕ,[p/P](¬(PX) ∨ PX)) ≡ T since either

õ(Eϕ,[p/P](PX)) ≡ T or õ(Eϕ,[p/P](¬(PX))) ≡ T.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1051

So, again since M is a Σ-model, õ(E (Πα→o)@r) ≡ T. By the definitions of r and
.
=α , we have õ(Eϕ(X

.
=α X)) ≡ T. As X

.
=α X is a â-reduct of QαXX , we have

õ(Eϕ(Q
αXX)) ≡ T as well. Using ϕ(X) ≡ a, we see that õ(E (Qα)@a@a) ≡ T. a

In order to check that
.
∼ is a congruence, it is useful to unwind the definitions to

better characterize when a
.
∼ b for a, b ∈ Dα .

Lemma 3.61 (Properties of
.
∼). Let M be a Σ-model. For each type α and a, b ∈

Dα , the following are equivalent:

(1) a
.
∼ b.

(2) For all variables Xα and Yα and assignments ϕ such that ϕ(X) ≡ a and
ϕ(Y) ≡ b, we have õ(Eϕ(X

.
=
α
Y)) ≡ T.

(3) For every p ∈ Dα→o, õ(p@a) ≡ T implies õ(p@b) ≡ T.
(4) For every p ∈ Dα→o, õ(p@a) ≡ õ(p@b) .

Proof. At each type α, let qα ∈ Dα→α→o be the interpretation E (Q
α) of Leibniz

equality. By definition, a
.
∼ b iff õ(qα@a@b) ≡ T.

To show (1) implies (2), suppose a
.
∼ b and ϕ is an assignment with ϕ(Xα) ≡ a

and ϕ(Yα) ≡ b. Since õ(qα@a@b) ≡ T, we have õ(Eϕ(Q
αXY)) ≡ T. Since E

respects â-equality (cf. Remark 3.19), we have õ(Eϕ(X
.
=α Y)) ≡ T.

To show (2) implies (3), suppose õ(Eϕ(X
.
=
α
Y)) ≡ T whenever ϕ is an as-

signment with ϕ(X) ≡ a and ϕ(Y) ≡ b. Let X and Y be particular distinct
variables of type α and ϕ be any such assignment with ϕ(X) ≡ a and ϕ(Y) ≡ b.
Let p ∈ Dα→o with õ(p@a) ≡ T and a variable Pα→o be given. By assumption,
õ(Eϕ(∀Pα→o ¬(PX) ∨ (PY))) ≡ T. Since õ(Eϕ,[p/P](PX)) ≡ õ(p@a) ≡ T, we have
õ(p@b) ≡ õ(Eϕ,[p/P](PY)) ≡ T.
To show (3) implies (4), let p ∈ Dα→o be given. If õ(p@a) ≡ T, then we have
õ(p@b) ≡ T by assumption. So, õ(p@a) ≡ õ(p@b) in this case. Otherwise, we
must have õ(p@a) ≡ F. Let q := Eϕ(ëXα ¬(Pα→oX)) where ϕ is some assignment
with ϕ(P) := p. Since M is a model, õ(q@a) ≡ õ(E (¬)@(p@a)) ≡ T. Applying
the assumption to q, we have õ(q@b) ≡ T and so õ(E (¬)@(p@b)) ≡ T. Thus,
õ(p@b) ≡ F and õ(p@a) ≡ õ(p@b) in this case as well.
To show (4) implies (1), suppose õ(p@a) ≡ õ(p@b) for every p ∈ Dα→o. In par-
ticular, this holds for p := qα@a ∈ Dα→o. Since õ(q

α@a@a) ≡ T by Lemma 3.60,
we must have õ(qα@a@b) ≡ T. That is, a

.
∼ b. a

Theorem 3.62 (Properties ofM/.∼). LetM be a Σ-model. Then
.
∼ is a congruence

relation on the modelM andM/.∼ satisfies property q. Furthermore, if for every type
α, =α∈ Σα and õ(E (=α)@a@b) ≡ T iff a

.
∼ b for all a, b ∈ Dα , then M/.∼ is a

Σ-model with primitive equality.

Proof. We first verify that
.
∼ is an equivalence relation on each Dα . Reflexivity

was shown in Lemma 3.60. To check symmetry and transitivity we use condition
(4) in Lemma 3.61. For symmetry, let a

.
∼ b in Dα and p ∈ Dα→o be given. So,

õ(p@a) ≡ õ(p@b). Generalizing over p, we have b
.
∼ a. For transitivity, let a

.
∼ b

and b
.
∼ c in Dα and p ∈ Dα→o be given. So, õ(p@a) ≡ õ(p@b) ≡ õ(p@c).

Generalizing over p, we have a
.
∼ c.

We next verify that
.
∼ is a congruence. Suppose f

.
∼ g in Dα→â and a

.
∼ b ∈ Dα .

To show f@a
.
∼ g@b we use condition (3) in Lemma 3.61. Let p ∈ Dâ→o with

õ(p@(f@a)) ≡ T be given. Let ϕ be an assignment with ϕ(Pâ→o) ≡ p, ϕ(Xα) ≡ a

1052 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

and ϕ(Gα→â) ≡ g for variables P, X and G . We can use Lemma 3.61(3)
with Eϕ(ëFα→â (P(FX))) and f

.
∼ g to verify that õ(p@(g@a)) ≡ T. Using

Lemma 3.61(3) with Eϕ(ëXα (P(GX))) and a
.
∼ b verifies õ(p@(g@b)) ≡ T. So,

f@a
.
∼ g@b.
It remains to check that õ(a) ≡ õ(b) whenever a

.
∼ b for a, b ∈ Do. Let a

.
∼ b

in Do be given. Applying Lemma 3.61(4) to E (ëXo X) ∈ Do→o we have õ(a) ≡
õ(E (ëXo X)@a) ≡ õ(E (ëXo X)@b) ≡ õ(b) as desired. So,

.
∼ is a congruence

relation onM .
Now, we showM/.∼ satisfies property q. At each type α, let qα ∈ Dα→α→o be the
interpretation E (Qα) of Leibniz equality. To check property q, we show that [[qα]] .∼
is the appropriate object inD

.
∼
α→α→o for each α ∈ T . Let a, b ∈ Dα be given. Note

that [[a]] .∼ ≡ [[b]] .∼ is equivalent to a
.
∼ b.

Also, õ
.
∼([[qα]] .∼@

.
∼[[a]] .∼@

.
∼[[b]] .∼) ≡ T is equivalent to õ(qα@a@b) ≡ T. So, we

need to show that õ(qα@a@b) ≡ T if and only if a
.
∼ b. But this is precisely the

definition of
.
∼.

The statement for primitive equality follows immediately by Theorem 3.55. a

Now, we know that when one takes a quotient of a model M by
.
∼, one obtains

a model satisfying property q. It is worthwhile to note the following relationship
between

.
∼ and property q.

Theorem 3.63. LetM ≡ (D ,@,E , õ) be a Σ-model. The following are equivalent:

(1) M satisfies property q.
(2) For any congruence∼ onM , type α, and a, b ∈ Dα , a ∼ b implies a ≡ b.
(3) For any type α, and a, b ∈ Dα , a

.
∼ b implies a ≡ b.

(4) For any type α, Lα=(E (Q
α)) holds for õ.

Proof. To show (1) implies (2), supposeM satisfies q, ∼ is a congruence onM ,
and a ∼ b for a, b ∈ Dα . Let qα ∈ Dα→α→o be the object at type α guaranteed to
exist by property q. Since a ∼ b, we have (qα@a@a) ∼ (qα@a@b). By property q,
we have õ(qα@a@a) ≡ T (since a ≡ a). Since ∼ is a congruence on the model, we
have õ(qα@a@b) ≡ T. By property q, this means a ≡ b.
Since

.
∼ is a particular congruence onM , we know (2) implies (3).

To show (3) implies (4), we need to show Lα=(E (Q
α)) holds for each type α. By

the definition of
.
∼, for every a, b ∈ Dα we have õ(E (Q

α)@a@b) ≡ T, if and only if
a
.
∼ b, iff a ≡ b. The last equivalence holds by our assumption that a

.
∼ b implies

that a ≡ b, and by Lemma 3.60.
For each type α, Lα=(E (Q

α)) implies E (Qα) is the witness required to show
property q. So, we know (4) implies (1). a

Remark 3.64 (Congruences for Σ-models with primitive equality). Theorem
3.63 shows that once we have a model M which satisfies property q, there are no
nontrivial congruences on M . Hence, there are no nontrivial quotients of M . In
particular, the only possible congruence for a Σ-model with primitive equality is
the trivial congruence given by the identity relation ≡. Consequently, the quotient
construction in the case of a Σ-model with primitive equality leads to essentially the
same model again. We therefore do not consider quotients of models with primitive
equality.

3.4. Σ-models over frames. In this section, we define the notion of an isomor-
phism between two models and show every functional Σ-model is isomorphic to a

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1053

model over a frame. In particular, this shows that the model classMâfb is simply
the closure of the class H of Henkin models under isomorphism of Σ-models.

Definition 3.65 (Σ-model homomorphism/isomorphism). Let M 1 ≡ (D 1,@1,
E 1, õ1) and M 2 ≡ (D 2,@2,E 2, õ2) be Σ-models. A homomorphism from M 1 to
M 2 is a typed function κ : D 1 −→ D 2 such that κ is a homomorphism from the
evaluation (D 1,@1,E 1) to the evaluation (D 2,@2,E 2) and õ1(a) ≡ õ2(κ(a)) for
every a ∈ D 1o .
A homomorphism i fromM 1 toM 2 is called an isomorphism iff there is a homo-
morphism j fromM 2 toM 1 where jα : D 2α −→ D 1α is the inverse of iα : D

1
α −→ D 2α

at each type α. Two models are said to be isomorphic if there is such an isomor-
phism. (It is clear from the definition that this is a symmetric relationship between
models.)

Remark 3.66. The class H of Henkin models is not closed under isomorphism
of models. Neither is the class ST of standard models. This is because Henkin
and standard models require that the domains Dα→â consist of functions from
F (Dα ;Dâ). We may, however, take a given Henkin model and appropriately mod-
ify it to obtain an isomorphic model that is not in the class of Henkin models. For
example, we may choose D ′α→â := { (0, f) | f ∈ Dα→â } and define @ appropri-

ately (cf. Example 5.6 for a similar construction).

Lemma 3.67. LetM 1 andM 2 be isomorphic Σ-models.

(1) For any set of sentences Φ,M 1 |= Φ, iffM 2 |= Φ.
(2) IfM 1 is a Σ-model with primitive equality, thenM 2 is a Σ-model with primitive
equality.

(3) If ∗ ∈ {q, ç, î, f, b} andM 1 satisfies ∗, thenM 2 satisfies ∗.

In particular, each model classM∗ is closed under isomorphism of models.

Proof. Let i be a homomorphism from M 1 ≡ (D 1,@1,E 1, õ1) to M 2 ≡ (D 2,
@2,E 2, õ2) and j be its inverse.
LetΦbe a set of sentenceswithM 1 |= Φ. That is, for everyA ∈ Φ, õ1(E 1(A)) ≡ T.
So, for everyA ∈ Φ, õ2(E 2(A)) ≡ õ1(j(E 2(A))) ≡ õ1(E 1(A)) ≡ T (sinceA is closed,
we can ignore the variable assignment). This showsM 2 |= Φ; the other direction is
obtained by switching indices.
Suppose qα ∈ D 1α→α→o is such thatL

α
=(q

α) holds for õ1. We show thatLα=(i(q
α))

holds for õ2. Given a, b ∈ D 2α . We have a ≡ b, iff j(a) ≡ j(b), iff õ1(qα@1j(a)@1

j(b)) ≡ T, iff õ2(i(qα@1j(a)@1j(b))) ≡ T, iff õ2(i(qα)@2a@2b)) ≡ T.
In particular, suppose M 1 is a Σ-model with primitive equality. Then, we have

Lα=(E
1(=α)) for õ1 at each type α. So, Lα=(i(E

1(=α))) holds for õ2 at each type α.
Since i(E 1(=α)) ≡ E 2(=α), we knowM 2 is a Σ-model with primitive equality.
Next, supposeM 1 satisfies property q. Let α be a type and qα be the witness for
property q in M 1 at α. That is, Lα=(q

α) holds for õ1. We have shown Lα=(i(q
α))

holds for õ2. Hence,M 2 satisfies property q.
SupposeM 1 satisfies property ç. To showM 2 satisfies ç, let A ∈ wffα(Σ) and an
assignment ϕ intoM 2 be given. We compute

E 2ϕ (A) ≡ (i ◦ j)(E
2
ϕ (A)) ≡ i(E

1
j◦ϕ(A))

≡ i(E 1j◦ϕ(A↓âç)) ≡ (i ◦ j)(E
2
ϕ (A↓âç)) ≡ E

2
ϕ (A↓âç).

1054 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

So,M 2 satisfies property ç.
M 2 satisfies î, letM ,N ∈ wffâ (Σ), a variable Xα , and an assignment ø intoM

2

be given. Suppose E 2ø,[b/X](M) ≡ E
2
ø,[b/X](N) for all b ∈ D 2α . For any a ∈ D 1α , we

compute

E 1j◦ø,[a/X](M) ≡ j(E
2
i◦j◦ø,[i(a)/X](M)) ≡ j(E

2
ø,[i(a)/X](M))

≡ j(E 2ø,[i(a)/X](N)) ≡ E
1
j◦ø,[a/X](N).

Since M 1 satisfies property î, we know E 1j◦ø(ëX M) ≡ E
1
j◦ø(ëX N). Finally, we

compute

E 2ø(ëX M) ≡ i(E
1
j◦ø(ëX M)) ≡ i(E

1
j◦ø(ëX N)) ≡ E

2
ø(ëX N).

So,M 2 satisfies property î.
Suppose M 1 satisfies property f and we are given f, g ∈ D 2α→â for types α and

â . Suppose further that f@2b ≡ g@2b for every b ∈ D 2α . It is enough to show
j(f) ≡ j(g). This follows from property f inM 1 if we can show j(f)@1a ≡ j(g)@1a
for every a ∈ D 1α . So, let a ∈ D 1α be given. We finish the proof by computing

j(f)@1a ≡ j(f)@1(j ◦ i)(a) ≡ j(f@2i(a))

≡ j(g@2i(a)) ≡ j(g)@1(j ◦ i)(a) ≡ j(g)@1a.

Finally, ifM 1 satisfies property b, thenD 1o has two elements. Since io : D
1
o −→ D 2o

has inverse jo , D 2o must also have two elements. Thus,M
2 satisfies property b. a

Theorem 3.68 (Models over frames). LetM ≡ (D ,@,E , õ) be a Σ-model which
satisfies property f (i.e., M is functional). Then there is an isomorphic model M fr

over a frame.

Proof. We define the model Mfr := (Dfr ,@fr ,E fr , õfr) by defining its compo-
nents.
We first define the domainsDfr forMfr by induction on types. We simultaneously

define functions iα : Dα −→ Dfrα and jα : D
fr
α −→ Dα which will witness that the

two models are isomorphic. At each step of the definition, we check that iα and jα
are mutual inverses. For base types α ∈ {é, o} let D frα := Dα and iα and jα be the
identity functions (clearly mutual inverses).

Given two types α and â , we assume we haveD frα , mutual inverses iα : Dα → Dfrα
and jα : D

fr
α −→ Dα , as well as D

fr
â and mutual inverses iâ : Dâ → D

fr
â and

jâ : D
fr
â −→ Dâ . We define

D
fr
α→â :=

{

f : Dfrα −→ Dfrâ
∣

∣ ∃f ∈ Dα→â ∀a ∈ Dfrα f(a) ≡ iâ(f@jα(a))
}

.

Note thatDfrα→â ⊆ F (D
fr
α ;D

fr
â). To define themap iα→â : Dα→â −→ D

fr
α→â , we let

iα→â (f) be the function taking each a ∈ Dfrα to iâ(f@jα(a)). This choice for iα→â (f)

is clearly inDfrα→â by definition. To define the inverse map jα→â : D
fr
α→â −→ Dα→â ,

we must use the fact thatM is functional. Given anyf ∈ D frα→â , by definition there

is some f ∈ Dα→â such that f(a) ≡ iâ (f@jα(a)) for every a ∈ Dfrα . (Note that
the function f and object f are different in general.) By functionality and the fact
that the i and j at types α and â are already inverses, this f is unique, since if

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1055

iâ (f@jα(a)) ≡ iâ(g@jα(a)) for every a ∈ Dfrα , then f@jα(iα(a)) ≡ g@jα(iα(a))

for every a ∈ Dfrα . That is, f@a ≡ g@a for every a ∈ Dfrα . So, for every f ∈ Dfrα→â ,

we define jα→â(f) to be the unique f such that f(a) ≡ iâ(f@jα(a)). It is easy to
check that iα→â and jα→â are mutually inverse.

For the applicative structure (Dfr ,@fr) to be a frame, we are forced to let the

application operator @fr to be function application. That is, for every f ∈ D frα→â
and a ∈ Dfrα , f@fra := f(a). We define the evaluation function E fr simply by

E
fr
ϕ (A) := i(Ej◦ϕ(A)) for every A ∈ wffα(Σ) and assignment ϕ into the applicative

structure (Dfr ,@fr). Since Dfro ≡ Do, we can let õfr := õ.
We only sketch the remainder of the proof. First one can show that i and j
preserve application. One can use this fact to verify that E fr is an evaluation
function so that (Dfr ,@fr ,E fr) is a Σ-evaluation, and that õfr ≡ õ is a valuation
function for this evaluation. This verifiesMfr is a model. Finally, to verify one has
an isomorphism, one can easily check the remainder of the conditions for i and j
to be homomorphisms between the models. These are isomorphisms since they are
mutually inverse on the domains of each type. a

We can conclude that Mâfb is simply the closure of the class of H of Henkin
models under isomorphism. Given any M ∈ Mâfb, by Theorem 3.68, there is an
isomorphic modelMfr over a frame. By Lemma 3.67, this modelMfr satisfies q, f,
and b (since M does). Also, if primitive equality is present in the signature, by the
same lemma we knowMfr is a model with primitive equality. That is,Mfr ∈ H.

§4. Properties of model classes. In this section we discuss some properties of the
model classes introduced in section 3. Our interest is in the properties of Leibniz
equality and primitive equality.

Definition 4.1 (Extensionality for Leibniz equality). We call a formula of the
form

EXT
α→â
.
=

:= ∀Fα→â ∀Gα→â (∀Xα FX
.
=â GX)⇒ F

.
=α→â G

an axiom of (strong) functional extensionality for Leibniz equality, and refer to the
set

EXT→.= := {EXTα→â.
=

| α, â ∈ T }

as the axioms of (strong) functional extensionality for Leibniz equality. Note that
EXT→.= specifies functionality of the relation corresponding to Leibniz equality

.
=.

We call the formula

EXTo.= := ∀Ao ∀Bo (A⇔ B)⇒ A
.
=
o
B

the axiom of Boolean extensionality. We call the set EXT→.= ∪ {EXTo.=} the axioms
of (strong) extensionality for Leibniz equality.

In Examples 5.4 to 5.8 below we give concrete models in which EXTo.= and

EXTα→â.
=

fail in various ways. First, we prove relationships between properties q, b

and f and the statements EXTo.= and EXT
→.
= .

Lemma 4.2 (Leibniz equality in Σ-models). LetM := (D ,@,E , õ) be aΣ-model,
ϕ be an assignment, α ∈ T , and A, B ∈ wffα(Σ).

1056 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

(1) If Eϕ(A) ≡ Eϕ(B), then õ(Eϕ(A
.
=α B)) ≡ T.

(2) IfM satisfies property q and õ(Eϕ(A
.
=
α
B)) ≡ T, then Eϕ(A) ≡ Eϕ(B).

Proof. Let ϕ be any assignment into M . For the first part, suppose Eϕ(A) ≡
Eϕ(B). Given r ∈ Dα→o, we have either õ(r@Eϕ(A)) ≡ õ(r@Eϕ(B)) ≡ F or
õ(r@Eϕ(B)) ≡ õ(r@Eϕ(A)) ≡ T. In either case, for any variable Pα→o not in
free(A)∪ free(B), we have õ(Eϕ,[r/P](¬(PA)∨PB)) ≡ T. So, we have Eϕ(A

.
=
α
B) ≡

T.
To show the second part, suppose õ(Eϕ(A

.
=α B)) ≡ T. By property q, there is

some qα ∈ Dα→α→o such that for a, b ∈ Dα we have õ(qα@a@b) ≡ T iff a ≡ b.
Let r ≡ qα@Eϕ(A). From õ(Eϕ(A

.
=
α
B)) ≡ T, we obtain Eϕ,[r/P](¬PA ∨ PB) ≡ T

(where Pα→o /∈ free(A) ∪ free(B)). Since Eϕ,[r/P](PA) ≡ qα@Eϕ(A)@Eϕ(A) ≡ T,
we must have õ(Eϕ,[r/P](PB)) ≡ T. That is, õ(qα@Eϕ(A)@Eϕ(B)) ≡ T. By the
choice of qα , we have Eϕ(A) ≡ Eϕ(B). a

Theorem 4.3 (Extensionality in Σ-models). LetM ≡ (D ,@,E , õ) be a Σ-model.

(1) IfM satisfies property q but not property f, thenM 6|= EXT→.= .
(2) IfM satisfies property q but not property b, thenM 6|= EXTo.=.
(3) IfM satisfies properties q and f, thenM |= EXT→.= .
(4) IfM satisfies property b, thenM |= EXTo.=.

Thus we can characterize the different semantical structures with respect to Boolean
and functional extensionality by the table in Figure 5.7

in Mâ ,Mâç ,Mâî Mâf Mâb,Mâçb,Mâîb Mâfb

formula valid? by valid? by valid? by valid? by

EXT→.= — 1. + 3. — 1. + 3.
EXTo.= — 2. — 2. + 4.7 + 4.7

Figure 5. Extensionality in Σ-models.

Proof. SupposeM satisfies property q but does not satisfy property f. Then there
must be types α and â and objects f, g ∈ Dα→â such that f 6≡ g but f@a ≡ g@a

for every a ∈ Dα . Let Fα→â , Gα→â ∈ Vα→â be distinct variables, Xα ∈ Vα , and
ϕ be any assignment with ϕ(F) ≡ f and ϕ(G) ≡ g. For any a ∈ Dα , f@a ≡ g@a

implies õ(Eϕ,[a/X](FX
.
=
â
GX)) ≡ T by Lemma 4.2(1). Using the fact that õ is a

valuation, we have õ(Eϕ(∀X (FX
.
=â GX))) ≡ T. On the other hand, since f 6≡ g

and M satisfies property q, we have õ(Eϕ(F
.
=α→â G)) ≡ F by contraposition of

Lemma 4.2(2). This impliesM 6|= EXTα→â.
=
.

SupposeM satisfies property q but does not satisfy property b. Then, there must
be at least three elements in Do. Since õ maps into a two element set, there must
be two distinct elements a, b ∈ Do such that õ(a) ≡ õ(b). Let Ao, Bo ∈ Vo be
distinct variables and ϕ be any assignment into M with ϕ(A) ≡ a and ϕ(B) ≡ b.
By Lemma 3.48, we know õ(Eϕ(A ⇔ B)) ≡ T. Since a 6≡ b and property q holds,

7The cases in the figure corresponding toTheorem4.3(4) are actually special cases. InTheorem4.3(4),
we can infer a model satisfies EXTo.

=
even if property q does not hold. However, the models inMâb,

Mâçb,Mâîb andMâfb do satisfy property q by the definition of these model classes.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1057

by contraposition of Lemma 4.2(2), we know õ(Eϕ(A
.
=o B)) ≡ F. It follows that

M 6|= EXTo.=.
Let ϕ be any assignment into M . From õ(Eϕ(∀Xα FX

.
= GX)) ≡ T we

know õ(Eϕ,[a/X](FX
.
= GX)) ≡ T holds for all a ∈ Dα . By Lemma 4.2(2)

we can conclude that Eϕ,[a/X](FX) ≡ Eϕ,[a/X](GX) for all a ∈ Dα and hence
Eϕ,[a/X](F)@Eϕ,[a/X](X) ≡ Eϕ,[a/X](G)@Eϕ,[a/X](X) for all a ∈ Dα . That is,
Eϕ,[a/X](F)@a ≡ Eϕ,[a/X](G)@a for all a ∈ Dα . Since X does not occur free in
F or G , by property f and Definition 3.18(3) we obtain Eϕ(F) ≡ Eϕ(G). This

finally gives us that õ(Eϕ(F
.
=
α→â

G)) ≡ T with Lemma 4.2(1). It follows that

M |= EXTα→â.
=

andM |= EXT→.= , since α and â were chosen arbitrarily. Note that

we certainly need the assumption that M satisfies property q (which is employed
within the application of Lemma 4.2(2). As explained in Remark 3.52, there is a
functional model in which property q fails and EXTé→é.= is not valid.
Let Ao, Bo ∈ Vo be distinct variables and ϕ be any assignment into M . Since
property b holds, we can assumeDo ≡ {T, F} and õ is the identity function. Suppose
õ(Eϕ(A ⇔ B)) ≡ T. By Lemma 3.48, we have Eϕ(A) ≡ õ(Eϕ(A)) ≡ õ(Eϕ(B)) ≡
Eϕ(B). By Lemma 4.2(1), we have õ(Eϕ(A

.
=o B)) ≡ T. It follows that M |=

EXTo.=. a

Remark 4.4 (Alternative definitions of equality). Leibniz equality is a very
prominent way of defining equality in higher-order logic. However, there are alter-
native definitions such as (cf. [6, p. 203])

..
=α := ëXαYα ∀Qα→α→o (∀Zα QZZ)⇒ QXY.

An important question is whether an alternative definition of equality is equivalent
to the Leibniz definition in particular model classes. As Remark 3.47 shows, this
has to be carefully investigated for each equality definition and each model class
in question. We can show that for all Aα ,Bα ∈ cwffα(Σ) A

..
= B and A

.
= B are

equivalent modulo õ for all M ∈ Mâ (and thus for all other model classes). That
is, we can show õ(E (A

..
=α B)) ≡ õ(E (A

.
=α B)). Note that this is weaker than

showing E (A
..
=α B) ≡ E (A

.
=
α
B). The key idea is to reduce the definition of

..
= to

.
= (and vice versa) by instantiating the universally quantified set variables Q and P
appropriately. We may, for instance, show A

..
=α B implies A

.
=α B by choosing the

instantiation [ëUαVα ∀Pα→o PU ⇒ PV] for Q and the converse by choosing the
instantiation [ëVα ∀Qα→α→o (∀Zα QZZ) ⇒ QAV] for P. As a consequence the
properties of Leibniz equality with respect to extensionality also apply to

..
=.

Definition 4.5 (Extensionality for primitive equality). Analogous to the exten-
sionality axioms for Leibniz equality, we can define the axioms of strong (functional
and Boolean) extensionality for primitive equality:

EXTα→â= := ∀Fα→â ∀Gα→â (∀Xα FX =
â GX)⇒ F =α→â G

EXTo= := ∀Ao ∀Bo (A⇔ B)⇒ A =o B.

As before we refer to the set EXT→= := {EXTα→â= | α, â ∈ T } as the axioms of
(strong) functional extensionality for primitive equality.

The following lemma shows that in a Σ-model with primitive equality for each
α ∈ T the denotations of =α and

.
=
α
are identical modulo õ.

1058 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Lemma 4.6 (Primitive and Leibniz equality). If M := (D ,@,E , õ) ∈ M∗ is a
Σ-model with primitive equality where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}, then we
have õ(Eϕ(A =α B)) ≡ õ(Eϕ(A

.
=
α
B)) for all assignments ϕ intoM , types α ∈ T ,

and A, B ∈ wffα(Σ).

Proof. Since property q holds forM ∈ M∗, by Lemma 4.2 parts (1) and (2), we
have õ(Eϕ(A

.
=α B)) ≡ T iff Eϕ(A) ≡ Eϕ(B). Since M is a Σ-model with primitive

equality, we know Eϕ(A) ≡ Eϕ(B) is equivalent to õ(E (=
α)@Eϕ(A)@Eϕ(B)) ≡ T,

and hence to õ(Eϕ(A =α B)) ≡ T. a

Remark 4.7. Lemma 4.6 implies that for all models in our model classesM∗ the
extensionality axioms for primitive equality are equivalent to the corresponding
extensionality axioms for Leibniz equality. Thus, the analysis for the Leibniz
versions applies directly to the versions using primitive equality. Also, Lemma 4.6
reinforces that (provided property q holds) we can indeed use Leibniz equality to
treat equality as a defined notion (relative to models inM∗). Thus, we principally
do not need to assume the constants =α to be in our signature. The critical part
in this choice is that for ensuring the correct meaning for Qα we have to require
the existence of an object representing the identity relation for each type in each
Σ-model (cf. [2] for a discussion in the context ofHenkinmodels). This requirement
is automatically met if we consider primitive equality. Hence it seems natural to
treat equality as primitive.

Remark 4.8 (Properties ç and î). We have shown, in the presence of property
q, a model M satisfies property f iff M |= EXT→.= . Similarly, we have shown that
property b corresponds to a model satisfying EXTo.=. A corresponding analysis can
be done for properties ç and î (cf. Definition 3.46). Assume M satisfies property
q. Then, M satisfies property ç iff M |= A

.
=
α
(A↓âç) for every type α and closed

formula A ∈ cwffα(Σ). Also,M satisfies property î iff

M |= ∀Fα→â ∀Gα→â (∀Xα FX
.
=â GX)⇒ (ëX FX)

.
=α→â (ëX GX)

for all types α and â .

§5. Example models. We now sketch the construction of models in the model
classesM∗ to demonstrate concretely how properties for Boolean, strong and weak
functional extensionality can fail. We need this to show that the inclusions (cf.
Figure 1) of the model classes defined in Section 3 are proper, and we indeed need
all of them.
We start with the simplest example of a Henkin model, which we will call the
singleton model, since the domain of individuals is a singleton. Note that the un-
derlying evaluation of this model is not the singleton evaluation from Example 3.26
since Do has two elements. In this model, all forms of extensionality are valid.

Example 5.1 (Singleton model—Mâfb ∈ ST ⊆ H ⊆ Mâfb). Let (D ,@) be the
full frame with Do := {T, F} and Dé := {∗}. One can easily define an evaluation
function E for this frame by induction on terms, using functions to interpret ë-
abstractions. The identity function õ : Do −→ {T, F} is a valuation, assuming the
logical constants are interpreted in the standard way (including primitive equality,
if present in Σ). So, Mâfb := (D ,@,E , õ) defines a model. This model clearly

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1059

satisfies all our properties b, f (hence ç and î) and q (since the frame is full). So,
Mâfb ∈ ST ⊆ H ⊆ Mâfb.

Remark 5.2. In particular, all our model classes are non-empty. By parts (3)
and (4) of Theorem 4.3, we haveMâfb |= EXTo.= andM

âfb |= EXT→.= .

We can use the singleton model Mâfb to construct another model which makes
the importance of property q clear.

Remark 5.3. Let Mâfb ≡ (D ,@,E , õ) as above and TE(Σ)
â
≡ (D â ,@â ,E â)

be the â-term evaluation as defined in Definition 3.35. Let õ′ : D âo −→ {T, F}
be the function õ′(A) := õ(E (A)) for every A ∈ cwffo(Σ)

y

â
. One can show

M ′ := (D â ,@â ,E â , õ′) is a Σ-model such that M ′ |= A iff Mâfb |= A for every
sentence A. In particular,M ′ |= EXTo.= andM

′ |= EXT→.= .
Nevertheless,M ′ fails to satisfy properties q, b, ç and f. Property b does not hold

since D âo ≡ cwffo(Σ)

y

â
is infinite. Property ç does not hold since, for example,

E â (ëFé→éXé FX) ≡ ëFé→éXé FX 6≡ ëFé→é F ≡ E â(ëFé→é F).

Property f cannot hold since property ç does not hold. (On the other hand, property
î does hold since the underlying evaluation is a term evaluation.)
We know now by Theorem 4.3, either part (1) or part (2), that property q must
not hold. A concrete way to see that property q fails is to consider two distinct
constants aé , bé ∈ Σé . We must haveMâfb |= a

.
=é b (sinceDé has only one element),

and soM ′ |= a
.
=
é
b. On the other hand a and b are distinct elements (as distinct

â-normal forms) in D âé .
The modelM ′ shows that property q is needed in the proofs of parts (1) and (2)
of Theorem 4.3.

Example 5.4 (Failure of b—Mâf ∈ Mâf \ Mâfb). Let (D ,@) be the full frame
with Do = {a, b, c} and Dé = {0, 1}. We define an evaluation function E for
this frame by defining E (¬), E (∨), and E (Πα) to be the functions given in the
following table:

E (¬) a b c

c c a

E (∨) a b c

a a a a

b a a a

c a a c

E (Πα)@f =

{

a, if f@g ∈ {a, b} for all g ∈ Dα ,
c, if f@g = c for some g ∈ Dα .

We can choose E (w) to be arbitrary for parameters w ∈ Σ. Since the applicative
structure (D ,@) is a frame, hence functional, this uniquely determines E on all
formulae. Also, since the frame is full, we are guaranteed that there will be enough
functions to interpret ë-abstractions.
Let the map õ : Do −→ {T, F} be defined by õ(a) := T, õ(b) := T and õ(c) := F.
It is easy to check that Mâf := (D ,@,E , õ) is indeed a Σ-model. Since this is a
model over a frame, we automatically know it satisfies property f. Since the frame
is full, we know property q holds. (By the same argument, if primitive equality is
in the signature, we can ensure E (=α) is interpreted appropriately for each type

1060 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

α.) Clearly property b fails, so we have Mâf ∈ Mâf \ Mâfb. By Theorem 4.3(2),

Mâf 6|= EXTo.=.

In this model one can easily verify, if d := Eϕ(Do) and e := Eϕ(Eo), then the
values Eϕ(D ∧ E), Eϕ(D⇒ E), and Eϕ(D⇔ E) are given by the following tables:

e :
E (D ∧ E) a b c

d : a a a c

b a a c

c c c c

e :
E (D⇒ E) a b c

d : a a a c

b a a c

c a a a

e :
E (D⇔ E) a b c

d : a a a c

b a a c

c c c a

Note that one can properly model the woodchuck / groundhog example from [39]
referred to in the introduction inMâf.

Example 5.5 (Groundhogs and woodchucks). Let Mâf be given as above and
suppose woodchucké→o, groundhogé→o, johné , and philé are in the signature Σ. Let
E (phil) := 0 and E (john) := 1. Let E (woodchuck) be the function w ∈ Dé→o
with w(0) ≡ b and w(1) ≡ c. Let E (groundhog) be the function g ∈ Dé→o with
g(0) ≡ a and g(1) ≡ c. One can show that the sentence ∀Xé (woodchuckX) ⇔
(groundhogX) is valid. Also, E (woodchuckphil) ≡ b and E (groundhogphil) ≡ a,
so the propositions (woodchuck phil) and (groundhogphil) are valid. Next, sup-
pose believeé→o→o ∈ Σ and E (believe) is the (Curried) function bel ∈ Dé→o→o such
that bel(1)(b) ≡ b and bel(1)(a) ≡ bel(1)(c) ≡ bel(0)(a) ≡ bel(0)(b) ≡ bel(0)(c) ≡
c (Intuitively, John believes propositions with value b, but not those with value a or
c). So, believes john(woodchuck phil) is valid, while believes john(groundhogphil)
is not.

As we have seen, Boolean extensionality fails when one has more than two values
in Do. We can generalize the construction defining Do := {F} ∪ B , where B is
any set with T ∈ B and F /∈ B . The model will satisfy Boolean extensionality iff
B ≡ {T}. In this way, we can easily construct models for the case with property b

and the casewithout property b simultaneously. Wewill use this idea to parameterize
the remaining model constructions byB . These semantic constructions are similar
to those in multi-valued logics, which have been studied for higher-order logic
in [38]. In contrast to these logics where the logical connectives are adapted to talk
about multiple truth values, in our setting we are mainly interested in multiple truth
values as diverse õ-pre-images of T and F.

Example 5.6 (Failure of f and ç—Mâîb ∈ Mâîb \ Mâfb). We start by construct-
ing a non-functional applicative structure by attaching distinguishing labels to func-
tions without changing their applicative behavior. Let B be any set with T ∈ B
and F /∈ B . Let Do := {F} ∪B and Dé := {∗} with ∗ as singleton element. For
each function type α → â , let

Dα→â := { (i, f) | i ∈ {0, 1} and f : Dα −→ Dâ }.

Technically, we should write DB for D , but to ease the notation, we wait until
the model is defined to make its dependence on B explicit. We define application
by (i, f)@a := f(a) whenever (i, f) ∈ Dα→â and a ∈ Dα . It is easy to see that
(D ,@) is an applicative structure and is not functional. Consider, for example, the

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1061

unique function u : Dé −→ Dé . For both (0, u), (1, u) ∈ Dé→é we have (i, u)@∗ ≡ ∗,
although (0, u) 6≡ (1, u).
We can define an evaluation function by induction on terms. We must be-
gin by interpreting the constants. For the logical constants, let E (¬) := (0, n)
where n(b) := F for every b ∈ B and n(F) := T. Let E (∨) := (0, d) where
d (b) := (0, kT) for every b ∈ B , d (F) := (0, id), kT is the constant T function and
id is the identity function from Do to Do. For each type α, let d (Πα) := (0, ðα)
where for each (i, f) ∈ Dα→o, ðα((i, f)) := T if f(a) ∈ B for all a ∈ Dα and
ðα(i, f) := F otherwise. For each type α, let qα := (0, qα) ∈ Dα→α→o where
qα(a) := (0, sa) and sa(b) := T if a ≡ b and sa(b) := F otherwise. If primitive
equality is present in the signature, let E (=α) := qα . Let E (w) ∈ Dα be arbitrary
for parameters w ∈ Σα .
For variables, we must define Eϕ(X) := ϕ(X). Similarly, for application, we
must define Eϕ(FA) := Eϕ(F)@Eϕ(A). For ë-abstractions, we have a choice. To
be definite, we choose Eϕ(ëXα Bâ) := (0, f) where f : Dα −→ Dâ is the function
such that f(a) ≡ Eϕ,[a/X](B) for all a ∈ Dα .
With some work (which we omit), one can show that this E is an evaluation
function. Furthermore, taking õ to be the function such that õ(b) := T for ev-
ery b ∈ B and õ(F) := F, one can easily show that this is a valuation. Hence,
MB := (D ,@,E , õ) is a Σ-model.
The objects qα witness property q for MB (and also show that this is a model
with primitive equality, when primitive equality is in the signature). Note that the
objects (1, qα) also witness property q. So, in the non-functional case suchwitnesses
are not unique.
We have already noted that property f fails, since the applicative structure is
not functional. One may question whether properties ç or î hold. In fact, prop-
erty ç does not, as one may verify by computing, for example, E (ëFα→â F) and
E (ëFα→âXα FX) for types α and â . We have E (ëFα→â F) ≡ (0, id) where id is
the identity function from Dα→â to Dα→â . However, E (ëFα→âXα FX) ≡ (0, p)
where p is the function from Dα→â to Dα→â such that p((i, f)) ≡ (0, f) for each
f : Dα −→ Dâ . Property î does hold.

8 The reason is that if Eϕ,[a/X](M) ≡
Eϕ,[a/X](N) for every a ∈ Dα , then Eϕ(ëXαM) ≡ (0, f) ≡ Eϕ(ëX N) where
f(a) ≡ Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα .

Since MB is satisfies property q but not property f, by Theorem 4.3(1) we have

MB 6|= EXTα→â.
=

for some types α and â . (One can easily check that, in fact,

MB 6|= EXTα→â.
=

for all types α and â by considering the witnesses (0, f) and

(1, f) in Dα→â where f : Dα −→ Dâ is any function.)

If B ≡ {T}, then the model Mâîb :=M {T} satisfies property b. So, we know
Mâîb ∈ Mâîb \ Mâfb. On the other hand, if b is any value with b /∈ {T, F}, and

B ≡ {T, b}, then the model Mâî :=M {T,b} does not satisfy property b. In this
case, we knowMâî ∈ Mâî \ (Mâf ∪ Mâîb).

8This construction is an example of how one constructs models for the simply typed ë-calculus using
retractions. Such constructions will always yield models satisfying property î, but only yield models
satisfying property ç when each retraction is an isomorphism, in which case the applicative structure is
functional.

1062 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 5.7. LetMB be the Σ-model (D ,@,E , õ) constructed in Example 5.6.
We can define an alternative evaluation function E ′ by induction on terms. For
all w ∈ Σ, let E ′(w) := E (w). For variables, we define E ′ϕ(X) := ϕ(X). For

application, we must define E ′ϕ(FA) := E
′
ϕ(F)@E

′
ϕ(A). For ë-abstractions, we

chooseE ′ϕ(ëXα Bâ) := (1, f) wheref : Dα −→ Dâ is the function such thatf(a) ≡

Eϕ,[a/X](B) for all a ∈ Dα . We omit checking E ′ is an evaluation function, but the
verification is that same is checking E is an evaluation function. Notice that E and
E ′ agree on all constants (by definition). However, they are different evaluation
functions. For example,

E (ëXé X) ≡ (0, id) 6≡ (1, id) ≡ E
′(ëXé X)

where id : Dé −→ Dé is the identity function.This example shows that evaluation
functions are not uniquely determinedby their values on constants in non-functional
models.

In Lemma 3.14, we have shown that âç-equality induces a functional congruence
if the Σα is infinite for all types α. As a result, with such signatures, the term

evaluation TE(Σ)
âç
is functional (cf. Lemma 3.36). As noted in Remark 3.15, if Σ

is finite, we cannot show that functionality holds. Nevertheless, even if Σ is finite,

the evaluation TE(Σ)
âç
interprets âç-convertible terms the same. We can use this

idea to construct non-functional models which satisfy property ç.

Example 5.8 (Failure of î—Instances ofMâ ,Mâç ,Mâb,Mâçb). Again, letB be
any set with T ∈ B and F /∈ B . Choose constants cé , co ∈ Σ and let Σ′ := {cé, co}.
By induction on types, we define C ′α ∈ cwffα(Σ

′)

y

âç
⊆ cwffα(Σ

′)

y

â
. At base types,

let C ′é := cé and C
′
o := co. At function types, let C

′
α→â := ëXα C

′
â . (Thus each C

′
α

is of the form ëX câ where â ∈ {é, o}.) In particular, cwffα(Σ′)

y

âç
and cwffα(Σ′)

y

â

are non-empty for each type α.
We can now inductively define a map ñ from wffα(Σ) to wffα(Σ′) which collapses
terms to the smaller signature. For variables, let ñ(X) := X . For constantswα ∈ Σ
(including logical constants), let ñ(wα) := C ′α . For application and ë-abstraction,
we simply use ñ(FA) := ñ(F)ñ(A) and ñ(ëX A) := ëX ñ(A). By induction on
the formula A, one can show [ñ(B)/X]ñ(A) ≡ ñ([B/X]A) for any A ∈ wffα(Σ),
B ∈ wffâ(Σ) and Xâ . From this, one can show ñ(A)≡âçñ(B) whenever A≡âçB for
every A,B ∈ wffα(Σ). Note also that ñ(A′) ≡ A′ for every A′ ∈ wffα(Σ′).
We can construct a non-functional applicative structure using an indexing tech-
nique similar to Example 5.6. In this case, instead of indexing with i ∈ {0, 1}, we
use terms in cwffα(Σ′)↓∗ as indices. (Here A↓∗ means the â-normal form if ∗ ≡ â
and the âç-normal form if ∗ ≡ âç.) In essence, this index records some informa-
tion about the “implementation” of the function. Note that cwff é(Σ′)↓∗≡ {cé} and
cwffo(Σ

′)↓
∗
≡ {co}. LetDé := {(cé, 0)} andDo := {(co, F)}∪{(co, b) | b ∈ B}. For

function types, let Dα→â be the set of pairs (F
′
α→â , f), where F

′ ∈ cwffα→â(Σ
′)↓

∗

andf : Dα −→ Dâ is any function such thatf(A
′, a) ≡ ((F ′A′)↓

∗
, b) for some value

b. Application is defined as in Example 5.6: (F, f)@a := f(a). The construction
of this applicative structure closely follows Andrews’ õ-complexes in [1], except we
have a very restricted signature Σ′ which does not include logical constants.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1063

To show that each domain is non-empty, we construct a particular element cα ∈
Dα for each type α. (This element will also be used to interpret parameters.) Let
cé := (cé , 0), co := (co, F), and cα→â := (C ′α→â , k) where k : Dα −→ Dâ is the

constant function k(a) := câ for every a ∈ Dα . The fact that c
α→â ∈ Dα→â follows

from (C ′α→âA)↓∗≡ C
′
â .

One can see that the applicative structure is non-functional by noting (ëXé X,f)
and (ëXé cé , f) are distinct members ofDé→é , where f is the unique function taking
Dé into itself. However, (ëXé X,f)@cé ≡ cé ≡ (ëXé cé, f)@cé . In fact, once we
define the evaluation function, this same example will show that property î will fail.
Let õ : Do −→ {T, F} be õ((co , F)) := F and õ((co , b)) := T for each b ∈ B . This
will be the valuation function on the model.
We only sketch the definition of the evaluation function E and the proof that this
gives amodelM ∗,B := (D ,@,E , õ). We can define E by induction on terms. First,
we interpret parameters wα ∈ Σ by E (wα) := cα . For logical constants aα ∈ Σ, we
choose the first component of E (aα) to be C ′α and the second component to be an
appropriate function. We can define the witnesses qα in a similar way and use these
to interpret primitive equality, if it is present in the signature.
We are forced to let Eϕ(X) := ϕ(X) and Eϕ(FA) := Eϕ(F)@Eϕ(A). For the ë-
abstraction step, we choose Eϕ(ëXα Bâ) := ((ó(ñ(ëX B)))↓∗, f), where f : Dα −→
Dâ satisfies f(a) ≡ Eϕ,[a/X](B) for all a ∈ Dα and ó is the substitution defined by
letting ó(Y) be the first component of ϕ(Y) for each Y ∈ free(ëX B). In order
to show E is well-defined, one shows the first component of Eϕ(A) is (ó(ñ(A)))↓∗
(where ó is the substitution for free(A) defined from the first components of the
values of ϕ) for every formula A.
The fact that E evaluates variables and application properly is immediate from
the definition. The fact that Eϕ(A) depends only the free variables in A follows by
an induction on the definition of E . To show E respects â-conversion if ∗ ≡ â and
âç-conversion if ∗ ≡ âç (so that the model will also satisfy property ç), one first
shows E respects a single â[ç]-reduction, then does an induction on the position of
the redex, and finally does an induction on the number of â[ç]-reductions.
Once these details are checked, we knowM ∗,B is amodel (with primitive equality,
if present) satisfying property q. We alreadyknow themodelwill not satisfy property
f since the applicative structure is not functional. We can also check that the
model will not satisfy property î by considering E (ëXé X) and E (ëXé cé). We
know E (ëXé X) 6≡ E (ëXé cé) since the first components ((ëXé X) and (ëXé cé)) are
not equal. However, Dé has only one element, cé ≡ (cé , 0). So, we must have
Eϕ,[a/X](X) ≡ cé ≡ Eϕ,[a/X](cé) for every a ∈ Dé . This shows property î fails.
If ∗ ≡ âç, then we have noted above that E respects âç-conversion. So, in
this case, the model satisfies property ç. If ∗ ≡ â , then we can easily check
E (ëFé→éXé FX) 6≡ E (ëFé→é F) since the first components will differ. So, in this
case, the model does not satisfy property ç.
As in Example 5.6, ifB ≡ {T}, thenMâb :=M â,{T} andMâçb :=M âç,{T} satisfy
property b. So, we knowMâb ∈ Mâb \ (Mâçb ∪ Mâîb) andM

âçb ∈ Mâçb \Mâfb. If

B ≡ {T, b} where b is any value with b /∈ {T, F}, then the models Mâ :=M â,{T,b}

andMâç :=M âç,{T,b} do not satisfy property b, soMâ ∈ Mâ \ (Mâç ∪Mâî ∪Mâb)
andMâç ∈ Mâç \ (Mâf ∪ Mâçb).

1064 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

In particular, the modelsMâç andMâçb show that respecting ç-conversion does
not guarantee strong functional extensionality.

Thus we have given (sketches of) concrete models that distinguish model classes
and shown that the inclusions between theM∗ model classes in Figure 1 are proper.

§6. Model existence. In this section we present the model existence theorems
for the different semantical notions introduced in Section 3. The model existence
theorems have the following form, where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}:

Theorem (Model existence). For a given abstract consistency class ΓΣ ∈ Acc∗ (cf.
Definition 6.7) and a set Φ ∈ ΓΣ there is a Σ-modelM of Φ, such thatM ∈ M∗ (cf.
Definition 3.49).

The most important tools used in the proofs of the model existence theorems are
the so-called Σ-Hintikka sets. These sets allow computations that resemble those in
the considered semantical structures (e.g., Henkinmodels) and allowus to construct

appropriate valuations for the term evaluation TE(Σ)
â
defined in Definition 3.35.

The key step in the proof of the model existence theorems is an extension lemma,
which guarantees a Σ-Hintikka setH for any sufficiently Σ-pure set of sentences Φ
in ΓΣ.

6.1. Abstract consistency. Let us now review a few technicalities thatwe will need
for the proofs of the model existence theorems.

Definition 6.1 (Compactness). Let C be a class of sets.

(1) C is called closed under subsets if for any sets S and T , S ∈ C whenever
S ⊆ T and T ∈ C .

(2) C is called compact if for every set S we have S ∈ C iff every finite subset of
S is a member of C .

Lemma 6.2. If C is compact, then C is closed under subsets.

Proof. Suppose S ⊆ T and T ∈ C . Every finite subset A of S is a finite subset
of T , and since C is compact we know that A ∈ C . Thus S ∈ C . a

We will now introduce a technical side-condition that ensures that we always have
enough witness constants.

Definition 6.3 (Sufficiently Σ-pure). Let Σ be a signature and Φ be a set of Σ-
sentences. Φ is called sufficiently Σ-pure if for each type α there is a setPα ⊆ Σα of
parameters with equal cardinality to wffα(Σ), such that the elements of Pα do not
occur in the sentences of Φ.

This can be obtained in practice by enriching the signature with spurious param-
eters. Another way would be to use specially marked variables (which may never
be instantiated) as in [36]. Note that for any set to be sufficiently Σ-pure, Σα must
be infinite for each type α, since we have assumed that Vα ⊆ wff(Σ) are infinite.
Recall that in Remark 3.16we assumed every Σα has a common (infinite) cardinality
ℵs for every type α. (One could easily show that no set of Σ-sentences could be
sufficiently pure if, for example, Σé is countable while Σé→é is uncountable. In such a
case wffα(Σ) is uncountable for every type α so one could not satisfy the sufficient
purity condition at type é.)

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1065

Notation 6.4. For reasons of legibility we will write S ∗ a for S ∪ {a}, where S
is a set. We will use this notation with the convention that ∗ associates to the left.

Definition 6.5 (Properties for abstract consistency classes). Let ΓΣ be a class of
sets of Σ-sentences. We define the following properties of ΓΣ, where Φ ∈ ΓΣ, α,
â ∈ T , A, B ∈ cwffo, F ∈ cwffα→o, and G , H , (ëXαM), (ëXα N) ∈ cwffα→â are
arbitrary.

∇c : If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬: If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ.
∇â : If A≡âB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇ç : If A≡âçB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇∨: If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ.
∇∧: If ¬(A ∨ B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀: If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for eachW ∈ cwffα .
∇∃: If ¬Π

αF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα which does
not occur in any sentence of Φ.

∇b: If ¬(A
.
=
o
B) ∈ Φ, then Φ ∗ A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗ B ∈ ΓΣ.

∇î : If ¬(ëXαM
.
=α→â ëXα N) ∈ Φ, then Φ ∗ ¬([w/X]M

.
=â [w/X]N) ∈ ΓΣ for

any parameter wα ∈ Σα which does not occur in any sentence of Φ.

∇f: If ¬(G
.
=α→â H) ∈ Φ, then Φ ∗ ¬(Gw

.
=â Hw) ∈ ΓΣ for any parameter

wα ∈ Σα which does not occur in any sentence of Φ.
∇sat : Either Φ ∗ A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.

For the optional case of primitive equality, i.e., when =α∈ Σα→α→o for all types
α, we now add a set of further properties. While our first choice will be to combine
the∇r= property with∇

.
=
= , we will later show that other pair combinations from this

set are equivalent.

Definition 6.6 (Properties for abstract consistency classes). Suppose =α ∈
Σα→α→o for all types α. Let ΓΣ be a class of sets of Σ-sentences. We define for
Φ ∈ ΓΣ, A,B ∈ cwffα and F ∈ cwffo where F has a subterm of type α at position p:

∇r=: ¬(A =
α A) /∈ Φ.

∇s= : If F[A]p ∈ Φ and A =
α B ∈ Φ, then Φ ∗ F[B]p ∈ ΓΣ.9

∇
.
=
= : If A =

α B ∈ Φ, then Φ ∗ A
.
=
α
B ∈ ΓΣ.

∇=.
=
: If A

.
=α B ∈ Φ, then Φ ∗ A =α B ∈ ΓΣ.

∇
.
=−

=− : If ¬(A =α B) ∈ Φ, then Φ ∗ ¬(A
.
=
α
B) ∈ ΓΣ.

∇=
−

.
=− : If ¬(A

.
=
α
B) ∈ Φ, then Φ ∗ ¬(A =α B) ∈ ΓΣ.

Definition 6.7 (Abstract consistency classes). Let Σ be a signature and ΓΣ be a
class of sets of Σ-sentences that is closed under subsets. If ∇c ,∇¬,∇â ,∇∨,∇∧,∇∀
and ∇∃ are valid for ΓΣ, then ΓΣ is called an abstract consistency class for Σ-models.
Furthermore, when =α∈ Σα→α→o for all types α and the properties ∇r= and ∇

.
=
=

are valid then ΓΣ is called an abstract consistency class with primitive equality. In
the following we often simply use the phrase abstract consistency class to refer to
an abstract consistency class with or without primitive equality. We will denote

9Although this resembles Lemma 3.25 which required property î, it is far weaker sinceA and B must
be closed.

1066 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

the collection of abstract consistency classes (with primitive equality) by Accâ .
Similarly, we introduce the following collections of specialized abstract consistency
classes (with primitive equality): Accâç, Accâî , Accâf, Accâb, Accâçb, Accâîb, Accâfb,
where we indicate by indices which additional properties from {∇ç,∇î ,∇f,∇b} are
required.

Remark 6.8. If primitive equality is not in the signature, Accâ corresponds to
the abstract consistency property discussed by Andrews in [1]. The only (technical)
differences correspond to αâ-conversion. In [1], α-conversion is handled in the ∇â
rule using α-standardized forms. Also, we have defined the ∇â rule to work with
â-conversion instead of â-reduction. We prefer this stronger version of∇â over the
weaker option “If A ∈ Φ, then Φ ∗ A

y

â
∈ ΓΣ” since it helps to avoid the use of ∇sat

in several proofs below. (Note that ∇â follows from the weaker option and ∇sat .)
Furthermore, in practical applications, e.g., proving completeness of calculi, the
stronger property is typically as easy to validate as the weaker one. An analogous
argument applies to ∇ç.

Remark 6.9. While the work presented in this article is based on the choice of
the primitive logical connectives ¬,∨, and Πα (and possibly primitive equality), a
means to generalize the framework over the concrete choice of logical primitives
is provided by the uniform notation approach as, for instance, given in [22]. It is
clearly possible to achieve such a generalization for our framework as well. This
can be done in straightforward manner: ∇∧ becomes an α-property, ∇∨ becomes a
â-property,∇∀ becomes a ã-property, and∇∃ becomes a ä-property. Thus they will
have the following form:

α-case: If α ∈ Φ, then Φ ∗ α1 ∗ α2 ∈ ΓΣ.
â-case: If â ∈ Φ, then Φ ∗ â1 ∈ ΓΣ or Φ ∗ â2 ∈ ΓΣ.
ã-case: If ã ∈ Φ, then Φ ∗ ãW ∈ ΓΣ for eachW ∈ cwffα .
ä-case: If ä ∈ Φ, then Φ ∗ äw ∈ ΓΣ for any parameter wα ∈ Σ which does not occur

in any sentence of Φ.

We often refer to property ∇c as “atomic consistency”. The next lemma shows
that we also have the corresponding property for non-atoms.

Lemma 6.10 (Non-atomic consistency). Let ΓΣ be an abstract consistency class
and A ∈ cwffo(Σ), then for all Φ ∈ ΓΣ we have A /∈ Φ or ¬A /∈ Φ.

Proof following a similar argument in [1], Lemma 3.3.3. If for some Φ ∈ ΓΣ and
A ∈ cwffo(Σ) we have A ∈ Φ and ¬A ∈ Φ, then {A,¬A} ∈ ΓΣ since ΓΣ is closed
under subsets. Furthermore, using ∇â and closure under subsets we can assume
such an A is â-normal. We prove {A,¬A} /∈ ΓΣ for any â-normal A ∈ cwffo(Σ) by
induction on the number of logical constants in A.
IfA is atomic (which includes primitive equations), this follows immediately from

∇c . Suppose A ≡ ¬B for some B ∈ cwffo(Σ) and {¬B,¬¬B} ∈ ΓΣ. By ∇¬ and
closure under subsets, we have {¬B,B} ∈ ΓΣ, contradicting the induction hypothesis
for B. Suppose A ≡ B ∨ C for some B,C ∈ cwffo(Σ) and {B ∨ C ,¬(B ∨ C)} ∈ ΓΣ.
By∇∨,∇∧ and closure under subsets, we have either {B,¬B} ∈ ΓΣ or {C ,¬C} ∈ ΓΣ,
contradicting the induction hypotheses for B and C . Suppose A ≡ ΠαB for some
B ∈ cwffα→o(Σ) and {ΠαB,¬(ΠαB)} ∈ ΓΣ. Since Σα is assumed to be infinite (by
Remark 3.16), there is a parameter wα ∈ Σα which does not occur in A. Since

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1067

w is a parameter, the sentence Bw clearly has one less logical constant than ΠαB.
However, we cannot directly apply the induction hypothesis as Bw may not be
â-normal. Since B is â-normal, the only way Bw can fail to be â-normal is if B
has the form ëXα C for some C ∈ wffo(Σ) where free(C) ⊆ {Xα}. In this case, it
is easy to show that the reduct [w/X]C is â-normal and contains the same number
of logical constants as B. In either case, we can let N be the â-normal form of Bw
and apply the induction hypothesis to obtain {N ,¬N} /∈ ΓΣ. On the other hand,
∇∃, ∇∀, ∇â and closure under subsets implies {N ,¬N} ∈ ΓΣ, a contradiction. a

Remark 6.11. Note that for the connectives ∨ and Πα there is a positive and a
negative condition given in the definition above, namely∇∨/∇∧ for∨ and∇∀/∇∃ for

Πα . For
.
=o and

.
=α→â the situation is different since we need only conditions for

the negative cases. Positive counterparts can be inferred by expanding the Leibniz
definition of equality (cf. Lemma 6.12).

Lemma 6.12 (Leibniz equality). Let ΓΣ be an abstract consistency class. The fol-
lowing properties are valid for all Φ ∈ ΓΣ, A,B ∈ cwffo(Σ), C ∈ cwffα(Σ) and
F,G ∈ cwffα→â (Σ).

∇r.
=
: ¬(C

.
=α C) /∈ Φ.

∇→.
=
: If F

.
=
α→â

G ∈ Φ, then Φ ∗ FW
.
=
â
GW ∈ ΓΣ for any closedW ∈ cwffα(Σ).

∇o.
=
: If A

.
=o B ∈ Φ, then Φ ∗ A ∗ B ∈ ΓΣ or Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.

Proof. To show∇r.
=
, assume¬(C

.
= C) ∈ Φ. By subset closure {¬(C

.
= C)} ∈ ΓΣ

and by ∇∃ with some parameter p which does not occur in C and ∇â we get
{¬(C

.
= C),¬(¬pC ∨pC)} ∈ ΓΣ. The contradiction follows by∇∧,∇¬ and∇c . So,

∇r.
=
holds.

To show∇→.
=
, suppose F

.
=
α→â

G ∈ Φ. By application of∇∀ with ëXα→â FW
.
=

XW and ∇â we have Φ ∗ (¬(FW
.
= FW) ∨ FW

.
= GW) ∈ ΓΣ. By ∇∨ and subset

closure we get Φ ∗ ¬(FW
.
= FW) ∈ ΓΣ or Φ ∗ FW

.
= GW ∈ ΓΣ. The latter proves

the assertion since the first option is ruled out by∇r.
=
(shown above).

To show ∇o.
=
, suppose A

.
=
o
B ∈ Φ. Applying ∇∀ with ëY Y we have Φ ∗

(ëPo→o ¬PA ∨ PB)(ëY Y) ∈ ΓΣ. By ∇â and subset closure we get Φ ∗ ¬A ∨ B ∈
ΓΣ. Similarly, we further derive by ∇∀ with ëY ¬Y , ∇â , and subset closure that
Φ ∗ ¬A ∨ B ∗ ¬¬A ∨ ¬B ∈ ΓΣ. By applying ∇∨ twice and subset closure we get
the following four options: (i) Φ ∗ ¬A ∗ ¬¬A ∈ ΓΣ, (ii) Φ ∗ ¬A ∗ ¬B ∈ ΓΣ, (iii)
Φ ∗ B ∗ ¬¬A ∈ ΓΣ, or (iv) Φ ∗ B ∗ ¬B ∈ ΓΣ. Cases (i) and (iv) are ruled out by
non-atomic consistency. In case (iii) we furthermore get by ∇¬ and subset closure
that Φ ∗ B ∗ A ∈ ΓΣ. Thus, Φ ∗ ¬A ∗ ¬B ∈ ΓΣ or Φ ∗ B ∗ A ∈ ΓΣ. a

We could easily add respective properties for symmetry, transitivity, and congru-
ence to the previous lemma. They can be shown analogously, i.e., they also follow
from the properties of Leibniz equality.
In contrast to [1], we work with saturated abstract consistency classes in order
to simplify the proofs of the model existence theorems. For a discussion of the
consequences of this decision, see Section 8.2.

Definition 6.13 (Saturatedness). We call an abstract consistency class ΓΣ satu-
rated if it satisfies∇sat .

1068 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 6.14. Clearly, not all abstract consistency classes are saturated, since the
empty set is one that is not (cwffo(Σ) is certainly non-empty since∀Po P ∈ cwffo(Σ)).

Remark 6.15. The saturation condition ∇sat can be very difficult to verify in
practice. For example, showing that an abstract consistency class induced from a
sequent calculus (as in [1]) is saturated corresponds to showing cut-elimination (cf.
[12]). Since Andrews [1] did not use saturation, he could use his results to give a
model-theoretic proof of cut-elimination for a sequent calculus. We cannot use the
results of this article to obtain similar cut-elimination results.

We now investigate derived properties of primitive equality.

Lemma 6.16 (Primitive equality). LetΓΣ be an abstract consistency classwith prim-
itive equality, i.e., =α∈ Σα→α→o for all types α ∈ T , where ∇r= and ∇

.
=
= hold. Then

∇=.
=
and∇s= are valid. Furthermore,∇

.
=−

=− and∇=
−

.
=− are valid if ΓΣ is saturated.

Proof. To show∇=.
=
we derive from (A

.
=α B) ∈ Φ by ∇∀ with ëXα A =α X , ∇â ,

and subset closure that Φ ∗ ¬(A = A) ∨ A = B ∈ ΓΣ. By ∇∨ and subset closure we
get Φ ∗ ¬(A = A) ∈ ΓΣ or Φ ∗ A = B ∈ ΓΣ. The assertion follows from the latter
option since the former is ruled out by∇r=.

In order to show ∇s= let F[A]p ∈ Φ, we derive from A =α B ∈ Φ by ∇
.
=
= that

Φ ∗ (A
.
= B) ∈ ΓΣ. By ∇∀ with ëX F[X]p (where X ∈ Vα does not occur bound in

F[A]p), ∇â , and subset closure we furthermore get that Φ ∗ (¬F[A]p ∨ F[B]p) ∈ ΓΣ.
Application of∇∨ and subset closure gives usΦ∗¬F[A]p ∈ ΓΣ orΦ∗F[B]p ∈ ΓΣ. The
assertion follows from the latter option since the former is ruled out by F[A]p ∈ Φ
and non-atomic consistency.

The straightforward proof for ∇=
−

.
=− employs saturation, ∇

.
=
= , and non-atomic

consistency. Similarly, the proof for ∇
.
=−

=− employs saturation, ∇=.= , and atomic
consistency. a

The next theorem provides some alternatives to our choice of ∇
.
=
= and ∇r= in

the definition of abstract consistency classes with primitive equality provided that
saturation holds. In practical applications the user may therefore choose the com-
bination that suits best.

Theorem 6.17 (Alternative properties for primitive equality). Let ΓΣ be an ab-
stract consistency class and let =α∈ Σα→α→o for all types α ∈ T . If ΓΣ is saturated
and validates one of the following combinations of properties, then it also validates∇

.
=
=

and∇r=. The combinations are:

(1) ∇s= and∇
r
=.

(2) ∇
.
=
= and∇

=.
=
.

(3) ∇
.
=−

=− and∇=
−

.
=− .

Proof. To prove (1) we only have to show ∇
.
=
= . Let (A = B) ∈ Φ and suppose

Φ ∗ (A
.
= B) /∈ ΓΣ. Then by saturation Φ ∗ ¬(A

.
= B) ∈ ΓΣ and by application of∇

s
=

we get a contradiction to ∇r.
=
(cf. Lemma 6.12).

To prove (2) we only have to show∇r=. Since Φ ∗ ¬(A
.
= A) /∈ ΓΣ by∇r.= we get by

saturation Φ ∗A
.
= A ∈ ΓΣ. By∇=.= and subset closure, we have Φ ∗A = A ∈ ΓΣ. By

atomic consistency, we have ¬(A = A) /∈ Φ.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1069

For (3) we first show ∇r=. Suppose ¬(A = A) ∈ Φ. Then by ∇
.
=−

=− we get

Φ ∗ ¬(A
.
= A) ∈ ΓΣ contradicting ∇r.=. To show ∇

.
=
= let A = B ∈ Φ and suppose

Φ ∗ A
.
= B /∈ ΓΣ. By saturation we get Φ ∗ ¬(A

.
= B) ∈ ΓΣ and by application of

∇=
−

.
=− we get a contradiction to atomic consistency. a

Lemma 6.18 (Compactness of abstract consistency classes). For eachabstract con-
sistency classΓΣ there exists a compact abstract consistency classΓ′Σ satisfying the same
∇∗ properties such that ΓΣ ⊆ Γ′Σ .

Proof (following and extending [6], Proposition 2506). We choose Γ′Σ := {Φ ⊆
cwffo | every finite subset of Φ is in ΓΣ }. Now suppose that Φ ∈ ΓΣ. ΓΣ is closed
under subsets, so every finite subset of Φ is in ΓΣ and thus Φ ∈ Γ′Σ . Hence ΓΣ ⊆ Γ

′
Σ .

Next let us show that Γ′Σ is compact. Suppose Φ ∈ Γ′Σ and Ψ is an arbitrary
finite subset of Φ. By definition of Γ′Σ all finite subsets of Φ are in ΓΣ and therefore
Ψ ∈ Γ′Σ . Thus all finite subsets of Φ are in Γ

′
Σ whenever Φ is in Γ

′
Σ . On the other

hand, suppose all finite subsets of Φ are in Γ′Σ . Then by the definition of Γ
′
Σ the finite

subsets of Φ are also in ΓΣ, so Φ ∈ Γ′Σ . Thus Γ
′
Σ is compact. Note that by Lemma 6.2

we have that Γ′Σ is closed under subsets.
Next we show that if ΓΣ satisfies∇∗, then Γ′Σ satisfies∇∗.

∇c : Let Φ ∈ Γ′Σ and suppose there is an atom A, such that {A,¬A} ⊆ Φ. {A,¬A}
is clearly a finite subset of Φ and hence {A,¬A} ∈ ΓΣ contradicting ∇c for ΓΣ.

∇¬: Let Φ ∈ Γ′Σ , ¬¬A ∈ Φ, Ψ be any finite subset of Φ ∗A, and Θ := (Ψ \ {A}) ∗
¬¬A. Θ is a finite subset of Φ, so Θ ∈ ΓΣ. Since ΓΣ is an abstract consistency
class and ¬¬A ∈ Θ, we get Θ ∗A ∈ ΓΣ by∇¬ for ΓΣ. We know that Ψ ⊆ Θ ∗A
and ΓΣ is closed under subsets, so Ψ ∈ ΓΣ. Thus every finite subset Ψ of Φ ∗A
is in ΓΣ and therefore by definition Φ ∗ A ∈ Γ′Σ .

∇â ,∇ç ,∇∨,∇∧,∇∀,∇∃: Analogous to∇¬.

∇î : Let Φ ∈ Γ′Σ , ¬(ëXαM
.
=
α→â

ëX N) ∈ Φ and Ψ be any finite subset of

Φ∗¬([w/X]M
.
=
â
[w/X]N), wherew ∈ Σα is a parameter thatdoes not occur

in any sentence ofΦ. We show thatΨ ∈ ΓΣ. ClearlyΘ := (Ψ\{¬([w/X]M
.
=â

[w/X]N)}) ∗ ¬(ëX M
.
=
α→â

ëX N) is a finite subset of Φ and therefore

Θ ∈ ΓΣ. Since ΓΣ satisfies ∇î and ¬(ëX M
.
=α→â ëX N) ∈ Θ, we have

Θ ∗ ¬([w/X]M
.
=â [w/X]N) ∈ ΓΣ. Furthermore, Ψ ⊆ Θ ∗ ¬([w/X]M

.
=â

[w/X]N) and ΓΣ is closed under subsets, so Ψ ∈ ΓΣ. Thus every finite subset

Ψ of Φ∗¬([w/X]M
.
=â [w/X]N) is in ΓΣ, and therefore by definition we have

Φ ∗ ¬([w/X]M
.
=
α
[w/X]N) ∈ Γ′Σ .

∇f: Analogous to∇î .
∇b: Let Φ ∈ Γ′Σ with ¬(A

.
= B) ∈ Φ. Assume Φ∗A∗¬B /∈ ΓΣ and Φ∗¬A∗B /∈ ΓΣ.

Then there exists finite subsets Φ1 and Φ2 of Φ, such that Φ1 ∗ A ∗ ¬B /∈ ΓΣ
and Φ2 ∗¬A ∗B /∈ ΓΣ. Now we choose Φ3 := Φ1 ∪Φ2 ∗¬(A

.
= B). Obviously

Φ3 is a finite subset of Φ and therefore Φ3 ∈ ΓΣ. Since ΓΣ satisfies∇b, we have
that Φ3 ∗ A ∗ ¬B ∈ ΓΣ or Φ3 ∗ ¬A ∗ B ∈ ΓΣ. From this and the fact that ΓΣ is
closed under subsets we get that Φ1 ∗A ∗ ¬B ∈ ΓΣ or Φ2 ∗ ¬A ∗ B ∈ ΓΣ, which
contradicts our assumption.

∇sat : Let Φ ∈ Γ′Σ . Assume neither Φ ∗ A nor Φ ∗ ¬A is in Γ′Σ . Then there are
finite subsets Φ1 and Φ2 of Φ, such that Φ1 ∗ A /∈ ΓΣ and Φ2 ∗ ¬A /∈ ΓΣ.
As Ψ := Φ1 ∪ Φ2 is a finite subset of Φ, we have Ψ ∈ ΓΣ. Furthermore,

1070 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Ψ ∗A ∈ ΓΣ or Ψ ∗ ¬A ∈ ΓΣ because ΓΣ is saturated. ΓΣ is closed under subsets,
so Φ1 ∗ A ∈ ΓΣ or Φ2 ∗ ¬A ∈ ΓΣ. This is a contradiction, so we can conclude
that if Φ ∈ Γ′Σ , then Φ ∗ A ∈ Γ′Σ or Φ ∗ ¬A ∈ Γ′Σ .

In case primitive equality is present in the signature, we check the corresponding
properties.

∇r=: Let Φ ∈ Γ′Σ and assume ¬(A =
α A) ∈ Φ. {¬(A =α A)} is clearly a finite

subset of Φ and hence {¬(A =α A)} ∈ ΓΣ contradicting∇r= in ΓΣ.

∇
.
=
= ,∇

s
= ,∇

=.
=
,∇
.
=−

=− ,∇=
−

.
=− Analogous to ∇¬. a

6.2. Hintikka sets. Hintikka sets connect syntax with semantics as they provide
the basis for the model constructions in the model existence theorems. We have
defined eight different notions of abstract consistency classes by first defining prop-
erties ∇∗, then specifying which should hold in Acc∗. Similarly, we define Hintikka
sets by first defining the desired properties.

Definition 6.19 (Σ-Hintikka properties). LetH be a set of sentences. We define
the following properties which H may satisfy, where A,B ∈ cwff o, C ,D ∈ cwffα ,
F ∈ cwffα→o , and (ëXαM), (ëX N),G ,H ∈ cwffα→â :

~∇c : A /∈ H or ¬A /∈ H .
~∇¬: If ¬¬A ∈ H , then A ∈ H .
~∇â : If A ∈ H and A≡âB, then B ∈ H .
~∇ç : If A ∈ H and A≡âçB, then B ∈ H .
~∇∨: If A ∨ B ∈ H , then A ∈ H or B ∈ H .
~∇∧: If ¬(A ∨ B) ∈ H , then ¬A ∈ H and ¬B ∈ H .
~∇∀: If ΠαF ∈ H , then FW ∈ H for eachW ∈ cwffα .
~∇∃: If ¬Π

αF ∈ H , then there is a parameter wα ∈ Σα such that ¬(Fw) ∈ H .
~∇b: If ¬(A

.
=o B) ∈ H , then {A,¬B} ⊆ H or {¬A,B} ⊆ H .

~∇î : If ¬(ëXαM
.
=
α→â

ëX N) ∈ H , then there is a parameter wα ∈ Σα such that

¬([w/X]M
.
=â [w/X]N) ∈ H .

~∇f: If¬(G
.
=
α→â

H) ∈ H , then there is a parameterwα ∈ Σα such that¬(Gw
.
=
â

Hw) ∈ H .
~∇sat : Either A ∈ H or ¬A ∈ H .
~∇r=: ¬(C =

α C) /∈ H .
~∇
.
=
= : If C =

α D ∈ H , then C
.
=α D ∈ H .

Definition 6.20 (Σ-Hintikka set). A set H of sentences is called a Σ-Hintikka
set if it satisfies ~∇c , ~∇¬, ~∇â , ~∇∨, ~∇∧, ~∇∀ and ~∇∃. When primitive equality is present

in the signature and H is a Hintikka set satisfying ~∇r= and ~∇
.
=
= we call H a Σ-

Hintikka set with primitive equality. We define the following collections of Hin-
tikka sets (with primitive equality): Hintâ , Hintâç , Hintâî , Hintâf, Hintâb, Hintâçb,
Hintâîb, and Hintâfb, where we indicate by indices which additional properties from

{~∇ç, ~∇î , ~∇f, ~∇b} are required. If primitive equality is in the signature, we require
H ∈ Hint∗ to be a Hintikka set with primitive equality.

We will construct Hintikka sets as maximal elements of abstract consistency
classes. To obtain a Hintikka set, we must explicitly show the property ~∇∃ (and ~∇î

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1071

or ~∇f whenappropriate). Thiswill ensure thatHintikka sets have enoughparameters
which act as witnesses.

Lemma 6.21 (Hintikka lemma). Let ΓΣ be an abstract consistency class in Acc∗.
Suppose a setH ∈ ΓΣ satisfies the following properties:

(1) H is subset-maximal in ΓΣ (i.e., for each sentenceD ∈ cwffo such thatH ∗D ∈
ΓΣ, we already have D ∈ H).

(2) H satisfies ~∇∃.
(3) If ∗ ∈ {âî,âîb}, then ~∇î holds inH .

(4) If ∗ ∈ {âf,âfb}, then ~∇f holds inH .

Then,H ∈ Hint∗. Furthermore, if ΓΣ is saturated, thenH satisfies ~∇sat .

Proof. H satisfies ~∇∃ by assumption. Also, if ∗ ∈ {âî,âîb} (∗ ∈ {âf,âfb}), then

we have explicitly assumed H satisfies ~∇î (~∇f). The fact that H ∈ ΓΣ satisfies ~∇c
follows directly from non-atomic consistency (Lemma 6.10). Similarly, if primitive
equality is in the signature, then H satisfies ~∇r= since H ∈ ΓΣ and ΓΣ satisfies ∇r=.

Every other ~∇∗ property follows directly from the corresponding ∇∗ property and
maximality of H in ΓΣ. For example, to show ~∇¬, suppose ¬¬A ∈ H . By ∇¬,
we know H ∗ A ∈ ΓΣ. By maximality of H , we have A ∈ H . Checking ~∇â , ~∇ç
(if ∗ ∈ {âç,âçb}), ~∇∧, ~∇∀, and ~∇

.
=
= hold for H follows exactly this same pattern.

Checking ~∇∨, ~∇b (if ∗ ∈ {âb,âçb,âfb}) and ~∇sat (if ΓΣ is saturated) follows a

similar pattern, but with a simple case analysis. For example, to check ~∇sat , given
A ∈ cwffo(Σ), ∇sat implies H ∗ A ∈ ΓΣ or H ∗ ¬A ∈ ΓΣ. So, either A ∈ H or
¬A ∈ H . a

It is worth noting that the converse of ~∇
.
=
= also holds in Hintikka sets with

primitive equality.

Lemma 6.22. Suppose primitive equality is in the signature and H is a Hintikka
set with primitive equality. Then, we have the following property for every type α and
A,B ∈ cwffα(Σ):

∇
.
=
= : A =

α B ∈ H iff A
.
=
α
B ∈ H .

Proof. If A =α B ∈ H , then A
.
=
α
B ∈ H by ~∇

.
=
= . For the converse direction

assume that A
.
=α B ∈ H . From this we get by ~∇∀ with ëX A = X and ∇â that

¬(A = A) ∨ A = B ∈ H . Since¬(A = A) /∈ H by ~∇r=, ~∇∨ impliesA =
α B ∈ H . a

It is helpful to note the following properties of Leibniz equality in Hintikka sets.

Lemma 6.23. Suppose H is a Hintikka set. For any F,G ∈ cwffα→â(Σ) and
A,B,C ∈ cwffα(Σ) (for types α and â), we have the following:
~∇r.
=
: ¬(A

.
=α A) /∈ H .

~∇tr.
=
: If A

.
=α B ∈ H and B

.
=α C ∈ H , then A

.
=α C ∈ H .

~∇→.
=
: If (F

.
=
α→â

G) ∈ H and (A
.
=
α
B) ∈ H , then (FA

.
=
â
GB) ∈ H .

Proof. To show ~∇r.
=
, suppose ¬(A

.
=
α
A) ∈ H . By ~∇∃ and ~∇â , there must be

some parameter qα→o such that ¬(¬qA ∨ qA) ∈ H . By ~∇∧, we have ¬¬qA ∈ H
and ¬qA ∈ H , contradicting ~∇c .
To show ~∇tr.

=
, suppose A

.
=α B ∈ H and B

.
=α C ∈ H . Let Qα→o be the

closed formula (ëXα A
.
=
α
X). Applying ~∇∀ to B

.
=
α
C ∈ H and Q, we know

1072 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

¬(QB)∨QC ∈ H . By ~∇∨, we know¬(QB) ∈ H orQC ∈ H . If ¬(QB) ∈ H , then
¬(A

.
=
α
B) ∈ H by ~∇â , contradicting ~∇c . So, QC ∈ H and hence A

.
=
α
C ∈ H as

desired.
To show ~∇→.

=
, let P(α→â)→o be the closed formula (ëHα→â FA

.
=â HA), Applying

~∇∀ to (F
.
=α→â G) ∈ H and P, we have ¬(PF) ∨ PG ∈ H . By ~∇∨, we know

¬(PF) ∈ H or PG ∈ H . If ¬(PF) ∈ H , then ¬(FA
.
=â FA) ∈ H by ~∇â , which

contradicts ~∇r.
=
. So, we must have PG ∈ H and hence (FA

.
=â GA) ∈ H . LetQα→o

be the closed formula (ëXα FA
.
=
â
GX). Applying ~∇∀ and ~∇∨ to (A

.
=
α
B) ∈ H ,

we know ¬(QA) ∈ H or QB ∈ H . If ¬(QA) ∈ H , then ¬(FA
.
=â GA) ∈ H by ~∇â ,

contradicting ~∇c . So, QB ∈ H and hence (FA
.
=
â
GB) ∈ H as desired. a

Whenever a Hintikka set satisfies ~∇sat , we can prove far more closure properties.
For example, we can prove converses of ~∇¬, ~∇â , ~∇∨, ~∇∧, ~∇∀, ~∇∃ and ~∇

.
=
= (when

primitive equality is in the signature). Also, if any of ~∇ç , ~∇b, ~∇î or ~∇f hold, we can

prove the corresponding converse. (We could call these properties
←

∇∗.) The proofs
of the stronger properties ∇¬ and∇∨ in Lemma 6.25 indicate how one would prove
any of these converse properties.

Definition 6.24 (Saturated set). We say a set of sentences H is saturated if it
satisfies ~∇sat .

ByLemma6.21, anyHintikka set constructed as amaximalmember of a saturated
abstract consistency class will be saturated. However, it is also possible for a
maximal member of an abstract consistency class ΓΣ to be saturated without ΓΣ
being saturated.

Lemma 6.25 (Saturated sets lemma). SupposeH is a saturatedHintikka set. Then
we have the following properties for every A,B ∈ cwff o(Σ), F ∈ cwffα→o(Σ), and
C ∈ cwffα(Σ) (for any type α):

∇¬: ¬A ∈ H iff A /∈ H .
∇∨: (A ∨ B) ∈ H iff A ∈ H or B ∈ H .
∇∀: (ΠαF) ∈ H if and only if FD ∈ H for every D ∈ cwffα(Σ).

∇
â

∀ : (Π
αF) ∈ H iff (FD)

y

â
∈ H for every D ∈ cwffα(Σ)

y

â
.

∇r : (C
.
=
α
C) ∈ H .

Proof. If ¬A ∈ H , then A /∈ H by ~∇c . If A /∈ H , then ¬A ∈ H since H is
saturated. So, ∇¬ holds.
If (A ∨ B) ∈ H , then A ∈ H or B ∈ H by ~∇∨. We prove the converse by
contraposition. Suppose (A ∨ B) /∈ H . By saturation we have ¬(A ∨ B) ∈ H , and
by ~∇∧ we get ¬A ∈ H and ¬B ∈ H . So, by ~∇c , A /∈ H and B /∈ H . Thus, ∇∨
holds.
One direction of∇∀ is ~∇∀. For one direction of∇

â

∀ , note that if (Π
αF) ∈ H , then

for any D ∈ cwffα(Σ)

y

â
we have (FD)

y

â
∈ H by ~∇∀ and ~∇â .

Suppose (ΠαF) /∈ H . By saturation, ¬(ΠαF) ∈ H . By ~∇∃, there is a parameter
wα ∈ Σα such that ¬(Fw) ∈ H . By ~∇c , we know (Fw) /∈ H . This shows the other
direction of∇∀. Furthermore, by ~∇â we know ¬(Fw)

y

â
∈ H and so (Fw)

y

â
/∈ H .

Since w is â-normal, we also have the other direction of∇
â

∀ .

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1073

Finally, ∇r follows directly from saturation and ~∇r.=. a

Lemma 6.26 (Saturated sets lemma for b). Suppose H ∈ Hint∗ where ∗ ∈ {âb,
âçb,âîb,âfb}. If H is saturated, then the following property holds for all A,B ∈
cwffo(Σ).

∇b: A
.
=
o
B ∈ H or A

.
=
o
¬B ∈ H .

Proof. Suppose (A
.
=o B) /∈ H and (A

.
=o ¬B) /∈ H . By saturation, ¬(A

.
=o

B) ∈ H and ¬(A
.
=o ¬B) ∈ H . By ~∇b, we must have {A,¬B} ⊆ H or {¬A,B} ⊆

H . We must also have {A,¬¬B} ⊆ H or {¬A,¬B} ⊆ H . Each of the four cases

leads to an immediate contradiction to ~∇c . a

Lemma 6.27 (Saturated sets lemma for ç). Suppose H ∈ Hint∗ where ∗ ∈ {âç,
âçb}. If H is saturated, then the following property holds for every type α and
A ∈ cwffα(Σ):

∇ç: (A
.
=α A↓âç) ∈ H .

Proof. If (A
.
= A↓âç) /∈ H , then by saturation ¬(A

.
= A↓âç) ∈ H . So, by ~∇ç we

have ¬(A↓âç
.
=
α
A↓âç) ∈ H . But this contradicts ~∇

r.
=
. a

Lemma 6.28 (Saturated sets lemma for î). Suppose H ∈ Hint∗ where ∗ ∈ {âî,
âîb}. If H is saturated, then the following properties hold for all α, â ∈ T and
(ëXαM), (ëX N) ∈ cwffα→â(Σ):

∇î : (ëX M
.
=
α→â

ëX N) ∈ H iff ([A/X]M
.
=
â
[A/X]N) ∈ H for every A ∈

cwffα(Σ).

∇
â

î : (ëX M
.
=α→â ëX N) ∈ H iff ([A/X]M

.
=â [A/X]N)

y

â
∈ H for every A ∈

cwffα(Σ)

y

â
.

Proof. Suppose (ëX M
.
=α→â ëX N) ∈ H and A ∈ cwffα(Σ). We can apply ~∇∀

and ~∇â using the closed formula (ëKα→â [A/X]M
.
=
â
KA) to obtain

(¬([A/X]M
.
=
â
[A/X]M) ∨ [A/X]M

.
=
â
[A/X]N) ∈ H .

Since ¬([A/X]M
.
=â [A/X]M) /∈ H (by ~∇r.

=
), we know ([A/X]M

.
=â [A/X]N) ∈

H . This shows one direction of ∇î . By ~∇â we have ([A/X]M
.
=â [A/X]N)

y

â
∈ H .

Since this holds in particular for any A ∈ cwffα(Σ)

y

â
, this shows one direction of

∇
â

î .

Suppose (ëX M
.
=α→â ëX N) /∈ H . We show that there is a (â-normal) A ∈

cwffα(Σ) with [A/X]M
.
=â [A/X]N /∈ H . By saturation,¬(ëX M

.
=α→â ëX N) ∈

H . By ~∇î , there is a parameter wα ∈ Σα such that ¬([w/X]M
.
=â [w/X]N) ∈ H .

By ~∇c , [w/X]M
.
=â [w/X]N /∈ H . Choosing A := w we have the other direction

of∇î . Since w is â-normal and ([w/X]M
.
=
â
[w/X]N)

y

â
/∈ H (using ~∇â), we have

the other direction of∇
â

î . a

Lemma 6.29 (Saturated sets lemma for f). SupposeH ∈ Hint∗ where∗ ∈ {âf,âfb}.
If H is saturated, then the following property holds for any types α and â and
G ,H ∈ cwffα→â (Σ).

∇f: G
.
=
α→â

H ∈ H iff GA
.
=
â
HA ∈ H for every A ∈ cwffα(Σ).

1074 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

∇
â

f : G
.
=α→â H ∈ H iff (GA

.
=â HA)

y

â
∈ H for every A ∈ cwffα(Σ)

y

â
.

Proof. Suppose (G
.
=
α→â

H) ∈ H and A ∈ cwffα(Σ). Since (A
.
=
α
A) ∈ H by

∇r we have (GA
.
=
â
HA) ∈ H by ~∇→.

=
(cf. Lemma 6.23). This shows one direction

of ∇f. By ~∇â we have (GA
.
=
â
HA)

y

â
∈ H . Since this holds in particular for any

A ∈ cwffα(Σ)

y

â
, this shows one direction of ∇

â

f .

Suppose (G
.
=
α→â

H) /∈ H . By saturation, ¬(G
.
=
α→â

H) ∈ H . By ~∇f, there is

a parameter wα ∈ Σα such that ¬(Gw
.
=
â
Hw) ∈ H . By ~∇c , (Gw

.
=
â
Hw) /∈ H .

Choosing A := w we have the other direction of ∇f. Since w is â-normal and

(Gw
.
=â Hw)

y

â
/∈ H (using ~∇â), we have the other direction of∇

â

f . a

In Lemma 3.24, we compared properties ç, î and f of models by showing f

is equivalent to ç plus î. Similarly, Theorem 6.31 compares ~∇ç , ~∇î , and ~∇f as

properties of Hintikka sets. Showing ~∇f implies ~∇ç requires saturation and must be
shown in several steps reflected by Lemma 6.30.

Lemma 6.30. Let H be a saturated Hintikka set satisfying ~∇f.

(1) For all F ∈ cwffα→â we have (ëXα FX)
.
=α→â F ∈ H .

(2) For all A,B ∈ cwffα(Σ), if A ç-reduces to B in one step, then A
.
=α B ∈ H .

(3) For all A ∈ cwffα(Σ), A
.
=
α
A↓âç ∈ H .

(4) For all A ∈ cwffo(Σ), if A ∈ H , then A↓âç ∈ H .

Proof. To show part (1), suppose (ëXα FX)
.
=
α→â

F /∈ H . By saturation,

¬((ëXα FX)
.
=α→â F) ∈ H . By ~∇f, there is a parameter wα such that

¬(((ëXα FX)w)
.
=â (Fw)) ∈ H .

By ~∇â , ¬((Fw)
.
=
â
(Fw)) ∈ H , which contradicts ~∇r.

=
(cf. Lemma 6.23).

We prove part (2) by induction on the position of the ç-redex in A. If A is the ç-
redex reduced to obtain B, then this follows from part (1). Suppose A ≡ (Fã→αCã)
and B ≡ (Gã→αC) where F ç-reduces to G in one step. By induction, we know

F
.
=ã→α G ∈ H . By ∇r , C

.
=ã C ∈ H . By ~∇→.

=
, we have (FC)

.
=α (GC) ∈ H as

desired. The case in which A ≡ (Fã→αCã) and B ≡ (FDã) where C ç-reduces to D
in one step is analogous.
Suppose A ≡ (ëYâ Cã) and B ≡ (ëYâ Dã) where C ç-reduces to D in one

step. Let p be the position of the redex in C . Assume A
.
=â→ã B /∈ H . By

saturation, ¬(A
.
=
â→ã

B) ∈ H . By ~∇f, there is some parameter wâ such that

¬(Aw
.
=ã Bw) ∈ H . By ~∇â , we know ¬([w/Y]C

.
=ã [w/Y]D) ∈ H . Note that

[w/Y]C ç-reduces to [w/Y]D in one step by reducing the redex at position p in
[w/Y]C . So, by the induction hypothesis, [w/Y]C

.
=
ã
[w/Y]D ∈ H , contradicting

~∇c .
Part (3) follows by induction on the number of âç-reductions from A to A↓âç . If

A is âç-normal, we have A
.
=α A ∈ H by ∇r . If A reduces to A↓âç in n + 1 steps,

then there is some Bα such that A reduces to B in one step and B reduces to A↓âç in

n steps. By induction, we have B
.
=α A↓âç ∈ H . If A â-reduces to B in one step,

then A
.
=
α
B ∈ H by∇r and ~∇â . If A ç-reduces to B in one step, then A

.
=
α
B ∈ H

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1075

by part (2). Using ~∇tr.
=
, A
.
=α B ∈ H and B

.
=α A↓âç ∈ H imply A

.
=α A↓âç ∈ H

as desired.
Finally, to show part (4), suppose A ∈ H . By part (3), A

.
=
o
A↓âç ∈ H . By ~∇∀,

¬(ëXo X)A ∨ (ëXo X) A↓âç ∈ H . By ~∇â and ~∇∨, we have ¬A ∈ H (contradicting
~∇c) or A↓âç ∈ H . Hence, A↓âç ∈ H . a

Theorem 6.31. LetH be a Hintikka set.

(1) IfH satisfies ~∇ç and ~∇î , thenH satisfies ~∇f.

(2) IfH satisfies ~∇f, thenH satisfies ~∇î .

(3) IfH is saturated and satisfies ~∇f, thenH satisfies ~∇ç .

Proof. Suppose H satisfies ~∇ç and ~∇î . Assume ¬(F
.
=α→â G) ∈ H . By ~∇ç,

¬((ëXα FX)
.
=
α→â

(ëX GX)) ∈ H . By ~∇î , there is a parameter wα such that

¬((Fw)
.
=
â
(Gw)) ∈ H . Thus, ~∇f holds.

Suppose H satisfies ~∇f and ¬(ëXαM
.
=
α→â

ëX N) ∈ H . By ~∇f, there is

a parameter wα such that ¬((ëXαM)w
.
=â (ëX N)w) ∈ H . By ~∇â , we have

¬([w/X]M
.
=
â
[w/X]N) ∈ H . Thus, ~∇î holds.

Suppose H is saturated and satisfies ~∇f. Assume A ∈ H , B ∈ cwffo(Σ), A≡âçB
and B /∈ H . By saturation, we know ¬B ∈ H . By Lemma 6.30(4), we know
A↓âç ∈ H and ¬ B↓âç ∈ H . Since A↓âç ≡ B↓âç, this contradicts ~∇c . a

6.3. Model existence theorems. We shall now present the proof of the abstract
extension lemma, which will nearly immediately yield themodel existence theorems.
For the proof we adapt the construction of Henkin’s completeness proof from [26,
27].

Lemma 6.32 (Abstract extension lemma). Let Σ be a signature, ΓΣ be a compact
abstract consistency class in Acc∗, where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}, and let
Φ ∈ ΓΣ be sufficiently Σ-pure. Then there exists a Σ-Hintikka set H ∈ Hint∗, such
thatΦ ⊆ H . Furthermore, if ΓΣ is saturated, thenH is saturated.

Proof. In the following argument, note that α, â , and ã are types as usual, while
ä, å, ó and ô are ordinals.
By Remark 3.16, there is an infinite cardinal ℵs which is the cardinality of Σα for
each type α. This easily implies cwffα(Σ) is of cardinality ℵs for each type α. Let
å be the first ordinal of this cardinality. (In the countable case, å is ù.) Since the
cardinality of cwffo(Σ) is ℵs , we can use the well-ordering principle to enumerate
cwffo(Σ) as (Aä)ä<å .
Let α be a type. For each ä < å, let U äα be the set of constants of type α which
occur in a sentence in the set {Aó | ó ≤ ä }. Since ä < å, the set {Aó | ó ≤ ä }
has cardinality less than ℵs . Hence, U äα has cardinality less than ℵs . By sufficient
purity, we know there is a set of parameters Pα ⊆ Σα of cardinality ℵs such that
the parameters in Pα do not occur in the sentences of Φ. So, Pα \ U äα must have
cardinality ℵs for any ä < å. Using the axiom of choice, we can find a sequence
(wäα)ä<å where for each ä < å, w

ä
α ∈ Pα \ (U äα ∪ {wóα | ó < ä }). That is, for each

type α, we know wäα is a parameter of type α which does not occur in any sentence
in Φ ∪ {Aó | ó ≤ ä }. As a consequence, if wäα occurs in A

ó , then ä < ó. Also, we
have ensured that if wäα ≡ wóα , then ä ≡ ó for any ä, ó < å.

1076 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

The parameters wäα are intended to serve as witnesses. To ease the argument,
we define two sequences of witnessing sentences related to the sequence (Aä)ä<å .
For each ä < å, let Eä := ¬(Bwäα) if A

ä is of the form ¬(ΠαB), and let Eä := Aä

otherwise. If ∗ ∈ {âf,âfb} andAä is of the form¬(F
.
=
α→â

G), letXä := ¬(Fwäα
.
=
â

Gwäα). If ∗ ∈ {âî,âîb} and Aä is of the form ¬((ëXαM)
.
=
α→â

(ëX N)), let

Xä := ¬([wäα/X]M
.
=â [wäα/X]N). Otherwise, let X

ä := Aä . (Notice that any

sentence ¬(F
.
=α→â G) is also of the form ¬(ΠãB), where ã is (α → â) → o. So,

whenever Xä 6≡ Aä , we must also have Eä 6≡ Aä .)
We constructH by inductively constructing a transfinite sequence (H ä)ä<å such
thatH ä ∈ ΓΣ for each ä < å. Then the Σ-Hintikka set isH :=

⋃

ä<åH
ä . We define

H 0 := Φ. For limit ordinals ä, we defineH ä :=
⋃

ó<ä H
ó .

In the successor case, ifH ä ∗Aä ∈ ΓΣ, then we letH ä+1 := H ä ∗Aä ∗Eä ∗Xä . If
H ä ∗ Aä /∈ ΓΣ, we letH ä+1 := H ä .
We show by induction that for every ä < å, type α and parameter w ôα which
occurs in some sentence in H ä , we have ô < ä. The base case holds since no w ôα
occurs in any sentence in H 0 ≡ Φ. For any limit ordinal ä, if wôα occurs in some
sentence in H ä , then by definition of H ä , wôα already occurs in some sentence in
H ó for some ó < ä. So, ô < ó < ä.
For any successor ordinal ä +1, suppose wôα occurs in some sentence inH

ä+1. If
it already occurred in a sentence inH ä , then we have ô < ä < ä+1 by the inductive
assumption. So, we need only consider the case where w ôα occurs in a sentence in
H ä+1 \H ä . Note that (H ä+1 \H ä) ⊆ {Aä ,Eä ,Xä}. In any case, note that if ô is ä,
then we are done, since ä < ä + 1. If wôα is any parameter with ô 6≡ ä and occurs in
Eä or Xä , then it must also occur in Aä (by noting thatwôα 6≡ wäα and inspecting the
possible definitions of Eä and Xä), in which case ô < ä < ä + 1.
In particular, we now know wäα does not occur in any sentence of H

ä for any
ä < å and type α.
Next we show by induction that H ä ∈ ΓΣ for all ä < å. The base case holds by
the assumption that H 0 ≡ Φ ∈ ΓΣ. For any limit ordinal ä, assume H ó ∈ ΓΣ for
every ó < ä. We haveH ä ≡

⋃

ó<ä H
ó ∈ ΓΣ by compactness, since any finite subset

ofH ä is a subset ofH ó for some ó < ä.
For any successor ordinal ä + 1, we assume H ä ∈ ΓΣ. We have to show that
H ä+1 ∈ ΓΣ. This is trivial in caseH ä ∗Aä /∈ ΓΣ (for all abstract consistency classes)
since H ä+1 ≡ H ä . SupposeH ä ∗ Aä ∈ ΓΣ. We consider three sub-cases:

(i) If Eä ≡ Aä and Xä ≡ Aä , thenH ä ∗ Aä ∗ Eä ∗ Xä ∈ ΓΣ since H ä ∗ Aä ∈ ΓΣ.
(ii) If Eä 6≡ Aä and Xä ≡ Aä , then Aä is of the form ¬ΠαB and Eä ≡ ¬Bwäα .
We conclude that H ä ∗ Aä ∗ Eä ∈ ΓΣ by ∇∃ since wäα does not occur in A

ä

or any sentence of H ä . Since Xä ≡ Aä , this is the same as concluding
H ä ∗ Aä ∗ Eä ∗ Xä ∈ ΓΣ.

(iii) If Xä 6≡ Aä , then ∗ ∈ {âî,âf,âîb,âfb} (by the definition of X ä). H ä ∗ Aä ∗
Eä ∈ ΓΣ by ∇∃ since wä(α→â)→o does not occur in A

ä or any sentence in H ä .

Now,wäα (which is different fromw
ä
(α→â)→o

since it has a different type) does

not occur in any sentence inH ä ∗ Aä ∗ Eä . We haveH ä ∗ Aä ∗ Eä ∗ Xä ∈ H
by∇î (if ∗ ∈ {âî,âîb}) or by∇f (if ∗ ∈ {âf,âfb}).

Since ΓΣ is compact, we also haveH ∈ ΓΣ.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1077

Now we know that our inductively defined setH is indeed in ΓΣ and that Φ ⊆ H .
In order to apply Lemma 6.21, we must check H is maximal, satisfies ~∇∃, ~∇î (if

∗ ∈ {âî,âîb}), and ~∇f (if ∗ ∈ {âf,âfb}). It is immediate from the construction

that ~∇∃ holds since if ¬(ΠαF) ∈ H , then ¬(Fwäα) ∈ H where ä is the ordinal

such that Aä ≡ ¬(ΠαF). If ∗ ∈ {âî,âîb}, then we have ensured ~∇î holds since

¬([wäα/X]M
.
=â [wäα/X]N) ∈ H whenever ¬((ëXαM)

.
=α→â (ëX N)) ∈ H

where ä is the ordinal such that Aä ≡ ¬((ëXαM)
.
=α→â (ëX N)). Similarly, we

have ensured ~∇f holds when ∗ ∈ {âf,âfb} since ¬(Fwäα
.
=
â
Gwäα) ∈ H whenever

¬(F
.
=
α→â

G) ∈ H where ä is the ordinal such that Aä ≡ ¬(F
.
=
α→â

G).
It only remains to show thatH is maximal in ΓΣ. So, letA ∈ cwffo andH ∗A ∈ ΓΣ
be given. Note that A ≡ Aä for some ä < å. Since H is closed under subsets we
know that H ä ∗ Aä ∈ ΓΣ. By definition of H ä+1 we conclude that Aä ∈ H ä+1 and
hence A ∈ H .
So, Lemma 6.21 implies H ∈ Hint∗ andH is saturated if ΓΣ is saturated. a

We now use the Σ-Hintikka sets, guaranteed by Lemma 6.32, to construct a
Σ-valuation for the Σ-term evaluation that turns it into a model.

Theorem 6.33 (Model existence theorem for saturated sets). For all ∗ ∈ {â,âç,
âî,âf,âb,âçb,âîb,âfb} we have: IfH is a saturated Hintikka set in Hint∗ (cf. Defi-
nition 6.20), then there exists a modelM ∈ M∗ (cf. Definition 3.49) that satisfiesH .
Furthermore, each domainDα ofM has cardinality at most ℵs .

Proof. We start with the construction of a Σ-model MH1 for H based on the

term evaluation TE(Σ)
â
. This model may not be in the model classM∗ as it may

not satisfy property q. However, we will be able to use Theorem 3.62 to obtain a
model ofH which is.
Note that since H is saturated, by Lemma 6.25,H satisfies∇¬, ∇∨, and∇

â

∀ .

The domain of type α of the evaluation TE(Σ)
â
(cf. Definition 3.35 and

Lemma 3.36) is cwffα(Σ)

y

â
, which has cardinality ℵs . To constructMH1 , we simply

need to give a valuation function for this evaluation. This valuation function should
be a function õ : cwffo(Σ)

y

â
−→ {T, F}. We define

õ(A) :=

{

T if A ∈ H ,
F if A /∈ H .

To show õ is a valuation, we must check the logical constants are interpreted
appropriately. For each A ∈ cwffo(Σ)

y

â
, we have õ(¬A) ≡ T iff õ(A) ≡ F since

¬A ∈ H iff A /∈ H by ∇¬. For each A,B ∈ cwffo(Σ)

y

â
, we have õ(A ∨ B) ≡ T iff

õ(A) ≡ T or õ(B) ≡ T, since (A ∨ B) ∈ H iff A ∈ H or B ∈ H by ∇∨. Finally,

for each type α and F ∈ cwffα→o(Σ)

y

â
, ∇

â

∀ implies (Π
αF) ∈ H iff (FA)

y

â
∈ H

for every A ∈ cwffα(Σ)

y

â
. Thus, we have õ(ΠαF) ≡ T iff õ(F@âA) ≡ T for every

A ∈ cwffα(Σ)

y

â
.

This verifies MH1 := (cwff

y

â
,@â ,E â , õ) is a Σ-model. Clearly, MH1 |= H since

õ(A) ≡ T for every A ∈ H by definition.
By Theorem 3.62, we have a congruence relation

.
∼ on MH1 induced by Leibniz

equality. Note that by Lemma 3.61 in the term model MH1 , for every type α and

1078 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

every A,B ∈ cwffα(Σ)

y

â
, we have Aα

.
∼ Bα , iff õ(A

.
= B) ≡ T, iff (A

.
=α B) ∈ H .

Furthermore, if primitive equality is in the signature, thenH ∈ Hint∗ is a Hintikka

set with primitive equality. Hence,H satisfies∇
.
=
= by Lemma 6.22. We have A

.
∼ B,

iff (A
.
=α B) ∈ H , iff (by ∇

.
=
=) (A =

α B) ∈ H , iff õ(E â(=α)@âA@âB) ≡ T.
Let M :=MH1 /.∼. Each domain of this model has cardinality at most ℵs as it
is the quotient of a set of cardinality ℵs . By Theorem 3.62, we know the quotient
model M models H , satisfies property q, and is a model with primitive equality
(if primitive equality is in the signature). Hence, M ∈ Mâ . Now, we can use
Lemma 3.58 to checkM ∈ M∗ by checking certain properties of

.
∼.

When ∗ ∈ {âb,âçb,âîb,âfb}, we must check that
.
∼ has only two equivalence

classes inD âo . To show this, first note that∇b holds forH by Lemma 6.26. Choose
any â-normal B ∈ H . By ~∇c , ¬B /∈ H . By ∇b, for every A ∈ cwffo(Σ)

y

â
either

(A
.
=o B) or (A

.
=o ¬B). That is, inMH1 , for every A ∈ cwffo(Σ)

y

â
we either have

A
.
∼ B or A

.
∼ ¬B. So, we knowM satisfies property b.

When ∗ ∈ {âç,âçb}, the fact that
.
∼ satisfies property ç follows from ∇ç which

holds forH by Lemma 6.27.
When ∗ ∈ {âî,âîb}, we must show that

.
∼ satisfies property î. Let M ,N ∈

wffâ(Σ), an assignment ϕ and a variable Xα be given. Suppose E
â
ϕ,[A/X](M)

.
∼

E
â
ϕ,[A/X](N) for every A ∈ cwffα(Σ)

y

â
. Let è be the substitution defined by

è(Y) := ϕ(Y) for each variable Y ∈ (free(M) ∪ free(N)) \ {X}. So, for each
A ∈ cwffα(Σ)

y

â
,

([A/X]è(M))

y

â
≡ E âϕ,[A/X](M)

.
∼ E âϕ,[A/X](N) ≡ ([A/X]è(N))

y

â
.

That is, ([A/X]è(M)
.
=â [A/X]è(N))

y

â
∈ H for every A ∈ cwffα(Σ)

y

â
. By ∇

â

î

(Lemma 6.28), we have ((ëX è(M))
.
=
α→â

ëX è(N))

y

â
∈ H . So,

E âϕ (ëX M) ≡ (ëX è(M))

y

â

.
∼ (ëX è(N))

y

â
≡ E âϕ (ëX N).

Thus,
.
∼ satisfies î as desired.

When ∗ ∈ {âf,âfb}, we must show
.
∼ is functional. Let α and â be types and

G ,H ∈ cwffα→â (Σ)

y

â
. We need to show G

.
∼ H iff (GA)

y

â

.
∼ (HA)

y

â
for every

A ∈ cwffα(Σ)

y

â
. This follows directly from ∇

â

f .

This verifies the fact thatM ∈ M∗ wheneverH ∈ Hint∗. a

Theorem 6.34 (Model existence theorem). Let ΓΣ be a saturated abstract con-
sistency class and let Φ ∈ ΓΣ be a sufficiently Σ-pure set of sentences. For all
∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb} we have: If ΓΣ is an Acc∗ (cf. Definition 6.7),
then there exists a modelM ∈ M∗ (cf. Definition 3.49) that satisfiesΦ. Furthermore,
each domain ofM has cardinality at most ℵs .

Proof. Let ΓΣ be an abstract consistency class. We can assume without loss of
generality (cf. Lemma 6.18) that ΓΣ is compact, so the preconditions of Lemma 6.32
are met. Therefore, there exists a saturated Hintikka set H ∈ Hint∗ with Φ ⊆ H .
The proof is completed by a simple appeal to the Theorem 6.33. a

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1079

Theorem 6.35 (Model existence for Henkin models). Let ΓΣ be a saturated ab-
stract consistency class inAccâfb and letΦ ∈ ΓΣ be a sufficiently Σ-pure set of sentences.
Then there is a Henkin model (cf. Definition 3.50) that satisfiesΦ. Furthermore, each
domain of the model has cardinality at most ℵs .

Proof. By Theorem 6.34, there is a model M ∈ Mâfb with M |= Φ. By Theo-
rem 3.68, there is a Henkin model Mfr ∈ Mâfb isomorphic to M . By the isomor-
phism, we haveMfr |= Φ and that each domain ofMfr has the same cardinality as
the corresponding domain ofM . a

Remark 6.36. The model existence theorems show there are “enough” models
in each class M∗ to model sufficiently pure sets in saturated abstract consistency
classes in Acc∗. These results are abstract forms of completeness. To complete the
analysis, we can show abstract forms of soundness. One way to show this is to
define a class of sentences

Γ∗Σ := {Φ ⊆ cwffo | ∃M ∈ M∗M |= Φ }

for each ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb} and show Γ∗Σ is a (saturated) Acc∗. We
only sketch the proof here.
The fact that each Γ∗Σ satisfy∇c , ∇â , ∇¬, ∇∨, ∇∧, ∇∀, and∇sat is straightforward.
The proof that ∇∃ holds has the technical difficulty that one must modify the
evaluation of a parameter. Showing ∇b [∇ç] holds when considering models with
property b [ç] is also easy.

When showing∇f holds in Γ
âf
Σ [Γ

âfb
Σ], one sees the importance of assuming prop-

erty q holds. Suppose Φ ∈ ΓâfΣ [Γ
âfb
Σ] and ¬(F

.
=
α→â

G) ∈ Φ. Then there
is a model M ≡ (D ,@,E , õ) ∈ Mâf [Mâfb] such that M |= Φ. This implies

M |= ¬(F
.
=α→â G). Without using property q, it follows by Lemma 4.2(1) that

E (F) 6≡ E (G). By functionality, there is an a ∈ Dα such that E (F)@a 6≡ E (G)@a.
Let ϕ be any assignment intoM . Then Eϕ,[a/X](FX) 6≡ Eϕ,[a/X](GX). Now, using

property q, we can concludeMϕ,[a/X] |= ¬((FX)
.
=
â
(GX)) by Lemma 4.2(2). Let

wα ∈ Σ be a parameter that does not occur in any sentence of Φ. With some
technical work which we omit, one can change the evaluation function to E ′ so that
E ′(A) ≡ E (A) for allA ∈ Φ, and E ′(w) ≡ a. In the newmodelM ′ ≡ (D ,@,E ′, õ),

we haveM ′ |= Φ andM ′ |= ¬(Fw
.
=
â
Gw). Also,M ′ ∈ Accâf [Accâfb]. This shows

Φ ∗ ¬(Fw
.
=â Gw) ∈ ΓâfΣ [Γ

âfb
Σ]. The proof that∇î holds in Γ

âî
Σ [Γ

âîb
Σ] is analogous.

We have now established a set of proof-theoretic conditions that are sufficient to
guarantee the existence of a model.

§7. Characterizing higher-order natural deduction calculi. In this sectionwe apply
the model existence theorems above to prove some classical higher-order calculi of
natural deduction sound and complete with respect to the model classes introduced
in Section 3. The first calculus for such a formulation of higher-order logic was a
Hilbert-style system introduced by Alonzo Church in [18]10. Leon Henkin proves
completeness (with respect to Henkin models) for a similar calculus with full exten-
sionality in [26]. Peter Andrews introduced a weaker calculus Tâ [1], which lacks all

10Church included functional extensionality axioms but only mentions the Boolean extensionality
axiom as an option.

1080 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

A ∈ Φ
NK(Hyp)

Φ `̀ A

A≡âB Φ `̀ A
NK(â)

Φ `̀ B

Φ ∗ A `̀ Fo
NK(¬I)

Φ `̀ ¬A

Φ `̀ ¬A Φ `̀ A
NK(¬E)

Φ `̀ C

Φ `̀ A
NK(∨IL)

Φ `̀ A ∨ B

Φ `̀ B
NK(∨IR)

Φ `̀ A ∨ B

Φ `̀ A ∨ B Φ ∗ A `̀ C Φ ∗ B `̀ C
NK(∨E)

Φ `̀ C

Φ `̀ Gwα w parameter not occurring in Φ or G
NK(ΠI)

w

Φ `̀ ΠαG

Φ `̀ ΠαG
NK(ΠE)

Φ `̀ GA

Φ ∗ ¬A `̀ Fo
NK(Contr)

Φ `̀ A

Figure 6. Inference rules forNKâ .

forms of extensionality. This calculus has been widely used as a syntactic measure
of completeness for machine-oriented calculi [1, 32, 33, 34, 42, 36, 37].
Instead of applying our methods to Hilbert-style calculi, we will use a collection
of natural deduction calculi to avoid the tedious details of proving a deduction
theorem and propositional completeness. Moreover, natural deduction calculi are
more relevant in practice. They form the logical basis for semi-automated theorem
proving systems such asHOL [25], Isabelle [46], or Ωmega [51].

Definition 7.1 (The calculi NK∗). The calculus NKâ consists of the inference
rules11 in Figure 6 for the provability judgment `̀ between sets of sentences Φ and
sentences A. (We write `̀ A for ∅ `̀ A.) The rule NK(â) incorporates â-equality
into `̀ . The others characterize the semantics of the connectives and quantifiers.
For ∗ ∈ {âç,âî,âf,âb,âçb,âîb,âfb} we obtain the calculus NK∗ by adding the
rules shown in Figure 7 when specified in ∗.

Remark 7.2. It is worth noting that there is a derivation of `̀ To (i.e., `̀ ∀P0
P ∨ ¬P) which only uses the rules in Figure 6. Let p be a parameter of type o. A
derivation of ¬(p ∨ ¬p) `̀ (p ∨ ¬p) is shown in Figure 8. Using NK(Hyp) and

11Recall that Fo is defined to be¬(∀Po (P∨¬P)) andM 6|= Fo for each Σ-modelM (cf. Lemma 3.43).

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1081

A≡âçB Φ `̀ A
NK(ç)

Φ `̀ B

Φ `̀ ∀XαM
.
=
â
N

NK(î)
Φ `̀ (ëXαM)

.
=α→â (ëXα N)

Φ `̀ ∀Xα GX
.
=â HX

NK(f)
Φ `̀ G

.
=
α→â

H

Φ ∗ A `̀ B Φ ∗ B `̀ A
NK(b)

Φ `̀ A
.
=o B

Figure 7. Extensional inference rules.

NK(Hyp)
¬(p ∨ ¬p), p `̀ ¬(p ∨ ¬p)

NK(Hyp)
¬(p ∨ ¬p), p `̀ p

NK(∨IL)
¬(p ∨ ¬p), p `̀ (p ∨ ¬p)

NK(¬E)
¬(p ∨ ¬p), p `̀ Fo

NK(¬I)
¬(p ∨ ¬p) `̀ ¬p

NK(∨IR)
¬(p ∨ ¬p) `̀ (p ∨ ¬p)

Figure 8. Derivation of ¬(p ∨ ¬p) `̀ (p ∨ ¬p).

NK(¬E), we obtain ¬(p ∨ ¬p) `̀ Fo. So, we can conclude `̀ (p ∨ ¬p) using
NK(Contr). Finally, we obtain a derivation of `̀ To usingNK(ΠI)

p
. Hence, `̀ To

is derivable in each calculus NK∗ where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. Also,
we can apply the rule NK(ΠE) to the end of this derivation with any sentence A to
derive `̀ (A ∨ ¬A).

Note that NKâ and NKâfb correspond to the extremes of the model classes dis-
cussed in Section 3 (cf. Figure 1 in the introduction). Standardmodels do not admit
(recursively axiomatizable) calculi that are sound and complete, NKâfb is complete
for Henkin models, andNKâ is complete forMâ . We will now show soundness and
completeness of each NK∗ with respect to each corresponding model classM∗ by
using the model existence theorems in Section 6.

Theorem 7.3 (Soundness). NK∗ is sound for M∗ for ∗ ∈ {â,âç,âî,âf,âb,âçb,
âîb,âfb}. That is, if Φ `̀NK∗

C is derivable, then M |= C for all models M ≡
(D ,@,E , õ) inM∗ such thatM |= Φ.

Proof. This can be shown by a simple induction on the derivation of Φ `̀NK∗
C .

We distinguish based on the last rule of the derivation. The only base case is
NK(Hyp), which is trivial sinceM |= C wheneverM |= Φ and C ∈ Φ.

1082 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

NK(â): Suppose Φ `̀ C follows from Φ `̀ A and A≡âC . Let M ∈ M∗ be a
model of Φ. By induction, we know M |= A and so M |= C using
Remark 3.19.

NK(Contr): SupposeM ∈ M∗,M |= Φ and Φ `̀ C follows from Φ ∗ ¬C `̀ Fo. By
Lemma 3.43,M 6|= Fo. So, we must haveM 6|= ¬C . Hence,M |= C .

NK(¬I): Analogous to NK(Contr).
NK(¬E): Suppose Φ `̀ C follows from Φ `̀ ¬A and Φ `̀ A. By induction, any

model inM∗ of Φ would have to model both A and ¬A. So, there is
no such model of Φ and we are done.

NK(∨IL): Suppose M ∈ M∗, M |= Φ, C is (A ∨ B) and Φ `̀ C follows from
Φ `̀ A. By induction,M |= A and soM |= (A ∨ B).

NK(∨IR): Analogous to NK(∨IL).
NK(∨E): Suppose Φ `̀ C follows from Φ `̀ (A∨B), Φ ∗A `̀ C and Φ ∗B `̀ C .

LetM ∈ M∗ be a model of Φ. By induction,M |= A ∨ B. IfM |= A,
then by induction M |= C since Φ ∗ A `̀ C . If M |= B, then by
inductionM |= C since Φ ∗ B `̀ C . In either case, Φ `̀ C .

NK(ΠI): Suppose C is (ΠαG) and Φ `̀ (ΠαG) follows from Φ `̀ Gw where
wα is a parameter which does not occur in any sentence of Φ or in G .
Let M ≡ (D ,@,E , õ) ∈ M∗ be a model of Φ. Assume M 6|= ΠαG .
Then there must be some a ∈ Dα such that õ(E (G)@a) ≡ F. From
the evaluation function E , one can define another evaluation function
E ′ such that E ′(w) ≡ a and E ′ϕ(Aα) ≡ Eϕ(Aα) if w does not occur in

A. Let M ′ := (D ,@,E ′, õ). One can check M ′ ∈ M∗ using the fact
thatM ∈ M∗. SinceM ′ |= Φ, by induction we haveM ′ |= Gw. This
contradicts õ(E ′(G)@a) ≡ õ(E (G)@a) ≡ F. Thus,M |= ΠαG .

NK(ΠE): Suppose C is (GA) and Φ `̀ C follows from Φ `̀ (ΠαG). Let M ≡
(D ,@,E , õ) ∈ M∗ be a model of Φ. By induction, M |= (ΠαG) and
thus õ(E (G))@a ≡ T for every a ∈ Dα . In particular,M |= GA.

We now check soundness of the rules in Figure 7 with respect to their model classes:

NK(ç): Analogous to NK(â) using property ç.

NK(î): Suppose C is (ëXαM)
.
=
α→â

(ëXα N) and Φ `̀ C follows from Φ `̀

∀XαM
.
=â N . Let M ≡ (D ,@,E , õ) ∈ M∗ be a model of Φ. By

induction, we have M |= ∀XαM
.
=
â
N . So, for any assignment ϕ

and a ∈ Dα , M |=ϕ,[a/X] M
.
=â N . Note that property q holds in M

sinceM ∈ M∗ (cf. Definition 3.49). By Lemma 4.2(2), Eϕ,[a/X](M) ≡
Eϕ,[a/X](N). By property î, Eϕ(ëXαM) ≡ Eϕ(ëXα N) and thusM |=
C by Lemma 4.2(1).

NK(f): SupposeC isG
.
=α→â H andΦ `̀ C follows fromΦ `̀ ∀Xα GX

.
=â HX .

Let M ∈ M∗ be a model of Φ. By induction, we know M |=

∀Xα GX
.
=â HX . Note that property q holds for M since M ∈ M∗.

By Theorem 4.3(3), we must haveM |= (G
.
=
α→â

H).
NK(b) SupposeC isA

.
=o B andΦ `̀ C follows fromΦ∗A `̀ B andΦ∗B `̀ A.

LetM ≡ (D ,@,E , õ) ∈ M∗ be a model of Φ. IfM |= A, thenM |= B
by induction. IfM |= B, thenM |= A by induction. These facts imply
õ(E (A)) ≡ õ(E (B)). By Lemma 3.48, we have M |= (A ⇔ B). By
Theorem 4.3(4), we must haveM |= (A

.
=
o
B). a

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1083

Definition 7.4 (NK∗-consistent). A set of sentences Φ is NK∗-inconsistent if
Φ `̀NK∗

Fo, andNK∗-consistent otherwise.

Now, we use the model existence theorems for HOL to give short and elegant
proofs of completeness forNK∗.

Lemma 7.5. The class Γ∗Σ := {Φ ⊆ cwffo | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof. Obviously Γ∗Σ is closed under subsets, since any subset of an NK∗-
consistent set is NK∗-consistent. We now check the remaining conditions. We
prove all the properties by proving their contrapositive.

∇c : Suppose A,¬A ∈ Φ. We have Φ `̀ Fo byNK(Hyp) andNK(¬E).
∇â : Let A ∈ Φ, A≡âB and Φ ∗ B be NK∗-inconsistent. That is, Φ ∗ B `̀ Fo. By

NK(¬I), we know Φ `̀ ¬B. Since A ∈ Φ, we know Φ `̀ B by NK(Hyp) and
NK(â). Using NK(¬E), we know Φ `̀ Fo and hence Φ is NK∗-inconsistent.

∇¬: Suppose ¬¬A ∈ Φ and Φ ∗ A is NK∗-inconsistent. From Φ ∗ A `̀ Fo and
NK(¬I), we have Φ `̀ ¬A. Since ¬¬A ∈ Φ, we can apply NK(Hyp) and
NK(¬E) to obtain Φ `̀ Fo.

∇∨: Suppose (A ∨ B) ∈ Φ and both Φ ∗ A and Φ ∗ B are NK∗-inconsistent. By
NK(Hyp) andNK(∨E), we have Φ `̀ Fo.

∇∧: Suppose ¬(A ∨ B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By NK(Contr)
and NK(∨IR), we have Φ,¬A `̀ A ∨ B. Using NK(¬E) with ¬(A ∨ B) ∈ Φ,
we have Φ,¬A `̀ Fo. ByNK(Contr) andNK(∨IL), we have Φ `̀ A∨B. Using
NK(¬E) with ¬(A ∨ B) ∈ Φ, Φ is NK∗-inconsistent.

∇∀: Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I), Φ `̀
¬(GA). By NK(Hyp) and NK(ΠE), Φ `̀ GA. Finally, NK(¬E) implies
Φ `̀ Fo.

∇∃: Suppose ¬(ΠαG) ∈ Φ, wα is a parameter which does not occur in Φ, and
Φ ∗ ¬(Gw) is NK∗-inconsistent. By NK(Contr), Φ `̀ Gw. By NK(ΠI)

w
,

Φ `̀ (ΠαG). Using NK(¬E) with ¬(ΠαG) ∈ Φ, Φ is NK∗-inconsistent.
∇sat : LetΦ∗A andΦ∗¬AbeNK∗-inconsistent. We show thatΦ isNK∗-inconsistent.

UsingNK(¬I), we knowΦ `̀ ¬A andΦ `̀ ¬¬A. ByNK(¬E), we haveΦ `̀ Fo.

Thus we have shown that ΓâΣ is saturated and in Accâ . Now let us check the
conditions for the additional properties ç, î, f, and b.

∇ç : If ∗ includes ç, then the proof proceeds as in∇â above, but with the ruleNK(ç).

∇î : Suppose ∗ includes î, ¬(ëX M
.
=α→â ëX N) ∈ Φ, and Φ ∗ ¬([w/X]M

.
=â

[w/X]N) isNK∗-inconsistent for some parameterwα which does not occur in

any sentence of Φ. By NK(Contr), we have Φ `̀ ([w/X]M
.
=â [w/X]N). By

NK(â), we have Φ `̀ ((ëX M
.
=
â
N)w). By NK(ΠI), Φ `̀ (∀X M

.
=
â
N).

ByNK(î), Φ `̀ (ëX M
.
=α→â ëX N). By NK(¬E), Φ is NK∗-inconsistent.

∇f: This case is analogous to the previous one, generalizing ëX M
.
= ëX N to

arbitrary G
.
= H and using the extensionality rule NK(f) instead of NK(î).

∇b: Suppose ∗ includes b. Assume that ¬(A
.
=o B) ∈ Φ but both Φ ∗¬A ∗B /∈ Γ∗Σ

and Φ ∗ A ∗ ¬B /∈ Γ∗Σ . So both are NK∗-inconsistent and we have Φ ∗ A `̀ B
and Φ ∗ B `̀ A by NK(Contr). By NK(b), we have Φ `̀ (A

.
=o B). Since

¬(A
.
=
o
B) ∈ Φ, Φ is NK∗-inconsistent. a

1084 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Theorem 7.6 (Henkin’s theorem forNK∗). Let ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,
âfb}. Every sufficiently Σ-pureNK∗-consistent set of sentences has anM∗-model.

Proof. Let Φ be a sufficiently Σ-pure NK∗-consistent set of sentences. By The-
orem 7.5 we know that the class of sets of NK∗-consistent sentences constitute a
saturated Acc∗, thus the Model Existence Theorem (Theorem 6.34) guarantees an
M∗ model for Φ. a

Corollary 7.7 (Completeness theorem forNK∗). Let Φ be a sufficiently Σ-pure
set of sentences, A be a sentence, and ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. If A is
valid in all modelsM ∈ M∗ that satisfyΦ, then Φ `̀NK∗

A.

Proof. Let A be given such that A is valid in allM∗ models that satisfy Φ. So,
Φ ∗ ¬A is unsatisfiable in M∗. Since only finitely many constants occur in ¬A,
Φ ∗ ¬A is sufficiently Σ-pure. So, Φ ∗ ¬A must be NK∗-inconsistent by Henkin’s
theorem above. Thus, Φ `̀NK∗

A by NK(Contr). a

Finally we can use the completeness theorems obtained so far to prove a com-
pactness theorem for our semantics.

Corollary 7.8 (Compactness theorem forNK∗). Let Φ be a sufficiently Σ-pure
set of sentences and ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. Φ has an M∗-model iff
every finite subset of Φ has anM∗-model.

Proof. If Φ has noM∗-model, then by Theorem 7.6Φ isNK∗-inconsistent. Since
everyNK∗-proof is finite, this means some finite subset Ψ of Φ isNK∗-inconsistent.
Hence, Ψ has noM∗-model. a

Remark 7.9 (Calculi with primitive equality). If primitive equality is included in
the signature, a simple way of extending the calculi NK∗ in a sound and complete
way is to include the rules NK(=r) and NK(=l) in Figure 9. These rules are clearly
sound for models with primitive equality. One can argue completeness by showing
Γ∗Σ := {Φ ⊆ wffo(Σ) | Φ is NK∗-consistent} is a saturated Acc∗ with primitive
equality. By Lemma 7.5, we already know Γ∗Σ is a saturated Acc∗. To show the
conditions for primitive equality, one can show Γ∗Σ satisfies ∇

r
= using NK(=r) and

∇
.
=
= usingNK(=l).

NK(=r)
Φ `̀ A =α A

Φ `̀ C =α D
NK(=l)

Φ `̀ C
.
=α D

Figure 9. Primitive equality in NK∗.

§8. Conclusion. In this article, we have given an overview of the landscape of
semantics for classical higher-order logics. We have differentiated nine different
possible notions and have tied the discerning properties to conditions of corre-
sponding abstract consistency classes. The practical relevance of these notions has
been illustrated by pointing to application scenarios within mathematics, program-
ming languages, and computational linguistics.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1085

Our model existence theorems are strong proof tools connecting syntax and
semantics. A standard application is in completeness analysis of higher-order
calculi. A calculus C is shown to be complete for a model class M∗ by showing
that the class of C -consistent or C -irrefutable sets of sentences is in Acc∗. Then
completeness follows from the model existence results. We have given an example
of this by showing completeness for natural deduction calculi in Section 7.

8.1. Applications and related work. The generalized model classesM∗ havemany
possible applications. An example is higher-order logic programming [45] where
the denotational semantics of programs can induce non-standard meanings for
the classical connectives. For instance, given an SLD-like search strategy as in
ë-PROLOG [43], conjunction is not commutative any more. Therefore, various au-
thors have proposed model-theoretic semantics where property b fails. David Wol-
fram, for instance, uses Andrews’ õ-complexes [58] as a semantics for ë-PROLOG
and Gopalan Nadathur uses “labeled structures” for the same purpose in [45].
Mary DeMarco [20] also develops a model theory for intuitionistic type theory
and ë-prolog in which property b may fail (James Lipton and Mary DeMarco are
continuing this work). Till Mossakowski and Lutz Schröder have been studying
non-functional Henkin models for a partial ë-calculus in the context of the Has-
Casl specification language [48, 49]. It is plausible to assume that the results of this
article will be useful for further development in this direction. Further relevance
of model-theoretic semantics where property q fails, however, is not sufficiently
investigated yet, but seems a promising line of research.
The article also provides a basis for the investigation of hyper-intensional seman-
tics of natural languages. In fact early versions of this article have already influenced
the work of Lappin and Pollard [40]. Hyper-intensional semantics provide theories
for logics where Boolean extensionality (and thus the substitutability of equivalents)
can fail. Linguistically motivated theories like the ones presented in [56, 17, 41, 40]
introduce intensional (non-standard) variants of the connectives and quantifiers
acting on a generalized domain of truth values. Interestingly, only [41] and [40]
present formal model-theoretic semantics. The model construction in [41] strongly
resembles Peter Andrew’s õ-complexes (semantic objects are paired with syntactic
representations; in this case linguistic parse trees). In [40], Do is taken to be a
pre-Boolean algebra, and possible worlds are associated with ultrafilters. A direct
comparison is aggravated by the fact that Lappin and Pollard’s work is situated in a
Montague-style intensional (i.e., modal) context. A generalization of our work by
techniques from [23] seems the way to go here.

8.2. Relaxing the saturation assumption. Unfortunately, the model existence the-
orems presented in this article do not support completeness proofs for most higher-
order machine-oriented calculi, such as higher-order resolution [33, 13], higher-
order paramodulation [11], or tableau-based calculi [5, 37]. This is because we had
to assume saturation of abstract consistency classes to prove the model existence
theorems. The problem is that machine oriented calculi are typically, in some sense,
cut-free. This makes saturation very difficult to show.
For the same reason the results of this article also do not apply to another
prominent application of model existence theorems: relatively simple (but non-
constructive) cut-elimination theorems. In [1] Peter Andrews applies his “Unifying
Principle” to cut-elimination in a cut-free non-extensional sequent calculus, by

1086 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

proving the calculus complete (relative to Tâ). He concludes that cut-elimination
is valid for this calculus. Again, the saturation condition prevents us from obtain-
ing variants of the extensional cut-elimination theorems in [54, 55] by Andrews’
approach using our model existence theorem for Henkin models. In fact one can
prove (cf. [12]) that the problem of showing that an abstract consistency class can
be extended to a saturated one is equivalent to showing cut elimination for certain
sequent or resolution calculi.
To account for the saturation problem we have additionally investigated model
existence for the model classes presented in this article using an extension of Peter
Andrews’ õ-complexes (cf. [12]). The model construction in this technique requires
an abstract consistency class to satisfy certain acceptability conditions which are
much weaker than saturation. (For example, the acceptability conditions can be
shown to hold for abstract consistency classes obtained from certain cut-free sequent
calculi.) Because this technique is muchmore complex and subtle than the relatively
simple quotients of term evaluations used in this article, we did not include the
extended results here. The unsaturated model existence theorems imply that every
acceptable abstract consistency class can be extended to a saturated one. Armed
with this fact, we can use the model existence theorems presented here to rescue the
general completeness and cut elimination results mentioned above. To show, for
example, completeness of a higher-ordermachine-oriented calculus C , we define the
class Γ ofC -irrefutable sentences and show that it is an acceptable (but unsaturated)
abstract consistency class. By the extension result in [12] there is a saturatedabstract
consistency class Γ′ ⊇ Γ. By application of saturated model existence from this
article we obtain a suitable model for every (sufficiently Σ-pure) Φ ∈ Γ′ and thus for
every (sufficiently Σ-pure) Φ ∈ Γ. This immediately gives us completeness. Hence,
the leverage added by this article together with [12] is that we can now extend
non-extensional cut-elimination results to extensional cases.

Acknowledgments. The work presented in this paper has been supported by the
“Deutsche Forschungsgemeinschaft” (DFG) under Grant SI 372/4 Hotel, the
National Science Foundation under Grant CCR-0097179 and a DFG Heisenberg
stipend (Ko-1370/6-1) to the third author. The authors would like to thank Peter
Andrews and Frank Pfenning for stimulating discussions and Claus-Peter Wirth
and Andrey Paskevich for proof reading. We furthermore thank the referee of this
article for his very fruitful comments.

REFERENCES

[1] Peter B. Andrews, Resolution in type theory, this Journal, vol. 36 (1971), no. 3, pp. 414–432.
[2] , General models and extensionality, this Journal, vol. 37 (1972), no. 2, pp. 395–397.
[3] , General models descriptions and choice in type theory, this Journal, vol. 37 (1972), no. 2,

pp. 385–394.
[4] , letter to Roger Hindley dated January 22, 1973.
[5] , On connections and higher order logic, Journal of Automated Reasoning, vol. 5 (1989),

pp. 257–291.
[6] , An introduction to mathematical logic and type theory: To truth through proof, second ed.,

Kluwer Academic Publishers, 2002.
[7] Peter B. Andrews, Matthew Bishop, and Chad E. Brown, TPS: A theorem proving system for

type theory, Proceedings of the 17th international conference on automated deduction (Pittsburgh, USA)
(David McAllester, editor), Lecture Notes in Artifical Intelligence, no. 1831, Springer-Verlag, 2000,
pp. 164–169.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1087

[8] Peter B. Andrews, Matthew Bishop, Sunil Issar,DanNesmith, Frank Pfenning, andHong-
wei Xi, TPS: A theorem proving system for classical type theory, Journal of Automated Reasoning, vol. 16
(1996), no. 3, pp. 321–353.
[9] Henk P. Barendregt, The lambda calculus, North-Holland, 1984.
[10] Christoph Benzmüller, Equality and extensionality in automated higher-order theorem proving,

Ph.D. thesis, Saarland University, 1999.
[11] , Extensional higher-order paramodulation and RUE-resolution, Proceedings of the 16th

international Conference on Automated Deduction (Trento, Italy) (Harald Ganzinger, editor), Lecture
Notes in Artificial Intelligence, vol. 1632, Springer-Verlag, 1999, pp. 399–413.
[12] Christoph Benzmüller, Chad E. Brown, and Michael Kohlhase, Semantic techniques

for higher-order cut-elimination, manuscript, http://www.ags.uni-sb.de/∼chris/papers/R19.pdf,
2002.
[13] Christoph Benzmüller andMichaelKohlhase,Extensional higher order resolution, in Kirch-

ner and Kirchner [35], pp. 56–72.
[14] , LEO—a higher order theorem prover, in Kirchner and Kirchner [35], pp. 139–144.
[15] , Model existence for higher-order logic, SEKI-Report SR-97-09, Saarland University,

1997.
[16] Wolfgang Bibel and Peter Schmitt (editors), Automated deduction—a basis for applications,

Kluwer, 1998.
[17] Gennaro Chierchia and Raymond Turner, Semantics and property theory, Linguistics and

Philosophy, vol. 11 (1988), pp. 261–302.
[18] Alonzo Church, A formulation of the simple theory of types, this Journal, vol. 5 (1940),

pp. 56–68.
[19] Nicolaas Govert de Bruijn, Lambda calculus notation with nameless dummies, a tool for auto-

matic formula manipulation, with an application to the Church-Rosser theorem, Indagationes Mathemati-
cae, vol. 34 (1972), no. 5, pp. 381–392.
[20]MaryDeMarco, Intuitionistic semantics for heriditarily harrop logic programming, Ph.D. thesis,

Wesleyan University, 1999.
[21] Gilles Dowek, Thérèse Hardin, and Claude Kirchner, HOL-ëó an intentional first-order

expression of higher-order logic, Mathematical Structures in Computer Science, vol. 11 (2001), no. 1,
pp. 1–25.
[22]Melvin Fitting, First-order logic and automated theorem proving, second ed., Graduate Texts in

Computer Science, Springer-Verlag, 1996.
[23] , Types, tableaus, and Gödel’s God, Kluwer, 2002.
[24] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I,Monatshefte derMathematischen Physik, vol. 38 (1931), pp. 173–198, English version in [57].
[25]M. J. C. Gordon and T. F. Melham, Introduction to HOL—a theorem proving environment for

higher order logic, Cambridge University Press, 1993.
[26] LeonHenkin,Completeness in the theory of types, this Journal, vol. 15 (1950), no. 2, pp. 81–91.
[27] , The discovery of my completeness proofs, The Bulletin of Symbolic Logic, vol. 2 (1996),

no. 2, pp. 127–158.
[28] Roger J. Hindley and Jonathan P. Seldin, Introduction to combinators and lambda-calculs,

Cambridge University Press, Cambridge, 1986.
[29] K. J. J. Hintikka, Form and content in quantification theory, Acta Philosophica Fennica, vol. 8

(1955), pp. 7–55.
[30] Furio Honsell and Marina Lenisa, Coinductive characterizations of applicative structures,

Mathematical Structures in Computer Science, vol. 9 (1999), pp. 403–435.
[31] Furio Honsell and Donald Sannella, Pre-logical relations, Proceedings of computer science

logic (CSL ’99), Lecture Notes in Computer Science, vol. 1683, Springer-Verlag, 1999, pp. 546–561.
[32] Gérard P. Huet, Constrained resolution: A complete method for higher order logic, Ph. D. thesis,

Case Western Reserve University, 1972.
[33] , A mechanization of type theory, Proceedings of the 3rd international joint conference on

artificial intelligence (Donald E. Walker and Lewis Norton, editors), 1973, pp. 139–146.
[34] D. C. Jensen and Thomasz Pietrzykowski, A complete mechanization of (ù)-order type theory,

Proceedings of the ACM annual conference, vol. 1, 1972, pp. 82–92.
[35] Claude Kirchner and Hélène Kirchner (editors), Proceedings of the 15th Conference on Auto-

mated Deduction, Lecture Notes in Artificial Intelligence, vol. 1421, Springer-Verlag, 1998.

1088 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

[36]MichaelKohlhase,Amechanization of sorted higher-order logic based on the resolution principle,
Ph. D. thesis, Saarland University, 1994.
[37] ,Higher-order tableaux,Theoremprovingwith analytic tableauxand relatedmethods (Peter

Baumgartner, Reiner Hähnle, and Joachim Posegga, editors), Lecture Notes in Artificial Intelligence,
vol. 918, Springer-Verlag, 1995, pp. 294–309.
[38]Michael Kohlhase and Ortwin Scheja, Higher-order multi-valued resolution, Journal of Ap-

plied Non-Classical Logics, vol. 9 (1999), no. 4, pp. 155–178.
[39] Shalom Lappin and Carl Pollard, Strategies for hyperintensional semantics, manuscript,

King’s College, London and Ohio State University, 2000.
[40] , A higher-order fine-grained logic for intensional semantics, manuscript, 2002.
[41] Richard Larson andGabriel Segal, Knowledge of meaning, MIT Press, 1995.
[42] Dale Miller, Proofs in higher-order logic, Ph. D. thesis, Carnegie-Mellon University, 1983.
[43] , A logic programming language with lambda-abstraction, function variables, and simple

unification, Journal of Logic and Computation, vol. 4 (1991), no. 1, pp. 497–536.
[44] John C. Mitchell, Foundations for programming languages, Foundations of Computing, MIT

Press, 1996.
[45] Gopalan Nadathur andDale Miller,Higher-order logic programming, Technical Report CS-

1994-38, Department of Computer Science, Duke University, 1994.
[46] TobiasNipkow, LawrenceC.Paulson, andMarkusWenzel, Isabelle/HOL—aproof assistant

for higher-order logic, Lecture Notes in Computer Science, vol. 2283, Springer-Verlag, 2002.
[47] J. AlanRobinson andAndrei Voronkov,Handbook of automated reasoning, MIT Press, 2001.
[48] L. Schröder and T. Mossakowski, Hascasl: towards integrated specification and development

of functional programs, Algebraic methodology and software technology, Lecture Notes in Computer
Science, vol. 2422, Springer-Verlag, 2002, pp. 99–116.
[49] Lutz Schröder, Henkin models for the partial ë-calculus, manuscript, http://www.

informatik.uni-bremen.de/∼lschrode/hascasl/henkin.ps, 2002.
[50] Kurt Schütte, Semantical and syntactical properties of simple type theory, this Journal, vol. 25

(1960), pp. 305–326.
[51] Jörg Siekmann, Christoph Benzmüller, et al., Proof development with OMEGA, Proceedings

of the 18th international conference on automated deduction (Copenhagen, Denmark) (Andrei Voronkov,
editor), Lecture Notes in Artificial Intelligence, vol. 2392, Springer-Verlag, 2002, pp. 144–149.
[52] RaymondM.Smullyan,Aunifying principle for quantification theory, Proceedings of theNational

Academy of Sciences, vol. 49 (1963), pp. 828–832.
[53] , First-order logic, Springer-Verlag, 1968.
[54]Moto-o Takahashi, Cut-elimination in simple type theory with extensionality, Journal of the

Mathematical Society of Japan, vol. 19 (1967), pp. 399–410.
[55] Gaisi Takeuti, Proof theory, North-Holland, 1987.
[56] R.Tomason,Amodel theory for proposistional attitudes,Linguistics andPhilosophy, vol. 4 (1980),

pp. 47–70.
[57] Jean van Heijenoort, From Frege to Gödel: a source book in mathematical logic 1879–1931,

3rd printing, 1997 ed., Source books in the history of the sciences series, Harvard University Press,
Cambridge, MA, 1967.
[58] DavidA.Wolfram,A semantics for ë-PROLOG,Theoretical Computer Science, vol. 136 (1994),

no. 1, pp. 277–289.

DEPARTMENTOF COMPUTER SCIENCE

SAARLANDUNIVERSITY

SAARBRÜCKEN, GERMANY

E-mail: chris@ags.uni-sb.de
URL: http://www.ags.uni-sb.de/∼chris

DEPARTMENTOFMATHEMATICS

CARNEGIEMELLONUNIVERSITY

PITTSBURGH, PA 15213, USA

E-mail: cebrown@andrew.cmu.edu
URL: http://www.andrew.cmu.edu/∼cebrown/

SCHOOL OF ENGINEERING AND SCIENCES

INTERNATIONALUNIVERSITY BREMEN

BREMEN, GERMANY

and

SCHOOLOF COMPUTER SCIENCE

CARNEGIEMELLONUNIVERSITY

PITTSBURGH, USA

E-mail: m.kohlhase@iu-bremen.de
URL: http://www.cs.cmu.edu/∼kohlhase

