Managing Structural Information by Higher-Order Colored

Unification

Dieter Hutter

German Research Center for Artificial Intelligence,
Stuhlsatzenhausweg 3, D-66128 Saarbricken, Germany,
E-mail: hutter@dfki.de

Michael Kohlhase

FB Informatik, Universitat des Saarlandes,
D-66041 Saarbricken, Germany,

FE-mail: kohlhase@cs.uni-sb.de

Abstract. Coloring terms (rippling) is a technique developed for inductive the-
orem proving which uses syntactic differences of terms to guide the proof search.
Annotations (colors) to symbol occurrences in terms are used to maintain this in-
formation. This technique has several advantages, e.g. it is highly goal oriented and
involves little search. In this paper we give a general formalization of coloring terms
in a higher-order setting. We introduce a simply-typed A calculus with color anno-
tations and present appropriate algorithms for the general, pre- and pattern unifi-
cation problems. Our work is a formal basis to the implementation of rippling in a
higher-order setting which is required e.g. in case of middle-out reasoning. Another
application is in the construction of natural language semantics, where the color
annotations rule out linguistically invalid readings that are possible using standard
higher-order unification.

Keywords: Inductive Theorem Proving, Rippling, Annotations

1. Introduction

In the field of inductive theorem proving syntactical differences between
the induction hypothesis and induction conclusion are used in order to
guide proofs (cf. [5, 4], or [19, 21]). This method to guide induction
proofs is called rippling/coloring terms. Annotations or colors to each
occurrence of a symbol are used to mark the syntactical differences
between induction hypothesis and induction conclusion. Specific colors
denote the skeleton, the common parts of both terms while the other
parts belong to the wave-fronts. Analogously, syntactical differences
between both sides of equations or implications given in the database
are colored by an inference technique called difference unification [2].
These formulae are classified depending on the locations of the wave-
fronts inside the skeleton (e.g. wave-fronts on both sides, wave-fronts
only on the right/left-hand side). Using these annotated (or colored)

';‘.‘ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

2

equations we are able to move, insert, or delete wave-fronts within
the conclusion. This rippling of wave-fronts allows one to reduce the
differences between conclusion and hypothesis in a goal directed way
and thus leads to a situation, where the inductive hypothesis can be
applied.

This paper extends the coloring method to higher-order logic and
presents algorithms for enumerating higher-order colored unifiers and
pre-unifiers and prove them correct and complete. For the fragment of
higher-order patterns, we show that decidability is maintained for the
colored case, while uniqueness of solutions is lost.

Thus our work provides a formal basis for the implementation of rip-
pling in a higher-order setting which is required e.g. in case of middle-
out reasoning [17] or generalization of theorems using proof critics [23].
In the latter the unknown generalized version of a formula is described
by a schematic formula containing parts of the original formula and
higher-order variables denoting the unknown syntactical extensions of
it. In the process of simulating the induction proof, the higher-order
variables will be instantiated step by step by the unification with ap-
propriate wave-rules resulting in a possible (hopefully provable) gener-
alization of the original formula.

But the set of possible applications of our method is not limited
to automated deduction. From an abstract point of view, the coloring
method allows one to add arbitrary information to occurrences of (A-
)Jterms and to inherit this information during the inference process. This
differentiates coloring from other semantic annotation techniques like
sorts which maintain attributes of symbols but not attributes of single
symbol occurrences. Hence, coloring techniques can be generally used
to maintain for instance initial knowledge about an internal structure
of a term.

Strategy: Difference Reduction Rippling as Rewrite
Deliberate Rippling fized ordering
A 4
e~
|
Semantics: Rippling;: Nat. Language
Skeleton (invariance) linguistic restrictions
4 t
P e
|
Syntax: Colored A-calculus

Figure 1. Conceptual Hierarchy

The colored A-calculus presented in this paper is a general procedure to

3

control this kind of information. In addition, it can be easily enlarged
to deal with more complex knowledge by enriching the representation
formalism for colors to formulate appropriate annotations (see [14] for
a linguistic application that uses feature terms as colors).

The flexibility of our approach is mirrored in the wide range of pos-
sible applications (cf. figure 1). In this paper we present two areas of
them. The first area is concerned with “classical” rippling as it is used in
inductive theorem proving while in the latter we use the presented cal-
culus for a semantic analysis of natural language. The domain specific
semantics is represented in the different interpretations of the anno-
tated colors. For example in case of rippling, the so-called skeleton of
an annotated term denotes the invariant of a proof of an induction step,
while in the natural language example the colors are used to encode
the so-called primary occurrence restriction.

In the rest of this section we will briefly sketch some applications of
the higher-order coloring method, informally introducing the relevant
notions as we go along, before we turn to a formal definition of the col-
ored A-calculus in section 2. The next part of the paper is devoted to the
formal definition of a general-, pre- and pattern-unification procedure
operating on this calculus in section 3. The description of skeletons in
a higher-order setting in given in section 4, which also illustrates more
general aspects of the specific solution we have chosen.

1.1. INDUCTIVE PROOFS

Rippling was developed for proving theorems by induction and has
been applied to a large number of practical examples from this domain
[5, 4, 19, 21]. It is based on the observation that one can iteratively
unfold recursive functions in the induction conclusion, preserving the
structure of the induction hypothesis while unfolding. We use colors in
order to indicate the structure of the hypothesis within the conclusion.
Symbols belonging to this joined structure are annotated with the color
“white” while differences between both formulae are colored “grey”.
Also left- and right-hand sides of given equations are difference unified
in a sense that the common structure of both terms of a given equation
is annotated by color variables while differences are colored grey. The
grey parts are called wave-fronts while the non-grey parts denote the
skeleton.

In [4, 2] an ordering, which evaluates the position and size of the
wave-fronts within the skeleton, is used to build up a rewrite system
on annotated terms. Each application of an annotated rewrite rule (so-
called wave-rule) results in a term which is less (wrt. the given ordering)
than the original one. In recent years the technique of rippling has been

4

applied also to non-inductive theorem proving yielding a more complex
planning of the rippling process than in inductive proofs. Possible target
positions of wave-fronts are no longer statically predefined but have to
be planned during the proof which gives rise to a kind of deliberate
rippling [20, 22].

Rippling restricts the search space for inductive theorem proving
by forbidding all deduction steps which do not preserve the skeleton,
i.e. do not change the non-grey' parts of the formula, and only ap-
plies those that move the difference out of the way leaving behind the
skeleton. In their simplest form, these equations to be used are of the
form f(g(t)) = h(f(t)). By design, the skeleton f(¢) remains unaltered
by their application. If rippling succeeds then the induction conclusion
P(s(n)) is rewritten using wave-rules into some function of the induc-
tion hypothesis, P(n); that is, into f(P(n)) (f may be the identity).
At this point we can call upon the induction hypothesis to simplify the
result.

To illustrate rippling and motivate our work on colored higher or-
der unification let us consider the following simple theorem that can
be proven by inductive theorem provers using rippling/coloring tech-
niques.

n

D@+ 9l) =D [f +4l)

i=1

f, g are functions from natural numbers to naturals. We have overloaded
the function + also to act on such functions. This example illustrates
the properties of rippling and introduces also some (very simple) higher-
order colored unification problems.

We formalize summation by a binary function sum that takes a
function (that is summed over) and an upper bound as arguments.
Furthermore, we will use the following definition of sum (let f, g, H be
of type? nat — nat and N, n be of type nat):

VH.sum(H,0) = 0 (1)
VH,N .sum(H,s(N)) = sum(H,N)+ H(s(N)) (2)

Then our theorem takes the form

Vf,g,n.sum(f,n) + sum(g,n) = sum(AZ.f(Z) + g(Z),n)

! For sake of simplicity we use a shading for symbols which are annotated by the
color grey while non-shaded areas are annotated either by white or color variables.

% Since for the purposes of this paper types largely play a theoretical role (they
for instance make (n-reduction terminating and therefore Bn-equality decidable),
we will only specify them where needed.

5

To prove this, simple heuristics employed by most inductive provers

suggest induction on n which results in the following step case?.

sum(f,n) + sum(g,n) = sum(\Z . f(Z) + g(Z),n)
— sum(f,s(n)) + sum(g,s(n)) = sum(AZ. f(Z) + g(Z), s(n))

To simplify the step case using rippling, the differences between the in-
duction conclusion and the induction hypothesis are shaded as follows:

sum(f,n) + sum(g,n) = sum(AZ . f(Z) + g(Z),n) (3)
— sum(f, s(n)) + sum(g, s(n)) = sum(A\Z.f(Z) +g(Z), s(n))

If we can move the shaded areas so-called contexts or wave-fronts
out of the way, then we will be able to simplify the induction conclusion
by appealing to the induction hypothesis.

Rippling moves wave-fronts using annotated equations based on ax-
ioms, recursive definitions and previously proven lemmata that preserve
the skeleton of the term being rewritten. Corresponding to the recur-
sive definitions for sum we have the following annotated equation of
(2).

sum(H, s(n)) = sum(H,N) + H(s(N)) (4)

When rippling, the annotations on the left-hand side of the wave-rule
must match those in the term being rewritten. As a consequence, there
is very little search during rewriting. To simplify the conclusion of (3)
by rippling we apply (4) on both sides* yielding the modified conclusion:

(sum(f,n) + f(s(n))) + (sum(g,n) + g(s(n)))
= sum(AZ . f(Z) + g(%),n) + (f(s(n)) + g(s(n)))

Applying associativity and commutativity law of + results in

((sum(f,n) + sum(g,n)) + f(s(n)) + g(s(n)))
= (sum(AZ.f(Z) + g(Z),n) + (f(s(n)) + g(s(n))))

which allows for weak fertilization® on either side which completes the
proof.

8 The proof of the base case can be directly obtained by applying (1), so it is
omitted here.

* Tn this case the unification of higher-order formulae is nearly trivial, binding N
ton and H to f, g, and AZ. f(Z) + g(Z) respectively.

5 This standard technique from inductive theorem proving allows to use the in-
ductive hypothesis to rewrite the inductive conclusion

6
1.2. LEMMA SPECULATION

The rippling process — as illustrated in the example above — relies on
the existence of appropriate annotated equations in order to ripple out
(or ripple inside) the occurring wave-fronts. In cases, where appropriate
equations are missing, Ireland & Bundy [23] propose a technique to
speculate lemmata which push the rippling process further and which
are treated as subtasks to be proven separately. Their approach is based
on some kind of higher order rippling. For a discussion of their formal
approach to unification see section 5.

In order to illustrate this application of our calculus, consider the
following example involving list manipulations

Vu,v.rev(app(rev(v),u)) = app(rev(u), v) (5)

Here uw and v are of type y for lists and rev and app stand for the
operations of reversing and concatenating lists, they have types v — v
and v — 7y — 7 respectively. Using induction on v we obtain the
following formula as an induction conclusion in the step case (h is a
new element constant of type e and cons the list constructor of type
€= A= A):

rev(app(rev(cons(h, v)),u)) = app(rev(u), cons(h, v)) (6)

The rippling process gets blocked® after unfolding the definition of rev
on the left-hand side:

rev(app(app(rev(v), cons(h,nil)), u)) = app(rev(u), cons(h,v)) (7)

In order to push the rippling process further, Ireland & Bundy specu-
late appropriate lemmata which are then considered as subtasks of the
proof. In this example they calculate a schematic form of an appropriate
annotated equation

app(X, cons(Y, Z)) = app(F1(X,Y, Z), Z) (8)

which can be used to move the blocked wave-front on the right-hand
side towards the sink” w. While the left-hand side of the speculated
lemma is just a generalization of the subterm to be modified, the higher-
order variable Fy represents the unknown wave-front on the right-hand
side which has still to be constrained by the further rippling process.
Applying this equation on the right-hand side yields:

rev(app(app(rev(v), cons(h, nil)),u)) = app(Fi(rev(u), h,v),v) (9)

6 There are no applicable annotated equations in the data base.
" Universally quantified variables are called sinks in rippling, because they can be
used to swallow up wave front material, since they can be arbitrarily instantiated.

7

To enable the use of the induction hypothesis in this example the wave
front has to be moved in front of the sink u. Thus, we use the annotated
equation

app(rev(Y), cons(X, nil)) = rev(cons(X,Y)) (10)

in order to ripple the wave-front on the right-hand side towards . In or-
der for (10) to be applicable to (9), we must unify® F(rev(u),h,v) and
app(rev(Y'), cons(X, nil)). Higher-order colored unification, or HOCU
for short, results in a solution (see the example in section 1.5 for a trace
of the computation)

AUVW . app(U , cons(V,nil)) / F1], [h/X], [u/Y]. (11)

Applying the instance of (10) under (11) to the right-hand side of (9)
the wave-front is moved towards the sink u:

rev(app(app(rev(v), cons(h,nil)),u)) = app(rev(cons(h, v)),v) (12)

The unifier used to perform this step also refines the schema of the
speculated annotated equation (8) which we have previously used to
unblock the rippling process, to

app(X, cons(Y, Z)) = app(app(X , cons(Y, nil)), Z) (13)

The aopplication of this speculated equation (13) on the left-hand side
finally yields:

rev(app(rev(v), cons(h, v))) = app(rev(cons(h, u)),v)

which enables the use of the induction hypothesis and completes this
particular proof. Proving by induction the speculated lemma (13),
which is the instance of the speculated equation (7) using (11), fin-
ishes the overall proof.

1.3. A COLORED A-CALCULUS

Before we turn to the linguistic application, let us informally intro-
duce some notation and generalize? the set of colors from “grey” and

8 To ease readability we have slightly simplified the method of Ireland and Bundy;
Actually, the occurrence of the meta-variable Fi(rev(u), h, v) is replaced by a nested
term Fy(Fi(rev(u),h,v), h,v) in order to allow the speculation of more complex
wave-fronts using F» in the later rippling process. In our example it would only be
instantiated to the projection A\UVW .U.

9 This generalization does not make the theory more complicated, in the contrary,
it makes the concepts involved much clearer, and it allows to treat more applications
(see [14] for a linguistic application that uses feature terms as colors).

8

“white” to an arbitrary set of colors (we will make this totally formal
in section 2). The references in brackets indicate, where the reader can
find a fully formal development of the respective informal arguments.

The colored A-calculus is a variant of the simply typed A-calculus [6]
(see [1, 18] for an introduction), where occurrences of constants and
free variable can be annotated with so-called colors which are either
color constants C = {a,b,...} or color variables X = {A,B,...}.
Whenever colors are irrelevant, we simply omit them. Colors are indi-
cated by subscripts labeling symbol occurrences. We call a formula M
c-monochrome (definition 2), if all symbols (except bound variables)
in M are annotated by a common color c.

It is crucial for our logical system that colors annotate symbol oc-
currences (i.e. colors are not sorts!), in particular, it is intended that
different occurrences of symbols carry different colors (e.g. hXaXy)
and that symbols that carry different colors are treated differently. This
observation leads to the notion of colored substitutions!® (definition 4),
a notion of substitution that takes the color information of formulae
into account. In contrast to traditional (uncolored) substitutions, a col-
ored substitution o is a pair (0!, 0¢), where the term substitution o
maps colored variables (i.e. the pair X, of a variable X and the color ¢)
to formulae of appropriate types and the color substitution ¢ maps
color variables to colors. In order to be a legal C-substitution such a
mapping ¢ must obey the following constraints:

— If A and B are different colors, then |o(Xy)| = |o(X3)|, where |[M]
is the color erasure of M, i.e. the formula obtained from M by
erasing all color annotations in M (definition 3).

— 1If ¢ € C is a color constant, then o(X.) is c-monochrome.

The first condition ensures that the color erasure of a C-substitution
(defined in the obvious manner) is a classical substitution of the sim-
ply typed A-calculus. The second condition formalizes the fact that
free variables with constant colors stand for monochrome subformulae,
whereas variable colors do not constrain the substitutions.

Note that since bound variables do not carry color information, 37-
reduction (cf. definition 28) in the colored A-calculus is just the classical
notion and inherits its good properties (decidability and normaliza-
tion).

The constraints on C-substitutions given above allow us to special-
ize higher-order unification to an inference procedure that manages
color information: a higher-order unifier o of a given equation M = N

10 We will denote the substitution of a term N for all free occurrences of X in M
with [N/X]M.

9

(i.e. 0o(M) =g, o(N)) must be a C-substitution in order to be a col-
ored higher-order unifier (definition 7) of M and N. In particular, C-
unification will only succeed if parallel sub-formulae have unifiable col-
ors. For instance, fa(pa,jb, Xa) unifies with f,(Ya, ja, Sa) but not with
fa(Pa, Ja, Sa) because of the color clash on j.

It is well-known, that in first-order logic there is always a most
general unifier for any equation that is solvable at all. This is not the
case for higher-order (colored) unification, where variables can range
over functions, instead of individuals only. In fact there might be even
solvable equations that have infinite chains of unifiers which are more
and more general. In other words most general unifiers need not to exist
in general.

1.4. HIGHER-ORDER UNIFICATION AND NATURAL LANGUAGE
SEMANTICS

In this section we will present a different kind of application of higher-
order colored unification in the area of natural language semantics.
In [11, 13, 12, 15] the colored lambda calculus is used as a tool to spec-
ify the interface between the classical semantic construction process
(using higher-order unification) and other sources of linguistic infor-
mation (which are coded into color information). We will briefly sketch
the underlying ideas in case of verb-phrase ellipsis; i.e. the phenomenon
that parts of natural language sentences (here verb phrases) can be re-
placed by utterances like “does too”. For a thorough treatment of cases
like focus constructions, second-occurrence expressions, and adverbial
quantification, the reader is refered to [11] and the references in [15].

The basic idea [7] underlying the use of higher-order unification for
natural language semantics is very simple: Following [28], the simply
typed A—calculus is used as a semantic representation language while
semantically under-specified elements (e.g. anaphoric references or el-
lipses) are represented by free variables whose value is determined by
solving higher-order equations. For instance, the discourse (14) has has
the semantic representation (15), where the value of the predicate vari-
able R is determined by equation (16).

Dan likes his wife. Peter does too (14)
like(dan, w_of(dan)) N R(peter) (15)
like(dan, w_of(dan)) = R(dan) (16)

Higher-order unification calculates the solutions (17) and (18).

NZ .like(Z, w_of(dan))/R] and [AZ.like(Z, w_of(Z))/R] (17)
[AZ . like(dan, w_of(dan))/R] and [AZ.like(dan, w-of(Z))/R](18)

10

However, only the first two of the solutions (17) lead to the linguistically
desired solutions (19) and (20), whereas those in (18) lead to (21) and
(22) which are clearly not the desired readings of the discourse.

like(dan, w_of(dan)) A like(peter, w_of(dan)) (19)
like(dan, w_of(dan)) A like(peter, w_of(peter)) (20)
like(dan, w_of(dan)) A like(dan, w_of(dan)) (21)
like(dan, w_of(dan)) A like(dan, w_of(peter)) (22)

To remedy this shortcoming, Dalrymple & Shieber & Pereira, who have
pioneered this analysis in [7], propose an informal restriction, the pri-
mary occurrence restriction, which deletes any solution from the
set of linguistically valid solutions, which contains a pre-determined
so-called primary occurrence (in our case dan).

In the colored A-calculus, the primary occurrence restriction can
directly be modeled as follows: Primary occurrences are p-colored while
free variables are s-colored (all other non-bound symbols are colored
by distinct color variables, which we will not show in our examples).
Given the restriction for C-substitutions, such a coloring ensures that
any solution containing a primary occurrence is ruled out. Hence no
substitution will ever contain a primary occurrence (i.e. a p-colored
symbol) as it was required by the primary occurrence restriction. For
instance, the colored representation of (14) is (23) together with the
colored unification problem (24) which only has the C-unifiers in (25).
Higher-Order Unification without the monotonicity constraint would
have the solutions (26) which are not well-colored.

like(dang, w_of(dan)) A Rs(peter) (23
like(dany, w_of(dan)) =" Rs(dany) (24
[AZ . likes(Z, w-of,(dans))/Rs] and [AZ . likes(Z, w_ofs(Z))/ Rs](25
[AZ . like(dangy, w-of(dan))/Rs] and [AZ . like(dany, w_of(Z))] Rs]26

~— ~— ~— ~—

Note that the analysis hinges on the fact that colors (unlike types or
sorts) provide a means to distinguish between symbol occurrences (in
our example the different occurrences of dan) by annotating them with
different colors. Thus the HOCU approach keeps the desired property of
being able to derive the so-called sloppy/strict ambiguity'! while solv-
ing the over-generation problem, i.e. that classical HOU predicts more
readings (e.g. those in (18)) than actually exist in natural language.
Even though we have only sketched the relevant ideas, it should be
clear, that higher-order colored unification provides a general frame-

1 the reading where Peter loves his own wife is called the strict reading, because

the reference his is interpreted strictly. The other one is sloppy, as the reference is.

11

work for specifying the linguistic information for the construction pro-
cess that avoids over-generalization (i.e. the construction of linguisti-
cally undesired readings of discourses).

1.5. CALCULATING COLORED UNIFIERS

Just as in the case of unification for first-order terms, the higher-order
unification algorithm is a process of recursive decomposition and vari-
able elimination that transforms sets of equations into solved forms
(definition 8). Since C-substitutions have two parts, a term— and a color
part, we need two kinds of equations (M =! N for term equations and
¢ =4 for color equations). Sets £ of equations in solved form have a
unique most general C-unifier g that also C-unifies the initial equation.

There are several rules that decompose the syntactic structure of
formulae. We will only discuss two of them here (cf. definition 9 for a
full set). The rule for abstractions transforms equations of the form
AUM =' A\V.N to [¢*/UM =! [¢*/V]N, where ¢* is a new con-
stant'?, while the rule for applications decomposes haM'...M" =!
hoN' .. N" to the set {a = b,M' =! N' ... M" =! N"}, provided
that h is a constant. Furthermore equations are kept in Sn-normal form.
Note that this decomposition process also eliminates trivial equations,
where both sides are Gn-equal.

The variable elimination process for color variables is very simple, it
allows us to transform a set £U{A =¢ d} of equations to [d/A]E U {A =€
d}, making the equation {A =¢ d} solved in the result.

In case of formula equations, elimination is not that simple, since
we have to ensure that |o0(X,)| = |0(X3s)| to obtain a C-substitution o.
Thus we cannot simply transform a set £U{X4 =! M} into [M/Xg4]€ U
{X4 =! M}, since this would (incorrectly) solve the equations { X, =!
fes X4 =% ga}. The correct variable elimination rule transforms a set &£
of equations with X = M € £ and X ¢ free(M) into

[M/X]e U[X =" M]e

where [M/X]e = [M'/X.,],...,[M"/X.,], such that the c; are all
colors of the variable X occurring in £ and the M' are appropriately
colored variants (same color erasure) of M. Similarly, [X =! M]¢ =
{X., =t M',..., X, ="' M"}. Note that the induced substitution
[M/X]e (cf. definition 6) is independent of the colors in M and X.
Correctness of the term elimination rule hinges on the fact that all
color variants of X are eliminated simultaneously and that the sub-
stitution [M/X]¢ induced by a pair X =! M is also applied to the

12 Actually, in definition 9 we use special variables, which behave somewhat like
constants.

12

pair itself. Thus an unsolvable pair, such as X, =! ¢, gives rise to the
induced substitution [c,/X,] and leads to the pair ¢, = ¢y, where the
decomposition rule can detect a color clash.

It would be convenient, if the transformations described so far, were
sufficient for transforming all unifiable sets of equations into solved
form and thus finding all unifiers. But, due to the presence of function
variables, systematic application can terminate with equations of the
form X M'...M" =! hgN' ... N™.

The standard solution (due to Gérard Huet, cf. [32] for an introduc-
tion) for finding a complete set of solutions in this so-called flex/rigid
situation is to substitute a term for X of type § that will enable de-
composition to be applicable afterwards: a so-called general bindings
(definition 10) of the following form:

Gh =Nz ...z QH'Z)...(H"Z)
where
— 6 =0, = aand Q has type 7, — «
— one of the following holds:

e @=Z7% and aj =7, — « for some j < n, then h = 5 and
we call gg a projection binding or

e @ =S for some constant or free variable S of type 7, — «,
then h = S and we call gj; an imitation binding.

— the H' are new variables of type 8, — 7,

We can actually use colors'® to get a better understanding of the sit-
uation. Therefore consider the unification problem of Xgqa. =! aq. For
the imitation solution (AZ.aq) we “imitate” the right hand side, so the
color on @ must be d. For the projection solution we instantiate (AZ.Z)
for X and obtain (AZ.Z)a., which S-reduces to a.. We see that this
“lifts” the constant a. from the argument position to the top. Inciden-
tally, the projection is only a C-unifier of our colored example, if the
color constants ¢ and d are identical. However for calculating solutions
for flex/rigid pairs, we do not need colors, since the color erasure of the
instance is determined by the general bindings and the color annota-
tions are added by the induced substitution. Thus the general rule for
flex /rigid equations (definition 11) transforms equations of the form

EAXOM!.. . M" =! hgN! .. .N™

3 This is another (didactic) application of higher-order colored unification, where
we use colors to distinguish different symbol occurrences.

13

into
EANXM'.. . M"=!hgN' ... N"A X, = G"

with immediate variable elimination of the new equation.

Finally we are left with the only remaining case, where the heads of
both sides of the equation are free variables the so-called flex/flex case.
The solution of this case is either to project, as in the flex/rigid case or
to “guess” (computationally: to search for) the right head for the equa-
tion and bind the head variable to the appropriate imitation binding.
Clearly this need for guessing the right head leads to a combinatory
explosion of the search space, which makes higher-order (colored) uni-
fication computationally infeasible. Fortunately, most applications do
not need full higher-order unification:

— For theorem proving purposes it is often only important to know
about the existence of any unifier. In the case of classical higher-
order unification it is therefore sufficient to consider flex/flex pairs
as solved, since they are guaranteed to have unifiers (cf. section 3.3).
In the colored case, this is no longer the case, i.e. there are flex/flex
unification problems that do not have unifiers. We identify a nec-
essary and sufficient condition (the absence of so-called flexible
chains (cf. definition 12)) and specialize the unification algorithm
accordingly (definition 16).

— In the linguistic applications, sketched in section 1.4, formulae be-
long to very restricted syntactic subclasses, for which much better
results are known (for classical higher-order unification). In par-
ticular, the fact that free variables only occur on the left hand
side of the equations reduces the problem of finding solutions to
the so-called higher-order matching problem, of which decid-
ability has been proven for the subclass of third-order formulae [9]
(see [30, 29] for other tractable fragments). This class, (intuitively
allowing one only to nest functions as arguments up to depth three)
covers all examples studied so far.

Before we discuss the applications, let us fortify our intuition about
calculating higher-order colored unifiers for the following problem which
aroused in our lemma speculation example in section 1.2.

Fy(reve(ug), hg,vg) =" appg(revs(Ya), consg(Xg, nilg)) (27)

Since F' is a function variable, we are in a flex/rigid situation, and have
the possibilities of projection and imitation. There are three possible
projections, AUVW .U), AUVW .V), (A\UVW .W), which all lead to

immediate failure, since they project up the rigid subterms rev, (uy), hg

14

or vg, which would clash with the head app, of the right hand side. So we
only have the imitation binding B := \AUVW . app(H (U, V, W), K(U,V,W))
for F. Binding F' to that (i.e. applying the induced C-substitution
[B/Flg = [(AUVW .apps(Hg(U,V,W), Kg(U, V,W))/ Fg)]) and decom-
posing the instantiated problem, we are left with the equations

Hg(revy(ug), hg,vg) =" revg(Ya)

Kg(revy(uy), hg,vg) =" consg(Xg, nilg).
Choosing'? the imitation \UVW . consg(Mg (U, V, W), Ng(U, V,W)) for
K, and the 1-projection binding (A\UVW .U) for H, we obtain

revg(uy) =t revg(Yy)

consg(Mg(revy(ug), hg, vg), Ng(revy(ug), hg,vg)) ="' consg(Xg, nilg)

We can decompose again and obtain

A = w
Uy =t YA
Xy =' Mg(revy(uy), hg,vg)
Ng(reve(uy), hg,vg) =" nilg

The first two equations can directly be solved by eliminating A for w and
Yy (which is actually Y after the previous elimination) for u,. The third
equation cannot be solved this way, since M (revy(uy), hg, vg) is not g-
monochrome, so we choose the 2-projection binding'> \UVW .V for X¢
and solve the fourth equation with the imitation binding AUVW . nil;
and for Ng. Eliminating these bindings allows us to simplify the equa-
tions to the trivial set hg =t hg and nilg =t nilg. Thus one final solution
of the unification problem is

[NUVW . appg(U, consg(V, nilg)) [Fgl, [us/ Yal, [hg/ X]

We have indicated the choice points for the other solutions in the foot-
notes.

' The 2-projection bindings for H and K are impossible for type reasons
and all projection bindings but the 1-projection binding for H lead to im-
mediate subsequent clash. The imitation binding for H leads to a solution
AUVW . app, (revg(Lg (U, V, W)), consg (Y, nil)) for Fy that is not wanted in our mo-
tivating example, so we will not pursue it here.

5 The imitation binding AUVW .Q, (Q a new variable) would also have worked.

15

2. The Colored A-Calculus

In this section, we make the intuitive concepts introduced above for-
mal by extending the simply typed A-Calculus (see [18] for an intro-
duction) with a concept of color annotations for constant and variable
occurrences.

The set T of types is generated from a set BT of base types by
function type construction (o — 3). We write 3, — « for the type
61— ... = B — « of n-ary functions.

The set of colors is built up from color constants (C = {a,b,...})
and color variables (X = {A,B,...}). Whenever colors are irrelevant,
we simply omit them. Colors are indicated by subscripts labeling sym-
bol occurrences.

The definition of well-formed formulae differs from the standard one
in the treatment of bound variables, which do not carry color annota-
tions in the colored A-calculus. Therefore we provide a separate class
of variables for them. Concretely, we fix

— a signature ¥ = [(J,.7 X of constant symbols (we will use
lower-case letters for these)

— countably infinite sets V* of (free) variables for each type a € T
(we will use the upper-case letters X, Y, F, G, H and V := {J ,c+ V%)

— countably infinite sets LV of local variables for each type a € T
(we will use the upper-case letters U, V, W, Z for these and LV :=

UaGT Lva)

— sets C of color constants and X of color variables.

Atomic occurrences of symbols in well-formed formulae can have a
color annotation, therefore we fix the notation ¥z for the set {ca|c €
¥,a € Z} for some subset Z C C U X, and analogously for Vz.

DEFINITION 1. (Well-Formed Formulae). For each o € T we induc-
tively define the set wff,(X) of well-formed formulae of type «
by

—if S € ¥4 UV U LV?, then S € wff, (X),
—if A € wffs_,,(¥) and B € wffz(%), then AB € wff,,(>), and

—if A € wff,,(¥) and Z € LVP, then (\Z.A) € Wffs_0(X). Just
as in the standard A-calculus, we will call any occurrence of the
local variable Z in AZ. A bound.

16

We call formulae of the form AB applications, and formulae of the
form \Z,.A abstractions. Finally, we call a formula A proper, iff
all occurrences of local variables in A are bound, we will denote the set
of proper well-formed formulae of type a with pwff,(X).

Note that with this definition the notion of free variables coincides
with the standard one in the case of proper formulae. We will write
free(A) for the set of (color and term) variables in A. As in first-order
logic the names of bound variables have no meaning at all, thus we
consider alphabetic variants as identical and use a notion of substitution
that systematically renames bound variables in order to avoid variable
capture.

EXAMPLE 1. Fj(sa(ac)), AZ.sq4(Z) are examples of colored \-terms
while \Z . sq(Zg) is not (bound variables may not have colors).

DEFINITION 2. We will first define a function C¢, where Cc (S, B) is
the set of the color annotations of all occurrences of the symbol S in the
proper formula B, which we also define inductively: Cc(Sa, Sa) = {a}
for symbols, Cc(S,AB) = Cc(S,A) U Ce(S,B) for applications and
finally Cc (S, AZ.A) = Cc(S,A). We will call a formula A € pwff(X)

— flexible, iff Cc(S,A) C X for all symbols S € VUZX,
— rigid, iff Cc(S,A) CCforall Se VU,

— a-monochrome, iff there is a single color constant a, such that

Cc(S,A) ={a} forall S € VUX, and

— flexichrome, iff A is flexible and any color variable occurs at
most once in A.

Finally, we call a formula A compatible with a color a, iff either a is
a color variable or A is a-monochrome.

Clearly the colors annotating the atoms do not affect 8n-convertibility,
since bound variables are not colored. Therefore,

(AZ.C)D —4 [D/Z]C and (\Z.AZ) —, A (28)

where the local variable Z does not occur not freely in A. Since bound
variables do not carrry color information and consequently there are no
restrictions on J-redexes or the substitution in G-reduction, we can lift
all the known theoretical results to the colored calculus. In particular,
we know that On-reduction always terminates producing unique Sn-
normal forms and that fBn-equality can be decided by reducing to fn-
normal form and comparing for alphabetic equality. Based on this, we

17

can use the traditional versions of (long) #n normal forms and (long)
head normal forms.

To make arguments like the above more formal, we define the erasure
of a colored formula, as a simply typed A-term, which we obtain erasing
all color-information:

DEFINITION 3. (Erasure). The erasure of colored A-terms to simply
typed A-terms is defined by:

—|Sal=SifSeXUVandacCUAX,
- X|=XifXeLlV,
— [(AB)| = (JA[[B]), and
— (A Z.A)| =)XZ.|A|
We call any colored formulae A and B variants, if |A| = |B|

We now have the tools for defining C-substitutions, a specialization
of well-typed substitutions that preserves syntactic color information,
such as the skeleton (cf. section 4).

DEFINITION 4. (C-Substitution). Let 2 C X and W C CU X be
two finite, disjoint sets of colors, then a C-substitution o is a pair
(0!, 0¢), where o is a type-preserving mapping Vyy — pwff(X) and
0% Z — W such that the domain Dom(c) = Dom’(c) U Dom®(0)
of 0 with Dom’(0): = {X, € Vz|o!(X,) # X.} and Dom®(0): = {A €
Z|o“(A) # A}, is finite. Furthermore, we assume that

—if a € C, then o(X,) must be a-monochrome for any variable
X, € Dom!(0), and

— |o(X.)| = |o(Xp)| for all X,, Xy, € Dom'(0).

Note that local variables can never appear in the codomain of the term
substitution, since we have restricted that to proper formulae.

REMARK 1. Note that the second condition in the definition of C-
substitutions (instances of variants are variants) holds in general as a
simple induction on the structure shows: If o is a C-substitution and A
and B are variants, then o(A) and o(B) are variants.

A C-substitution 6 has to obey the dependencies between different
variables. Instantiating X, and X}, we have to take care that |0(X,)| =
|0(Xyp)|. Hence, if the unification process instantiates X, with a formula
A, we also have to instantiate Xy, with suitable formula A’ in order to
satisfy the conditions for C-substitutions in definition 4. In particular
we have to guarantee that

18
— |A|=|A'| and
— [A'/Xy] is a C-substitution.

If b € C, then there is a unique solution for A’ which we call a b-
monochrome variant of A. Intuitively we can obtain A’ from A by
re-dyeing all colors and color-variables to b. In case b € X the color
annotations in A’ are not restricted, so we only require |[A| = |A’|. Thus
we need some “most general schema” which can be instantiated to any
possible A’. We call these schemata flexichrome variants and obtain
a flexichrome variant for A by replacing each color or color-variable in
A by distinct new color-variables.

DEFINITION 5. (a-Chrome Variant).
Let A, B € puff, (%), then we call B a

— flexichrome variant of A, iff B is flexichrome and |A| = |B|,

— c-monochrome variant of A, iff B is c-monochrome and

Al = [B],
— b-chrome variant of A, iff

e be X and B is a flezichrome variant of A or

e beC and B is a b-monochrome variant of A

Note that a-monochrome variants are uniquely determined, since we
can obtain them by replacing each color and color-variable by a.

EXAMPLE 2. s,(Xg) is a flexichrome variant of sq(Xc), and \Z . sy(sg7)
one of NZ .sq(scZ), but N7 .sy(spZ) and N7 .sy(scZ) are not. Further-
more, the formulae sc(X.) and A7 .sc(sc.Z) are c-chrome variants of
s$a Xy and N7 .sq(s.Z) respectively.

LEMMA 1. If a formula A is compatible with some color a € CU X,
then there is an a-chrome variant G of A and a C-substitution p, such
that p(G) = A.

Proof. If a is a color variable, then by a simple induction on the
structure of A, we see that there is a flexichrome variant G of A and
furthermore that we can chose p to be a color substitution that re-
dyes the color variables of G. If a € C, then A must be a-monochrome
by compatibility, and we can choose G = A and p to be the identity
substitution. O

19

DEFINITION 6. (Induced Z-Substitution). Let A € puwff,(X) be a
proper formula, X € V,, and Z C C U X, then we say that the Z-
substitution

[A/X]z = {[A*/Xa]la € Z}

is induced by [A/X] iff for all a € Z, the term A? is the a-chrome
variant of A. Note that [A/X]z is a C-substitution that has finite
support whenever Z is finite. Furthermore it is unique up to the choice
of new color variants in the flexichrome variants of A. Since the induced
Z-substitution only depends on the erasures of A and X, we will also
use it for uncolored formulae.

The significance of the induced Z-substitutions is that for any C-
substitution o with Dom(c) = {X}z, we have 0 = [|o(X)|/X]z. In
other words, the well-formedness conditions for C-substitutions ensure,
that the X z-part of a substitution can be induced from the erasure
alone. In the unification we will use the fact that if we know the struc-
ture of the color erasure of a general binding, then we can already fix
the X part of the solution.

EXAMPLE 3. Let Z = {a,b,A} and A = f.(9(Xa)), then

HA/X]]Z = [fa(ga(Xa))/Xa]a [fb(gb(Xb))/Xb]a [fC(gD(XE))/XA]

3. Unlification

The central data structure for higher-order unification is that of unifi-
cation problems, i.e. sets of pairs A =" B of formulae with coinciding
types and pairs of colors a =° b. We will represent these sets as con-
junctions and write =, if it is irrelevant whether we mean =’ or =¢.
Note that we do not restrict ourselves to proper unification problems
in this paper (we will call a unification problem proper iff all of the

formulae occurring in it are).

DEFINITION 7. (C-Unifier). We call a C-substitution 8 = (6,6°) a

C-unifier of a unification problem
E=A'"="B'A...AA"="B"Aal =“bp' AL A" =™
iff
— 01 (AY)=p,0'(B) for all 1 <i < n and

— 6%a’) = 6°(b’) forall 1 < i <m

20

and we will denote the set of C-unifiers of £ with U(E).

For a set W C Vz U X of variables, we call C-substitutions ¢ and p
equal on W (we denote that by o = p[W)]), iff for all X € W o(X) =
p(X). We will use the obvious extension of this equality to Sn-equality
and to sets of equations, furthermore we will abbreviate o = p[free(&)]
with o = p[£] for a unification problem &.

We call a subset ¥ C U(€) a complete set of C-unifiers of &, iff
for all @ € U(E) there is a 0 € ¥ that is more general than 6, i.e. there
is a C-substitution p, such that o=g,p o 0[&]. If the singleton set {c} is
a complete set of unifiers of £, then we call 0 a most general unifier
for £.

DEFINITION 8. (Solved Form). Let £ := A = B AE’ be a unification
problem, then we call the pair A = B solved in &, iff either

— it is a term pair X, =' B for some variable X € V, some proper
formula B and some color a € C U X and

e X, ¢ free(B) and

o if X. € free(£’)) for some ¢ € Z, then it occurs exactly as
the left hand side of a pair X, =! C, such that |B| = |C| and
C is c-chrome, or

— it is a color pair A =° b for some color variable A € X, such that
A # b and A ¢ free(&’).

We say that £ is in solved form, iff all its pairs are solved in £. Clearly,
any proper C-substitution

o= [Al/Xall], S [ATXG] [an /A - (e /A
uniquely determines a solved unification problem
Er=Xa =" AN AXD =P AT AL =S a1 A Dy, =C ay,

in solved form. We will use [X =" A] for £4,x], where [A/X] is the
induced substitution (cf. definition 6).

Conversely, the conditions on solved forms ensure that the corre-
sponding substitutions are C-substitutions: The first condition ensures
well-definedness (occurs-check), idempotence, and properness while the
second ensures that og is a C-substitution.

21

(AU,.A) =" (\V,.B) Z € LV new

SIM(«)
[Z/UIA =" [Z/V]B

(A\U,.A)="B Z € LV new
ST

M(n)
[Z/UJA =' (BZ)

h U =L by VPAE heTULY

SIM(dec)
a=bAU =t VIA...AU"=tV"AE

Figure 2. Decomposition Rules in STM

A="DbAE A€ XNfreef)

SZM(elim:col)
A=bAl[b/AJE

F ¢ free(A) F,ZF='Ac€&

£ LV(A) C {Zi} C LV

ST M (elim:term)

[F =" XZF . Ale. 5y NNZE A Fle, (.6 (E)

Figure 3. Variable Elimination Rules in STM

3.1. SIMPLIFICATION

DEFINITION 9. (SZM: Simplification of C-Unification Problems). The
rules for constraint simplification consist of the decomposition rules in
figure 2 and the variable elimination rules in figure 3

In contrast to the simple higher-order unification we have to ensure
that the resulting solutions are C-substitutions, therefore, we have to
apply [AX*.A/FJc.(pe) to € if we eliminate F, with AX*.A. Note

that this approach works even if the pair F,ZF =t A is not well-colored,
since any color clash (say if A contains a b-colored symbol) would be
detected during decomposition of the resulting pair A® =! A.

22

We apply these rules with the understanding that the operators A
and =! are commutative and associative and that trivial pairs may be
dropped. Furthermore after the application of each rule all formulae
are reduced to head normal form. Finally, no rule may be applied to a
solved pair.

LEMMA 2. If D:& Fszpm &', then U(E) = U(E[E].

Proof. We will only concern ourselves with SZM(elim:term), since
the other rules are like the uncolored ones. So let £ be a C-unification
problem and (F,Z) =! A be the pair in € that the rule STM (elim:term)
acts upon. Furthermore let Fy, € free(€) for some b # a.

We show that for an arbitrary idempotent proper C-unifier 8 of &,
the b-chrome variant of the formula AZ". A is more general than 0(F).
So let 6 be an arbitrary C-unifier of £, then

0(Fa)=p,0(\Z . FaZ)=3, 07 . 0(FuZ) =3, Z . 0(A) =, 0(NZ . A)

since the Z; are not in Dom(#). Now we know that |0(Fy,)| = 6(F,)|,
since 0 is a C-substitution, on the other hand (Fy) is compatible with
b, so there is a unique b-chrome variant G of AZ. A and a substitution
p, such that p(G) = AZ.A by lemma 1, since b was chosen arbitrarily
in the set Cc(F,), we obtain the assertion. O

Clearly the STM Transformations are a joint generalization of the
first-order colored unification algorithm as it has been presented in [21]
and Huet’s simplification rules [32]; they are terminating and confluent
up to associativity and commutativity of A, = and =¢. Thus it makes
sense to speak of a STM-normal form. Unlike unification for first-order
logic, the SZM-normal forms are not solved forms, but can contain
pairs of the form h,U =* kU, where at least one of the heads h, and
k. is a colored variable.

3.2. GENERAL UNIFICATION

The classical approach to higher-order unification on un-colored terms
reduces the problem of finding solutions for un-colored SZM-normal
pairs to the the general binding problem: Given a type a and a symbol
@, find the most general well-formed formula of type a that has head @.
Indeed it is sufficient to instantiate the head variables in ST M-normal
pairs with such general bindings to obtain a complete set of HOU trans-
formations. Since we have already generalized the simplification rules
to deal with the color annotations, and we know from the classical case,
that the erasures of the instantiations of head variables must be gen-
eral bindings, it is sufficient to employ the uncolored rules for general

23

higher-order unification. This will allow us to use most of the meta-
theory directly from the un-colored case (see for instance [32, 24]). To
keep this paper self-contained, let us restate the definitions.

DEFINITION 10. (General Binding). We call the formula
GBh = zv ..z QH'Z)...(H™Z)
a general binder iff
— 6 =B, = « and Q has type , = «
— one of the following holds:

e Q=27% and aj =%y, — a for some j < n, then h = j and
we call gg a projection binding or

e @ =S for some constant or free variable S of type ¥m — «,
then h = S and we call gg‘ an imitation binding.

— the H are new variables of type Bn — i,

Note that this definition is unique up to the names of the new variables
H' and only depends on the signature ¥. Finally, for given type «, and
head h we collect the imitation binding and all projection bindings (there
need not be projection bindings for all types) in set of approximations
of h and «

ABL(E) := {GBa(D)} U{GBL(E)j < n}

The significance of this class of formulae is given by the following
theorem, which is a simple consequence of the normal form theorem.

THEOREM 1. (General Binding Theorem). Let A € puwff,(X) be a
formula with head(A) = h, then there exists a substitution p, such
that p(G)=p,A where G = GBL(X) is the general binding for h and c.
Moreover, if A is a head normal form, then the depth of p is strictly
less than that of A.

DEFINITION 11. (CUT: Transformations for C-Unification). Let CUT
be the system SZM augmented by the inference rules in figure 4. Just
as in STM leave the associativity and commutativity of A, =t, and =¢
implicit. We have combined the classical imitation (G has head h) and
projection (G is a projection binding) transformations (see [32]) into
CUT (flex:/rig). This set of rules is used with the convention that all
formulae are eagerly reduced to SZM-normal form. In particular by
eliminating the new pairs F, =! G instantiate colored variables in £
with the correctly colored variants of G.

24

F,U =t LV AE
a="bAU" =t VIA. . . AU"=tV"AE

CUT (dec)

FOU="mVAE G e AB'(D)

. — — CUT (flex [rig)
F,='GAFU=nVAE

FOU ="' G, VAE G e ABL(Y)

— — CUT (guess)
F,='GAF,U='G,VAE

Figure 4. General Colored Unification

The soundness of these rules is a direct consequence of the (colored)
soundness of SZM and the soundness of classical HOU on the erasures.
Therefore, we directly have the following theorem.

THEOREM 2. (Soundness of CUT). If € ey &' such that £ is in
C-solved form, then the substitution og ©) € u(é).

|free

So if the algorithm CUT returns a substitution 6 for an initial system
&, then 6 is indeed a C-unifier for £. The main result of this section is
the converse, namely, that given an initial C-unification problem £ and
a C-unifier 8, the algorithm CUT can compute a C-unifier o of £, which
is more general than 6.

As higher-order unification is undecidable [16], our set of transfor-
mations cannot be terminating in general. We will prove, that CUT is
a complete C-unification procedure, i.e. for any given 6 € U(E) there
is a CUT-derivation &€ Fcy7 €' such that £ is a C-unification prob-
lem in C-solved form, and o} is more general than 6. For this we only
need a subset CUT ¢ of inference rules that approximate the solution
6 (for details and proofs see[32, 24]). Even though CUT must be non-
terminating in general (otherwise HOU would be decidable) we have
the following semi-termination result.

THEOREM 3. If £ is a unification problem with unifier 6, then
— CUTy is terminating.

— CUTy conserves the subset of unifiers that are compatible with

0.

25

— if no transformation rule from CUT ¢ is applicable to £, then &
is in C-solved form.

In particular, a unification problem £ has an unifier 6, iff there is a
sequence of CUT y-transformations that terminates with a solved form
E'. Since CUTy conserves the set of unifiers that approximate #, and
Eer is a most general unifier of &', £ must be more general than 6.
Since the colored unification transformations are also classical ones, we
directly have semi-termination for the colored case. This leads to the
following completeness result for higher-order colored unification.

THEOREM 4. (Completeness Theorem for CUT). For any C-unification
problem € and any C-substitution § € U(E), there is a CUT -derivation
E Feut &' such that ' is in C-solved form and o <g, 0[&].

If we combine the soundness results from theorem 2 with the com-
pleteness result from theorem 4, we can characterize the set of solutions
found by the algorithm CUT by the following corollary.

COROLLARY 1. For any C-unification problem & the set
CUT (E) = {oe|€ Feur € and €' is in C-solved form}

is a complete set of C-unifiers for £.

3.3. PRE-C-UNIFICATION

As for unification in the simply typed A calculus, the rule CUT (guess)
gives rise to a combinatory explosion of the search space for unifiers.
Huet’s solution to this problem was to redefine the higher-order uni-
fication problem to a form sufficient for refutation purposes: For the
pre-unification problem flex-flex pairs are considered already solved,
since they can always be trivially solved by binding the head variables
to special constant functions that identify the formulae by absorbing
their arguments.

In case of the colored A-calculus a flex-flex pair may have no solution,
e.g. if the top-level variables of both terms are annotated by different
colors. Consider the following examples:

EXAMPLE 4. Let F,G € V, then the unification problem Fiaq =
G.ac has no unifier. On the other hand Fya. =' G.a. has an unifier

\Z.Z/Fy),[\Z.Z/G.).

26

The reason for this is the fact that projections, i.e. terms of the
form AX*.X? carry no color information and these are valid instances
of colored variables like Fy or G.. Hence, in order to solve flex-flex
pairs like the second one in example 4 we have to map one of the top-
level variables to a projection formula. This gives rise to the following
definition:

DEFINITION 12. (Flexible Chain). Let £ be a C-unification problem,
then a subset &' = A' =" B'A ... AA™ = B" of flex/flex pairs in £ is
called a o flexible chain of £ iff head(A’) = head(B* ') € Vy for
2 <i<n. We call head(A') = F, and head(B") = G4 the left- and
right ends of £'.

Ifc,d € C and c # d then we call £’ a reducible chain, otherwise a
safe chain, similarly, we call a pair in £ safe, iff there is no reducible
chain in & that contains it, and a unification problem, if it does not
contain reducible chains.

It will turn out that safe chains always have solutions, whereas a
reducible chain in a system &£ indicates a clash of different color anno-
tations to the top-level variables. As mentioned above, the resolution
of this clash will be to bind one of these top-level variables to a projec-
tion formula. Thus, we can step by step reduce the number of reducible
chains in &.

LEMMA 3. Let £ =& NE,, where & = A' = B'A ... ANA" = B"
s a reducible chain, then for each C-unifier o of £, there is a number
1 < i < n, such that o(head(A")) or o(head(B")) is a projection
formula.

Proof. Let F. = head(A’) and G}, = head(B’), then a;,b, € C,
but a; # b,, since &, is reducible by assumption. If we assume that
none of the F = head(A') and G, = head(B') is a projection, then
we have

head(c(F;)) = head(s(A')) = head(c(B')) = head(c(Gy,))
= head(o(F2)) = head(c(A?)) = ... = head(c(G})))
However o(F,,) and o(G{,) must be monochrome, as o is well-colored

and therefore a; = b,, which contradicts our assumption that &, is
reducible. O

DEFINITION 13. (Pre-C-Solved Form). Let £ be a C-unification prob-
lem the we call a pair A =' B in £ pre-solved in &, iff A =!' B is
solved in & or A =' B is a safe flex/flex pair in E. We call & pre-C-
solved, iff all of its pairs are. Thus & is pre-C-solved, iff all of its pairs
are solved or flex/flex and safe.

27

This definition is tailored to guarantee that pre-C-unifiers can always
be extended to C-unifiers by finding trivial unifiers for the flexible pairs
and that equational problems in pre-C-solved form always have most
general unifiers. Therefore an equational system & is pre-C-unifiable, iff
it is C-unifiable.

DEFINITION 14. (Color Restriction). Let £ be a safe system, then the
color restriction cr(X,, &) of a colored variable X, with respect to €
is defined by

—cr(Xa, &) = d if a € X and there is flexible chain &' in € with
left head X, and right head Yy for some d € C.

— cr(Xa, &) = a otherwise.

Given a safe system £ the notion of color restriction is well-defined.
Suppose, there are two subsets of £ satisfying the condition of the def-
inition above which result in different color restrictions ¢ and ¢’ for a
colored variable atom Xa. Merging both sets we would obtain a reducible
chain in &, which contradicts our assumption that £ is safe. Note that
for any flex/flex pair F,U =' GyV in € either

— cr(Fa, &) = cr(Gy,E) € C or
— both cr(Fy, &) and cr(Gyv, E) are color variables.

In the first case we furthermore know that either a € X or cr(F,, &) = a
(and similarly for b and cr(Gy, E)).

EXAMPLE 5. Both unification problems Fgaq =! G.a. and Fya, ="
Gcac from example 4 are reducible flexible chains, so any unifier has
to be a projection. Indeed for the second one, the projection bindings
NZ.Z|F4),[\Z.Z]G] succeed, whereas they clash for the first prob-
lem.

The problem € = Fya. =' Gyb NGy =' Hgbyq is safe, and cr(Gy, E) =
cr(Hg,E) = a. Finally F = Fya. = Ggby is safe with cr(Fy,F) = A
and cr(Gg, F) = B.

DEFINITION 15. (Trivial Unifier). Let & be a pre-C-solved C-unifica-
tion problem, such that £ = Fo"—hgm =t G’g“ﬁw is a pre-C-solved
pair in & and H := {HP|3 € T} be a reserved set of typed variables
with H N free(E) = 0. Furthermore let

Cgl = [Azél e Z(Txln . HET'(Fa,E

If er(Fa, &) # cr(Gy, E), then both are color variables and (g is aug-
mented by the color substitution [cr(Gy,E)/cr(Fa,&)]. Finally, we de-
fine (e as the union of the (g for all flex-flex pairs £ in E.

RN, 2 .HZ(Gb,E)/Gb]

28

The next lemma shows that pre-C-unifiers can always be extended to
C-unifiers by finding trivial C-unifiers for the pre-C-solved pairs. There-
fore a Y-unification problem & is pre-C-unifiable, iff it is C-unifiable.

LEMMA 4. Let € be a pre-C-solved unification problem, then og U (g
1s a C-unifier of €

Proof. Let £ and (g be as in definition 15, then (g is a C-unifier
for &', since

Cf' (Faw):ﬂanr(Gb,S):ﬂnCS’ (be)

and either cr(F,,&) = cr(Gy, E) or they are identified by (¢. Conse-
quently, og U (¢ is a pre-C-unifier of £, since og unifies the C-solved
pairs in £ and (g the flex/flex ones.

To show that (¢ is a C-substitution, we verify the conditions of
definition 4: We have two cases

— cr(Fa, &) = er(Gp,E) € C and a € C (in which case (¢(F.) =
NZy 7 cHp Gy 6) 18 @ = cr (G, £)-monochrome) or

— a € X, which is unproblematic.

The argumentation for Gy is analogous

For the consistency conditions on erasures, note that for any variable
X and colors e, f we have |(¢(Xe)| = |Ce(X¢)|, since the head H? and
thus the erasure itself is uniquely determined by the type of X. O

DEFINITION 16. (CPT:Transformations for C-Pre-Unification).

We define the set CPT of transformations for pre-C-unification
by modifying the CUT rules CUT (dec) and CUT (flex/rig) by requiring
that they may not be performed on C-pre-solved pairs and replacing
CUT (guess) by the inference rule in figure 5

FU='G,VAE G egGB(D)
F,='GAF,U='G,VAE

CPT (flex/flex)

F,U =! G,V is a pair of a reducible chain.

Figure 5. Higher-Order Colored Pre-Unification

With the definitions above we obtain a completeness result for CPT
similar to theorem 4.

29

THEOREM 5. For any C-unification problem £ the set
CPT () := {oe|€ Fepr E and &' is in pre-C-solved form}
1s a complete set of pre-C-unifiers for &.

Proof Sketch. The proof goes through with exactly the same methods,
as we have used them in section 3. The only difference is that we use
lemma 3 to account for the restricted flex/flex-case. O

Note that in contrast to classical higher-order pre-unification we
cannot drop the CUT (guess) and CUT (dec) rules altogether, but the
given restriction is severe enough to make pre-C-unification tractable.
In particular the restriction alleviates the need for unspecified imita-
tions in CUT (guess), which makes full unification infinitely branching.
Obviously, safety is a decidable property and colour restrictions are ef-
fectively computable: unification problems are finite, and there can be
at most exponentially many paths in one. Thus a simple generate-and
test procedure will do. Computationally, this exponential step will not
slow down higher-order unification, since the g-normalization step is
already non-elementary.

3.4. HIGHER-ORDER PATTERNS

There are certain syntactic fragments of the simply typed A calculus,
where the higher-order unification problem has better properties than
in the general case. We will concentrate on higher-order patterns [26,
27], where the problem is unitary for the uncolored case. In the colored
case, the problem is slightly more complex, and we will profit from the
understanding of colored flex/flex pairs that we have achieved in the
last section. Higher-order pattern extensions of rippling have already
been studied by Kraan et al. in the context of program synthesis in [25],
without arriving at an satisfying algorithm or treatment of the meta-
theory. The theory presented below can a posteriori be taken as a logical
basis for Kraan’s work.

For the colored A-calculus, the definition of higher-order patterns is
very similar to the uncolored case; in fact it coincides with the tradi-
tional one for proper formulae.

DEFINITION 17. (Higher-Order Pattern). We call a formula A € wff(X)
a higher-order pattern, iff any occurrence of a free variable F¢ in
A must be in a subformula B of A of the form FZ#(") ... Z¢(") where
Z' € LV and ¢ is a partial permutation from k into n, i.e. an injec-
tive mapping from {1,...,k} into {1,...,n > k}, where k is the length
of a.. In other words, all free variables of a higher-order pattern occur
at the leaves, or applied to a list of distinct bound variables.

30

We will call a C-substitution o a pattern substitution, iff for all
X, in Dom(0), 0(X,) is a higher-order pattern. Note that the class of
higher-order patterns is closed under pattern substitutions.

EXAMPLE 6. Let f,a be constants and F, G be variables and UVW be
local variables of appropriate type, then \AUVW .F,WU, and F,WU,
and AU . fy(AV .F,UV)aa(G.U) are higher-order patterns, while Fa,
N . F.Zag, \Z . Fo,Z 7, and AUV .F . U(VU) are not. Furthermore, all
first-order formulae and all closed formulae are higher-order patterns,
since they do not contain free function variables. Finally, rigid general
bindings are higher-order patterns, while flexible are not in general.

This syntactic fragment allows to specialize the unification rules
from definition 11.

DEFINITION 18. (Transformations for Pattern Unification). The in-
ference rules for UPat are those of CPT, together with the additional
rules for safe flex/flex pairs shown in figures 6 and 7. The first one han-
dles the case, where the heads are identical and the second one, where
they are distinct.

FaCTkHﬂX@(k) =t B zvk) A E

UP at(same)

cr(Fa, &) = cr(Fy, &) NE N FyZ9k) =t |, 79 (k)
ANF, =t \Wk) H WO AR, =t AWE HyWe)

X (ke Qo (k)

— and v are partial permutations from k to n

— p is a partial permutation from & to [, such that p(i) = ¢(j),
iff o(7) = 1(j), i.e. p picks out all arguments, where ¢ and 1)
coincide.

— H is a new variable of type @,y —

Figure 6. Pattern Unification with Identical Heads

Colored pattern unification cannot be unitary, since conflicting col-
ors on flex/flex pairs can force the instantiations to be (uncolored)
projections. As we have seen above, conflicting colors can entail that
flex/flex pairs are unsolvable, on the other hand, for pattern unifica-
tion, they can also lead multiple solutions (the erasure of which can

31

be represented by a more general uncolored higher-order pattern').
Consider for instance the pair

NUVW Z.F,UVWZ =" \UVW Z.FR,VUW Z

where « is a base type and a,b € C. Obviously, there are two most
general solutions.

o3 = [NUVWZ.W/F.],\UVWZ.W/F]
oy = NUVWZ.Z/F)],N\UVWZ.Z/F)

Fo—0 7o) =t I ze0) A £

— UP at(diff)
a=°bAF,Z¢Fk =t G,Z¢¥) A E
=l \Wk) CH W (M) A Gy =t AWOQW) H W' (m)

— @, 1 be partial permutations from & (I) to n.

— ¢’ and 4’ are partial permutations from m into k,[, such
that ¢'(m) = i and ¢'(m) = j, iff ©(z) = (j).

— H is a new variable of type oy, —

Figure 7. Higher-Order Colored Pattern Unification with Distinct Heads

The tractable nature of pattern unification hinges on the observa-
tion that the solving of flex/rigid pairs is deterministic, that is, all
but the imitation or one projection immediately lead to failure. Thus
for pattern unification we only can directly inherit the decomposition
and flex/rigid rules from general colored higher-order unification and
only have to concern ourselves with the flex/flex situations. Clearly, all
the discussion about flexible chains also applies to higher-order pat-
terns, so we keep the flex/flex rule for reducible flexible chains. This
leaves us with the case of safe flex/flex pairs, where (as we have seen
above) color clashes are not a problem. Therefore, we can directly adapt
the well-known rules for higher-order pattern unification: If we have
a pair F,U" =t F,V", then F, is bound to to A\Z".H,W}, and F, to

16 This observation shows that a generate-and-test procedure for colored pattern

unification is infeasible, since this would have generated the uncolored solution and
rejected it, erroneously predicting the absence of colored solutions.

32

AZ™ . HoW,,, where the Wk are those bound variables, where U? = V.17
Unlike in the uncolored case, an application of this rule does not imme-
diately solve the pair (the colors a and b need not be identical), but it
transforms it into a form, in which decomposition can do the rest (this
will always succeed, iff the pair the rule acts upon is safe).

For the remaining case of safe flex/flex pairs with differing head
variables, we use a similar argumentation (directly modeled after the
uncolored case) and rule. From this argumentation (the flex/rigid and
the safe flex /flex cases are deterministic and the reducible flex /flex cases
only involve projections), we can directly derive that colored pattern
unification is decidable'® and finitary i.e. pattern unification problems
have at most finitely many most general unifiers.

THEOREM 6. (Completeness for UPat). Let £ be an unification prob-
lem, then UPat is terminating and yields an irreducible problem F,
such that either

— F is solved and ox is a most general unifier of € or
— F is not solved and £ is not unifiable.

Furthermore, UPat is confluent except for CPT (flex/flex), which is
finitely branching.

4. Knowledge Representation

In this section we will work on the semantics of colors as they are
used to encode additional knowledge about formulae into annotations
of symbol occurrences. The colored A-calculus provides the necessary
devices to maintain this knowledge during the deduction by introducing
colored substitutions and colored unifiers. It remains the question how
to encode the given domain knowledge into colors and vice versa how to
decode again the inherited knowledge from the annotations distributed
over the entire term or formula.

In the examples in sections 1.1 and 1.2 we have used annotations
(colors) of symbols to guide the deduction process in such a way that

' For any unifier 0 we have o(F.) = AZ".A. Now, A can only have occurrences
of Zi, such that U’ = V': If we assume that A contains an occurrence of Z; (say at
position p) with U* # V¥, then o(F)Un=g,[Un/Z"]A and o(F)Ur=g,[U"/Z"]A,
so these differ at position p, which contradicts the assumption that o unifies £.

'8 The termination and confluence arguments can be directly modeled after the
standard case.

33

each intermediate result of deduction has to satisfy specific restric-
tions. Rippling uses the semantic information that we must apply the
induction hypothesis to rewrite the induction conclusion. Additionally
it assumes that the hypothesis is always homomorphically embedded
into the intermediate results of manipulating the conclusion. Each sym-
bol occurrence inside the hypothesis corresponds uniquely to a symbol
occurrence inside the (manipulated) conclusion. We may encode this
knowledge by dyeing symbol occurrences which are inside the range
of the mapping white while all others grey. If we need a more granu-
lar information about corresponding symbol occurrences in hypothesis
and conclusion we may even attach unique colors to the corresponding
occurrences instead of coloring them all uniquely white. Thus we split
up the set of color constants C into a subset D of color constants which
contribute to the skeleton, like for instance “white”, and other colors
C\ D, like “grey”, which indicate wave-fronts.

Encoding the mapping into annotations we have to supply an appro-
priate function 2p which will synthesize the information encoded into
annotations. In particular we are interested in all symbol occurrences
of the manipulated conclusion which are related to occurrences of the
hypothesis. We can easily determine these occurrences by the color of
their annotation. Since we also like to extract the subterm-relations
in which these symbols occur, {)p has also to incorporate knowledge
about the subterm relations between symbols annotated with colors of
D. Thus, instead of computing a set of unrelated symbol occurrences,
Qp will construct new (annotated) formulae according to the original
term structure by using the symbols annotated with colors of D.

We introduce the notion of a skeleton in two steps. First, we charac-
terize the extraction and gluing part within the definition of an initial
skeleton Qp. This skeleton will still contain some redundancies which
will be removed by applying some reduction rules yielding the final
skeleton Qp.

Since 2p has to deliver the subterm-relations between the symbol
occurrences under consideration, the skeleton is built up along the for-
mula construction of annotated formulae. Thus, the skeleton inherits
the structure of the original formula and is basically defined as a homo-
morphic extension of a mapping on symbol occurrences. The skeleton
of an application is a set of applications constructed of the skeletons
of the arguments, also lambda-expressions are translated in a homo-
morphic way to a set of lambda-expressions using the skeletons of the
redex.

Since we are interested in symbol occurrences annotated with colors
of D, Qp will map such symbols hg into the singleton set {hg}. If a
symbol A is annotated with a color ¢ which is not member of D then

34

we actually like to discard this symbol occurrence. If h has base type «
then p will return a singleton set containing a dummy symbol f, to
preserve well-typedness. For h of non-base type, the Qp has to provide
appropriate A-expressions such that computing Qp(h.AB) will return
the union of the skeletons of A and B. This can be done by mapping
h. to the set of all the possible projections to its arguments.

We are left with the case of bound variables which have no anno-
tations at all. In this case Qp again returns a singleton set containing
the bound variable.

We summarize the notion of a initial skeleton into the following
definition:

DEFINITION 19. (Initial Skeleton). Let A € pwff, (%) be a well-formed
formula and D C C be the set of skeleton colors. Then the initial
skeleton €1p is defined as follows:

— Qp(X) ={X}if X € LV,
— Qp(hg) = {ha} ifd€e DU X,
— Qp(ha) = {f,} if d € (C\ D), and the type of h is base,

— Qp(ha) = {(N\Zn . 1570 20), .. ,(NZn . 577" 2Z,)} i d € (C\
D), where his of type @, — [(0 base type).

— Qp(BC) = {(B'C')|B' € Qp(B) and C' € Qp(C)}, and
— Qp(A\Z.B) = {A\Z.B/|B’ € Qp(B)}.

We had to invent type-conversion function to obtain typed terms as
members of the skeleton. Since in some terms, occurrences of these type-
conversion functions are redundant, we use the following w-reduction
rules to remove redundancies in the initial skeleton.

DEFINITION 20. (w-Reduction). We say that a well-formed formula
B is obtained by a well-formed formula A by a one-step w-reduction
(A —,, B), if it is obtained by applying one of the rules given in Fig.
8 to a well-formed part of A As usual we define the transitive closure
of the reduction relation —,, with —7 and use —g,,, for the union
of the reduction relations — 3, —,, and —,.

In order to compare two skeletons we like to disregard differences caused
by Bn-equality or w-reduction. Hence, we combine 81 and w-reductions
to obtain a fAnw-reduction.

35

FEP (O X)) s fO7X, foof8
a7 X, — Xa Ae.x —, f57°

Figure 8. w-Reduction Rules

THEOREM 7. (Strong Normalization). Ewvery sequence of fnw-reductions
terminates and leads to a unique Bnw-normal form.
Proof. The Theorem is proven in the appendix (section A). |

Thus, Bnw-reduction terminates for all A-terms A and results in
a unique normal form A |4,,. Based on the definitions of the initial
skeleton and the Bnw-reduction we define now the skeleton of a higher-
order term as follows:

DEFINITION 21. (Skeleton). Let A € pwff,(X) be a well-formed for-
mula and D C C be the set of skeleton colors. Then the skeleton
Qp(A) of A is defined as the fnw-normal form Qp(A) |g,, of the
initial skeleton. Notice that due to the confluence of fnw-reduction we
can also intertwine this reduction and the computation of the initial
skeleton which results in a one-pass computation of the skeleton.

The skeleton is independant of the representation of a term wrt. Bn-
equality, i.e. we do not have to normalize a term before computing its
skeleton.

LEMMA 5. For all A,B € pwff,(X) :
A =g, B implies Qp(A) = Qp(B)

The proof can be found in the appendix (section B). As a consequence
we have to make compromises to the granularity in which we can anno-
tate terms. Since we do not restrict the application of the n-rule (com-
pared to the non-annotated A-calculus) we cannot store any domain
knowledge (annotations) to local variables. Otherwise the unrestricted
application of the 7-rule would destroy this knowledge.

The skeleton function denotes an abstraction on colored terms. Rip-
pling makes use of this abstraction by restricting possible deductions

19 The introduction of type-conversion functions guarantee the a3n-compatibility.
Especially there is a subtle relation between mapping non-skeleton symbols to f,
(thus introducing some kind of “partial” skeleton) and S-reduction as the follow-
ing example illustrates: Q3 (AUV.U)(A.,By) = (WUV.U)(A., f.) =3 {A.} =
Qay(Aa) =5 Qo (AUV.U) (A, Ba)

36

to formulas or terms with identical skeletons. Restricting the proof in
the abstract space we are now able to implement a generate-and-test
approach which first computes a deduction step, secondly calculates its
abstraction (skeleton) and finally backtracks this step if the abstrac-
tion does not satisfy the given restrictions. But in order to plan a proof
in the abstract space we like to predict whether a specific deduction
step will satisfy the restrictions on its abstraction without computing
the result on a ground level. Thus, the question arises whether we are
able to calculate the abstraction (skeleton) of the result of a deduction
step only by considering the abstractions (skeletons) of all involved
formulas?

As rippling is mostly done in a rewriting environment?’, we will dis-
cuss the issues of reasoning in the abstract space in terms of a term
rewriting calculus. In principle, term rewriting allows one to deduce a
term [0(B)/7]C from C iff there is an equation A = B and a substi-
tution o such that o(A) = C|,_. In order to reason entirely in the ab-
stract space we have to be able to compute the skeleton of [o(B)/7|C
with the help of the skeletons of C, A and B. In case of first order
logic we know that Qp(A) = Qp(B) implies Qp(c(A)) = Qp(c(B))
(Substitution-Compatibility) and that Qp(C|_) = Qp(o(B)) implies
Qp(C) = Qp([o(B)/7]C (Subterm-Compatibility). Once the abstrac-
tions of both sides of a rewrite rule are equal, its use to rewrite a term
will not change the abstraction of the modified term.

We will discuss now the higher-order case: The property of subterm-
compatibility is in principle an immediate consequence of the definition
of a skeleton being a homomorphic extension of a mapping on symbol
occurrences. Thus the following lemma holds; its proof is given in the
appendix (section B).

LEMMA 6. For all A,B € puwff,(3)
QOp(A) = Qp(B|,) implies Qp(B) = Qp([A/7]B).

The corresponding lemma about substitution-compatibility can not be
lifted to the higher-order case. The reason is that an instantiation may
enable the use of the S-rule which then, may delete parts of the skeleton.

EXAMPLE 7. Consider two terms Fga. and faa.. Let ¢ € D while
d & D such that both terms coincide in their skeletons a.. Instantiating
Fy by AX .bg will (after B-reduction) result in terms by and fea. which
do obviously not coincide in their skeleton.

0 We will denote the subterm B in A at position 7 with A|_and the result of
replacing this occurrence of B in A with C with [C/7]A.

37

Two possibilities to get rid of this problem immediately suggest
themselves: adding function variables (regardless of their annotations)
always to the skeleton or restricting admissible substitutions in or-
der to avoid these substitutions. However both will be too restrictive
for practical reasons. What are the practical implications of this lack
of substitution-compatibility? In order to guarantee that Qp(C) =
Qp([o(B)/7]C) holds we have now to test the missing property: each
time an annotated rewrite rule A = B (satisfying Qp(A) = Qp(B))
is used to modify a term C we have to check whether Qp(c(A)) =
Qp(o(B)) holds. Since this test can be made very efficiently, the prac-
tical implications of the missing property are rather small. We can still
speculate about a proof on the abstract space although we have to keep
in mind that in some cases the refinement will not be possible because
of the missing substitution-property.

5. Related Work

Smaill and Green [31] developed the notion of higher-order embeddings.
An embedding S is a relation on terms and sSt — speaking A s
embedded in B — denotes intuitively that A is a skeleton of B. As a
base case each atomic expression B is embedded into itself: t 5¢. Also a
term A is embedded into an application (B1By) if it is embedded into
one of its arguments or A is itself an application (A;As) and each A;
is embedded in B;. A is embedded into an abstraction (AU .B) if it is
embedded into all instantiations (AU .B)C for all C or A is itself an
abstraction (AU.A') and (AU.A’)C is embedded into (AU .B)C for
all C.

The notion of embeddings enables a generate-and-test procedure?
based on standard higher order matching/unification which performs
an (arbitrary) deduction steps and tests whether a specific term is
embedded into the result of this step. Our approach to attach addi-
tional information at each symbol allows one to maintain the infor-
mation about embedding during the deduction process since skeletons
are stable with respect to subterm-replacement. This information is
also necessary to restrict the number of possible solutions (e.g during
higher-order unification) as soon as possible.

On one hand the generate-and-test approach requires only the ex-
istence of an algorithm which tests whether the skeleton is in some
sense embedded (cf. [31]) in a formula which corresponds to a check
whether the indicated pattern is matched by the formula. But on the

1

21 For principal difficulties of this approach cf. footnote 16.

38

other hand, then we have no information how parts of the skeleton will
be inherited during the deduction and therefore we have also no infor-
mation how to select appropriate lemmata. Even worse, higher-order
unification usually results in tremendous number of unifiers and we
only can significantly reduce that number if we incorporate the knowl-
edge about the invariance of the skeleton into the unification procedure.
Thus, there is a strong need to incorporate a notion of skeleton into
the deduction machinery.

Comparing this notion of embedding and our definition of skeletons
one observe several conceptual differences. In case of applications the
definition of embeddings does not preserve the intended subterm re-
lation on (first-order) terms. For example, consider a first order term
g(h(A,C),B) then h(A,B)Sg(h(A,C),B) holds. This confusion of
arguments of h and g may cause severe problems when defining ter-
mination orderings on rippling with the help of embeddings. In our
setting the skeleton of g(h(A, C),B) is the set {h(A, f,),B} and the
use of the syntactic type-conversion functions prevents the mix-up of
arguments. Hence, the intended subterm-relation is preserved.

6. Conclusion

Motivated by the first-order rippling/coloring method we have devel-
oped a colored higher-order logic and presented unification, pre-unification
and pattern unification algorithms that we have proven to be correct
and complete. In contrast to other semantic annotation techniques like
sorts, the coloring technique allows one to add annotations to symbol
occurrences in A-terms. Thus it is possible to encode arbitrary struc-
tural information into colors and to maintain this information implicitly
by the calculus during a deduction.

From an abstract point of view we can see that the colored A-calculus
and labeled deduction systems [10] share basic intuitions. Both use an-
notations to restrict the applicability of inference rules and provide a
mechanism for maintaining the annotations during the inference. How-
ever, while LDS attach labels to formulae, HOCU annotates symbol
occurrences with colors.

It seems plausible that colored logics can be embedded into suitable
LDS if we assume that the labels have the same algebraic structure as
the formulae they are attached to. Moreover, any LDS that deals with
equality will probably need to maintain labels in such a term-structured
form, since equality operates on subterm occurrences, which have to be
represented in some way. In this case the colored A-calculus allows one
to deal with labels and formulae in a uniform and efficient way taking

39

advantage of the common structure of both. We leave a formal analysis
of this relation of approaches to further research.

We have presented two applications of the colored A-calculus. First,
it provides a formal basis for the mechanization of higher-order reason-
ing with equality along the lines of [35, 20, 22] which develop heuristics
that guide the difference reduction process in first-order equality cal-
culi. Since rippling is an instance of this general difference reduction
methodology, the calculus presented in this paper is a basis for an
implementation of rippling in a higher-order setting which is required
e.g. in case of middle-out reasoning [17, 23]. Secondly, it is also a logical
basis for an interface for linguistic extra-semantical information in the
construction of natural-language semantics. The algorithms presented
in this paper and the linguistic analyses from [11, 13, 12, 15] have been
implemented in the CHOLI system [8].

At least the linguistic applications suggest the need for more expres-
sive color languages. In [15] we have used feature structures as colors
to model the interaction of linguistic constraints. It turns out that the
unification methods presented in this paper are sufficient to treat such
extensions in a uniform way.

A further extension would be to alleviate the restriction that colors
only annotate free symbol occurrences by allowing color annotations to
subterm occurrences or to bound variables. This would allow to extend
the scope of the calculus towards structural phenomena that is induced
by the full term structure.

References

1. Hendrik P. Barendregt. The Lambda-Calculus: Its Syntaz and Semantics.
North-Holland, 1980.

2. D. Basin and T. Walsh. A calculus for and termination of rippling. Special
Issue of the Journal of Automated Reasoning, 16(1-2):147 180, 1996.

3. Val Breazu-Tannen. Polymorphic rewriting conserves algebraic strong normal-
ization and confluence. In Proceedings of the ICALP, pages 137 150, 1989.

4. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, , and A. Smaill. Rippling:
A heuristic for guiding inductive proofs. Artificial Intelligence, 62:185 253,
1993.

5. Alan Bundy. The use of explicit plans to guide inductive proofs. In Ewing L.
Lusk and Ross A. Overbeek, editors, Proceedings of the 9th Conference on
Automated Deduction, number 310 in LNCS, pages 111-120, Argonne, Illinois,
USA, 1988.

6. A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56 68, 1940.

7. M. Dalrymple, S. Shieber, ; and F. Pereira. Ellipsis and higher-order unifica-
tion. Linguistics and Philosophy, 14:399 452, 1991.

40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Ralph Debusmann, Markus Egg, Claire Gardent, Alexander Koller, Karsten
Konrad, Joachim Niehren, Guido Schaefer, Stephan Thater, Verena Winter,
and Feiyu Xu. A natural language system for semantic construction and eval-
uation. CLAUS Report 102, University of the Saarland, Saarbriicken, 1998.
Gilles Dowek. Third order matching is decidable. Annals of pure and applied
mathematics, 69:135—-155, 1994.

D. Gabbay. Labelled Deductive Systems. Oxford Logic Guides, No 33. Oxford
University Press, 1996.

C. Gardent and M. Kohlhase. Higher-order coloured unification and natural
language semantics. In A. Zampolli, editor, Proceedings of COLING’96, 1996.
C. Gardent and M. Kohlhase. Computing parallism in discourse. In Proceedings
15th International Joint Conference on Artificial Intelligence (IJCAI), Nagoya,
Japan, 1997. Morgan Kaufman Publ.

Claire Gardent. Sloppy identity. In Christian Retoré, editor, Logical Aspects
of Computational Linguistics, pages 188-207. Springer, 1997.

Claire Gardent, Michael Kohlhase, and Karsten Konrad. Higher order coloured
unification: a linguistic application. CLAUS Report 97, University of the Saar-
land, Saarbriicken, 1997.

Claire Gardent, Michael Kohlhase, and Karsten Konrad. Higher order coloured
unification: a linguistic application. Techniques Sciences Informatiques, pages
1 28, 1999.

Warren D. Goldfarb. The undecidability of the second-order unification prob-
lem. Theoretical Computer Science, 13:225 230, 1981.

J. Hesketh. Using Middle-Out Reasoning to Guide Induction. PhD thesis,
University of Edinburgh, Edinburgh, Scotland, 1981.

J. Hindley and J. Seldin. Introduction to Combinators and Lambda Calculus.
Cambridge University Press, 1986.

Dieter Hutter. Guiding induction proofs. In Mark Stickel, editor, Proceedings
of the 10th Conference on Automated Deduction, number 449 in LNCS, pages
147 161, Kaiserslautern, Germany, 1990.

Dieter Hutter. Using rippling for equational reasoning. In S. Hélldobler, editor,
Proceedings 20th German Annual Conference on Artificial Intelligence KI-96,
pages 121-134, Dresden, Germany, 1996. Springer-Verlag, LNAT 1137.

Dieter Hutter. Colouring terms to control equational reasoning. Journal of
Automated Reasoning, 18:399-442, 1997. Kluwer-Publishers.

Dieter Hutter. Hierarchical proof planning using abstractions. In D. Dankel 11,
editor, Proceedings 10th Annual Florida AI Research Symposium, FLAIRS’97,
Track: Using AI methods to control automated deduction, pages 181 185, Day-
tona Beach, USA, 1997. M. Fishman.

A. Treland and A. Bundy. Productive use of failure in inductive proof. Special
Issue of the Journal of Automated Reasoning, 16(1-2):79 111, 1996.

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on
the Resolution Principle. PhD thesis, Universitat des Saarlandes, 1994.

I. Kraan, D. Basin, , and A. Bundy. Middle-out reasoning for synthesis and
induction. Journal of Automated Reasoning, 16(1-2):113 145, 1996.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497
536, September 1991.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computa-
tion, 14:321-358, 1992.

41

28. R. Montague. The proper treatment of quantification in ordinary english.
In R. Montague, editor, Formal Philosophy. Selected Papers. Yale University
Press, New Haven, 1974.

29. V. Padovani. Filtrage d’order supérieur. Thése de doctorat, Université Paris
VII, 1996.

30. Christian Prehofer. Decidable higher-order unification problems. In Alan
Bundy, editor, Proceedings of the 12th Conference on Automated Deduction,
number 814 in LNAI, pages 635 649, Nancy, France, 1994. Springer Verlag.

31. A. Smaill and I. Green. Higher-order annotated terms for proof search. In
Proceedings of the International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’96), 1996.

32. Wayne Snyder. A Proof Theory for General Unification. Progress in Computer
Science and Applied Logic. Birkhduser, 1991.

33. R. Statman. Logical relations and the typed lambda calculus. Information and
Computation, 65, 1985.

34. W. Tait. Intensional interpretation of functionals of finite type I. Information
and Computation, 32:198-212, 1967.

35. T. Walsh, A. Nunes, , and A. Bundy. The use of proof plans to sum series. In
D. Kapur, editor, Proceedings of the 11th Conference on Automated Deduction,
pages 325-339, Saratoga Spings, NY, USA | 1992. Springer Verlag, LNCS 607.

Appendix
A. Strong Normalization of fnw-Reduction

In this appendix we will prove termination of the Gnw-Reduction used
in the definition of a skeleton. For the termination proof, we use the
well-known logical-relations method due to Tait [34] and Statman [33].
A simpler approach using a permutation argument for fn- and w-
reduction will not work, since in some cases an 7-step has to be sim-
ulated by two w-reduction steps (the reader is refered to the proof of
lemma 11 for details). Neither can we use the general combination re-
sult by Breazu-Tannen & Gallier [3] that proves strong normalization
of AR for strongly normalizing algebraic R, since w is not algebraic.

For the confluence proof we only need to show that Gnw-reduction is
locally confluent, since this is sufficient for confluence for well-founded
reductions [1].

A.1. TERMINATION

The logical relation proof of termination has three steps: We define
a logical relation £ that coincides with with the desired termination
property S at base types and has good closure properties. Then we show
that £ C S (Lemma 8) and that moreover £, (A) for all A € puwff,(¥)

42

(Lemma 10). Together these two results yield the termination result
for pnw-reduction (Theorem 8).

DEFINITION 22. (Logical Relation). A set £ C puwff(X) of proper
formulae is called a logical relation??, iff for all types & = v — 6 and
all A € puff, (¥) we have L,(A), iff L;(AC) for all C € puff, (3) with
L. (C). Clearly, logical relations are totally determined by their values
on base types. For any other S C pwff(X), we call the (unique) logical
relation £ that coincides with § on base types the logical relation
induced by S.

DEFINITION 23. (Admissible). Let £ be a logical relation, then a
head reduction
(A\Zy.A.)C —} [C/Z]A

is called admissible, iff £ (C). A logical relation £ is said to be ad-
missible if it is closed under admissible head expansions. (Formally:
Let a be a type, and let A,, B, be formulae with A —)g B, then a
logical relation L is called admissible if £ (B) implies that £, (A).)

DEFINITION 24. (Terminating at A).

We say that fnw-reduction is terminating at A (we write S _(A),
iff any sequence of Bnw-reductions starting with A terminates. In the
following we will use L for the logical relation induced by S.

LEMMA 7. If Bnw-reduction is terminating at C, and B is a subfor-
mula of C, then Bnw-reduction is terminating at B

Proof. Any infinite reduction sequence from B can be transformed
to one from C. O

LEMMA 8. (L C S). Let h be a constant or free variable of type o =
o™ — 3, such that (3 is a base type then

— S,.(A") implies L4(hAT), and

— L, (A) implies S, (A).

Proof. We prove the assertion by a simultaneous induction over the
type a. If « is a base type, the second assertion is a trivial consequence
of the definition of £. For the first assertion we have to consider two
cases: If h # fﬁ—}ﬂ, then we obtain the fact that Anw-reduction is
terminating at hA"™, since the A’ are (since the arguments of h are

22 The name comes from the intuition that £ is a relation between formulae and
types.

43

independent, there can be no fnw-redexes that are not in the A;), thus

Eﬂ(hﬁ) since o € BT (S = L there).
If h = f27P then

AT = (f,(f.(.. (f,B)...))A% ... A")

m

where the head of B is not f,. We show the assertion by an induction
over the number m, using the previous case for rn = (. For the inductive
case we note that the first two w-rules transform hA™ into a formula of
the same form with reduced m and the third rule cannot apply at the

top-level of hA7 at all. Thus we have completed the proof of the first
assertion in the base type case.

For the inductive case let & = 3 — ~, and L4(B). By the second
inductive hypothesis we have Sﬂ(B), by the first inductive hypothesis

Ev(hFB). Thus Eﬂ(hﬁ) by definition and we have proven the first
assertion.

For the second assertion let £,(A) and Xg ¢ free(A). With the
first inductive hypothesis (n = 0) we have L4(X), and thus £ (AX)
by definition. Now we see that Onw-reduction is terminating at A,
since by the second inductive hypothesis we have S (A X) and S,(A)
by lemma 7. O

LEMMA 9. L is admissible.

Proof. We have to show that £, ([B/Z]A) implies L,((AZ3.A)B).
Now let & = 7 — J, such that 6 € BT, furthermore let £, (A), and
Evi(Ci). Then (by an iterated application of the definition of L) it is

sufficient to show that S;((AZ.A)BC) (Bnw-reduction is terminating
at (AZ.A)BC), since J is a base type.

So let us assume that £,([B/Z]A), then by definition of £ we have
Ls([B/Z]AC) and thus S;([B/Z]AC). In particular S, ([B/Z]A) and
87,- (C") by lemma 7. Furthermore the head reduction is admissible and
therefore L£5(B) and thus Sg(B) by lemma 8. Finally, Snw-reduction
must be terminating at A, since an infinite reduction from A would
imply one from [B/Z]A (fnw-reduction is invariant under instanti-
ation). Thus there cannot be an infinite sequence of reductions from
(AZ.A)BC that only contracts redexes from [B/Z]A and the C'. Thus
such a reduction sequence from (AZ.A)BC has the form

(A\Z.A)BC — , (MZ.A)B'C
—h . [B'/Z]A'C

44

where A —% A’ B —% B'and C' —% C". Thus [B/Z]A —}
[B'/Z]A' and in particular (in contradiction to our assumption), we

have constructed an iﬂﬁnite reduction
[B/Z]AC —>};nw [B'/Z]A'C’ —>};nw O

We will now use the admissibility of £ to ascertain that £, =
pwff,(2). To make the proof go through, we have to prove the fol-
lowing stronger assertion.

LEMMA 10. If 0 is a substitution, such that L,(0(X?*)) for all X €
Dom(#), then L,(0(A)) for all A € pwff,(X).

Proof. We prove the assertion by induction on the structure of A.
If A is a constant, or a variable not in Dom(#), then we obtain the
assertion by the first case of Lemma 8 (n = 0). If A = X, then £,(A)
by assumption.

If A =B,,C,, then by inductive hypothesis we have £,_,,(6(B))
and L, (0(C)) and therefore L, (6(BC)) since L is logical.

Finally, if A = AX,,.B, then we will show that L;(6(A)C) for all
C € puff,(¥) with £ (C). Without loss of generality, we can assume
that X ¢ Dom(6). Now let 8’ := 6,[C/X]. Clearly, ' meets the con-
dition in the induction hypothesis, so we have L;(6'(B)). Furthermore,
9(A)C = (AX,.6(B))C reduces to ¢'(B) in an admissible head re-
duction and therefore we have L£;((AX,.B)C)) by admissibility of £
(Lemma 9). O

Collecting the results above, we arrive at the desired termination
result.

THEOREM 8. (Termination). [nw-Reduction is terminating.

Proof. Let A € puwff,(X) be an arbitrary formula, by lemma 10
we have L£,(A) (using the empty substitution #) and thus S, (A) by
lemma 8. O

A.2. CONFLUENCE

Since Bnw-reductions are finite, we only need to prove local confluence
to ensure that gnw-reduction is confluent.

LEMMA 11. (Local Confluence). If A —g,, A’ and A —3,, A"
then there is a term B such that A’ —)Enw B and A" HEW B.

45

Proof. Obviously both, —* and —)En satisfy the Church Rosser-
property. Thus, in the following we have only to prove that in case
A —pg, A" and A —, A" there is a term B with A’ —p, B
and A" ——% B. As in [1] we use M[t] to denote a term with a
specific subterm ¢ inside a so-called context M. Let A —3 A’ then
A =M][(AZ.C)C'] and A’ = M[[C'/X]C]. In case a w-rule has been
applied inside C then obviously the same rule is also applicable in
[C'/X]C. Analogously an application of a w-rule on C' can be simulated
by n > 0 applications of the same w-rule on each occurrence of C' in
[C'/X]C. On the other hand suppose the w-rule has been applied inside
the context M then the same w-rule is also applicable in M[[C'/X]C].
Analogous considerations can be made in case of the n-rule.

Hence, we may restrict ourselves to the following conflicts:

— let A =M[\Z.(f27*Z)]and A’ = M[f2~°] and A" = M[\Z. Z].
With B = A’ A” —, B.

— let A = M[(AZ.fe?2C)B] and A’ = M[f*?*D/X]|C] and
A" = M|(AX.C)D] Let B = M[[D/X]C] then A’ —s, B and
A” ')Bn B.

~ let A = M[(\Z.Z)D] and A’ = M[D] and A" — M[(f>~*B)].
Let B = D then A” —s,, B.

et A = M[fu()aﬁa)%(a%a)()\z.)]’ Al = M[fbgaﬁa)%(a%a) gﬂa]
and A" = M[A\Z.Z]. Let B = M[f%?] then A’ —, B and
A" —_ B. O

Given the termination and the local confluence of Bnw-reduction,
we can deduce the Church-Rosser property:

THEOREM 9. (Church-Rosser Theorem). IfA —p A' and A — B

A" then there exits some term B such that A’ _>?3nw B and A" _>?3nw
B

Proof. By [1] termination and local confluence entail confluence.

B. Properties of the Skeleton

While the subterm compatibility of the initial skeleton is trivially given
by its definition, the proof of the subterm compatibility of the skeleton
is done in two steps. First we state the relation between the skeleton
of an application and the skeletons of its arguments:

46
LEMMA 12. For all A,B € puff,(X) we have:

Op(AB) = {(A'B') g | A’ € Qp(A),B' € Qp(B)} and
Op(AZ.A) = {(AZ.A")lg | A'€ Qp(A)}

Proof. The proof depends basically on the confluence of Snw-reductions:

Qp(AB) = {(A'B') Ly, | A’ € Qp(A), B’ € (p(B)}

= {(A"4pw B Loy bonw | A € Op(A), B’ € Qp(B)}
— {(A'B')| A’ € Qp(A), B’ € Qp(B)}

The second statement is proven analogously:

Qp(AZ.A) = {(AZ.A) Ly | A’ € Qp(A)}

{(AZ-AI Jrﬂnw) Jrﬂnw | Al e QD(A)}
[(AZ.A") Lo | A € Qp(A)}

O

As a corollary of lemma 12 we obtain the subterm-compatibility of
the skeleton:

COROLLARY 2. For all A,B, € puff,(X) :
Qp(Al,) = Qp(B) implies Qp(A) = Qp([B/7]A)
Now, we show that the skeleton is invariant with respect to Sn-reduction.

In a first step, to prove this property for the initial skeleton, we intro-
duce the following lemma:

LEMMA 13. For all A,B € puwff,(X) and @ € V U LV we have

Op((B/@]A) = {([B'/@]A)| A’ € Qp(A), B' € Qp(B)}
Proof. We prove this lemma by induction on the structure of A:

Let A be a symbol distinct from @ or A = @ € LV, then
Qp([B/QJA) = Qp(A)=5{([B'/@]A")| A’ € Op(A), B’ € Op(B)}

Let A =@ = X2, then Qp(A) = {X} or Qp(A) = 27 depending on
whether a € D or not, thus we have

Qp([B/@JA) = Op(B) = {[B'/@]A’| A' € Qp(A), B’ € Qp(B)

47
Let A = AW .C. With
Qp([B/Q]C) = {[B'/@|C'| C’ € Qp(C), B’ € Op(B)}
as an induction hypothesis we deduce:

Op([B/@]A) = 0p([B/Q](AW . C)) = Qp(AW . [B/Q]C)

= {(\W.C')| C' € Qp([B/@]C)} N
{(\W.[B'/@]C")| C' € Op(C), B’ € Qp(B)}
{([(B'/@](\W.C"))| C' € 9p(C), B’ € Op(B)}
{(IB'/@]A")| A" € Qp(AW .C), B’ € Qp(B)}

= {([B'/a]JA")| A’ € Qp(A), B’ € Qp(B)}

Let A = (CD). With
Qp([B/@]C) = {([B'/Q]C)| C' € Qp(C),B’ € Qp(B)}
Op([B/QD) = {(B'/Q]D')| D’ € Qp(D),B’ € Qp(B)}

as induction hypotheses we deduce:
Qp([B/@]A) = Qp([B/@](CD)) = Qp([B/Q]C[B/@]D)
{(C'D))| C' € 0p([B/@]C), D’ € Op([B/@]D)}
{(C'D)| C' € [B'/@]1p(C). D' € [B'/@](ip(D). B' € Op(B)}
= {[B'/@)(C'D')| C' € 2p(C),D’ € Qp(D), B’ € Op(B)}
{[B'/]A’| A’ € 0p(CD), B' € 05 (B)}
O

As a consequence we obtain the invariance of the initial skeleton
wrt. Bn-reduction:

LEMMA 14. For all A,B € puff, (X)) :

A =g, B implies Qp(A) =gn Qp(B)

Proof. We use the subterm-compatibility of Qp to prove this prop-
erty by induction on the number of applications of #rn-conversions nec-
essary to equalize A and B. By lemma 2 we only have to consider
top-level reductions, thus we are left with the following cases:

—rpt
Qp(\Z.CZ) = {\Z.C'| C' € Qp(CZ)}
= {(A\Z.C"Z)| C" € Qp(C)} =, {C"| C" € Qp(C)} = Qp(C)

48
—)5:
Qp((AZ.C)D) = {(C'D")| C' € Qp(AZ.C),D’ € Qp(D)}

= {(AZ.C"D'| C" € Qp(C),D’ € Qp(D)}
= {([D'/2)C")| C" € Qp(C),D’ € Qp(D)} =4 Qp([D/Z]C)

O

As an immediate consequence of the lemmata stated above, we ob-
tain that also the skeleton is invariant wrt. gn-reduction:

COROLLARY 3. For all A,B € puff,(2) :
A =g, B implies Qp(A) = Qp(B)

Proof. Let A — 3, B then lemma 14 guarantees Qp(A) — 4
QD(B) Thus QD(A) = QD(A) J’ﬂﬂ‘ﬂ: QD(B) iﬁnw: QD(B) holds. O

