
Managing Strutural Information by Higher-Order ColoredUni�ationDieter HutterGerman Researh Center for Arti�ial Intelligene,Stuhlsatzenhausweg 3, D-66123 Saarbr�uken, Germany,E-mail: hutter�dfki.deMihael KohlhaseFB Informatik, Universit�at des Saarlandes,D-66041 Saarbr�uken, Germany,E-mail: kohlhase�s.uni-sb.deAbstrat. Coloring terms (rippling) is a tehnique developed for indutive the-orem proving whih uses syntati di�erenes of terms to guide the proof searh.Annotations (olors) to symbol ourrenes in terms are used to maintain this in-formation. This tehnique has several advantages, e.g. it is highly goal oriented andinvolves little searh. In this paper we give a general formalization of oloring termsin a higher-order setting. We introdue a simply-typed � alulus with olor anno-tations and present appropriate algorithms for the general, pre- and pattern uni�-ation problems. Our work is a formal basis to the implementation of rippling in ahigher-order setting whih is required e.g. in ase of middle-out reasoning. Anotherappliation is in the onstrution of natural language semantis, where the olorannotations rule out linguistially invalid readings that are possible using standardhigher-order uni�ation.Keywords: Indutive Theorem Proving, Rippling, Annotations1. IntrodutionIn the �eld of indutive theorem proving syntatial di�erenes betweenthe indution hypothesis and indution onlusion are used in order toguide proofs (f. [5, 4℄, or [19, 21℄). This method to guide indutionproofs is alled rippling/oloring terms. Annotations or olors to eahourrene of a symbol are used to mark the syntatial di�erenesbetween indution hypothesis and indution onlusion. Spei� olorsdenote the skeleton, the ommon parts of both terms while the otherparts belong to the wave-fronts. Analogously, syntatial di�erenesbetween both sides of equations or impliations given in the databaseare olored by an inferene tehnique alled di�erene uni�ation [2℄.These formulae are lassi�ed depending on the loations of the wave-fronts inside the skeleton (e.g. wave-fronts on both sides, wave-frontsonly on the right/left-hand side). Using these annotated (or olored) 2001 Kluwer Aademi Publishers. Printed in the Netherlands.
paper.tex; 5/04/2001; 17:42; p.1

2equations we are able to move, insert, or delete wave-fronts withinthe onlusion. This rippling of wave-fronts allows one to redue thedi�erenes between onlusion and hypothesis in a goal direted wayand thus leads to a situation, where the indutive hypothesis an beapplied.This paper extends the oloring method to higher-order logi andpresents algorithms for enumerating higher-order olored uni�ers andpre-uni�ers and prove them orret and omplete. For the fragment ofhigher-order patterns, we show that deidability is maintained for theolored ase, while uniqueness of solutions is lost.Thus our work provides a formal basis for the implementation of rip-pling in a higher-order setting whih is required e.g. in ase of middle-out reasoning [17℄ or generalization of theorems using proof ritis [23℄.In the latter the unknown generalized version of a formula is desribedby a shemati formula ontaining parts of the original formula andhigher-order variables denoting the unknown syntatial extensions ofit. In the proess of simulating the indution proof, the higher-ordervariables will be instantiated step by step by the uni�ation with ap-propriate wave-rules resulting in a possible (hopefully provable) gener-alization of the original formula.But the set of possible appliations of our method is not limitedto automated dedution. From an abstrat point of view, the oloringmethod allows one to add arbitrary information to ourrenes of (�-)terms and to inherit this information during the inferene proess. Thisdi�erentiates oloring from other semanti annotation tehniques likesorts whih maintain attributes of symbols but not attributes of singlesymbol ourrenes. Hene, oloring tehniques an be generally usedto maintain for instane initial knowledge about an internal strutureof a term.Strategy: Di�erene RedutionDeliberate Rippling Rippling as Rewrite�xed orderingSemantis: Rippling:Skeleton (invariane) Nat. Languagelinguisti restritionsSyntax: Colored �-alulusFigure 1. Coneptual HierarhyThe olored �-alulus presented in this paper is a general proedure to
paper.tex; 5/04/2001; 17:42; p.2

3ontrol this kind of information. In addition, it an be easily enlargedto deal with more omplex knowledge by enrihing the representationformalism for olors to formulate appropriate annotations (see [14℄ fora linguisti appliation that uses feature terms as olors).The exibility of our approah is mirrored in the wide range of pos-sible appliations (f. �gure 1). In this paper we present two areas ofthem. The �rst area is onerned with \lassial" rippling as it is used inindutive theorem proving while in the latter we use the presented al-ulus for a semanti analysis of natural language. The domain spei�semantis is represented in the di�erent interpretations of the anno-tated olors. For example in ase of rippling, the so-alled skeleton ofan annotated term denotes the invariant of a proof of an indution step,while in the natural language example the olors are used to enodethe so-alled primary ourrene restrition.In the rest of this setion we will briey sketh some appliations ofthe higher-order oloring method, informally introduing the relevantnotions as we go along, before we turn to a formal de�nition of the ol-ored �-alulus in setion 2. The next part of the paper is devoted to theformal de�nition of a general-, pre- and pattern-uni�ation proedureoperating on this alulus in setion 3. The desription of skeletons ina higher-order setting in given in setion 4, whih also illustrates moregeneral aspets of the spei� solution we have hosen.1.1. Indutive ProofsRippling was developed for proving theorems by indution and hasbeen applied to a large number of pratial examples from this domain[5, 4, 19, 21℄. It is based on the observation that one an iterativelyunfold reursive funtions in the indution onlusion, preserving thestruture of the indution hypothesis while unfolding. We use olors inorder to indiate the struture of the hypothesis within the onlusion.Symbols belonging to this joined struture are annotated with the olor\white" while di�erenes between both formulae are olored \grey".Also left- and right-hand sides of given equations are di�erene uni�edin a sense that the ommon struture of both terms of a given equationis annotated by olor variables while di�erenes are olored grey. Thegrey parts are alled wave-fronts while the non-grey parts denote theskeleton.In [4, 2℄ an ordering, whih evaluates the position and size of thewave-fronts within the skeleton, is used to build up a rewrite systemon annotated terms. Eah appliation of an annotated rewrite rule (so-alled wave-rule) results in a term whih is less (wrt. the given ordering)than the original one. In reent years the tehnique of rippling has been
paper.tex; 5/04/2001; 17:42; p.3

4applied also to non-indutive theorem proving yielding a more omplexplanning of the rippling proess than in indutive proofs. Possible targetpositions of wave-fronts are no longer statially prede�ned but have tobe planned during the proof whih gives rise to a kind of deliberaterippling [20, 22℄.Rippling restrits the searh spae for indutive theorem provingby forbidding all dedution steps whih do not preserve the skeleton,i.e. do not hange the non-grey1 parts of the formula, and only ap-plies those that move the di�erene out of the way leaving behind theskeleton. In their simplest form, these equations to be used are of theform f(g(t)) = h(f(t)). By design, the skeleton f(t) remains unalteredby their appliation. If rippling sueeds then the indution onlusionP (s(n)) is rewritten using wave-rules into some funtion of the indu-tion hypothesis, P (n); that is, into f(P (n)) (f may be the identity).At this point we an all upon the indution hypothesis to simplify theresult.To illustrate rippling and motivate our work on olored higher or-der uni�ation let us onsider the following simple theorem that anbe proven by indutive theorem provers using rippling/oloring teh-niques. nXi=1 f(i) + nXi=1 g(i) = nXi=1 [f + g℄(i)f; g are funtions from natural numbers to naturals. We have overloadedthe funtion + also to at on suh funtions. This example illustratesthe properties of rippling and introdues also some (very simple) higher-order olored uni�ation problems.We formalize summation by a binary funtion sum that takes afuntion (that is summed over) and an upper bound as arguments.Furthermore, we will use the following de�nition of sum (let f; g;H beof type2 nat! nat and N;n be of type nat):8H sum(H; 0) = 0 (1)8H;N sum(H; s(N)) = sum(H;N) +H(s(N)) (2)Then our theorem takes the form8f; g; n sum(f; n) + sum(g; n) = sum(�Z f(Z) + g(Z); n)1 For sake of simpliity we use a shading for symbols whih are annotated by theolor grey while non-shaded areas are annotated either by white or olor variables.2 Sine for the purposes of this paper types largely play a theoretial role (theyfor instane make ��-redution terminating and therefore ��-equality deidable),we will only speify them where needed.
paper.tex; 5/04/2001; 17:42; p.4

5To prove this, simple heuristis employed by most indutive proverssuggest indution on n whih results in the following step ase3.sum(f; n) + sum(g; n) = sum(�Z f(Z) + g(Z); n)! sum(f; s(n)) + sum(g; s(n)) = sum(�Z f(Z) + g(Z); s(n))To simplify the step ase using rippling, the di�erenes between the in-dution onlusion and the indution hypothesis are shaded as follows:sum(f; n) + sum(g; n) = sum(�Z f(Z) + g(Z); n)! sum(f; s(n)) + sum(g; s(n)) = sum(�Z f(Z) + g(Z); s(n)) (3)If we an move the shaded areas { so-alled ontexts or wave-fronts {out of the way, then we will be able to simplify the indution onlusionby appealing to the indution hypothesis.Rippling moves wave-fronts using annotated equations based on ax-ioms, reursive de�nitions and previously proven lemmata that preservethe skeleton of the term being rewritten. Corresponding to the reur-sive de�nitions for sum we have the following annotated equation of(2). sum(H; s(n)) = sum(H;N) +H(s(N)) (4)When rippling, the annotations on the left-hand side of the wave-rulemust math those in the term being rewritten. As a onsequene, thereis very little searh during rewriting. To simplify the onlusion of (3)by rippling we apply (4) on both sides4 yielding the modi�ed onlusion:(sum(f; n) + f(s(n))) + (sum(g; n) + g(s(n)))= sum(�Z f(Z) + g(Z); n) + (f(s(n)) + g(s(n)))Applying assoiativity and ommutativity law of + results in((sum(f; n) + sum(g; n)) + f(s(n)) + g(s(n)))= (sum(�Z f(Z) + g(Z); n) + (f(s(n)) + g(s(n))))whih allows for weak fertilization5 on either side whih ompletes theproof.
3 The proof of the base ase an be diretly obtained by applying (1), so it isomitted here.4 In this ase the uni�ation of higher-order formulae is nearly trivial, binding Nto n and H to f , g, and �Z f(Z) + g(Z) respetively.5 This standard tehnique from indutive theorem proving allows to use the in-dutive hypothesis to rewrite the indutive onlusion

paper.tex; 5/04/2001; 17:42; p.5

61.2. Lemma SpeulationThe rippling proess | as illustrated in the example above | relies onthe existene of appropriate annotated equations in order to ripple out(or ripple inside) the ourring wave-fronts. In ases, where appropriateequations are missing, Ireland & Bundy [23℄ propose a tehnique tospeulate lemmata whih push the rippling proess further and whihare treated as subtasks to be proven separately. Their approah is basedon some kind of higher order rippling. For a disussion of their formalapproah to uni�ation see setion 5.In order to illustrate this appliation of our alulus, onsider thefollowing example involving list manipulations8u; v rev(app(rev(v); u)) = app(rev(u); v) (5)Here u and v are of type for lists and rev and app stand for theoperations of reversing and onatenating lists, they have types ! and ! ! respetively. Using indution on v we obtain thefollowing formula as an indution onlusion in the step ase (h is anew element onstant of type � and ons the list onstrutor of type�! �! �):rev(app(rev(ons(h; v)); u)) = app(rev(u); ons(h; v)) (6)The rippling proess gets bloked6 after unfolding the de�nition of revon the left-hand side:rev(app(app(rev(v) ; ons(h; nil)) ; u)) = app(rev(u); ons(h; v)) (7)In order to push the rippling proess further, Ireland & Bundy speu-late appropriate lemmata whih are then onsidered as subtasks of theproof. In this example they alulate a shemati form of an appropriateannotated equationapp(X; ons(Y; Z)) = app(F1(X;Y;Z); Z) (8)whih an be used to move the bloked wave-front on the right-handside towards the sink7 u. While the left-hand side of the speulatedlemma is just a generalization of the subterm to be modi�ed, the higher-order variable F1 represents the unknown wave-front on the right-handside whih has still to be onstrained by the further rippling proess.Applying this equation on the right-hand side yields:rev(app(app(rev(v) ; ons(h; nil)) ; u)) = app(F1(rev(u) ; h; v) ; v) (9)6 There are no appliable annotated equations in the data base.7 Universally quanti�ed variables are alled sinks in rippling, beause they an beused to swallow up wave front material, sine they an be arbitrarily instantiated.
paper.tex; 5/04/2001; 17:42; p.6

7To enable the use of the indution hypothesis in this example the wavefront has to be moved in front of the sink u. Thus, we use the annotatedequation app(rev(Y); ons(X;nil)) = rev(ons(X; Y)) (10)in order to ripple the wave-front on the right-hand side towards u. In or-der for (10) to be appliable to (9), we must unify8 F1(rev(u) ; h; v) andapp(rev(Y); ons(X;nil)). Higher-order olored uni�ation, or HOCUfor short, results in a solution (see the example in setion 1.5 for a traeof the omputation)[�UVW app(U ; ons(V; nil))=F1 ℄; [h=X℄; [u=Y ℄: (11)Applying the instane of (10) under (11) to the right-hand side of (9)the wave-front is moved towards the sink u:rev(app(app(rev(v) ; ons(h; nil)) ; u)) = app(rev(ons(h; u)); v) (12)The uni�er used to perform this step also re�nes the shema of thespeulated annotated equation (8) whih we have previously used tounblok the rippling proess, toapp(X; ons(Y; Z)) = app(app(X; ons(Y;nil)); Z) (13)The aoppliation of this speulated equation (13) on the left-hand side�nally yields:rev(app(rev(v); ons(h; u))) = app(rev(ons(h; u)); v)whih enables the use of the indution hypothesis and ompletes thispartiular proof. Proving by indution the speulated lemma (13),whih is the instane of the speulated equation (7) using (11), �n-ishes the overall proof.1.3. A Colored �-alulusBefore we turn to the linguisti appliation, let us informally intro-due some notation and generalize9 the set of olors from \grey" and8 To ease readability we have slightly simpli�ed the method of Ireland and Bundy;Atually, the ourrene of the meta-variable F1(rev(u); h; v) is replaed by a nestedterm F2(F1(rev(u) ; h; v); h; v) in order to allow the speulation of more omplexwave-fronts using F2 in the later rippling proess. In our example it would only beinstantiated to the projetion �UVW U .9 This generalization does not make the theory more ompliated, in the ontrary,it makes the onepts involved muh learer, and it allows to treat more appliations(see [14℄ for a linguisti appliation that uses feature terms as olors).
paper.tex; 5/04/2001; 17:42; p.7

8\white" to an arbitrary set of olors (we will make this totally formalin setion 2). The referenes in brakets indiate, where the reader an�nd a fully formal development of the respetive informal arguments.The olored �-alulus is a variant of the simply typed �-alulus [6℄(see [1, 18℄ for an introdution), where ourrenes of onstants andfree variable an be annotated with so-alled olors whih are eitherolor onstants C = fa; b; : : :g or olor variables X = fA; B; : : :g.Whenever olors are irrelevant, we simply omit them. Colors are indi-ated by subsripts labeling symbol ourrenes. We all a formula M-monohrome (de�nition 2), if all symbols (exept bound variables)in M are annotated by a ommon olor .It is ruial for our logial system that olors annotate symbol o-urrenes (i.e. olors are not sorts!), in partiular, it is intended thatdi�erent ourrenes of symbols arry di�erent olors (e.g. hXaXb)and that symbols that arry di�erent olors are treated di�erently. Thisobservation leads to the notion of olored substitutions10 (de�nition 4),a notion of substitution that takes the olor information of formulaeinto aount. In ontrast to traditional (unolored) substitutions, a ol-ored substitution � is a pair h�t; �i, where the term substitution �tmaps olored variables (i.e. the pair X of a variable X and the olor)to formulae of appropriate types and the olor substitution � mapsolor variables to olors. In order to be a legal C-substitution suh amapping � must obey the following onstraints:� If A and B are di�erent olors, then j�(XA)j = j�(XB)j, where jMjis the olor erasure of M, i.e. the formula obtained from M byerasing all olor annotations in M (de�nition 3).� If 2 C is a olor onstant, then �(X) is -monohrome.The �rst ondition ensures that the olor erasure of a C-substitution(de�ned in the obvious manner) is a lassial substitution of the sim-ply typed �-alulus. The seond ondition formalizes the fat thatfree variables with onstant olors stand for monohrome subformulae,whereas variable olors do not onstrain the substitutions.Note that sine bound variables do not arry olor information, ��-redution (f. de�nition 28) in the olored �-alulus is just the lassialnotion and inherits its good properties (deidability and normaliza-tion).The onstraints on C-substitutions given above allow us to speial-ize higher-order uni�ation to an inferene proedure that managesolor information: a higher-order uni�er � of a given equation M = N10 We will denote the substitution of a term N for all free ourrenes of X in Mwith [N=X℄M.
paper.tex; 5/04/2001; 17:42; p.8

9(i.e. �(M) =�� �(N)) must be a C-substitution in order to be a ol-ored higher-order uni�er (de�nition 7) of M and N. In partiular, C-uni�ation will only sueed if parallel sub-formulae have uni�able ol-ors. For instane, fa(pa; jb;Xa) uni�es with fa(Ya; jA; sa) but not withfa(pa; ja; sa) beause of the olor lash on j.It is well-known, that in �rst-order logi there is always a mostgeneral uni�er for any equation that is solvable at all. This is not thease for higher-order (olored) uni�ation, where variables an rangeover funtions, instead of individuals only. In fat there might be evensolvable equations that have in�nite hains of uni�ers whih are moreand more general. In other words most general uni�ers need not to existin general.1.4. Higher{Order Unifiation and Natural LanguagesemantisIn this setion we will present a di�erent kind of appliation of higher-order olored uni�ation in the area of natural language semantis.In [11, 13, 12, 15℄ the olored lambda alulus is used as a tool to spe-ify the interfae between the lassial semanti onstrution proess(using higher-order uni�ation) and other soures of linguisti infor-mation (whih are oded into olor information). We will briey skeththe underlying ideas in ase of verb-phrase ellipsis; i.e. the phenomenonthat parts of natural language sentenes (here verb phrases) an be re-plaed by utteranes like \does too". For a thorough treatment of aseslike fous onstrutions, seond-ourrene expressions, and adverbialquanti�ation, the reader is refered to [11℄ and the referenes in [15℄.The basi idea [7℄ underlying the use of higher-order uni�ation fornatural language semantis is very simple: Following [28℄, the simplytyped �{alulus is used as a semanti representation language whilesemantially under-spei�ed elements (e.g. anaphori referenes or el-lipses) are represented by free variables whose value is determined bysolving higher-order equations. For instane, the disourse (14) has hasthe semanti representation (15), where the value of the prediate vari-able R is determined by equation (16).Dan likes his wife. Peter does too (14)like(dan;w of(dan)) ^R(peter) (15)like(dan;w of(dan)) =t R(dan) (16)Higher-order uni�ation alulates the solutions (17) and (18).[�Z like(Z;w of(dan))=R℄ and [�Z like(Z;w of(Z))=R℄ (17)[�Z like(dan;w of(dan))=R℄ and [�Z like(dan;w of(Z))=R℄(18)
paper.tex; 5/04/2001; 17:42; p.9

10However, only the �rst two of the solutions (17) lead to the linguistiallydesired solutions (19) and (20), whereas those in (18) lead to (21) and(22) whih are learly not the desired readings of the disourse.like(dan;w of(dan)) ^ like(peter;w of(dan)) (19)like(dan;w of(dan)) ^ like(peter;w of(peter)) (20)like(dan;w of(dan)) ^ like(dan;w of(dan)) (21)like(dan;w of(dan)) ^ like(dan;w of(peter)) (22)To remedy this shortoming, Dalrymple & Shieber & Pereira, who havepioneered this analysis in [7℄, propose an informal restrition, the pri-mary ourrene restrition, whih deletes any solution from theset of linguistially valid solutions, whih ontains a pre-determinedso-alled primary ourrene (in our ase dan).In the olored �-alulus, the primary ourrene restrition andiretly be modeled as follows: Primary ourrenes are p-olored whilefree variables are s-olored (all other non-bound symbols are oloredby distint olor variables, whih we will not show in our examples).Given the restrition for C-substitutions, suh a oloring ensures thatany solution ontaining a primary ourrene is ruled out. Hene nosubstitution will ever ontain a primary ourrene (i.e. a p-oloredsymbol) as it was required by the primary ourrene restrition. Forinstane, the olored representation of (14) is (23) together with theolored uni�ation problem (24) whih only has the C-uni�ers in (25).Higher-Order Uni�ation without the monotoniity onstraint wouldhave the solutions (26) whih are not well-olored.like(danp;w of(dan)) ^Rs(peter) (23)like(danp;w of(dan)) =t Rs(danp) (24)[�Z likes(Z;w ofs(dans))=Rs℄ and [�Z likes(Z;w ofs(Z))=Rs℄(25)[�Z like(danp;w of(dan))=Rs℄ and [�Z like(danp;w of(Z))=Rs℄(26)Note that the analysis hinges on the fat that olors (unlike types orsorts) provide a means to distinguish between symbol ourrenes (inour example the di�erent ourrenes of dan) by annotating them withdi�erent olors. Thus the HOCU approah keeps the desired property ofbeing able to derive the so-alled sloppy/strit ambiguity11 while solv-ing the over-generation problem, i.e. that lassial HOU predits morereadings (e.g. those in (18)) than atually exist in natural language.Even though we have only skethed the relevant ideas, it should belear, that higher-order olored uni�ation provides a general frame-11 the reading where Peter loves his own wife is alled the strit reading, beausethe referene his is interpreted stritly. The other one is sloppy, as the referene is.
paper.tex; 5/04/2001; 17:42; p.10

11work for speifying the linguisti information for the onstrution pro-ess that avoids over-generalization (i.e. the onstrution of linguisti-ally undesired readings of disourses).1.5. Calulating Colored UnifiersJust as in the ase of uni�ation for �rst-order terms, the higher-orderuni�ation algorithm is a proess of reursive deomposition and vari-able elimination that transforms sets of equations into solved forms(de�nition 8). Sine C-substitutions have two parts, a term{ and a olorpart, we need two kinds of equations (M =t N for term equations and = d for olor equations). Sets E of equations in solved form have aunique most general C-uni�er �E that also C-uni�es the initial equation.There are several rules that deompose the syntati struture offormulae. We will only disuss two of them here (f. de�nition 9 for afull set). The rule for abstrations transforms equations of the form�U:M =t �V:N to [�=U ℄M =t [�=V ℄N, where � is a new on-stant12, while the rule for appliations deomposes haM1 : : :Mn =thbN1 : : :Nn to the set fa = b;M1 =t N1; : : : ;Mn =t Nng, providedthat h is a onstant. Furthermore equations are kept in ��-normal form.Note that this deomposition proess also eliminates trivial equations,where both sides are ��-equal.The variable elimination proess for olor variables is very simple, itallows us to transform a set E [fA = dg of equations to [d=A℄E [fA =dg, making the equation fA = dg solved in the result.In ase of formula equations, elimination is not that simple, sinewe have to ensure that j�(XA)j = j�(XB)j to obtain a C-substitution �.Thus we annot simply transform a set E [fXd =t Mg into [M=Xd℄E [fXd =t Mg, sine this would (inorretly) solve the equations fX =tf;Xd =t gdg. The orret variable elimination rule transforms a set Eof equations with X =t M 2 E and X =2 free(M) into[[M=X℄℄E [[[X =t M℄℄Ewhere [[M=X℄℄E = [M1=X1 ℄; : : : ; [Mn=Xn ℄, suh that the i are allolors of the variable X ourring in E and the Mi are appropriatelyolored variants (same olor erasure) of M. Similarly, [[X =t M℄℄E =fX1 =t M1; : : : ;Xn =t Mng. Note that the indued substitution[[M=X℄℄E (f. de�nition 6) is independent of the olors in M and X.Corretness of the term elimination rule hinges on the fat that allolor variants of X are eliminated simultaneously and that the sub-stitution [[M=X℄℄E indued by a pair X =t M is also applied to the12 Atually, in de�nition 9 we use speial variables, whih behave somewhat likeonstants.
paper.tex; 5/04/2001; 17:42; p.11

12pair itself. Thus an unsolvable pair, suh as Xa =t b gives rise to theindued substitution [a=Xa℄ and leads to the pair a =t b, where thedeomposition rule an detet a olor lash.It would be onvenient, if the transformations desribed so far, weresuÆient for transforming all uni�able sets of equations into solvedform and thus �nding all uni�ers. But, due to the presene of funtionvariables, systemati appliation an terminate with equations of theform XM1 : : :Mn =t hdN1 : : :Nm.The standard solution (due to G�erard Huet, f. [32℄ for an introdu-tion) for �nding a omplete set of solutions in this so-alled ex/rigidsituation is to substitute a term for X of type Æ that will enable de-omposition to be appliable afterwards: a so-alled general bindings(de�nition 10) of the following form:GhÆ = �Z�1 : : : Z�n :�(H1Z) : : : (HmZ)where� Æ = �n ! � and � has type m ! �� one of the following holds:� � = Z�j and �j = m ! � for some j � n, then h = j andwe all GjÆ a projetion binding or� � = S for some onstant or free variable S of type m ! �,then h = S and we all GhÆ an imitation binding.� the Hi are new variables of type �n ! i,We an atually use olors13 to get a better understanding of the sit-uation. Therefore onsider the uni�ation problem of Xda =t ad. Forthe imitation solution (�Z:ad) we \imitate" the right hand side, so theolor on a must be d. For the projetion solution we instantiate (�Z:Z)for X and obtain (�Z:Z)a, whih �-redues to a. We see that this\lifts" the onstant a from the argument position to the top. Iniden-tally, the projetion is only a C-uni�er of our olored example, if theolor onstants and d are idential. However for alulating solutionsfor ex/rigid pairs, we do not need olors, sine the olor erasure of theinstane is determined by the general bindings and the olor annota-tions are added by the indued substitution. Thus the general rule forex/rigid equations (de�nition 11) transforms equations of the formE ^X�M1 : : :Mn =t hdN1 : : :Nm13 This is another (didati) appliation of higher-order olored uni�ation, wherewe use olors to distinguish di�erent symbol ourrenes.
paper.tex; 5/04/2001; 17:42; p.12

13into E ^XM1 : : :Mn =t hdN1 : : :Nm ^X =t Gh�with immediate variable elimination of the new equation.Finally we are left with the only remaining ase, where the heads ofboth sides of the equation are free variables the so-alled ex/ex ase.The solution of this ase is either to projet, as in the ex/rigid ase orto \guess" (omputationally: to searh for) the right head for the equa-tion and bind the head variable to the appropriate imitation binding.Clearly this need for guessing the right head leads to a ombinatoryexplosion of the searh spae, whih makes higher-order (olored) uni-�ation omputationally infeasible. Fortunately, most appliations donot need full higher-order uni�ation:� For theorem proving purposes it is often only important to knowabout the existene of any uni�er. In the ase of lassial higher-order uni�ation it is therefore suÆient to onsider ex/ex pairsas solved, sine they are guaranteed to have uni�ers (f. setion 3.3).In the olored ase, this is no longer the ase, i.e. there are ex/exuni�ation problems that do not have uni�ers. We identify a ne-essary and suÆient ondition (the absene of so-alled exiblehains (f. de�nition 12)) and speialize the uni�ation algorithmaordingly (de�nition 16).� In the linguisti appliations, skethed in setion 1.4, formulae be-long to very restrited syntati sublasses, for whih muh betterresults are known (for lassial higher-order uni�ation). In par-tiular, the fat that free variables only our on the left handside of the equations redues the problem of �nding solutions tothe so-alled higher-order mathing problem, of whih deid-ability has been proven for the sublass of third-order formulae [9℄(see [30, 29℄ for other tratable fragments). This lass, (intuitivelyallowing one only to nest funtions as arguments up to depth three)overs all examples studied so far.Before we disuss the appliations, let us fortify our intuition aboutalulating higher-order olored uni�ers for the following problem whiharoused in our lemma speulation example in setion 1.2.Fg(revw(uw); hg; vg) =t appg(revB(YA); onsg(Xg; nilg)) (27)Sine F is a funtion variable, we are in a ex/rigid situation, and havethe possibilities of projetion and imitation. There are three possibleprojetions, (�UVW U), (�UVW V), (�UVW W), whih all lead toimmediate failure, sine they projet up the rigid subterms revw(uw), hg
paper.tex; 5/04/2001; 17:42; p.13

14or vg, whih would lash with the head appg of the right hand side. So weonly have the imitation bindingB := �UVW app(H(U; V;W);K(U; V;W))for F . Binding F to that (i.e. applying the indued C-substitution[[B=F ℄℄g = [(�UVW appg(Hg(U; V;W);Kg(U; V;W))=Fg)℄) and deom-posing the instantiated problem, we are left with the equationsHg(revw(uw); hg; vg) =t revB(YA)Kg(revw(uw); hg; vg) =t onsg(Xg; nilg):Choosing14 the imitation �UVW onsg(Mg(U; V;W); Ng(U; V;W)) forKg and the 1-projetion binding (�UVW U) for Hg we obtainrevw(uw) =t revB(YA)onsg(Mg(revw(uw); hg; vg); Ng(revw(uw); hg; vg)) =t onsg(Xg; nilg)We an deompose again and obtainA = wuw =t YAXg =t Mg(revw(uw); hg; vg)Ng(revw(uw); hg; vg) =t nilgThe �rst two equations an diretly be solved by eliminating A for w andYA (whih is atually Yw after the previous elimination) for uw. The thirdequation annot be solved this way, sine Mg(revw(uw); hg; vg) is not g-monohrome, so we hoose the 2-projetion binding15 �UVW V forXCand solve the fourth equation with the imitation binding �UVW nilgand for Ng. Eliminating these bindings allows us to simplify the equa-tions to the trivial set hg =t hg and nilg =t nilg. Thus one �nal solutionof the uni�ation problem is[�UVW appg(U; onsg(V;nilg))=Fg℄; [uw=YA℄; [hg=Xg℄We have indiated the hoie points for the other solutions in the foot-notes.
14 The 2-projetion bindings for H and K are impossible for type reasonsand all projetion bindings but the 1-projetion binding for H lead to im-mediate subsequent lash. The imitation binding for H leads to a solution�UVW appg(revg(Lg(U; V;W)); onsg(Y;nil)) for Fg that is not wanted in our mo-tivating example, so we will not pursue it here.15 The imitation binding �UVW Qg (Q a new variable) would also have worked.

paper.tex; 5/04/2001; 17:42; p.14

152. The Colored �-CalulusIn this setion, we make the intuitive onepts introdued above for-mal by extending the simply typed �-Calulus (see [18℄ for an intro-dution) with a onept of olor annotations for onstant and variableourrenes.The set T of types is generated from a set BT of base types byfuntion type onstrution (� ! �). We write �n ! � for the type�1 ! : : :! �n ! � of n-ary funtions.The set of olors is built up from olor onstants (C = fa; b; : : :g)and olor variables (X = fA; B; : : :g). Whenever olors are irrelevant,we simply omit them. Colors are indiated by subsripts labeling sym-bol ourrenes.The de�nition of well-formed formulae di�ers from the standard onein the treatment of bound variables, whih do not arry olor annota-tions in the olored �-alulus. Therefore we provide a separate lassof variables for them. Conretely, we �x� a signature � = S�2T �� of onstant symbols (we will uselower-ase letters for these)� ountably in�nite sets V� of (free) variables for eah type � 2 T(we will use the upper-ase lettersX;Y; F;G;H and V := S�2T V�)� ountably in�nite sets LV� of loal variables for eah type � 2 T(we will use the upper-ase letters U; V;W;Z for these and LV :=S�2T LV�)� sets C of olor onstants and X of olor variables.Atomi ourrenes of symbols in well-formed formulae an have aolor annotation, therefore we �x the notation �Z for the set faj 2�; a 2 Zg for some subset Z � C [X , and analogously for VZ .DEFINITION 1. (Well-Formed Formulae). For eah � 2 T we indu-tively de�ne the set w��(�) of well-formed formulae of type �by � if S 2 ��Z [V�Z [LV�, then S 2 w��(�),� if A 2 w��!�(�) and B 2 w��(�), then AB 2 w��(�), and� if A 2 w��(�) and Z 2 LV�, then (�Z A) 2 w��!�(�). Justas in the standard �-alulus, we will all any ourrene of theloal variable Z in �Z A bound.
paper.tex; 5/04/2001; 17:42; p.15

16We all formulae of the form AB appliations, and formulae of theform �Z� A abstrations. Finally, we all a formula A proper, i�all ourrenes of loal variables in A are bound, we will denote the setof proper well-formed formulae of type � with pw��(�).Note that with this de�nition the notion of free variables oinideswith the standard one in the ase of proper formulae. We will writefree(A) for the set of (olor and term) variables in A. As in �rst-orderlogi the names of bound variables have no meaning at all, thus weonsider alphabeti variants as idential and use a notion of substitutionthat systematially renames bound variables in order to avoid variableapture.EXAMPLE 1. FA(sd(a)), �Z sd(Z) are examples of olored �-termswhile �Z sd(ZB) is not (bound variables may not have olors).DEFINITION 2. We will �rst de�ne a funtion C2, where C2(S;B) isthe set of the olor annotations of all ourrenes of the symbol S in theproper formula B, whih we also de�ne indutively: C2(Sa;Sa) = fagfor symbols, C2(S;AB) = C2(S;A) [C2(S;B) for appliations and�nally C2(S; �Z A) = C2(S;A). We will all a formula A 2 pw�(�)� exible, i� C2(S;A) � X for all symbols S 2 V [�,� rigid, i� C2(S;A) � C for all S 2 V [�,� a-monohrome, i� there is a single olor onstant a, suh thatC2(S;A) = fag for all S 2 V [�, and� exihrome, i� A is exible and any olor variable ours atmost one in A.Finally, we all a formula A ompatible with a olor a, i� either a isa olor variable or A is a-monohrome.Clearly the olors annotating the atoms do not a�et ��-onvertibility,sine bound variables are not olored. Therefore,(�Z C)D �!� [D=Z℄C and (�Z AZ) �!� A (28)where the loal variable Z does not our not freely in A. Sine boundvariables do not arrry olor information and onsequently there are norestritions on �-redexes or the substitution in �-redution, we an liftall the known theoretial results to the olored alulus. In partiular,we know that ��-redution always terminates produing unique ��-normal forms and that ��-equality an be deided by reduing to ��-normal form and omparing for alphabeti equality. Based on this, we
paper.tex; 5/04/2001; 17:42; p.16

17an use the traditional versions of (long) �� normal forms and (long)head normal forms.To make arguments like the above more formal, we de�ne the erasureof a olored formula, as a simply typed �-term, whih we obtain erasingall olor-information:DEFINITION 3. (Erasure). The erasure of olored �-terms to simplytyped �-terms is de�ned by:� jSaj = S if S 2 � [V and a 2 C [X ,� jXj = X if X 2 LV,� j(AB)j = (jAjjBj), and� j(�Z A)j = �Z jAj.We all any olored formulae A and B variants, if jAj = jBjWe now have the tools for de�ning C-substitutions, a speializationof well-typed substitutions that preserves syntati olor information,suh as the skeleton (f. setion 4).DEFINITION 4. (C-Substitution). Let Z � X and W � C [X betwo �nite, disjoint sets of olors, then a C-substitution � is a pair(�t; �), where �t is a type-preserving mapping VW ! pw�(�) and�:Z ! W suh that the domain Dom(�) = Domt(�) [Dom(�)of � with Domt(�):= fXa 2 VZ j�t(Xa) 6= Xag and Dom(�):= fA 2Zj�(A) 6= Ag, is �nite. Furthermore, we assume that� if a 2 C, then �(Xa) must be a-monohrome for any variableXa 2 Domt(�), and� j�(Xa)j = j�(Xb)j for all Xa;Xb 2 Domt(�).Note that loal variables an never appear in the odomain of the termsubstitution, sine we have restrited that to proper formulae.REMARK 1. Note that the seond ondition in the de�nition of C-substitutions (instanes of variants are variants) holds in general as asimple indution on the struture shows: If � is a C-substitution and Aand B are variants, then �(A) and �(B) are variants.A C-substitution � has to obey the dependenies between di�erentvariables. Instantiating Xa and Xb we have to take are that j�(Xa)j =j�(Xb)j. Hene, if the uni�ation proess instantiates Xa with a formulaA, we also have to instantiate Xb with suitable formula A0 in order tosatisfy the onditions for C-substitutions in de�nition 4. In partiularwe have to guarantee that
paper.tex; 5/04/2001; 17:42; p.17

18� jAj = jA0j and� [A0=Xb℄ is a C-substitution.If b 2 C, then there is a unique solution for A0 whih we all a b-monohrome variant of A. Intuitively we an obtain A0 from A byre-dyeing all olors and olor-variables to b. In ase b 2 X the olorannotations inA0 are not restrited, so we only require jAj = jA0j. Thuswe need some \most general shema" whih an be instantiated to anypossibleA0. We all these shemata exihrome variants and obtaina exihrome variant for A by replaing eah olor or olor-variable inA by distint new olor-variables.DEFINITION 5. (a-Chrome Variant).Let A;B 2 pw��(�), then we all B a� exihrome variant of A, i� B is exihrome and jAj = jBj,� -monohrome variant of A, i� B is -monohrome andjAj = jBj,� b-hrome variant of A, i�� b 2 X and B is a exihrome variant of A or� b 2 C and B is a b-monohrome variant of ANote that a-monohrome variants are uniquely determined, sine wean obtain them by replaing eah olor and olor-variable by a.EXAMPLE 2. sA(XB) is a exihrome variant of sd(X), and �Z sA(sBZ)one of �Z sd(sZ), but �Z sA(sAZ) and �Z sA(sZ) are not. Further-more, the formulae s(X) and �Z s(sZ) are -hrome variants ofsdXA and �Z sd(sZ) respetively.LEMMA 1. If a formula A is ompatible with some olor a 2 C [X ,then there is an a-hrome variant G of A and a C-substitution �, suhthat �(G) = A.Proof. If a is a olor variable, then by a simple indution on thestruture of A, we see that there is a exihrome variant G of A andfurthermore that we an hose � to be a olor substitution that re-dyes the olor variables of G. If a 2 C, then A must be a-monohromeby ompatibility, and we an hoose G = A and � to be the identitysubstitution. 2
paper.tex; 5/04/2001; 17:42; p.18

19DEFINITION 6. (Indued Z-Substitution). Let A 2 pw��(�) be aproper formula, X 2 V�, and Z � C [X , then we say that the Z-substitution [[A=X℄℄Z = f[Aa=Xa℄ja 2 Zgis indued by [A=X℄ i� for all a 2 Z, the term Aa is the a-hromevariant of A. Note that [[A=X℄℄Z is a C-substitution that has �nitesupport whenever Z is �nite. Furthermore it is unique up to the hoieof new olor variants in the exihrome variants ofA. Sine the induedZ-substitution only depends on the erasures of A and X, we will alsouse it for unolored formulae.The signi�ane of the indued Z-substitutions is that for any C-substitution � with Dom(�) = fXgZ , we have � = [[j�(X)j=X℄℄Z . Inother words, the well-formedness onditions for C-substitutions ensure,that the XZ-part of a substitution an be indued from the erasurealone. In the uni�ation we will use the fat that if we know the stru-ture of the olor erasure of a general binding, then we an already �xthe X part of the solution.EXAMPLE 3. Let Z = fa; b; Ag and A = f(g(Xa)), then[[A=X℄℄Z = [fa(ga(Xa))=Xa℄; [fb(gb(Xb))=Xb℄; [fC(gD(XE))=XA℄3. Uni�ationThe entral data struture for higher-order uni�ation is that of uni�-ation problems, i.e. sets of pairs A =t B of formulae with oinidingtypes and pairs of olors a = b. We will represent these sets as on-juntions and write :=, if it is irrelevant whether we mean =t or =.Note that we do not restrit ourselves to proper uni�ation problemsin this paper (we will all a uni�ation problem proper i� all of theformulae ourring in it are).DEFINITION 7. (C-Uni�er). We all a C-substitution � = (�t; �) aC-uni�er of a uni�ation problemE = A1 =t B1 ^ : : : ^An =t Bn ^ a1 = b1 ^ : : : ^ am = bmi� � �t(Ai)=���t(Bi) for all 1 � i � n and� �(ai) = �(bi) for all 1 � i � m
paper.tex; 5/04/2001; 17:42; p.19

20and we will denote the set of C-uni�ers of E with U(E).For a set W � VZ [X of variables, we all C-substitutions � and �equal on W (we denote that by � = �[W℄), i� for all X 2 W �(X) =�(X). We will use the obvious extension of this equality to ��-equalityand to sets of equations, furthermore we will abbreviate � = �[free(E)℄with � = �[E ℄ for a uni�ation problem E .We all a subset 	 � U(E) a omplete set of C-uni�ers of E , i�for all � 2 U(E) there is a � 2 	 that is more general than �, i.e. thereis a C-substitution �, suh that �=��� Æ �[E ℄. If the singleton set f�g isa omplete set of uni�ers of E , then we all � a most general uni�erfor E .DEFINITION 8. (Solved Form). Let E := A := B^E 0 be a uni�ationproblem, then we all the pair A := B solved in E , i� either� it is a term pair Xa =t B for some variable X 2 V, some properformula B and some olor a 2 C [X and� Xa =2 free(B) and� if X 2 free(E 0)) for some 2 Z, then it ours exatly asthe left hand side of a pair X =t C, suh that jBj = jCj andC is -hrome, or� it is a olor pair A = b for some olor variable A 2 X , suh thatA 6= b and A =2 free(E 0).We say that E is in solved form, i� all its pairs are solved in E . Clearly,any proper C-substitution� = [A1=X1a1 ℄; : : : ; [An=Xnan ℄; [a1=A1℄; : : : [am=Am℄uniquely determines a solved uni�ation problemE� = X1a1 =t A1 ^ : : : ^Xnan =t An ^ A1 = a1 ^ Am = amin solved form. We will use [[X =t A℄℄ for E[[A=X℄℄ , where [[A=X℄℄ is theindued substitution (f. de�nition 6).Conversely, the onditions on solved forms ensure that the orre-sponding substitutions are C-substitutions: The �rst ondition ensureswell-de�nedness (ours-hek), idempotene, and properness while theseond ensures that �E is a C-substitution.

paper.tex; 5/04/2001; 17:42; p.20

21(�U� A) =t (�V� B) Z 2 LV new SIM(�)[Z=U ℄A =t [Z=V ℄B(�U� A) =t B Z 2 LV new SIM(�)[Z=U ℄A =t (BZ)haUn =t hbVn ^ E h 2 � [LV SIM(de)a = b ^U1 =t V1 ^ : : : ^Un =t Vn ^ EFigure 2. Deomposition Rules in SIMA = b ^ E A 2 X \ free(E) SIM(elim:ol)A = b ^ [b=A℄EE F =2 free(A) FaZk =t A 2 ELV(A) � fZig � LV SIM(elim:term)[[F =t �Zk A℄℄C2(F;E) ^ [[�Zk A=F ℄℄C2(F;E)(E)Figure 3. Variable Elimination Rules in SIM3.1. SimplifiationDEFINITION 9. (SIM: Simpli�ation of C-Uni�ation Problems). Therules for onstraint simpli�ation onsist of the deomposition rules in�gure 2 and the variable elimination rules in �gure 3In ontrast to the simple higher-order uni�ation we have to ensurethat the resulting solutions are C-substitutions, therefore, we have toapply [[�Xk A=F ℄℄C2(F;E) to E if we eliminate Fa with �Xk A. Notethat this approah works even if the pair FaZk =t A is not well-olored,sine any olor lash (say if A ontains a b-olored symbol) would bedeteted during deomposition of the resulting pair Aa =t A.
paper.tex; 5/04/2001; 17:42; p.21

22 We apply these rules with the understanding that the operators ^and =t are ommutative and assoiative and that trivial pairs may bedropped. Furthermore after the appliation of eah rule all formulaeare redued to head normal form. Finally, no rule may be applied to asolved pair.LEMMA 2. If D: E `SIM E 0, then U(E) = U(E 0)[E ℄.Proof. We will only onern ourselves with SIM(elim:term), sinethe other rules are like the unolored ones. So let E be a C-uni�ationproblem and (FaZ) =t A be the pair in E that the rule SIM(elim:term)ats upon. Furthermore let Fb 2 free(E) for some b 6= a.We show that for an arbitrary idempotent proper C-uni�er � of E ,the b-hrome variant of the formula �Zn A is more general than �(Fb).So let � be an arbitrary C-uni�er of E , then�(Fa)=���(�Z FaZ)=���Z �(FaZ)=���Z �(A)=���(�Z A)sine the Zi are not in Dom(�). Now we know that j�(Fb)j = �(Fa)j,sine � is a C-substitution, on the other hand �(Fb) is ompatible withb, so there is a unique b-hrome variant G of �Z A and a substitution�, suh that �(G) = �Z A by lemma 1, sine b was hosen arbitrarilyin the set C2(F; E), we obtain the assertion. 2Clearly the SIM Transformations are a joint generalization of the�rst-order olored uni�ation algorithm as it has been presented in [21℄and Huet's simpli�ation rules [32℄; they are terminating and onuentup to assoiativity and ommutativity of ^, =t and =. Thus it makessense to speak of a SIM-normal form. Unlike uni�ation for �rst-orderlogi, the SIM-normal forms are not solved forms, but an ontainpairs of the form haU =t kbU, where at least one of the heads ha andka is a olored variable.3.2. General UnifiationThe lassial approah to higher-order uni�ation on un-olored termsredues the problem of �nding solutions for un-olored SIM-normalpairs to the the general binding problem: Given a type � and a symbol�, �nd the most general well-formed formula of type � that has head �.Indeed it is suÆient to instantiate the head variables in SIM-normalpairs with suh general bindings to obtain a omplete set of HOU trans-formations. Sine we have already generalized the simpli�ation rulesto deal with the olor annotations, and we know from the lassial ase,that the erasures of the instantiations of head variables must be gen-eral bindings, it is suÆient to employ the unolored rules for general
paper.tex; 5/04/2001; 17:42; p.22

23higher-order uni�ation. This will allow us to use most of the meta-theory diretly from the un-olored ase (see for instane [32, 24℄). Tokeep this paper self-ontained, let us restate the de�nitions.DEFINITION 10. (General Binding). We all the formulaGBhÆ = �Z�1 : : : Z�n :�(H1Z) : : : (HmZ)a general binder i�� Æ = �n ! � and � has type m ! �� one of the following holds:� � = Z�j and �j = m ! � for some j � n, then h = j andwe all GjÆ a projetion binding or� � = S for some onstant or free variable S of type m ! �,then h = S and we all GhÆ an imitation binding.� the Hi are new variables of type �n ! i,Note that this de�nition is unique up to the names of the new variablesHi and only depends on the signature �. Finally, for given type �, andhead h we ollet the imitation binding and all projetion bindings (thereneed not be projetion bindings for all types) in set of approximationsof h and � ABh�(�) := fGBh�(�)g [fGBj�(�)jj � ngThe signi�ane of this lass of formulae is given by the followingtheorem, whih is a simple onsequene of the normal form theorem.THEOREM 1. (General Binding Theorem). Let A 2 pw��(�) be aformula with head(A) = h, then there exists a substitution �, suhthat �(G)=��A where G = GBh�(�) is the general binding for h and �.Moreover, if A is a head normal form, then the depth of � is stritlyless than that of A.DEFINITION 11. (CUT : Transformations for C-Uni�ation). Let CUTbe the system SIM augmented by the inferene rules in �gure 4. Justas in SIM leave the assoiativity and ommutativity of ^, =t, and =impliit. We have ombined the lassial imitation (G has head h) andprojetion (G is a projetion binding) transformations (see [32℄) intoCUT (ex=rig). This set of rules is used with the onvention that allformulae are eagerly redued to SIM-normal form. In partiular byeliminating the new pairs Fa =t G instantiate olored variables in Ewith the orretly olored variants of G.
paper.tex; 5/04/2001; 17:42; p.23

24 FaUn =t FbVn ^ E CUT (de)a = b ^U1 =t V1 ^ : : : ^Un =t Vn ^ EF�a U =t hbV ^ E G 2 ABh�(�) CUT (ex=rig)Fa =t G ^ FaU =t hbV ^ EF�a U =t GbV ^ E G 2 ABh�(�) CUT (guess)Fa =t G ^ FaU =t GbV ^ EFigure 4. General Colored Uni�ationThe soundness of these rules is a diret onsequene of the (olored)soundness of SIM and the soundness of lassial HOU on the erasures.Therefore, we diretly have the following theorem.THEOREM 2. (Soundness of CUT). If E `CUT E 0 suh that E 0 is inC-solved form, then the substitution �E 0 jfree(E)2U(E).So if the algorithm CUT returns a substitution � for an initial systemE , then � is indeed a C-uni�er for E . The main result of this setion isthe onverse, namely, that given an initial C-uni�ation problem E anda C-uni�er �, the algorithm CUT an ompute a C-uni�er � of E , whihis more general than �.As higher-order uni�ation is undeidable [16℄, our set of transfor-mations annot be terminating in general. We will prove, that CUT isa omplete C-uni�ation proedure, i.e. for any given � 2 U(E) thereis a CUT -derivation E `CUT E 0 suh that E 0 is a C-uni�ation prob-lem in C-solved form, and �0E is more general than �. For this we onlyneed a subset CUT � of inferene rules that approximate the solution� (for details and proofs see[32, 24℄). Even though CUT must be non-terminating in general (otherwise HOU would be deidable) we havethe following semi-termination result.THEOREM 3. If E is a uni�ation problem with uni�er �, then� CUT � is terminating.� CUT � onserves the subset of uni�ers that are ompatible with�.
paper.tex; 5/04/2001; 17:42; p.24

25� if no transformation rule from CUT � is appliable to E, then Eis in C-solved form.In partiular, a uni�ation problem E has an uni�er �, i� there is asequene of CUT �-transformations that terminates with a solved formE 0. Sine CUT � onserves the set of uni�ers that approximate �, andEE 0 is a most general uni�er of E 0, EE 0 must be more general than �.Sine the olored uni�ation transformations are also lassial ones, wediretly have semi-termination for the olored ase. This leads to thefollowing ompleteness result for higher-order olored uni�ation.THEOREM 4. (Completeness Theorem for CUT). For any C-uni�ationproblem E and any C-substitution � 2 U(E), there is a CUT -derivationE `CUT E 0 suh that E 0 is in C-solved form and �0E ��� �[E ℄.If we ombine the soundness results from theorem 2 with the om-pleteness result from theorem 4, we an haraterize the set of solutionsfound by the algorithm CUT by the following orollary.COROLLARY 1. For any C-uni�ation problem E the setCUT (E) := f�E 0 jE `CUT E 0 and E 0 is in C-solved formgis a omplete set of C-uni�ers for E.3.3. Pre-C-UnifiationAs for uni�ation in the simply typed � alulus, the rule CUT (guess)gives rise to a ombinatory explosion of the searh spae for uni�ers.Huet's solution to this problem was to rede�ne the higher-order uni-�ation problem to a form suÆient for refutation purposes: For thepre-uni�ation problem ex-ex pairs are onsidered already solved,sine they an always be trivially solved by binding the head variablesto speial onstant funtions that identify the formulae by absorbingtheir arguments.In ase of the olored �-alulus a ex-ex pair may have no solution,e.g. if the top-level variables of both terms are annotated by di�erentolors. Consider the following examples:EXAMPLE 4. Let F;G 2 V, then the uni�ation problem Fdad =tGa has no uni�er. On the other hand Fda =t Ga has an uni�er[�Z Z=Fd℄; [�Z Z=G℄.
paper.tex; 5/04/2001; 17:42; p.25

26 The reason for this is the fat that projetions, i.e. terms of theform �Xk Xi, arry no olor information and these are valid instanesof olored variables like Fd or G. Hene, in order to solve ex-expairs like the seond one in example 4 we have to map one of the top-level variables to a projetion formula. This gives rise to the followingde�nition:DEFINITION 12. (Flexible Chain). Let E be a C-uni�ation problem,then a subset E 0 = A1 =t B1 ^ : : :^An =t Bn of ex/ex pairs in E isalled a a exible hain of E i� head(Ai) = head(Bi�1) 2 VX for2 � i � n. We all head(A1) = F and head(Bn) = Gd the left{ andright ends of E 0.If ; d 2 C and 6= d then we all E 0 a reduible hain, otherwise asafe hain, similarly, we all a pair in E safe, i� there is no reduiblehain in E that ontains it, and a uni�ation problem, if it does notontain reduible hains.It will turn out that safe hains always have solutions, whereas areduible hain in a system E indiates a lash of di�erent olor anno-tations to the top-level variables. As mentioned above, the resolutionof this lash will be to bind one of these top-level variables to a proje-tion formula. Thus, we an step by step redue the number of reduiblehains in E .LEMMA 3. Let E = E 0 ^ Er, where Er = A1 =t B1 ^ : : : ^An =t Bnis a reduible hain, then for eah C-uni�er � of E, there is a number1 � i � n, suh that �(head(Ai)) or �(head(Bi)) is a projetionformula.Proof. Let F iai = head(Ai) and Gibi = head(Bi), then a1; bn 2 C,but a1 6= bn, sine Er is reduible by assumption. If we assume thatnone of the F iai = head(Ai) and Gibi = head(Bi) is a projetion, thenwe havehead(�(F 1a1)) = head(�(A1)) = head(�(B1)) = head(�(G1bn))= head(�(F 2a2)) = head(�(A2)) = : : : = head(�(Gnbn))However �(F 1a1) and �(Gnbn) must be monohrome, as � is well-oloredand therefore a1 = bn, whih ontradits our assumption that Er isreduible. 2DEFINITION 13. (Pre-C-Solved Form). Let E be a C-uni�ation prob-lem the we all a pair A =t B in E pre-solved in E, i� A =t B issolved in E or A =t B is a safe ex/ex pair in E. We all E pre-C-solved, i� all of its pairs are. Thus E is pre-C-solved, i� all of its pairsare solved or ex/ex and safe.
paper.tex; 5/04/2001; 17:42; p.26

27This de�nition is tailored to guarantee that pre-C-uni�ers an alwaysbe extended to C-uni�ers by �nding trivial uni�ers for the exible pairsand that equational problems in pre-C-solved form always have mostgeneral uni�ers. Therefore an equational system E is pre-C-uni�able, i�it is C-uni�able.DEFINITION 14. (Color Restrition). Let E be a safe system, then theolor restrition r(Xa; E) of a olored variable Xa with respet to Eis de�ned by� r(Xa; E) = d if a 2 X and there is exible hain E 0 in E withleft head Xa and right head Yd for some d 2 C.� r(Xa; E) = a otherwise.Given a safe system E the notion of olor restrition is well-de�ned.Suppose, there are two subsets of E satisfying the ondition of the def-inition above whih result in di�erent olor restritions and 0 for aolored variable atom Xa. Merging both sets we would obtain a reduiblehain in E, whih ontradits our assumption that E is safe. Note thatfor any ex/ex pair FaU =t GbV in E either� r(Fa; E) = r(Gb; E) 2 C or� both r(Fa; E) and r(Gb; E) are olor variables.In the �rst ase we furthermore know that either a 2 X or r(Fa; E) = a(and similarly for b and r(Gb; E)).EXAMPLE 5. Both uni�ation problems Fdad =t Ga and Fda =tGa from example 4 are reduible exible hains, so any uni�er hasto be a projetion. Indeed for the seond one, the projetion bindings[�Z Z=Fd℄; [�Z Z=G℄ sueed, whereas they lash for the �rst prob-lem.The problem E = Faa =t GAb^GA =t HBbd is safe, and r(GA; E) =r(HB; E) = a. Finally F = FAa =t GBbd is safe with r(FA;F) = Aand r(GB;F) = B.DEFINITION 15. (Trivial Uni�er). Let E be a pre-C-solved C-uni�a-tion problem, suh that E 0 := F�n!�a Un =t Gm!�b Vm is a pre-C-solvedpair in E and H := fH�j� 2 T g be a reserved set of typed variableswith H \ free(E) = ;. Furthermore let�E 0 := [�Z1�1 : : : Zn�n H�r(Fa;E)=Fa℄; [�Z11 : : : Zmm H�r(Gb;E)=Gb℄If r(Fa; E) 6= r(Gb; E), then both are olor variables and �E 0 is aug-mented by the olor substitution [r(Gb; E)=r(Fa; E)℄. Finally, we de-�ne �E as the union of the �E 0 for all ex-ex pairs E 0 in E.
paper.tex; 5/04/2001; 17:42; p.27

28 The next lemma shows that pre-C-uni�ers an always be extended toC-uni�ers by �nding trivial C-uni�ers for the pre-C-solved pairs. There-fore a �-uni�ation problem E is pre-C-uni�able, i� it is C-uni�able.LEMMA 4. Let E be a pre-C-solved uni�ation problem, then �E [�Eis a C-uni�er of EProof. Let E 0 and �E 0 be as in de�nition 15, then �E 0 is a C-uni�erfor E 0, sine �E 0(FaUn)=��Hr(Gb;E)=���E 0(GbVm)and either r(Fa; E) = r(Gb; E) or they are identi�ed by �E 0 . Conse-quently, �E [�E is a pre-C-uni�er of E , sine �E uni�es the C-solvedpairs in E and �E the ex/ex ones.To show that �E is a C-substitution, we verify the onditions ofde�nition 4: We have two ases� r(Fa; E) = r(Gb; E) 2 C and a 2 C (in whih ase �E(Fa) =�Z1�1 : : : Zn�n Hr(Gb;E) is a = r(Gb; E)-monohrome) or� a 2 X , whih is unproblemati.The argumentation for Gb is analogousFor the onsisteny onditions on erasures, note that for any variableX and olors e; f we have j�E(Xe)j = j�E(Xf)j, sine the head H� andthus the erasure itself is uniquely determined by the type of X. 2DEFINITION 16. (CPT :Transformations for C-Pre-Uni�ation).We de�ne the set CPT of transformations for pre-C-uni�ationby modifying the CUT rules CUT (de) and CUT (ex=rig) by requiringthat they may not be performed on C-pre-solved pairs and replaingCUT (guess) by the inferene rule in �gure 5F�a U =t GbV ^ E G 2 GBj�(�) CPT (ex=ex)Fa =t G ^ FaU =t GbV ^ EFaU =t GbV is a pair of a reduible hain.Figure 5. Higher-Order Colored Pre-Uni�ationWith the de�nitions above we obtain a ompleteness result for CPTsimilar to theorem 4.
paper.tex; 5/04/2001; 17:42; p.28

29THEOREM 5. For any C-uni�ation problem E the setCPT (E) := f�E 0 jE `CPT E 0 and E 0 is in pre-C-solved formgis a omplete set of pre-C-uni�ers for E.Proof Sketh. The proof goes through with exatly the same methods,as we have used them in setion 3. The only di�erene is that we uselemma 3 to aount for the restrited ex/ex-ase. 2Note that in ontrast to lassial higher-order pre-uni�ation weannot drop the CUT (guess) and CUT (de) rules altogether, but thegiven restrition is severe enough to make pre-C-uni�ation tratable.In partiular the restrition alleviates the need for unspei�ed imita-tions in CUT (guess), whih makes full uni�ation in�nitely branhing.Obviously, safety is a deidable property and olour restritions are ef-fetively omputable: uni�ation problems are �nite, and there an beat most exponentially many paths in one. Thus a simple generate-andtest proedure will do. Computationally, this exponential step will notslow down higher-order uni�ation, sine the �-normalization step isalready non-elementary.3.4. Higher-Order PatternsThere are ertain syntati fragments of the simply typed � alulus,where the higher-order uni�ation problem has better properties thanin the general ase. We will onentrate on higher-order patterns [26,27℄, where the problem is unitary for the unolored ase. In the oloredase, the problem is slightly more omplex, and we will pro�t from theunderstanding of olored ex/ex pairs that we have ahieved in thelast setion. Higher-order pattern extensions of rippling have alreadybeen studied by Kraan et al. in the ontext of program synthesis in [25℄,without arriving at an satisfying algorithm or treatment of the meta-theory. The theory presented below an a posteriori be taken as a logialbasis for Kraan's work.For the olored �-alulus, the de�nition of higher-order patterns isvery similar to the unolored ase; in fat it oinides with the tradi-tional one for proper formulae.DEFINITION 17. (Higher-Order Pattern). We all a formulaA 2 w�(�)a higher-order pattern, i� any ourrene of a free variable F� inA must be in a subformula B of A of the form FZ'(1) : : : Z'(n), whereZi 2 LV and ' is a partial permutation from k into n, i.e. an inje-tive mapping from f1; : : : ; kg into f1; : : : ; n � kg, where k is the lengthof �. In other words, all free variables of a higher-order pattern ourat the leaves, or applied to a list of distint bound variables.
paper.tex; 5/04/2001; 17:42; p.29

30 We will all a C-substitution � a pattern substitution, i� for allXa in Dom(�), �(Xa) is a higher-order pattern. Note that the lass ofhigher-order patterns is losed under pattern substitutions.EXAMPLE 6. Let f; a be onstants and F;G be variables and UVW beloal variables of appropriate type, then �UVW FaWU , and FaWU ,and �U fA(�V FbUV)aa(GaU) are higher-order patterns, while Fa,�Z FZaB, �Z FaZZ, and �UV FU(V U) are not. Furthermore, all�rst-order formulae and all losed formulae are higher-order patterns,sine they do not ontain free funtion variables. Finally, rigid generalbindings are higher-order patterns, while exible are not in general.This syntati fragment allows to speialize the uni�ation rulesfrom de�nition 11.DEFINITION 18. (Transformations for Pattern Uni�ation). The in-ferene rules for UPat are those of CPT , together with the additionalrules for safe ex/ex pairs shown in �gures 6 and 7. The �rst one han-dles the ase, where the heads are idential and the seond one, wherethey are distint.F�k!�a X'(k) =t FbZ (k) ^ E UPat(same)r(Fa; E) = r(Fb; E) ^ E ^ FaZ'(k) =t FbZ (k)^Fa =t �W k�'(k) HaW �(l) ^ Fb =t �W k�'(k) HbW �(l)� ' and are partial permutations from k to n� � is a partial permutation from k to l, suh that �(i) = '(j),i� '(j) = (j), i.e. � piks out all arguments, where ' and oinide.� H is a new variable of type ��(l) ! �Figure 6. Pattern Uni�ation with Idential HeadsColored pattern uni�ation annot be unitary, sine oniting ol-ors on ex/ex pairs an fore the instantiations to be (unolored)projetions. As we have seen above, oniting olors an entail thatex/ex pairs are unsolvable, on the other hand, for pattern uni�a-tion, they an also lead multiple solutions (the erasure of whih an
paper.tex; 5/04/2001; 17:42; p.30

31be represented by a more general unolored higher-order pattern16).Consider for instane the pair�UVWZ FaUVWZ =t �UVWZ FbV UWZwhere � is a base type and a; b 2 C. Obviously, there are two mostgeneral solutions.�3 := [�UVWZ W=Fa℄; [�UVWZ W=Fb℄�4 := [�UVWZ Z=Fa℄; [�UVWZ Z=Fb℄F�k!�a Z'(k) =t G�l!�b Z (l) ^ E UPat(di�)a = b ^ FaZ'(k) =t GbZ (l) ^ E^Fa =t �W k�'(k) HaW'0(m) ^Gb =t �W l� (l) HbW 0(m)� '; be partial permutations from k (l) to n.� '0 and 0 are partial permutations from m into k; l, suhthat '0(m) = i and 0(m) = j, i� '(i) = (j).� H is a new variable of type � 0(m) ! �Figure 7. Higher-Order Colored Pattern Uni�ation with Distint HeadsThe tratable nature of pattern uni�ation hinges on the observa-tion that the solving of ex/rigid pairs is deterministi, that is, allbut the imitation or one projetion immediately lead to failure. Thusfor pattern uni�ation we only an diretly inherit the deompositionand ex/rigid rules from general olored higher-order uni�ation andonly have to onern ourselves with the ex/ex situations. Clearly, allthe disussion about exible hains also applies to higher-order pat-terns, so we keep the ex/ex rule for reduible exible hains. Thisleaves us with the ase of safe ex/ex pairs, where (as we have seenabove) olor lashes are not a problem. Therefore, we an diretly adaptthe well-known rules for higher-order pattern uni�ation: If we havea pair FaUn =t FbV n, then Fa is bound to to �Zn HaWk and Fb to16 This observation shows that a generate-and-test proedure for olored patternuni�ation is infeasible, sine this would have generated the unolored solution andrejeted it, erroneously prediting the absene of olored solutions.
paper.tex; 5/04/2001; 17:42; p.31

32�Zn HbWk, where theW k are those bound variables, where U i = V i.17Unlike in the unolored ase, an appliation of this rule does not imme-diately solve the pair (the olors a and b need not be idential), but ittransforms it into a form, in whih deomposition an do the rest (thiswill always sueed, i� the pair the rule ats upon is safe).For the remaining ase of safe ex/ex pairs with di�ering headvariables, we use a similar argumentation (diretly modeled after theunolored ase) and rule. From this argumentation (the ex/rigid andthe safe ex/ex ases are deterministi and the reduible ex/ex asesonly involve projetions), we an diretly derive that olored patternuni�ation is deidable18 and �nitary i.e. pattern uni�ation problemshave at most �nitely many most general uni�ers.THEOREM 6. (Completeness for UPat). Let E be an uni�ation prob-lem, then UPat is terminating and yields an irreduible problem F ,suh that either� F is solved and �F is a most general uni�er of E or� F is not solved and E is not uni�able.Furthermore, UPat is onuent exept for CPT (ex=ex), whih is�nitely branhing.4. Knowledge RepresentationIn this setion we will work on the semantis of olors as they areused to enode additional knowledge about formulae into annotationsof symbol ourrenes. The olored �-alulus provides the neessarydevies to maintain this knowledge during the dedution by introduingolored substitutions and olored uni�ers. It remains the question howto enode the given domain knowledge into olors and vie versa how todeode again the inherited knowledge from the annotations distributedover the entire term or formula.In the examples in setions 1.1 and 1.2 we have used annotations(olors) of symbols to guide the dedution proess in suh a way that17 For any uni�er � we have �(Fa) = �Zn A. Now, A an only have ourrenesof Zi, suh that U i = V i: If we assume that A ontains an ourrene of Zi (say atposition p) with U i 6= V i, then �(F)Un=��[Un=Zn℄A and �(F)Un=��[Un=Zn℄A,so these di�er at position p, whih ontradits the assumption that � uni�es E .18 The termination and onuene arguments an be diretly modeled after thestandard ase.
paper.tex; 5/04/2001; 17:42; p.32

33eah intermediate result of dedution has to satisfy spei� restri-tions. Rippling uses the semanti information that we must apply theindution hypothesis to rewrite the indution onlusion. Additionallyit assumes that the hypothesis is always homomorphially embeddedinto the intermediate results of manipulating the onlusion. Eah sym-bol ourrene inside the hypothesis orresponds uniquely to a symbolourrene inside the (manipulated) onlusion. We may enode thisknowledge by dyeing symbol ourrenes whih are inside the rangeof the mapping white while all others grey. If we need a more granu-lar information about orresponding symbol ourrenes in hypothesisand onlusion we may even attah unique olors to the orrespondingourrenes instead of oloring them all uniquely white. Thus we splitup the set of olor onstants C into a subset D of olor onstants whihontribute to the skeleton, like for instane \white", and other olorsC n D, like \grey", whih indiate wave-fronts.Enoding the mapping into annotations we have to supply an appro-priate funtion
D whih will synthesize the information enoded intoannotations. In partiular we are interested in all symbol ourrenesof the manipulated onlusion whih are related to ourrenes of thehypothesis. We an easily determine these ourrenes by the olor oftheir annotation. Sine we also like to extrat the subterm-relationsin whih these symbols our,
D has also to inorporate knowledgeabout the subterm relations between symbols annotated with olors ofD. Thus, instead of omputing a set of unrelated symbol ourrenes,
D will onstrut new (annotated) formulae aording to the originalterm struture by using the symbols annotated with olors of D.We introdue the notion of a skeleton in two steps. First, we hara-terize the extration and gluing part within the de�nition of an initialskeleton e
D. This skeleton will still ontain some redundanies whihwill be removed by applying some redution rules yielding the �nalskeleton
D.Sine
D has to deliver the subterm-relations between the symbolourrenes under onsideration, the skeleton is built up along the for-mula onstrution of annotated formulae. Thus, the skeleton inheritsthe struture of the original formula and is basially de�ned as a homo-morphi extension of a mapping on symbol ourrenes. The skeletonof an appliation is a set of appliations onstruted of the skeletonsof the arguments, also lambda-expressions are translated in a homo-morphi way to a set of lambda-expressions using the skeletons of theredex.Sine we are interested in symbol ourrenes annotated with olorsof D, e
D will map suh symbols hd into the singleton set fhdg. If asymbol h is annotated with a olor whih is not member of D then
paper.tex; 5/04/2001; 17:42; p.33

34we atually like to disard this symbol ourrene. If h has base type �then e
D will return a singleton set ontaining a dummy symbol f! topreserve well-typedness. For h of non-base type, the e
D has to provideappropriate �-expressions suh that omputing e
D(hAB) will returnthe union of the skeletons of A and B. This an be done by mappingh to the set of all the possible projetions to its arguments.We are left with the ase of bound variables whih have no anno-tations at all. In this ase e
D again returns a singleton set ontainingthe bound variable.We summarize the notion of a initial skeleton into the followingde�nition:DEFINITION 19. (Initial Skeleton). LetA 2 pw��(�) be a well-formedformula and D � C be the set of skeleton olors. Then the initialskeleton e
D is de�ned as follows:� e
D(X) = fXg if X 2 LV,� e
D(hd) = fhdg if d 2 D [X ,� e
D(hd) = ff!g if d 2 (C n D), and the type of h is base,� e
D(hd) = f(�Zn f�1!�! Z1); : : : ; (�Zn f�n!�! Zn)g if d 2 (C nD), where his of type �n ! � (� base type).� e
D(BC) = f(B0C0)jB0 2 e
D(B) and C0 2 e
D(C)g, and� e
D(�Z B) = f�Z B0jB0 2 e
D(B)g.We had to invent type-onversion funtion to obtain typed terms asmembers of the skeleton. Sine in some terms, ourrenes of these type-onversion funtions are redundant, we use the following !-redutionrules to remove redundanies in the initial skeleton.DEFINITION 20. (!-Redution). We say that a well-formed formulaB is obtained by a well-formed formula A by a one-step !-redution(A �!! B), if it is obtained by applying one of the rules given in Fig.8 to a well-formed part of A As usual we de�ne the transitive losureof the redution relation �!! with �!�! and use �!��! for the unionof the redution relations �!�, �!�, and �!!.In order to ompare two skeletons we like to disregard di�erenes ausedby ��-equality or !-redution. Hene, we ombine �� and !-redutionsto obtain a ��!-redution.
paper.tex; 5/04/2001; 17:42; p.34

35f�!! (f�!�! X�) �!! f�!! X� f�!! f�! �!! f!f�!�! X� �!! X� �x x �!! f�!�!Figure 8. !-Redution RulesTHEOREM 7. (Strong Normalization). Every sequene of ��!-redutionsterminates and leads to a unique ��!-normal form.Proof. The Theorem is proven in the appendix (setion A). 2Thus, ��!-redution terminates for all �-terms A and results ina unique normal form A #��! . Based on the de�nitions of the initialskeleton and the ��!-redution we de�ne now the skeleton of a higher-order term as follows:DEFINITION 21. (Skeleton). Let A 2 pw��(�) be a well-formed for-mula and D � C be the set of skeleton olors. Then the skeleton
D(A) of A is de�ned as the ��!-normal form e
D(A) #��! of theinitial skeleton. Notie that due to the onuene of ��!-redution wean also intertwine this redution and the omputation of the initialskeleton whih results in a one-pass omputation of the skeleton.The skeleton is independant of the representation of a term wrt. ��-equality, i.e. we do not have to normalize a term before omputing itsskeleton.LEMMA 5. For all A;B 2 pw��(�) :A =�� B implies
D(A) =
D(B)The proof an be found in the appendix (setion B). As a onsequenewe have to make ompromises to the granularity in whih we an anno-tate terms. Sine we do not restrit the appliation of the �-rule (om-pared to the non-annotated �-alulus) we annot store any domainknowledge (annotations) to loal variables. Otherwise the unrestritedappliation of the �-rule would destroy this knowledge.19The skeleton funtion denotes an abstration on olored terms. Rip-pling makes use of this abstration by restriting possible dedutions19 The introdution of type-onversion funtions guarantee the ���-ompatibility.Espeially there is a subtle relation between mapping non-skeleton symbols to f!(thus introduing some kind of \partial" skeleton) and �-redution as the follow-ing example illustrates:
fag(�UV U)(Aa;Bb) = (�UV U)(Aa; f!) =� fAag =
fag(Aa) =�
fag(�UV U)(Aa;Ba)
paper.tex; 5/04/2001; 17:42; p.35

36to formulas or terms with idential skeletons. Restriting the proof inthe abstrat spae we are now able to implement a generate-and-testapproah whih �rst omputes a dedution step, seondly alulates itsabstration (skeleton) and �nally baktraks this step if the abstra-tion does not satisfy the given restritions. But in order to plan a proofin the abstrat spae we like to predit whether a spei� dedutionstep will satisfy the restritions on its abstration without omputingthe result on a ground level. Thus, the question arises whether we areable to alulate the abstration (skeleton) of the result of a dedutionstep only by onsidering the abstrations (skeletons) of all involvedformulas?As rippling is mostly done in a rewriting environment20, we will dis-uss the issues of reasoning in the abstrat spae in terms of a termrewriting alulus. In priniple, term rewriting allows one to dedue aterm [�(B)=�℄C from C i� there is an equation A = B and a substi-tution � suh that �(A) = Cj�. In order to reason entirely in the ab-strat spae we have to be able to ompute the skeleton of [�(B)=�℄Cwith the help of the skeletons of C, A and B. In ase of �rst orderlogi we know that
D(A) =
D(B) implies
D(�(A)) =
D(�(B))(Substitution-Compatibility) and that
D(Cj�) =
D(�(B)) implies
D(C) =
D([�(B)=�℄C (Subterm-Compatibility). One the abstra-tions of both sides of a rewrite rule are equal, its use to rewrite a termwill not hange the abstration of the modi�ed term.We will disuss now the higher-order ase: The property of subterm-ompatibility is in priniple an immediate onsequene of the de�nitionof a skeleton being a homomorphi extension of a mapping on symbolourrenes. Thus the following lemma holds; its proof is given in theappendix (setion B).LEMMA 6. For all A;B 2 pw��(�)
D(A) =
D(Bj�) implies
D(B) =
D([A=�℄B):The orresponding lemma about substitution-ompatibility an not belifted to the higher-order ase. The reason is that an instantiation mayenable the use of the �-rule whih then, may delete parts of the skeleton.EXAMPLE 7. Consider two terms Fda and fda. Let 2 D whiled 62 D suh that both terms oinide in their skeletons a. InstantiatingFd by �X bd will (after �-redution) result in terms bd and fda whihdo obviously not oinide in their skeleton.20 We will denote the subterm B in A at position � with Aj� and the result ofreplaing this ourrene of B in A with C with [C=�℄A.
paper.tex; 5/04/2001; 17:42; p.36

37Two possibilities to get rid of this problem immediately suggestthemselves: adding funtion variables (regardless of their annotations)always to the skeleton or restriting admissible substitutions in or-der to avoid these substitutions. However both will be too restritivefor pratial reasons. What are the pratial impliations of this lakof substitution-ompatibility? In order to guarantee that
D(C) =
D([�(B)=�℄C) holds we have now to test the missing property: eahtime an annotated rewrite rule A = B (satisfying
D(A) =
D(B))is used to modify a term C we have to hek whether
D(�(A)) =
D(�(B)) holds. Sine this test an be made very eÆiently, the pra-tial impliations of the missing property are rather small. We an stillspeulate about a proof on the abstrat spae although we have to keepin mind that in some ases the re�nement will not be possible beauseof the missing substitution-property.5. Related WorkSmaill and Green [31℄ developed the notion of higher-order embeddings.An embedding �! is a relation on terms and s �!t | speaking A isembedded in B | denotes intuitively that A is a skeleton of B. As abase ase eah atomi expression B is embedded into itself: t �!t. Also aterm A is embedded into an appliation (B1B2) if it is embedded intoone of its arguments or A is itself an appliation (A1A2) and eah Aiis embedded in Bi. A is embedded into an abstration (�U B) if it isembedded into all instantiations (�U B)C for all C or A is itself anabstration (�U A0) and (�U A0)C is embedded into (�U B)C forall C.The notion of embeddings enables a generate-and-test proedure21based on standard higher order mathing/uni�ation whih performsan (arbitrary) dedution steps and tests whether a spei� term isembedded into the result of this step. Our approah to attah addi-tional information at eah symbol allows one to maintain the infor-mation about embedding during the dedution proess sine skeletonsare stable with respet to subterm-replaement. This information isalso neessary to restrit the number of possible solutions (e.g duringhigher-order uni�ation) as soon as possible.On one hand the generate-and-test approah requires only the ex-istene of an algorithm whih tests whether the skeleton is in somesense embedded (f. [31℄) in a formula whih orresponds to a hekwhether the indiated pattern is mathed by the formula. But on the21 For prinipal diÆulties of this approah f. footnote 16.
paper.tex; 5/04/2001; 17:42; p.37

38other hand, then we have no information how parts of the skeleton willbe inherited during the dedution and therefore we have also no infor-mation how to selet appropriate lemmata. Even worse, higher-orderuni�ation usually results in tremendous number of uni�ers and weonly an signi�antly redue that number if we inorporate the knowl-edge about the invariane of the skeleton into the uni�ation proedure.Thus, there is a strong need to inorporate a notion of skeleton intothe dedution mahinery.Comparing this notion of embedding and our de�nition of skeletonsone observe several oneptual di�erenes. In ase of appliations thede�nition of embeddings does not preserve the intended subterm re-lation on (�rst-order) terms. For example, onsider a �rst order termg(h(A;C);B) then h(A;B) �!g(h(A;C);B) holds. This onfusion ofarguments of h and g may ause severe problems when de�ning ter-mination orderings on rippling with the help of embeddings. In oursetting the skeleton of g(h(A;C);B) is the set fh(A; f!);Bg and theuse of the syntati type-onversion funtions prevents the mix-up ofarguments. Hene, the intended subterm-relation is preserved.6. ConlusionMotivated by the �rst-order rippling/oloring method we have devel-oped a olored higher-order logi and presented uni�ation, pre-uni�ationand pattern uni�ation algorithms that we have proven to be orretand omplete. In ontrast to other semanti annotation tehniques likesorts, the oloring tehnique allows one to add annotations to symbolourrenes in �-terms. Thus it is possible to enode arbitrary stru-tural information into olors and to maintain this information impliitlyby the alulus during a dedution.From an abstrat point of view we an see that the olored �-alulusand labeled dedution systems [10℄ share basi intuitions. Both use an-notations to restrit the appliability of inferene rules and provide amehanism for maintaining the annotations during the inferene. How-ever, while LDS attah labels to formulae, HOCU annotates symbolourrenes with olors.It seems plausible that olored logis an be embedded into suitableLDS if we assume that the labels have the same algebrai struture asthe formulae they are attahed to. Moreover, any LDS that deals withequality will probably need to maintain labels in suh a term-struturedform, sine equality operates on subterm ourrenes, whih have to berepresented in some way. In this ase the olored �-alulus allows oneto deal with labels and formulae in a uniform and eÆient way taking
paper.tex; 5/04/2001; 17:42; p.38

39advantage of the ommon struture of both. We leave a formal analysisof this relation of approahes to further researh.We have presented two appliations of the olored �-alulus. First,it provides a formal basis for the mehanization of higher-order reason-ing with equality along the lines of [35, 20, 22℄ whih develop heurististhat guide the di�erene redution proess in �rst-order equality al-uli. Sine rippling is an instane of this general di�erene redutionmethodology, the alulus presented in this paper is a basis for animplementation of rippling in a higher-order setting whih is requirede.g. in ase of middle-out reasoning [17, 23℄. Seondly, it is also a logialbasis for an interfae for linguisti extra-semantial information in theonstrution of natural-language semantis. The algorithms presentedin this paper and the linguisti analyses from [11, 13, 12, 15℄ have beenimplemented in the ChoLi system [8℄.At least the linguisti appliations suggest the need for more expres-sive olor languages. In [15℄ we have used feature strutures as olorsto model the interation of linguisti onstraints. It turns out that theuni�ation methods presented in this paper are suÆient to treat suhextensions in a uniform way.A further extension would be to alleviate the restrition that olorsonly annotate free symbol ourrenes by allowing olor annotations tosubterm ourrenes or to bound variables. This would allow to extendthe sope of the alulus towards strutural phenomena that is induedby the full term struture. Referenes1. Hendrik P. Barendregt. The Lambda-Calulus: Its Syntax and Semantis.North-Holland, 1980.2. D. Basin and T. Walsh. A alulus for and termination of rippling. SpeialIssue of the Journal of Automated Reasoning, 16(1-2):147{180, 1996.3. Val Breazu-Tannen. Polymorphi rewriting onserves algebrai strong normal-ization and onuene. In Proeedings of the ICALP, pages 137{150, 1989.4. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, , and A. Smaill. Rippling:A heuristi for guiding indutive proofs. Arti�ial Intelligene, 62:185{253,1993.5. Alan Bundy. The use of expliit plans to guide indutive proofs. In Ewing L.Lusk and Ross A. Overbeek, editors, Proeedings of the 9th Conferene onAutomated Dedution, number 310 in LNCS, pages 111{120, Argonne, Illinois,USA, 1988.6. A. Churh. A formulation of the simple theory of types. Journal of SymboliLogi, 5:56{68, 1940.7. M. Dalrymple, S. Shieber, , and F. Pereira. Ellipsis and higher-order uni�a-tion. Linguistis and Philosophy, 14:399{452, 1991.
paper.tex; 5/04/2001; 17:42; p.39

408. Ralph Debusmann, Markus Egg, Claire Gardent, Alexander Koller, KarstenKonrad, Joahim Niehren, Guido Shaefer, Stephan Thater, Verena Winter,and Feiyu Xu. A natural language system for semanti onstrution and eval-uation. CLAUS Report 102, University of the Saarland, Saarbr�uken, 1998.9. Gilles Dowek. Third order mathing is deidable. Annals of pure and appliedmathematis, 69:135{155, 1994.10. D. Gabbay. Labelled Dedutive Systems. Oxford Logi Guides, No 33. OxfordUniversity Press, 1996.11. C. Gardent and M. Kohlhase. Higher-order oloured uni�ation and naturallanguage semantis. In A. Zampolli, editor, Proeedings of COLING'96, 1996.12. C. Gardent and M. Kohlhase. Computing parallism in disourse. In Proeedings15th International Joint Conferene on Arti�ial Intelligene (IJCAI), Nagoya,Japan, 1997. Morgan Kaufman Publ.13. Claire Gardent. Sloppy identity. In Christian Retor�e, editor, Logial Aspetsof Computational Linguistis, pages 188{207. Springer, 1997.14. Claire Gardent, Mihael Kohlhase, and Karsten Konrad. Higher{order oloureduni�ation: a linguisti appliation. CLAUS Report 97, University of the Saar-land, Saarbr�uken, 1997.15. Claire Gardent, Mihael Kohlhase, and Karsten Konrad. Higher{order oloureduni�ation: a linguisti appliation. Tehniques Sienes Informatiques, pages1{28, 1999.16. Warren D. Goldfarb. The undeidability of the seond-order uni�ation prob-lem. Theoretial Computer Siene, 13:225{230, 1981.17. J. Hesketh. Using Middle-Out Reasoning to Guide Indution. PhD thesis,University of Edinburgh, Edinburgh, Sotland, 1981.18. J. Hindley and J. Seldin. Introdution to Combinators and Lambda Calulus.Cambridge University Press, 1986.19. Dieter Hutter. Guiding indution proofs. In Mark Stikel, editor, Proeedingsof the 10th Conferene on Automated Dedution, number 449 in LNCS, pages147{161, Kaiserslautern, Germany, 1990.20. Dieter Hutter. Using rippling for equational reasoning. In S. H�olldobler, editor,Proeedings 20th German Annual Conferene on Arti�ial Intelligene KI-96,pages 121{134, Dresden, Germany, 1996. Springer-Verlag, LNAI 1137.21. Dieter Hutter. Colouring terms to ontrol equational reasoning. Journal ofAutomated Reasoning, 18:399{442, 1997. Kluwer-Publishers.22. Dieter Hutter. Hierarhial proof planning using abstrations. In D. Dankel II,editor, Proeedings 10th Annual Florida AI Researh Symposium, FLAIRS'97,Trak: Using AI methods to ontrol automated dedution, pages 181{185, Day-tona Beah, USA, 1997. M. Fishman.23. A. Ireland and A. Bundy. Produtive use of failure in indutive proof. SpeialIssue of the Journal of Automated Reasoning, 16(1-2):79{111, 1996.24. Mihael Kohlhase. A Mehanization of Sorted Higher-Order Logi Based onthe Resolution Priniple. PhD thesis, Universit�at des Saarlandes, 1994.25. I. Kraan, D. Basin, , and A. Bundy. Middle-out reasoning for synthesis andindution. Journal of Automated Reasoning, 16(1-2):113{145, 1996.26. Dale Miller. A logi programming language with lambda-abstration, funtionvariables, and simple uni�ation. Journal of Logi and Computation, 1(4):497{536, September 1991.27. Dale Miller. Uni�ation under a mixed pre�x. Journal of Symboli Computa-tion, 14:321{358, 1992.
paper.tex; 5/04/2001; 17:42; p.40

4128. R. Montague. The proper treatment of quanti�ation in ordinary english.In R. Montague, editor, Formal Philosophy. Seleted Papers. Yale UniversityPress, New Haven, 1974.29. V. Padovani. Filtrage d'order sup�erieur. Th�ese de dotorat, Universit�e ParisVII, 1996.30. Christian Prehofer. Deidable higher-order uni�ation problems. In AlanBundy, editor, Proeedings of the 12th Conferene on Automated Dedution,number 814 in LNAI, pages 635{649, Nany, Frane, 1994. Springer Verlag.31. A. Smaill and I. Green. Higher-order annotated terms for proof searh. InProeedings of the International Conferene on Theorem Proving in HigherOrder Logis (TPHOLs'96), 1996.32. Wayne Snyder. A Proof Theory for General Uni�ation. Progress in ComputerSiene and Applied Logi. Birkh�auser, 1991.33. R. Statman. Logial relations and the typed lambda alulus. Information andComputation, 65, 1985.34. W. Tait. Intensional interpretation of funtionals of �nite type I. Informationand Computation, 32:198{212, 1967.35. T. Walsh, A. Nunes, , and A. Bundy. The use of proof plans to sum series. InD. Kapur, editor, Proeedings of the 11th Conferene on Automated Dedution,pages 325{339, Saratoga Spings, NY, USA, 1992. Springer Verlag, LNCS 607.AppendixA. Strong Normalization of ��!-RedutionIn this appendix we will prove termination of the ��!-Redution usedin the de�nition of a skeleton. For the termination proof, we use thewell-known logial-relations method due to Tait [34℄ and Statman [33℄.A simpler approah using a permutation argument for ��- and !-redution will not work, sine in some ases an �-step has to be sim-ulated by two !-redution steps (the reader is refered to the proof oflemma 11 for details). Neither an we use the general ombination re-sult by Breazu-Tannen & Gallier [3℄ that proves strong normalizationof ��R for strongly normalizing algebrai R, sine ! is not algebrai.For the onuene proof we only need to show that ��!-redution isloally onuent, sine this is suÆient for onuene for well-foundedredutions [1℄.A.1. TerminationThe logial relation proof of termination has three steps: We de�nea logial relation L that oinides with with the desired terminationproperty S at base types and has good losure properties. Then we showthat L � S (Lemma 8) and that moreover L�(A) for all A 2 pw��(�)
paper.tex; 5/04/2001; 17:42; p.41

42(Lemma 10). Together these two results yield the termination resultfor ��!-redution (Theorem 8).DEFINITION 22. (Logial Relation). A set L � pw�(�) of properformulae is alled a logial relation22, i� for all types � = ! Æ andall A 2 pw��(�) we have L�(A), i� LÆ(AC) for all C 2 pw�(�) withL(C). Clearly, logial relations are totally determined by their valueson base types. For any other S � pw�(�), we all the (unique) logialrelation L that oinides with S on base types the logial relationindued by S.DEFINITION 23. (Admissible). Let L be a logial relation, then ahead redution (�Z A�)C �!h� [C=Z℄Ais alled admissible, i� L(C). A logial relation L is said to be ad-missible if it is losed under admissible head expansions. (Formally:Let � be a type, and let A�;B� be formulae with A �!h� B, then alogial relation L is alled admissible if L�(B) implies that L�(A).)DEFINITION 24. (Terminating at A).We say that ��!-redution is terminating at A (we write S�(A),i� any sequene of ��!-redutions starting with A terminates. In thefollowing we will use L for the logial relation indued by S.LEMMA 7. If ��!-redution is terminating at C, and B is a subfor-mula of C, then ��!-redution is terminating at BProof. Any in�nite redution sequene from B an be transformedto one from C. 2LEMMA 8. (L � S). Let h be a onstant or free variable of type � =�n ! �, suh that � is a base type then� S�i(Ai) implies L�(hAn), and� L�(A) implies S�(A).Proof. We prove the assertion by a simultaneous indution over thetype �. If � is a base type, the seond assertion is a trivial onsequeneof the de�nition of L. For the �rst assertion we have to onsider twoases: If h 6= f�!�! , then we obtain the fat that ��!-redution isterminating at hAn, sine the Ai are (sine the arguments of h are22 The name omes from the intuition that L is a relation between formulae andtypes.
paper.tex; 5/04/2001; 17:42; p.42

43independent, there an be no ��!-redexes that are not in the Ai), thusL�(hAn) sine � 2 BT (S = L there).If h = f�!�! , thenhAn = (f!(f!(: : : (f!| {z }m B) : : :))A2 : : :An)where the head of B is not f!. We show the assertion by an indutionover the numberm, using the previous ase form = 0. For the indutivease we note that the �rst two !-rules transform hAn into a formula ofthe same form with redued m and the third rule annot apply at thetop-level of hAj at all. Thus we have ompleted the proof of the �rstassertion in the base type ase.For the indutive ase let � = � ! , and L�(B). By the seondindutive hypothesis we have S�(B), by the �rst indutive hypothesisL(hAnB). Thus L�(hAn) by de�nition and we have proven the �rstassertion.For the seond assertion let L�(A) and X� =2 free(A). With the�rst indutive hypothesis (n = 0) we have L�(X), and thus L(AX)by de�nition. Now we see that ��!-redution is terminating at A,sine by the seond indutive hypothesis we have S(AX) and S�(A)by lemma 7. 2LEMMA 9. L is admissible.Proof. We have to show that L�([B=Z℄A) implies L�((�Z� A)B).Now let � = ! Æ, suh that Æ 2 BT , furthermore let L�(A), andLi(Ci). Then (by an iterated appliation of the de�nition of L) it issuÆient to show that SÆ((�Z A)BC) (��!-redution is terminatingat (�Z A)BC), sine Æ is a base type.So let us assume that L�([B=Z℄A), then by de�nition of L we haveLÆ([B=Z℄AC) and thus SÆ([B=Z℄AC). In partiular S�([B=Z℄A) andSi(Ci) by lemma 7. Furthermore the head redution is admissible andtherefore L�(B) and thus S�(B) by lemma 8. Finally, ��!-redutionmust be terminating at A, sine an in�nite redution from A wouldimply one from [B=Z℄A (��!-redution is invariant under instanti-ation). Thus there annot be an in�nite sequene of redutions from(�Z A)BC that only ontrats redexes from [B=Z℄A and the Ci. Thussuh a redution sequene from (�Z A)BC has the form(�Z A)BC �!���! (�Z A0)B0C0�!h��! [B0=Z℄A0C0�!���! : : :
paper.tex; 5/04/2001; 17:42; p.43

44whereA �!���! A0,B �!���! B0 andCi �!���! C0i. Thus [B=Z℄A �!��[B0=Z℄A0 and in partiular (in ontradition to our assumption), wehave onstruted an in�nite redution[B=Z℄AC �!���! [B0=Z℄A0C0 �!���! : : : 2We will now use the admissibility of L to asertain that L� =pw��(�). To make the proof go through, we have to prove the fol-lowing stronger assertion.LEMMA 10. If � is a substitution, suh that L�(�(X�)) for all X 2Dom(�t), then L�(�(A)) for all A 2 pw��(�).Proof. We prove the assertion by indution on the struture of A.If A is a onstant, or a variable not in Dom(�), then we obtain theassertion by the �rst ase of Lemma 8 (n = 0). If A = X�, then L�(A)by assumption.If A = B!�C , then by indutive hypothesis we have L!�(�(B))and L(�(C)) and therefore L�(�(BC)) sine L is logial.Finally, if A = �X B, then we will show that LÆ(�(A)C) for allC 2 pw�(�) with L(C). Without loss of generality, we an assumethat X =2 Dom(�). Now let �0 := �; [C=X℄. Clearly, �0 meets the on-dition in the indution hypothesis, so we have LÆ(�0(B)). Furthermore,�(A)C = (�X �(B))C redues to �0(B) in an admissible head re-dution and therefore we have LÆ((�X B)C)) by admissibility of L(Lemma 9). 2Colleting the results above, we arrive at the desired terminationresult.THEOREM 8. (Termination). ��!-Redution is terminating.Proof. Let A 2 pw��(�) be an arbitrary formula, by lemma 10we have L�(A) (using the empty substitution �) and thus S�(A) bylemma 8. 2A.2. ConflueneSine ��!-redutions are �nite, we only need to prove loal onueneto ensure that ��!-redution is onuent.LEMMA 11. (Loal Conuene). If A �!��! A0 and A �!��! A00then there is a term B suh that A0 �!���! B and A00 �!���! B.
paper.tex; 5/04/2001; 17:42; p.44

45Proof. Obviously both, �!�! and �!��� satisfy the Churh Rosser-property. Thus, in the following we have only to prove that in aseA �!�� A0 and A �!! A00 there is a term B with A0 �!���! Band A00 �!���! B. As in [1℄ we use M[t℄ to denote a term with aspei� subterm t inside a so-alled ontext M. Let A �!� A0 thenA = M[(�Z C)C0℄ and A0 = M[[C0=X℄C℄. In ase a !-rule has beenapplied inside C then obviously the same rule is also appliable in[C0=X℄C. Analogously an appliation of a !-rule onC0 an be simulatedby n � 0 appliations of the same !-rule on eah ourrene of C0 in[C0=X℄C. On the other hand suppose the !-rule has been applied insidethe ontext M then the same !-rule is also appliable inM[[C0=X℄C℄.Analogous onsiderations an be made in ase of the �-rule.Hene, we may restrit ourselves to the following onits:� letA =M[�Z (f�!�! Z)℄ andA0 =M[f�!�! ℄ andA00 =M[�Z Z℄.With B = A0 A00 �!! B.� let A = M[(�Z f�!�! C)B℄ and A0 = M[f�!�! [D=X℄C℄ andA00 = M[(�X C)D℄ Let B = M[[D=X℄C℄ then A0 �!! B andA00 �!�� B.� let A = M[(�Z Z)D℄ and A0 = M[D℄ and A00 = M[(f�!�! B)℄.Let B = D then A00 �!! B.� let A = M[f (�!�)!(�!�)! (�Z Z)℄, A0 = M[f (�!�)!(�!�)! f�!�! ℄and A00 = M[�Z Z℄. Let B = M[f�!�! ℄ then A0 �!! B andA00 �!! B. 2Given the termination and the loal onuene of ��!-redution,we an dedue the Churh-Rosser property:THEOREM 9. (Churh-Rosser Theorem). If A �!���! A0 and A �!���!A00 then there exits some term B suh that A0 �!���! B and A00 �!���!B. Proof. By [1℄ termination and loal onuene entail onuene.B. Properties of the SkeletonWhile the subterm ompatibility of the initial skeleton is trivially givenby its de�nition, the proof of the subterm ompatibility of the skeletonis done in two steps. First we state the relation between the skeletonof an appliation and the skeletons of its arguments:
paper.tex; 5/04/2001; 17:42; p.45

46LEMMA 12. For all A;B 2 pw��(�) we have:
D(AB) = f(A0B0) #��! j A0 2
D(A);B0 2
D(B)g and
D(�Z A) = f(�Z A0) #��! j A0 2
D(A)gProof. The proof depends basially on the onuene of ��!-redutions:
D(AB) = f(A0B0) #��! j A0 2 e
D(A);B0 2 e
D(B)g= f(A0 #��! B0 #��!) #��! j A0 2 e
D(A);B0 2 e
D(B)g= f(A0B0)j A0 2
D(A);B0 2
D(B)gThe seond statement is proven analogously:
D(�Z A) = f(�Z A0) #��! j A0 2 e
D(A)g= f(�Z A0 #��!) #��! j A0 2 e
D(A)g= f(�Z A0) #��! j A0 2
D(A)g 2As a orollary of lemma 12 we obtain the subterm-ompatibility ofthe skeleton:COROLLARY 2. For all A;B;2 pw��(�) :
D(Aj�) =
D(B) implies
D(A) =
D([B=�℄A)Now, we show that the skeleton is invariant with respet to ��-redution.In a �rst step, to prove this property for the initial skeleton, we intro-due the following lemma:LEMMA 13. For all A;B 2 pw��(�) and � 2 V [LV we havee
D([B=�℄A) = f([B0=�℄A0)j A0 2 e
D(A);B0 2 e
D(B)gProof. We prove this lemma by indution on the struture of A:Let A be a symbol distint from � or A = � 2 LV, thene
D([B=�℄A) = e
D(A)=�f([B0=�℄A0)j A0 2 e
D(A);B0 2 e
D(B)gLet A = � = X�a , then e
D(A) = fXg or e
D(A) = f��! depending onwhether a 2 D or not, thus we havee
D([B=�℄A) = e
D(B) = f[B0=�℄A0j A0 2 e
D(A);B0 2 e
D(B)
paper.tex; 5/04/2001; 17:42; p.46

47Let A = �W C. Withe
D([B=�℄C) = f[B0=�℄C0j C0 2 e
D(C);B0 2 e
D(B)gas an indution hypothesis we dedue:e
D([B=�℄A) = e
D([B=�℄(�W C)) = e
D(�W [B=�℄C)= f(�W C0)j C0 2 e
D([B=�℄C)g= f(�W [B0=�℄C0)j C0 2 e
D(C);B0 2 e
D(B)g= f([B0=�℄(�W C0))j C0 2 e
D(C);B0 2 e
D(B)g= f([B0=�℄A0)j A0 2 e
D(�W C);B0 2 e
D(B)g= f([B0=�℄A0)j A0 2 e
D(A);B0 2 e
D(B)gLet A = (CD). Withe
D([B=�℄C) = f([B0=�℄C0)j C0 2 e
D(C);B0 2 e
D(B)ge
D([B=�℄D) = f([B0=�℄D0)j D0 2 e
D(D);B0 2 e
D(B)gas indution hypotheses we dedue:e
D([B=�℄A) = e
D([B=�℄(CD)) = e
D([B=�℄C[B=�℄D)= f(C0D0)j C0 2 e
D([B=�℄C);D0 2 e
D([B=�℄D)g= f(C0D0)j C0 2 [B0=�℄e
D(C);D0 2 [B0=�℄e
D(D);B0 2 e
D(B)g= f[B0=�℄(C0D0)j C0 2 e
D(C);D0 2 e
D(D);B0 2 e
D(B)g= f[B0=�℄A0j A0 2 e
D(CD);B0 2 e
D(B)g 2As a onsequene we obtain the invariane of the initial skeletonwrt. ��-redution:LEMMA 14. For all A;B 2 pw��(�) :A =�� B implies e
D(A) =�� e
D(B)Proof. We use the subterm-ompatibility of e
D to prove this prop-erty by indution on the number of appliations of ��-onversions ne-essary to equalize A and B. By lemma 2 we only have to onsidertop-level redutions, thus we are left with the following ases:�!�: e
D(�Z CZ) = f�Z C0j C0 2 e
D(CZ)g= f(�Z C00Z)j C00 2 e
D(C)g =� fC00j C00 2 e
D(C)g = e
D(C)
paper.tex; 5/04/2001; 17:42; p.47

48�!�: e
D((�Z C)D) = f(C0D0)j C0 2 e
D(�Z C);D0 2 e
D(D)g= f(�Z C00)D0j C00 2 e
D(C);D0 2 e
D(D)g= f([D0=Z℄C00)j C00 2 e
D(C);D0 2 e
D(D)g =� e
D([D=Z℄C)2As an immediate onsequene of the lemmata stated above, we ob-tain that also the skeleton is invariant wrt. ��-redution:COROLLARY 3. For all A;B 2 pw��(�) :A =�� B implies
D(A) =
D(B)Proof. Let A �!�� B then lemma 14 guarantees e
D(A) �!��e
D(B). Thus
D(A) = e
D(A) #��!= e
D(B) #��!=
D(B) holds. 2

paper.tex; 5/04/2001; 17:42; p.48

