
Managing Stru
tural Information by Higher-Order ColoredUni�
ationDieter HutterGerman Resear
h Center for Arti�
ial Intelligen
e,Stuhlsatzenhausweg 3, D-66123 Saarbr�u
ken, Germany,E-mail: hutter�dfki.deMi
hael KohlhaseFB Informatik, Universit�at des Saarlandes,D-66041 Saarbr�u
ken, Germany,E-mail: kohlhase�
s.uni-sb.deAbstra
t. Coloring terms (rippling) is a te
hnique developed for indu
tive the-orem proving whi
h uses synta
ti
 di�eren
es of terms to guide the proof sear
h.Annotations (
olors) to symbol o

urren
es in terms are used to maintain this in-formation. This te
hnique has several advantages, e.g. it is highly goal oriented andinvolves little sear
h. In this paper we give a general formalization of
oloring termsin a higher-order setting. We introdu
e a simply-typed �
al
ulus with
olor anno-tations and present appropriate algorithms for the general, pre- and pattern uni�-
ation problems. Our work is a formal basis to the implementation of rippling in ahigher-order setting whi
h is required e.g. in
ase of middle-out reasoning. Anotherappli
ation is in the
onstru
tion of natural language semanti
s, where the
olorannotations rule out linguisti
ally invalid readings that are possible using standardhigher-order uni�
ation.Keywords: Indu
tive Theorem Proving, Rippling, Annotations1. Introdu
tionIn the �eld of indu
tive theorem proving synta
ti
al di�eren
es betweenthe indu
tion hypothesis and indu
tion
on
lusion are used in order toguide proofs (
f. [5, 4℄, or [19, 21℄). This method to guide indu
tionproofs is
alled rippling/
oloring terms. Annotations or
olors to ea
ho

urren
e of a symbol are used to mark the synta
ti
al di�eren
esbetween indu
tion hypothesis and indu
tion
on
lusion. Spe
i�

olorsdenote the skeleton, the
ommon parts of both terms while the otherparts belong to the wave-fronts. Analogously, synta
ti
al di�eren
esbetween both sides of equations or impli
ations given in the databaseare
olored by an inferen
e te
hnique
alled di�eren
e uni�
ation [2℄.These formulae are
lassi�ed depending on the lo
ations of the wave-fronts inside the skeleton (e.g. wave-fronts on both sides, wave-frontsonly on the right/left-hand side). Using these annotated (or
olored)

 2001 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
paper.tex; 5/04/2001; 17:42; p.1

2equations we are able to move, insert, or delete wave-fronts withinthe
on
lusion. This rippling of wave-fronts allows one to redu
e thedi�eren
es between
on
lusion and hypothesis in a goal dire
ted wayand thus leads to a situation, where the indu
tive hypothesis
an beapplied.This paper extends the
oloring method to higher-order logi
 andpresents algorithms for enumerating higher-order
olored uni�ers andpre-uni�ers and prove them
orre
t and
omplete. For the fragment ofhigher-order patterns, we show that de
idability is maintained for the
olored
ase, while uniqueness of solutions is lost.Thus our work provides a formal basis for the implementation of rip-pling in a higher-order setting whi
h is required e.g. in
ase of middle-out reasoning [17℄ or generalization of theorems using proof
riti
s [23℄.In the latter the unknown generalized version of a formula is des
ribedby a s
hemati
 formula
ontaining parts of the original formula andhigher-order variables denoting the unknown synta
ti
al extensions ofit. In the pro
ess of simulating the indu
tion proof, the higher-ordervariables will be instantiated step by step by the uni�
ation with ap-propriate wave-rules resulting in a possible (hopefully provable) gener-alization of the original formula.But the set of possible appli
ations of our method is not limitedto automated dedu
tion. From an abstra
t point of view, the
oloringmethod allows one to add arbitrary information to o

urren
es of (�-)terms and to inherit this information during the inferen
e pro
ess. Thisdi�erentiates
oloring from other semanti
 annotation te
hniques likesorts whi
h maintain attributes of symbols but not attributes of singlesymbol o

urren
es. Hen
e,
oloring te
hniques
an be generally usedto maintain for instan
e initial knowledge about an internal stru
tureof a term.Strategy: Di�eren
e Redu
tionDeliberate Rippling Rippling as Rewrite�xed orderingSemanti
s: Rippling:Skeleton (invarian
e) Nat. Languagelinguisti
 restri
tionsSyntax: Colored �-
al
ulusFigure 1. Con
eptual Hierar
hyThe
olored �-
al
ulus presented in this paper is a general pro
edure to
paper.tex; 5/04/2001; 17:42; p.2

3
ontrol this kind of information. In addition, it
an be easily enlargedto deal with more
omplex knowledge by enri
hing the representationformalism for
olors to formulate appropriate annotations (see [14℄ fora linguisti
 appli
ation that uses feature terms as
olors).The
exibility of our approa
h is mirrored in the wide range of pos-sible appli
ations (
f. �gure 1). In this paper we present two areas ofthem. The �rst area is
on
erned with \
lassi
al" rippling as it is used inindu
tive theorem proving while in the latter we use the presented
al-
ulus for a semanti
 analysis of natural language. The domain spe
i�
semanti
s is represented in the di�erent interpretations of the anno-tated
olors. For example in
ase of rippling, the so-
alled skeleton ofan annotated term denotes the invariant of a proof of an indu
tion step,while in the natural language example the
olors are used to en
odethe so-
alled primary o

urren
e restri
tion.In the rest of this se
tion we will brie
y sket
h some appli
ations ofthe higher-order
oloring method, informally introdu
ing the relevantnotions as we go along, before we turn to a formal de�nition of the
ol-ored �-
al
ulus in se
tion 2. The next part of the paper is devoted to theformal de�nition of a general-, pre- and pattern-uni�
ation pro
edureoperating on this
al
ulus in se
tion 3. The des
ription of skeletons ina higher-order setting in given in se
tion 4, whi
h also illustrates moregeneral aspe
ts of the spe
i�
 solution we have
hosen.1.1. Indu
tive ProofsRippling was developed for proving theorems by indu
tion and hasbeen applied to a large number of pra
ti
al examples from this domain[5, 4, 19, 21℄. It is based on the observation that one
an iterativelyunfold re
ursive fun
tions in the indu
tion
on
lusion, preserving thestru
ture of the indu
tion hypothesis while unfolding. We use
olors inorder to indi
ate the stru
ture of the hypothesis within the
on
lusion.Symbols belonging to this joined stru
ture are annotated with the
olor\white" while di�eren
es between both formulae are
olored \grey".Also left- and right-hand sides of given equations are di�eren
e uni�edin a sense that the
ommon stru
ture of both terms of a given equationis annotated by
olor variables while di�eren
es are
olored grey. Thegrey parts are
alled wave-fronts while the non-grey parts denote theskeleton.In [4, 2℄ an ordering, whi
h evaluates the position and size of thewave-fronts within the skeleton, is used to build up a rewrite systemon annotated terms. Ea
h appli
ation of an annotated rewrite rule (so-
alled wave-rule) results in a term whi
h is less (wrt. the given ordering)than the original one. In re
ent years the te
hnique of rippling has been
paper.tex; 5/04/2001; 17:42; p.3

4applied also to non-indu
tive theorem proving yielding a more
omplexplanning of the rippling pro
ess than in indu
tive proofs. Possible targetpositions of wave-fronts are no longer stati
ally prede�ned but have tobe planned during the proof whi
h gives rise to a kind of deliberaterippling [20, 22℄.Rippling restri
ts the sear
h spa
e for indu
tive theorem provingby forbidding all dedu
tion steps whi
h do not preserve the skeleton,i.e. do not
hange the non-grey1 parts of the formula, and only ap-plies those that move the di�eren
e out of the way leaving behind theskeleton. In their simplest form, these equations to be used are of theform f(g(t)) = h(f(t)). By design, the skeleton f(t) remains unalteredby their appli
ation. If rippling su

eeds then the indu
tion
on
lusionP (s(n)) is rewritten using wave-rules into some fun
tion of the indu
-tion hypothesis, P (n); that is, into f(P (n)) (f may be the identity).At this point we
an
all upon the indu
tion hypothesis to simplify theresult.To illustrate rippling and motivate our work on
olored higher or-der uni�
ation let us
onsider the following simple theorem that
anbe proven by indu
tive theorem provers using rippling/
oloring te
h-niques. nXi=1 f(i) + nXi=1 g(i) = nXi=1 [f + g℄(i)f; g are fun
tions from natural numbers to naturals. We have overloadedthe fun
tion + also to a
t on su
h fun
tions. This example illustratesthe properties of rippling and introdu
es also some (very simple) higher-order
olored uni�
ation problems.We formalize summation by a binary fun
tion sum that takes afun
tion (that is summed over) and an upper bound as arguments.Furthermore, we will use the following de�nition of sum (let f; g;H beof type2 nat! nat and N;n be of type nat):8H sum(H; 0) = 0 (1)8H;N sum(H; s(N)) = sum(H;N) +H(s(N)) (2)Then our theorem takes the form8f; g; n sum(f; n) + sum(g; n) = sum(�Z f(Z) + g(Z); n)1 For sake of simpli
ity we use a shading for symbols whi
h are annotated by the
olor grey while non-shaded areas are annotated either by white or
olor variables.2 Sin
e for the purposes of this paper types largely play a theoreti
al role (theyfor instan
e make ��-redu
tion terminating and therefore ��-equality de
idable),we will only spe
ify them where needed.
paper.tex; 5/04/2001; 17:42; p.4

5To prove this, simple heuristi
s employed by most indu
tive proverssuggest indu
tion on n whi
h results in the following step
ase3.sum(f; n) + sum(g; n) = sum(�Z f(Z) + g(Z); n)! sum(f; s(n)) + sum(g; s(n)) = sum(�Z f(Z) + g(Z); s(n))To simplify the step
ase using rippling, the di�eren
es between the in-du
tion
on
lusion and the indu
tion hypothesis are shaded as follows:sum(f; n) + sum(g; n) = sum(�Z f(Z) + g(Z); n)! sum(f; s(n)) + sum(g; s(n)) = sum(�Z f(Z) + g(Z); s(n)) (3)If we
an move the shaded areas { so-
alled
ontexts or wave-fronts {out of the way, then we will be able to simplify the indu
tion
on
lusionby appealing to the indu
tion hypothesis.Rippling moves wave-fronts using annotated equations based on ax-ioms, re
ursive de�nitions and previously proven lemmata that preservethe skeleton of the term being rewritten. Corresponding to the re
ur-sive de�nitions for sum we have the following annotated equation of(2). sum(H; s(n)) = sum(H;N) +H(s(N)) (4)When rippling, the annotations on the left-hand side of the wave-rulemust mat
h those in the term being rewritten. As a
onsequen
e, thereis very little sear
h during rewriting. To simplify the
on
lusion of (3)by rippling we apply (4) on both sides4 yielding the modi�ed
on
lusion:(sum(f; n) + f(s(n))) + (sum(g; n) + g(s(n)))= sum(�Z f(Z) + g(Z); n) + (f(s(n)) + g(s(n)))Applying asso
iativity and
ommutativity law of + results in((sum(f; n) + sum(g; n)) + f(s(n)) + g(s(n)))= (sum(�Z f(Z) + g(Z); n) + (f(s(n)) + g(s(n))))whi
h allows for weak fertilization5 on either side whi
h
ompletes theproof.
3 The proof of the base
ase
an be dire
tly obtained by applying (1), so it isomitted here.4 In this
ase the uni�
ation of higher-order formulae is nearly trivial, binding Nto n and H to f , g, and �Z f(Z) + g(Z) respe
tively.5 This standard te
hnique from indu
tive theorem proving allows to use the in-du
tive hypothesis to rewrite the indu
tive
on
lusion

paper.tex; 5/04/2001; 17:42; p.5

61.2. Lemma Spe
ulationThe rippling pro
ess | as illustrated in the example above | relies onthe existen
e of appropriate annotated equations in order to ripple out(or ripple inside) the o

urring wave-fronts. In
ases, where appropriateequations are missing, Ireland & Bundy [23℄ propose a te
hnique tospe
ulate lemmata whi
h push the rippling pro
ess further and whi
hare treated as subtasks to be proven separately. Their approa
h is basedon some kind of higher order rippling. For a dis
ussion of their formalapproa
h to uni�
ation see se
tion 5.In order to illustrate this appli
ation of our
al
ulus,
onsider thefollowing example involving list manipulations8u; v rev(app(rev(v); u)) = app(rev(u); v) (5)Here u and v are of type
 for lists and rev and app stand for theoperations of reversing and
on
atenating lists, they have types
 !
and
 !
 !
 respe
tively. Using indu
tion on v we obtain thefollowing formula as an indu
tion
on
lusion in the step
ase (h is anew element
onstant of type � and
ons the list
onstru
tor of type�! �! �):rev(app(rev(
ons(h; v)); u)) = app(rev(u);
ons(h; v)) (6)The rippling pro
ess gets blo
ked6 after unfolding the de�nition of revon the left-hand side:rev(app(app(rev(v) ;
ons(h; nil)) ; u)) = app(rev(u);
ons(h; v)) (7)In order to push the rippling pro
ess further, Ireland & Bundy spe
u-late appropriate lemmata whi
h are then
onsidered as subtasks of theproof. In this example they
al
ulate a s
hemati
 form of an appropriateannotated equationapp(X;
ons(Y; Z)) = app(F1(X;Y;Z); Z) (8)whi
h
an be used to move the blo
ked wave-front on the right-handside towards the sink7 u. While the left-hand side of the spe
ulatedlemma is just a generalization of the subterm to be modi�ed, the higher-order variable F1 represents the unknown wave-front on the right-handside whi
h has still to be
onstrained by the further rippling pro
ess.Applying this equation on the right-hand side yields:rev(app(app(rev(v) ;
ons(h; nil)) ; u)) = app(F1(rev(u) ; h; v) ; v) (9)6 There are no appli
able annotated equations in the data base.7 Universally quanti�ed variables are
alled sinks in rippling, be
ause they
an beused to swallow up wave front material, sin
e they
an be arbitrarily instantiated.
paper.tex; 5/04/2001; 17:42; p.6

7To enable the use of the indu
tion hypothesis in this example the wavefront has to be moved in front of the sink u. Thus, we use the annotatedequation app(rev(Y);
ons(X;nil)) = rev(
ons(X; Y)) (10)in order to ripple the wave-front on the right-hand side towards u. In or-der for (10) to be appli
able to (9), we must unify8 F1(rev(u) ; h; v) andapp(rev(Y);
ons(X;nil)). Higher-order
olored uni�
ation, or HOCUfor short, results in a solution (see the example in se
tion 1.5 for a tra
eof the
omputation)[�UVW app(U ;
ons(V; nil))=F1 ℄; [h=X℄; [u=Y ℄: (11)Applying the instan
e of (10) under (11) to the right-hand side of (9)the wave-front is moved towards the sink u:rev(app(app(rev(v) ;
ons(h; nil)) ; u)) = app(rev(
ons(h; u)); v) (12)The uni�er used to perform this step also re�nes the s
hema of thespe
ulated annotated equation (8) whi
h we have previously used tounblo
k the rippling pro
ess, toapp(X;
ons(Y; Z)) = app(app(X;
ons(Y;nil)); Z) (13)The aoppli
ation of this spe
ulated equation (13) on the left-hand side�nally yields:rev(app(rev(v);
ons(h; u))) = app(rev(
ons(h; u)); v)whi
h enables the use of the indu
tion hypothesis and
ompletes thisparti
ular proof. Proving by indu
tion the spe
ulated lemma (13),whi
h is the instan
e of the spe
ulated equation (7) using (11), �n-ishes the overall proof.1.3. A Colored �-
al
ulusBefore we turn to the linguisti
 appli
ation, let us informally intro-du
e some notation and generalize9 the set of
olors from \grey" and8 To ease readability we have slightly simpli�ed the method of Ireland and Bundy;A
tually, the o

urren
e of the meta-variable F1(rev(u); h; v) is repla
ed by a nestedterm F2(F1(rev(u) ; h; v); h; v) in order to allow the spe
ulation of more
omplexwave-fronts using F2 in the later rippling pro
ess. In our example it would only beinstantiated to the proje
tion �UVW U .9 This generalization does not make the theory more
ompli
ated, in the
ontrary,it makes the
on
epts involved mu
h
learer, and it allows to treat more appli
ations(see [14℄ for a linguisti
 appli
ation that uses feature terms as
olors).
paper.tex; 5/04/2001; 17:42; p.7

8\white" to an arbitrary set of
olors (we will make this totally formalin se
tion 2). The referen
es in bra
kets indi
ate, where the reader
an�nd a fully formal development of the respe
tive informal arguments.The
olored �-
al
ulus is a variant of the simply typed �-
al
ulus [6℄(see [1, 18℄ for an introdu
tion), where o

urren
es of
onstants andfree variable
an be annotated with so-
alled
olors whi
h are either
olor
onstants C = fa; b; : : :g or
olor variables X = fA; B; : : :g.Whenever
olors are irrelevant, we simply omit them. Colors are indi-
ated by subs
ripts labeling symbol o

urren
es. We
all a formula M
-mono
hrome (de�nition 2), if all symbols (ex
ept bound variables)in M are annotated by a
ommon
olor
.It is
ru
ial for our logi
al system that
olors annotate symbol o
-
urren
es (i.e.
olors are not sorts!), in parti
ular, it is intended thatdi�erent o

urren
es of symbols
arry di�erent
olors (e.g. h
XaXb)and that symbols that
arry di�erent
olors are treated di�erently. Thisobservation leads to the notion of
olored substitutions10 (de�nition 4),a notion of substitution that takes the
olor information of formulaeinto a

ount. In
ontrast to traditional (un
olored) substitutions, a
ol-ored substitution � is a pair h�t; �
i, where the term substitution �tmaps
olored variables (i.e. the pair X
 of a variable X and the
olor
)to formulae of appropriate types and the
olor substitution �
 maps
olor variables to
olors. In order to be a legal C-substitution su
h amapping � must obey the following
onstraints:� If A and B are di�erent
olors, then j�(XA)j = j�(XB)j, where jMjis the
olor erasure of M, i.e. the formula obtained from M byerasing all
olor annotations in M (de�nition 3).� If
 2 C is a
olor
onstant, then �(X
) is
-mono
hrome.The �rst
ondition ensures that the
olor erasure of a C-substitution(de�ned in the obvious manner) is a
lassi
al substitution of the sim-ply typed �-
al
ulus. The se
ond
ondition formalizes the fa
t thatfree variables with
onstant
olors stand for mono
hrome subformulae,whereas variable
olors do not
onstrain the substitutions.Note that sin
e bound variables do not
arry
olor information, ��-redu
tion (
f. de�nition 28) in the
olored �-
al
ulus is just the
lassi
alnotion and inherits its good properties (de
idability and normaliza-tion).The
onstraints on C-substitutions given above allow us to spe
ial-ize higher-order uni�
ation to an inferen
e pro
edure that manages
olor information: a higher-order uni�er � of a given equation M = N10 We will denote the substitution of a term N for all free o

urren
es of X in Mwith [N=X℄M.
paper.tex; 5/04/2001; 17:42; p.8

9(i.e. �(M) =�� �(N)) must be a C-substitution in order to be a
ol-ored higher-order uni�er (de�nition 7) of M and N. In parti
ular, C-uni�
ation will only su

eed if parallel sub-formulae have uni�able
ol-ors. For instan
e, fa(pa; jb;Xa) uni�es with fa(Ya; jA; sa) but not withfa(pa; ja; sa) be
ause of the
olor
lash on j.It is well-known, that in �rst-order logi
 there is always a mostgeneral uni�er for any equation that is solvable at all. This is not the
ase for higher-order (
olored) uni�
ation, where variables
an rangeover fun
tions, instead of individuals only. In fa
t there might be evensolvable equations that have in�nite
hains of uni�ers whi
h are moreand more general. In other words most general uni�ers need not to existin general.1.4. Higher{Order Unifi
ation and Natural Languagesemanti
sIn this se
tion we will present a di�erent kind of appli
ation of higher-order
olored uni�
ation in the area of natural language semanti
s.In [11, 13, 12, 15℄ the
olored lambda
al
ulus is used as a tool to spe
-ify the interfa
e between the
lassi
al semanti

onstru
tion pro
ess(using higher-order uni�
ation) and other sour
es of linguisti
 infor-mation (whi
h are
oded into
olor information). We will brie
y sket
hthe underlying ideas in
ase of verb-phrase ellipsis; i.e. the phenomenonthat parts of natural language senten
es (here verb phrases)
an be re-pla
ed by utteran
es like \does too". For a thorough treatment of
aseslike fo
us
onstru
tions, se
ond-o

urren
e expressions, and adverbialquanti�
ation, the reader is refered to [11℄ and the referen
es in [15℄.The basi
 idea [7℄ underlying the use of higher-order uni�
ation fornatural language semanti
s is very simple: Following [28℄, the simplytyped �{
al
ulus is used as a semanti
 representation language whilesemanti
ally under-spe
i�ed elements (e.g. anaphori
 referen
es or el-lipses) are represented by free variables whose value is determined bysolving higher-order equations. For instan
e, the dis
ourse (14) has hasthe semanti
 representation (15), where the value of the predi
ate vari-able R is determined by equation (16).Dan likes his wife. Peter does too (14)like(dan;w of(dan)) ^R(peter) (15)like(dan;w of(dan)) =t R(dan) (16)Higher-order uni�
ation
al
ulates the solutions (17) and (18).[�Z like(Z;w of(dan))=R℄ and [�Z like(Z;w of(Z))=R℄ (17)[�Z like(dan;w of(dan))=R℄ and [�Z like(dan;w of(Z))=R℄(18)
paper.tex; 5/04/2001; 17:42; p.9

10However, only the �rst two of the solutions (17) lead to the linguisti
allydesired solutions (19) and (20), whereas those in (18) lead to (21) and(22) whi
h are
learly not the desired readings of the dis
ourse.like(dan;w of(dan)) ^ like(peter;w of(dan)) (19)like(dan;w of(dan)) ^ like(peter;w of(peter)) (20)like(dan;w of(dan)) ^ like(dan;w of(dan)) (21)like(dan;w of(dan)) ^ like(dan;w of(peter)) (22)To remedy this short
oming, Dalrymple & Shieber & Pereira, who havepioneered this analysis in [7℄, propose an informal restri
tion, the pri-mary o

urren
e restri
tion, whi
h deletes any solution from theset of linguisti
ally valid solutions, whi
h
ontains a pre-determinedso-
alled primary o

urren
e (in our
ase dan).In the
olored �-
al
ulus, the primary o

urren
e restri
tion
andire
tly be modeled as follows: Primary o

urren
es are p-
olored whilefree variables are s-
olored (all other non-bound symbols are
oloredby distin
t
olor variables, whi
h we will not show in our examples).Given the restri
tion for C-substitutions, su
h a
oloring ensures thatany solution
ontaining a primary o

urren
e is ruled out. Hen
e nosubstitution will ever
ontain a primary o

urren
e (i.e. a p-
oloredsymbol) as it was required by the primary o

urren
e restri
tion. Forinstan
e, the
olored representation of (14) is (23) together with the
olored uni�
ation problem (24) whi
h only has the C-uni�ers in (25).Higher-Order Uni�
ation without the monotoni
ity
onstraint wouldhave the solutions (26) whi
h are not well-
olored.like(danp;w of(dan)) ^Rs(peter) (23)like(danp;w of(dan)) =t Rs(danp) (24)[�Z likes(Z;w ofs(dans))=Rs℄ and [�Z likes(Z;w ofs(Z))=Rs℄(25)[�Z like(danp;w of(dan))=Rs℄ and [�Z like(danp;w of(Z))=Rs℄(26)Note that the analysis hinges on the fa
t that
olors (unlike types orsorts) provide a means to distinguish between symbol o

urren
es (inour example the di�erent o

urren
es of dan) by annotating them withdi�erent
olors. Thus the HOCU approa
h keeps the desired property ofbeing able to derive the so-
alled sloppy/stri
t ambiguity11 while solv-ing the over-generation problem, i.e. that
lassi
al HOU predi
ts morereadings (e.g. those in (18)) than a
tually exist in natural language.Even though we have only sket
hed the relevant ideas, it should be
lear, that higher-order
olored uni�
ation provides a general frame-11 the reading where Peter loves his own wife is
alled the stri
t reading, be
ausethe referen
e his is interpreted stri
tly. The other one is sloppy, as the referen
e is.
paper.tex; 5/04/2001; 17:42; p.10

11work for spe
ifying the linguisti
 information for the
onstru
tion pro-
ess that avoids over-generalization (i.e. the
onstru
tion of linguisti-
ally undesired readings of dis
ourses).1.5. Cal
ulating Colored UnifiersJust as in the
ase of uni�
ation for �rst-order terms, the higher-orderuni�
ation algorithm is a pro
ess of re
ursive de
omposition and vari-able elimination that transforms sets of equations into solved forms(de�nition 8). Sin
e C-substitutions have two parts, a term{ and a
olorpart, we need two kinds of equations (M =t N for term equations and
 =
 d for
olor equations). Sets E of equations in solved form have aunique most general C-uni�er �E that also C-uni�es the initial equation.There are several rules that de
ompose the synta
ti
 stru
ture offormulae. We will only dis
uss two of them here (
f. de�nition 9 for afull set). The rule for abstra
tions transforms equations of the form�U:M =t �V:N to [
�=U ℄M =t [
�=V ℄N, where
� is a new
on-stant12, while the rule for appli
ations de
omposes haM1 : : :Mn =thbN1 : : :Nn to the set fa =
 b;M1 =t N1; : : : ;Mn =t Nng, providedthat h is a
onstant. Furthermore equations are kept in ��-normal form.Note that this de
omposition pro
ess also eliminates trivial equations,where both sides are ��-equal.The variable elimination pro
ess for
olor variables is very simple, itallows us to transform a set E [fA =
 dg of equations to [d=A℄E [fA =
dg, making the equation fA =
 dg solved in the result.In
ase of formula equations, elimination is not that simple, sin
ewe have to ensure that j�(XA)j = j�(XB)j to obtain a C-substitution �.Thus we
annot simply transform a set E [fXd =t Mg into [M=Xd℄E [fXd =t Mg, sin
e this would (in
orre
tly) solve the equations fX
 =tf
;Xd =t gdg. The
orre
t variable elimination rule transforms a set Eof equations with X =t M 2 E and X =2 free(M) into[[M=X℄℄E [[[X =t M℄℄Ewhere [[M=X℄℄E = [M1=X
1 ℄; : : : ; [Mn=X
n ℄, su
h that the
i are all
olors of the variable X o

urring in E and the Mi are appropriately
olored variants (same
olor erasure) of M. Similarly, [[X =t M℄℄E =fX
1 =t M1; : : : ;X
n =t Mng. Note that the indu
ed substitution[[M=X℄℄E (
f. de�nition 6) is independent of the
olors in M and X.Corre
tness of the term elimination rule hinges on the fa
t that all
olor variants of X are eliminated simultaneously and that the sub-stitution [[M=X℄℄E indu
ed by a pair X =t M is also applied to the12 A
tually, in de�nition 9 we use spe
ial variables, whi
h behave somewhat like
onstants.
paper.tex; 5/04/2001; 17:42; p.11

12pair itself. Thus an unsolvable pair, su
h as Xa =t
b gives rise to theindu
ed substitution [
a=Xa℄ and leads to the pair
a =t
b, where thede
omposition rule
an dete
t a
olor
lash.It would be
onvenient, if the transformations des
ribed so far, weresuÆ
ient for transforming all uni�able sets of equations into solvedform and thus �nding all uni�ers. But, due to the presen
e of fun
tionvariables, systemati
 appli
ation
an terminate with equations of theform X
M1 : : :Mn =t hdN1 : : :Nm.The standard solution (due to G�erard Huet,
f. [32℄ for an introdu
-tion) for �nding a
omplete set of solutions in this so-
alled
ex/rigidsituation is to substitute a term for X of type Æ that will enable de-
omposition to be appli
able afterwards: a so-
alled general bindings(de�nition 10) of the following form:GhÆ = �Z�1 : : : Z�n :�(H1Z) : : : (HmZ)where� Æ = �n ! � and � has type
m ! �� one of the following holds:� � = Z�j and �j =
m ! � for some j � n, then h = j andwe
all GjÆ a proje
tion binding or� � = S for some
onstant or free variable S of type
m ! �,then h = S and we
all GhÆ an imitation binding.� the Hi are new variables of type �n !
i,We
an a
tually use
olors13 to get a better understanding of the sit-uation. Therefore
onsider the uni�
ation problem of Xda
 =t ad. Forthe imitation solution (�Z:ad) we \imitate" the right hand side, so the
olor on a must be d. For the proje
tion solution we instantiate (�Z:Z)for X and obtain (�Z:Z)a
, whi
h �-redu
es to a
. We see that this\lifts" the
onstant a
 from the argument position to the top. In
iden-tally, the proje
tion is only a C-uni�er of our
olored example, if the
olor
onstants
 and d are identi
al. However for
al
ulating solutionsfor
ex/rigid pairs, we do not need
olors, sin
e the
olor erasure of theinstan
e is determined by the general bindings and the
olor annota-tions are added by the indu
ed substitution. Thus the general rule for
ex/rigid equations (de�nition 11) transforms equations of the formE ^X�
M1 : : :Mn =t hdN1 : : :Nm13 This is another (dida
ti
) appli
ation of higher-order
olored uni�
ation, wherewe use
olors to distinguish di�erent symbol o

urren
es.
paper.tex; 5/04/2001; 17:42; p.12

13into E ^X
M1 : : :Mn =t hdN1 : : :Nm ^X
 =t Gh�with immediate variable elimination of the new equation.Finally we are left with the only remaining
ase, where the heads ofboth sides of the equation are free variables the so-
alled
ex/
ex
ase.The solution of this
ase is either to proje
t, as in the
ex/rigid
ase orto \guess" (
omputationally: to sear
h for) the right head for the equa-tion and bind the head variable to the appropriate imitation binding.Clearly this need for guessing the right head leads to a
ombinatoryexplosion of the sear
h spa
e, whi
h makes higher-order (
olored) uni-�
ation
omputationally infeasible. Fortunately, most appli
ations donot need full higher-order uni�
ation:� For theorem proving purposes it is often only important to knowabout the existen
e of any uni�er. In the
ase of
lassi
al higher-order uni�
ation it is therefore suÆ
ient to
onsider
ex/
ex pairsas solved, sin
e they are guaranteed to have uni�ers (
f. se
tion 3.3).In the
olored
ase, this is no longer the
ase, i.e. there are
ex/
exuni�
ation problems that do not have uni�ers. We identify a ne
-essary and suÆ
ient
ondition (the absen
e of so-
alled
exible
hains (
f. de�nition 12)) and spe
ialize the uni�
ation algorithma

ordingly (de�nition 16).� In the linguisti
 appli
ations, sket
hed in se
tion 1.4, formulae be-long to very restri
ted synta
ti
 sub
lasses, for whi
h mu
h betterresults are known (for
lassi
al higher-order uni�
ation). In par-ti
ular, the fa
t that free variables only o

ur on the left handside of the equations redu
es the problem of �nding solutions tothe so-
alled higher-order mat
hing problem, of whi
h de
id-ability has been proven for the sub
lass of third-order formulae [9℄(see [30, 29℄ for other tra
table fragments). This
lass, (intuitivelyallowing one only to nest fun
tions as arguments up to depth three)
overs all examples studied so far.Before we dis
uss the appli
ations, let us fortify our intuition about
al
ulating higher-order
olored uni�ers for the following problem whi
haroused in our lemma spe
ulation example in se
tion 1.2.Fg(revw(uw); hg; vg) =t appg(revB(YA);
onsg(Xg; nilg)) (27)Sin
e F is a fun
tion variable, we are in a
ex/rigid situation, and havethe possibilities of proje
tion and imitation. There are three possibleproje
tions, (�UVW U), (�UVW V), (�UVW W), whi
h all lead toimmediate failure, sin
e they proje
t up the rigid subterms revw(uw), hg
paper.tex; 5/04/2001; 17:42; p.13

14or vg, whi
h would
lash with the head appg of the right hand side. So weonly have the imitation bindingB := �UVW app(H(U; V;W);K(U; V;W))for F . Binding F to that (i.e. applying the indu
ed C-substitution[[B=F ℄℄g = [(�UVW appg(Hg(U; V;W);Kg(U; V;W))=Fg)℄) and de
om-posing the instantiated problem, we are left with the equationsHg(revw(uw); hg; vg) =t revB(YA)Kg(revw(uw); hg; vg) =t
onsg(Xg; nilg):Choosing14 the imitation �UVW
onsg(Mg(U; V;W); Ng(U; V;W)) forKg and the 1-proje
tion binding (�UVW U) for Hg we obtainrevw(uw) =t revB(YA)
onsg(Mg(revw(uw); hg; vg); Ng(revw(uw); hg; vg)) =t
onsg(Xg; nilg)We
an de
ompose again and obtainA =
 wuw =t YAXg =t Mg(revw(uw); hg; vg)Ng(revw(uw); hg; vg) =t nilgThe �rst two equations
an dire
tly be solved by eliminating A for w andYA (whi
h is a
tually Yw after the previous elimination) for uw. The thirdequation
annot be solved this way, sin
e Mg(revw(uw); hg; vg) is not g-mono
hrome, so we
hoose the 2-proje
tion binding15 �UVW V forXCand solve the fourth equation with the imitation binding �UVW nilgand for Ng. Eliminating these bindings allows us to simplify the equa-tions to the trivial set hg =t hg and nilg =t nilg. Thus one �nal solutionof the uni�
ation problem is[�UVW appg(U;
onsg(V;nilg))=Fg℄; [uw=YA℄; [hg=Xg℄We have indi
ated the
hoi
e points for the other solutions in the foot-notes.
14 The 2-proje
tion bindings for H and K are impossible for type reasonsand all proje
tion bindings but the 1-proje
tion binding for H lead to im-mediate subsequent
lash. The imitation binding for H leads to a solution�UVW appg(revg(Lg(U; V;W));
onsg(Y;nil)) for Fg that is not wanted in our mo-tivating example, so we will not pursue it here.15 The imitation binding �UVW Qg (Q a new variable) would also have worked.

paper.tex; 5/04/2001; 17:42; p.14

152. The Colored �-Cal
ulusIn this se
tion, we make the intuitive
on
epts introdu
ed above for-mal by extending the simply typed �-Cal
ulus (see [18℄ for an intro-du
tion) with a
on
ept of
olor annotations for
onstant and variableo

urren
es.The set T of types is generated from a set BT of base types byfun
tion type
onstru
tion (� ! �). We write �n ! � for the type�1 ! : : :! �n ! � of n-ary fun
tions.The set of
olors is built up from
olor
onstants (C = fa; b; : : :g)and
olor variables (X = fA; B; : : :g). Whenever
olors are irrelevant,we simply omit them. Colors are indi
ated by subs
ripts labeling sym-bol o

urren
es.The de�nition of well-formed formulae di�ers from the standard onein the treatment of bound variables, whi
h do not
arry
olor annota-tions in the
olored �-
al
ulus. Therefore we provide a separate
lassof variables for them. Con
retely, we �x� a signature � = S�2T �� of
onstant symbols (we will uselower-
ase letters for these)�
ountably in�nite sets V� of (free) variables for ea
h type � 2 T(we will use the upper-
ase lettersX;Y; F;G;H and V := S�2T V�)�
ountably in�nite sets LV� of lo
al variables for ea
h type � 2 T(we will use the upper-
ase letters U; V;W;Z for these and LV :=S�2T LV�)� sets C of
olor
onstants and X of
olor variables.Atomi
 o

urren
es of symbols in well-formed formulae
an have a
olor annotation, therefore we �x the notation �Z for the set f
aj
 2�; a 2 Zg for some subset Z � C [X , and analogously for VZ .DEFINITION 1. (Well-Formed Formulae). For ea
h � 2 T we indu
-tively de�ne the set w��(�) of well-formed formulae of type �by � if S 2 ��Z [V�Z [LV�, then S 2 w��(�),� if A 2 w��!�(�) and B 2 w��(�), then AB 2 w��(�), and� if A 2 w��(�) and Z 2 LV�, then (�Z A) 2 w��!�(�). Justas in the standard �-
al
ulus, we will
all any o

urren
e of thelo
al variable Z in �Z A bound.
paper.tex; 5/04/2001; 17:42; p.15

16We
all formulae of the form AB appli
ations, and formulae of theform �Z� A abstra
tions. Finally, we
all a formula A proper, i�all o

urren
es of lo
al variables in A are bound, we will denote the setof proper well-formed formulae of type � with pw��(�).Note that with this de�nition the notion of free variables
oin
ideswith the standard one in the
ase of proper formulae. We will writefree(A) for the set of (
olor and term) variables in A. As in �rst-orderlogi
 the names of bound variables have no meaning at all, thus we
onsider alphabeti
 variants as identi
al and use a notion of substitutionthat systemati
ally renames bound variables in order to avoid variable
apture.EXAMPLE 1. FA(sd(a
)), �Z sd(Z) are examples of
olored �-termswhile �Z sd(ZB) is not (bound variables may not have
olors).DEFINITION 2. We will �rst de�ne a fun
tion C2, where C2(S;B) isthe set of the
olor annotations of all o

urren
es of the symbol S in theproper formula B, whi
h we also de�ne indu
tively: C2(Sa;Sa) = fagfor symbols, C2(S;AB) = C2(S;A) [C2(S;B) for appli
ations and�nally C2(S; �Z A) = C2(S;A). We will
all a formula A 2 pw�(�)�
exible, i� C2(S;A) � X for all symbols S 2 V [�,� rigid, i� C2(S;A) � C for all S 2 V [�,� a-mono
hrome, i� there is a single
olor
onstant a, su
h thatC2(S;A) = fag for all S 2 V [�, and�
exi
hrome, i� A is
exible and any
olor variable o

urs atmost on
e in A.Finally, we
all a formula A
ompatible with a
olor a, i� either a isa
olor variable or A is a-mono
hrome.Clearly the
olors annotating the atoms do not a�e
t ��-
onvertibility,sin
e bound variables are not
olored. Therefore,(�Z C)D �!� [D=Z℄C and (�Z AZ) �!� A (28)where the lo
al variable Z does not o

ur not freely in A. Sin
e boundvariables do not
arrry
olor information and
onsequently there are norestri
tions on �-redexes or the substitution in �-redu
tion, we
an liftall the known theoreti
al results to the
olored
al
ulus. In parti
ular,we know that ��-redu
tion always terminates produ
ing unique ��-normal forms and that ��-equality
an be de
ided by redu
ing to ��-normal form and
omparing for alphabeti
 equality. Based on this, we
paper.tex; 5/04/2001; 17:42; p.16

17
an use the traditional versions of (long) �� normal forms and (long)head normal forms.To make arguments like the above more formal, we de�ne the erasureof a
olored formula, as a simply typed �-term, whi
h we obtain erasingall
olor-information:DEFINITION 3. (Erasure). The erasure of
olored �-terms to simplytyped �-terms is de�ned by:� jSaj = S if S 2 � [V and a 2 C [X ,� jXj = X if X 2 LV,� j(AB)j = (jAjjBj), and� j(�Z A)j = �Z jAj.We
all any
olored formulae A and B variants, if jAj = jBjWe now have the tools for de�ning C-substitutions, a spe
ializationof well-typed substitutions that preserves synta
ti

olor information,su
h as the skeleton (
f. se
tion 4).DEFINITION 4. (C-Substitution). Let Z � X and W � C [X betwo �nite, disjoint sets of
olors, then a C-substitution � is a pair(�t; �
), where �t is a type-preserving mapping VW ! pw�(�) and�
:Z ! W su
h that the domain Dom(�) = Domt(�) [Dom
(�)of � with Domt(�):= fXa 2 VZ j�t(Xa) 6= Xag and Dom
(�):= fA 2Zj�
(A) 6= Ag, is �nite. Furthermore, we assume that� if a 2 C, then �(Xa) must be a-mono
hrome for any variableXa 2 Domt(�), and� j�(Xa)j = j�(Xb)j for all Xa;Xb 2 Domt(�).Note that lo
al variables
an never appear in the
odomain of the termsubstitution, sin
e we have restri
ted that to proper formulae.REMARK 1. Note that the se
ond
ondition in the de�nition of C-substitutions (instan
es of variants are variants) holds in general as asimple indu
tion on the stru
ture shows: If � is a C-substitution and Aand B are variants, then �(A) and �(B) are variants.A C-substitution � has to obey the dependen
ies between di�erentvariables. Instantiating Xa and Xb we have to take
are that j�(Xa)j =j�(Xb)j. Hen
e, if the uni�
ation pro
ess instantiates Xa with a formulaA, we also have to instantiate Xb with suitable formula A0 in order tosatisfy the
onditions for C-substitutions in de�nition 4. In parti
ularwe have to guarantee that
paper.tex; 5/04/2001; 17:42; p.17

18� jAj = jA0j and� [A0=Xb℄ is a C-substitution.If b 2 C, then there is a unique solution for A0 whi
h we
all a b-mono
hrome variant of A. Intuitively we
an obtain A0 from A byre-dyeing all
olors and
olor-variables to b. In
ase b 2 X the
olorannotations inA0 are not restri
ted, so we only require jAj = jA0j. Thuswe need some \most general s
hema" whi
h
an be instantiated to anypossibleA0. We
all these s
hemata
exi
hrome variants and obtaina
exi
hrome variant for A by repla
ing ea
h
olor or
olor-variable inA by distin
t new
olor-variables.DEFINITION 5. (a-Chrome Variant).Let A;B 2 pw��(�), then we
all B a�
exi
hrome variant of A, i� B is
exi
hrome and jAj = jBj,�
-mono
hrome variant of A, i� B is
-mono
hrome andjAj = jBj,� b-
hrome variant of A, i�� b 2 X and B is a
exi
hrome variant of A or� b 2 C and B is a b-mono
hrome variant of ANote that a-mono
hrome variants are uniquely determined, sin
e we
an obtain them by repla
ing ea
h
olor and
olor-variable by a.EXAMPLE 2. sA(XB) is a
exi
hrome variant of sd(X
), and �Z sA(sBZ)one of �Z sd(s
Z), but �Z sA(sAZ) and �Z sA(s
Z) are not. Further-more, the formulae s
(X
) and �Z s
(s
Z) are
-
hrome variants ofsdXA and �Z sd(s
Z) respe
tively.LEMMA 1. If a formula A is
ompatible with some
olor a 2 C [X ,then there is an a-
hrome variant G of A and a C-substitution �, su
hthat �(G) = A.Proof. If a is a
olor variable, then by a simple indu
tion on thestru
ture of A, we see that there is a
exi
hrome variant G of A andfurthermore that we
an
hose � to be a
olor substitution that re-dyes the
olor variables of G. If a 2 C, then A must be a-mono
hromeby
ompatibility, and we
an
hoose G = A and � to be the identitysubstitution. 2
paper.tex; 5/04/2001; 17:42; p.18

19DEFINITION 6. (Indu
ed Z-Substitution). Let A 2 pw��(�) be aproper formula, X 2 V�, and Z � C [X , then we say that the Z-substitution [[A=X℄℄Z = f[Aa=Xa℄ja 2 Zgis indu
ed by [A=X℄ i� for all a 2 Z, the term Aa is the a-
hromevariant of A. Note that [[A=X℄℄Z is a C-substitution that has �nitesupport whenever Z is �nite. Furthermore it is unique up to the
hoi
eof new
olor variants in the
exi
hrome variants ofA. Sin
e the indu
edZ-substitution only depends on the erasures of A and X, we will alsouse it for un
olored formulae.The signi�
an
e of the indu
ed Z-substitutions is that for any C-substitution � with Dom(�) = fXgZ , we have � = [[j�(X)j=X℄℄Z . Inother words, the well-formedness
onditions for C-substitutions ensure,that the XZ-part of a substitution
an be indu
ed from the erasurealone. In the uni�
ation we will use the fa
t that if we know the stru
-ture of the
olor erasure of a general binding, then we
an already �xthe X part of the solution.EXAMPLE 3. Let Z = fa; b; Ag and A = f
(g(Xa)), then[[A=X℄℄Z = [fa(ga(Xa))=Xa℄; [fb(gb(Xb))=Xb℄; [fC(gD(XE))=XA℄3. Uni�
ationThe
entral data stru
ture for higher-order uni�
ation is that of uni�-
ation problems, i.e. sets of pairs A =t B of formulae with
oin
idingtypes and pairs of
olors a =
 b. We will represent these sets as
on-jun
tions and write :=, if it is irrelevant whether we mean =t or =
.Note that we do not restri
t ourselves to proper uni�
ation problemsin this paper (we will
all a uni�
ation problem proper i� all of theformulae o

urring in it are).DEFINITION 7. (C-Uni�er). We
all a C-substitution � = (�t; �
) aC-uni�er of a uni�
ation problemE = A1 =t B1 ^ : : : ^An =t Bn ^ a1 =
 b1 ^ : : : ^ am =
 bmi� � �t(Ai)=���t(Bi) for all 1 � i � n and� �
(ai) = �
(bi) for all 1 � i � m
paper.tex; 5/04/2001; 17:42; p.19

20and we will denote the set of C-uni�ers of E with U(E).For a set W � VZ [X of variables, we
all C-substitutions � and �equal on W (we denote that by � = �[W℄), i� for all X 2 W �(X) =�(X). We will use the obvious extension of this equality to ��-equalityand to sets of equations, furthermore we will abbreviate � = �[free(E)℄with � = �[E ℄ for a uni�
ation problem E .We
all a subset 	 � U(E) a
omplete set of C-uni�ers of E , i�for all � 2 U(E) there is a � 2 	 that is more general than �, i.e. thereis a C-substitution �, su
h that �=��� Æ �[E ℄. If the singleton set f�g isa
omplete set of uni�ers of E , then we
all � a most general uni�erfor E .DEFINITION 8. (Solved Form). Let E := A := B^E 0 be a uni�
ationproblem, then we
all the pair A := B solved in E , i� either� it is a term pair Xa =t B for some variable X 2 V, some properformula B and some
olor a 2 C [X and� Xa =2 free(B) and� if X
 2 free(E 0)) for some
 2 Z, then it o

urs exa
tly asthe left hand side of a pair X
 =t C, su
h that jBj = jCj andC is
-
hrome, or� it is a
olor pair A =
 b for some
olor variable A 2 X , su
h thatA 6= b and A =2 free(E 0).We say that E is in solved form, i� all its pairs are solved in E . Clearly,any proper C-substitution� = [A1=X1a1 ℄; : : : ; [An=Xnan ℄; [a1=A1℄; : : : [am=Am℄uniquely determines a solved uni�
ation problemE� = X1a1 =t A1 ^ : : : ^Xnan =t An ^ A1 =
 a1 ^ Am =
 amin solved form. We will use [[X =t A℄℄ for E[[A=X℄℄ , where [[A=X℄℄ is theindu
ed substitution (
f. de�nition 6).Conversely, the
onditions on solved forms ensure that the
orre-sponding substitutions are C-substitutions: The �rst
ondition ensureswell-de�nedness (o

urs-
he
k), idempoten
e, and properness while these
ond ensures that �E is a C-substitution.

paper.tex; 5/04/2001; 17:42; p.20

21(�U� A) =t (�V� B) Z 2 LV new SIM(�)[Z=U ℄A =t [Z=V ℄B(�U� A) =t B Z 2 LV new SIM(�)[Z=U ℄A =t (BZ)haUn =t hbVn ^ E h 2 � [LV SIM(de
)a =
 b ^U1 =t V1 ^ : : : ^Un =t Vn ^ EFigure 2. De
omposition Rules in SIMA =
 b ^ E A 2 X \ free(E) SIM(elim:
ol)A =
 b ^ [b=A℄EE F =2 free(A) FaZk =t A 2 ELV(A) � fZig � LV SIM(elim:term)[[F =t �Zk A℄℄C2(F;E) ^ [[�Zk A=F ℄℄C2(F;E)(E)Figure 3. Variable Elimination Rules in SIM3.1. Simplifi
ationDEFINITION 9. (SIM: Simpli�
ation of C-Uni�
ation Problems). Therules for
onstraint simpli�
ation
onsist of the de
omposition rules in�gure 2 and the variable elimination rules in �gure 3In
ontrast to the simple higher-order uni�
ation we have to ensurethat the resulting solutions are C-substitutions, therefore, we have toapply [[�Xk A=F ℄℄C2(F;E) to E if we eliminate Fa with �Xk A. Notethat this approa
h works even if the pair FaZk =t A is not well-
olored,sin
e any
olor
lash (say if A
ontains a b-
olored symbol) would bedete
ted during de
omposition of the resulting pair Aa =t A.
paper.tex; 5/04/2001; 17:42; p.21

22 We apply these rules with the understanding that the operators ^and =t are
ommutative and asso
iative and that trivial pairs may bedropped. Furthermore after the appli
ation of ea
h rule all formulaeare redu
ed to head normal form. Finally, no rule may be applied to asolved pair.LEMMA 2. If D: E `SIM E 0, then U(E) = U(E 0)[E ℄.Proof. We will only
on
ern ourselves with SIM(elim:term), sin
ethe other rules are like the un
olored ones. So let E be a C-uni�
ationproblem and (FaZ) =t A be the pair in E that the rule SIM(elim:term)a
ts upon. Furthermore let Fb 2 free(E) for some b 6= a.We show that for an arbitrary idempotent proper C-uni�er � of E ,the b-
hrome variant of the formula �Zn A is more general than �(Fb).So let � be an arbitrary C-uni�er of E , then�(Fa)=���(�Z FaZ)=���Z �(FaZ)=���Z �(A)=���(�Z A)sin
e the Zi are not in Dom(�). Now we know that j�(Fb)j = �(Fa)j,sin
e � is a C-substitution, on the other hand �(Fb) is
ompatible withb, so there is a unique b-
hrome variant G of �Z A and a substitution�, su
h that �(G) = �Z A by lemma 1, sin
e b was
hosen arbitrarilyin the set C2(F; E), we obtain the assertion. 2Clearly the SIM Transformations are a joint generalization of the�rst-order
olored uni�
ation algorithm as it has been presented in [21℄and Huet's simpli�
ation rules [32℄; they are terminating and
on
uentup to asso
iativity and
ommutativity of ^, =t and =
. Thus it makessense to speak of a SIM-normal form. Unlike uni�
ation for �rst-orderlogi
, the SIM-normal forms are not solved forms, but
an
ontainpairs of the form haU =t kbU, where at least one of the heads ha andka is a
olored variable.3.2. General Unifi
ationThe
lassi
al approa
h to higher-order uni�
ation on un-
olored termsredu
es the problem of �nding solutions for un-
olored SIM-normalpairs to the the general binding problem: Given a type � and a symbol�, �nd the most general well-formed formula of type � that has head �.Indeed it is suÆ
ient to instantiate the head variables in SIM-normalpairs with su
h general bindings to obtain a
omplete set of HOU trans-formations. Sin
e we have already generalized the simpli�
ation rulesto deal with the
olor annotations, and we know from the
lassi
al
ase,that the erasures of the instantiations of head variables must be gen-eral bindings, it is suÆ
ient to employ the un
olored rules for general
paper.tex; 5/04/2001; 17:42; p.22

23higher-order uni�
ation. This will allow us to use most of the meta-theory dire
tly from the un-
olored
ase (see for instan
e [32, 24℄). Tokeep this paper self-
ontained, let us restate the de�nitions.DEFINITION 10. (General Binding). We
all the formulaGBhÆ = �Z�1 : : : Z�n :�(H1Z) : : : (HmZ)a general binder i�� Æ = �n ! � and � has type
m ! �� one of the following holds:� � = Z�j and �j =
m ! � for some j � n, then h = j andwe
all GjÆ a proje
tion binding or� � = S for some
onstant or free variable S of type
m ! �,then h = S and we
all GhÆ an imitation binding.� the Hi are new variables of type �n !
i,Note that this de�nition is unique up to the names of the new variablesHi and only depends on the signature �. Finally, for given type �, andhead h we
olle
t the imitation binding and all proje
tion bindings (thereneed not be proje
tion bindings for all types) in set of approximationsof h and � ABh�(�) := fGBh�(�)g [fGBj�(�)jj � ngThe signi�
an
e of this
lass of formulae is given by the followingtheorem, whi
h is a simple
onsequen
e of the normal form theorem.THEOREM 1. (General Binding Theorem). Let A 2 pw��(�) be aformula with head(A) = h, then there exists a substitution �, su
hthat �(G)=��A where G = GBh�(�) is the general binding for h and �.Moreover, if A is a head normal form, then the depth of � is stri
tlyless than that of A.DEFINITION 11. (CUT : Transformations for C-Uni�
ation). Let CUTbe the system SIM augmented by the inferen
e rules in �gure 4. Justas in SIM leave the asso
iativity and
ommutativity of ^, =t, and =
impli
it. We have
ombined the
lassi
al imitation (G has head h) andproje
tion (G is a proje
tion binding) transformations (see [32℄) intoCUT (
ex=rig). This set of rules is used with the
onvention that allformulae are eagerly redu
ed to SIM-normal form. In parti
ular byeliminating the new pairs Fa =t G instantiate
olored variables in Ewith the
orre
tly
olored variants of G.
paper.tex; 5/04/2001; 17:42; p.23

24 FaUn =t FbVn ^ E CUT (de
)a =
 b ^U1 =t V1 ^ : : : ^Un =t Vn ^ EF�a U =t hbV ^ E G 2 ABh�(�) CUT (
ex=rig)Fa =t G ^ FaU =t hbV ^ EF�a U =t GbV ^ E G 2 ABh�(�) CUT (guess)Fa =t G ^ FaU =t GbV ^ EFigure 4. General Colored Uni�
ationThe soundness of these rules is a dire
t
onsequen
e of the (
olored)soundness of SIM and the soundness of
lassi
al HOU on the erasures.Therefore, we dire
tly have the following theorem.THEOREM 2. (Soundness of CUT). If E `CUT E 0 su
h that E 0 is inC-solved form, then the substitution �E 0 jfree(E)2U(E).So if the algorithm CUT returns a substitution � for an initial systemE , then � is indeed a C-uni�er for E . The main result of this se
tion isthe
onverse, namely, that given an initial C-uni�
ation problem E anda C-uni�er �, the algorithm CUT
an
ompute a C-uni�er � of E , whi
his more general than �.As higher-order uni�
ation is unde
idable [16℄, our set of transfor-mations
annot be terminating in general. We will prove, that CUT isa
omplete C-uni�
ation pro
edure, i.e. for any given � 2 U(E) thereis a CUT -derivation E `CUT E 0 su
h that E 0 is a C-uni�
ation prob-lem in C-solved form, and �0E is more general than �. For this we onlyneed a subset CUT � of inferen
e rules that approximate the solution� (for details and proofs see[32, 24℄). Even though CUT must be non-terminating in general (otherwise HOU would be de
idable) we havethe following semi-termination result.THEOREM 3. If E is a uni�
ation problem with uni�er �, then� CUT � is terminating.� CUT �
onserves the subset of uni�ers that are
ompatible with�.
paper.tex; 5/04/2001; 17:42; p.24

25� if no transformation rule from CUT � is appli
able to E, then Eis in C-solved form.In parti
ular, a uni�
ation problem E has an uni�er �, i� there is asequen
e of CUT �-transformations that terminates with a solved formE 0. Sin
e CUT �
onserves the set of uni�ers that approximate �, andEE 0 is a most general uni�er of E 0, EE 0 must be more general than �.Sin
e the
olored uni�
ation transformations are also
lassi
al ones, wedire
tly have semi-termination for the
olored
ase. This leads to thefollowing
ompleteness result for higher-order
olored uni�
ation.THEOREM 4. (Completeness Theorem for CUT). For any C-uni�
ationproblem E and any C-substitution � 2 U(E), there is a CUT -derivationE `CUT E 0 su
h that E 0 is in C-solved form and �0E ��� �[E ℄.If we
ombine the soundness results from theorem 2 with the
om-pleteness result from theorem 4, we
an
hara
terize the set of solutionsfound by the algorithm CUT by the following
orollary.COROLLARY 1. For any C-uni�
ation problem E the setCUT (E) := f�E 0 jE `CUT E 0 and E 0 is in C-solved formgis a
omplete set of C-uni�ers for E.3.3. Pre-C-Unifi
ationAs for uni�
ation in the simply typed �
al
ulus, the rule CUT (guess)gives rise to a
ombinatory explosion of the sear
h spa
e for uni�ers.Huet's solution to this problem was to rede�ne the higher-order uni-�
ation problem to a form suÆ
ient for refutation purposes: For thepre-uni�
ation problem
ex-
ex pairs are
onsidered already solved,sin
e they
an always be trivially solved by binding the head variablesto spe
ial
onstant fun
tions that identify the formulae by absorbingtheir arguments.In
ase of the
olored �-
al
ulus a
ex-
ex pair may have no solution,e.g. if the top-level variables of both terms are annotated by di�erent
olors. Consider the following examples:EXAMPLE 4. Let F;G 2 V, then the uni�
ation problem Fdad =tG
a
 has no uni�er. On the other hand Fda
 =t G
a
 has an uni�er[�Z Z=Fd℄; [�Z Z=G
℄.
paper.tex; 5/04/2001; 17:42; p.25

26 The reason for this is the fa
t that proje
tions, i.e. terms of theform �Xk Xi,
arry no
olor information and these are valid instan
esof
olored variables like Fd or G
. Hen
e, in order to solve
ex-
expairs like the se
ond one in example 4 we have to map one of the top-level variables to a proje
tion formula. This gives rise to the followingde�nition:DEFINITION 12. (Flexible Chain). Let E be a C-uni�
ation problem,then a subset E 0 = A1 =t B1 ^ : : :^An =t Bn of
ex/
ex pairs in E is
alled a a
exible
hain of E i� head(Ai) = head(Bi�1) 2 VX for2 � i � n. We
all head(A1) = F
 and head(Bn) = Gd the left{ andright ends of E 0.If
; d 2 C and
 6= d then we
all E 0 a redu
ible
hain, otherwise asafe
hain, similarly, we
all a pair in E safe, i� there is no redu
ible
hain in E that
ontains it, and a uni�
ation problem, if it does not
ontain redu
ible
hains.It will turn out that safe
hains always have solutions, whereas aredu
ible
hain in a system E indi
ates a
lash of di�erent
olor anno-tations to the top-level variables. As mentioned above, the resolutionof this
lash will be to bind one of these top-level variables to a proje
-tion formula. Thus, we
an step by step redu
e the number of redu
ible
hains in E .LEMMA 3. Let E = E 0 ^ Er, where Er = A1 =t B1 ^ : : : ^An =t Bnis a redu
ible
hain, then for ea
h C-uni�er � of E, there is a number1 � i � n, su
h that �(head(Ai)) or �(head(Bi)) is a proje
tionformula.Proof. Let F iai = head(Ai) and Gibi = head(Bi), then a1; bn 2 C,but a1 6= bn, sin
e Er is redu
ible by assumption. If we assume thatnone of the F iai = head(Ai) and Gibi = head(Bi) is a proje
tion, thenwe havehead(�(F 1a1)) = head(�(A1)) = head(�(B1)) = head(�(G1bn))= head(�(F 2a2)) = head(�(A2)) = : : : = head(�(Gnbn))However �(F 1a1) and �(Gnbn) must be mono
hrome, as � is well-
oloredand therefore a1 = bn, whi
h
ontradi
ts our assumption that Er isredu
ible. 2DEFINITION 13. (Pre-C-Solved Form). Let E be a C-uni�
ation prob-lem the we
all a pair A =t B in E pre-solved in E, i� A =t B issolved in E or A =t B is a safe
ex/
ex pair in E. We
all E pre-C-solved, i� all of its pairs are. Thus E is pre-C-solved, i� all of its pairsare solved or
ex/
ex and safe.
paper.tex; 5/04/2001; 17:42; p.26

27This de�nition is tailored to guarantee that pre-C-uni�ers
an alwaysbe extended to C-uni�ers by �nding trivial uni�ers for the
exible pairsand that equational problems in pre-C-solved form always have mostgeneral uni�ers. Therefore an equational system E is pre-C-uni�able, i�it is C-uni�able.DEFINITION 14. (Color Restri
tion). Let E be a safe system, then the
olor restri
tion
r(Xa; E) of a
olored variable Xa with respe
t to Eis de�ned by�
r(Xa; E) = d if a 2 X and there is
exible
hain E 0 in E withleft head Xa and right head Yd for some d 2 C.�
r(Xa; E) = a otherwise.Given a safe system E the notion of
olor restri
tion is well-de�ned.Suppose, there are two subsets of E satisfying the
ondition of the def-inition above whi
h result in di�erent
olor restri
tions
 and
0 for a
olored variable atom Xa. Merging both sets we would obtain a redu
ible
hain in E, whi
h
ontradi
ts our assumption that E is safe. Note thatfor any
ex/
ex pair FaU =t GbV in E either�
r(Fa; E) =
r(Gb; E) 2 C or� both
r(Fa; E) and
r(Gb; E) are
olor variables.In the �rst
ase we furthermore know that either a 2 X or
r(Fa; E) = a(and similarly for b and
r(Gb; E)).EXAMPLE 5. Both uni�
ation problems Fdad =t G
a
 and Fda
 =tG
a
 from example 4 are redu
ible
exible
hains, so any uni�er hasto be a proje
tion. Indeed for the se
ond one, the proje
tion bindings[�Z Z=Fd℄; [�Z Z=G
℄ su

eed, whereas they
lash for the �rst prob-lem.The problem E = Faa
 =t GAb
^GA =t HBbd is safe, and
r(GA; E) =
r(HB; E) = a. Finally F = FAa
 =t GBbd is safe with
r(FA;F) = Aand
r(GB;F) = B.DEFINITION 15. (Trivial Uni�er). Let E be a pre-C-solved C-uni�
a-tion problem, su
h that E 0 := F�n!�a Un =t G
m!�b Vm is a pre-C-solvedpair in E and H := fH�j� 2 T g be a reserved set of typed variableswith H \ free(E) = ;. Furthermore let�E 0 := [�Z1�1 : : : Zn�n H�
r(Fa;E)=Fa℄; [�Z1
1 : : : Zm
m H�
r(Gb;E)=Gb℄If
r(Fa; E) 6=
r(Gb; E), then both are
olor variables and �E 0 is aug-mented by the
olor substitution [
r(Gb; E)=
r(Fa; E)℄. Finally, we de-�ne �E as the union of the �E 0 for all
ex-
ex pairs E 0 in E.
paper.tex; 5/04/2001; 17:42; p.27

28 The next lemma shows that pre-C-uni�ers
an always be extended toC-uni�ers by �nding trivial C-uni�ers for the pre-C-solved pairs. There-fore a �-uni�
ation problem E is pre-C-uni�able, i� it is C-uni�able.LEMMA 4. Let E be a pre-C-solved uni�
ation problem, then �E [�Eis a C-uni�er of EProof. Let E 0 and �E 0 be as in de�nition 15, then �E 0 is a C-uni�erfor E 0, sin
e �E 0(FaUn)=��H
r(Gb;E)=���E 0(GbVm)and either
r(Fa; E) =
r(Gb; E) or they are identi�ed by �E 0 . Conse-quently, �E [�E is a pre-C-uni�er of E , sin
e �E uni�es the C-solvedpairs in E and �E the
ex/
ex ones.To show that �E is a C-substitution, we verify the
onditions ofde�nition 4: We have two
ases�
r(Fa; E) =
r(Gb; E) 2 C and a 2 C (in whi
h
ase �E(Fa) =�Z1�1 : : : Zn�n H
r(Gb;E) is a =
r(Gb; E)-mono
hrome) or� a 2 X , whi
h is unproblemati
.The argumentation for Gb is analogousFor the
onsisten
y
onditions on erasures, note that for any variableX and
olors e; f we have j�E(Xe)j = j�E(Xf)j, sin
e the head H� andthus the erasure itself is uniquely determined by the type of X. 2DEFINITION 16. (CPT :Transformations for C-Pre-Uni�
ation).We de�ne the set CPT of transformations for pre-C-uni�
ationby modifying the CUT rules CUT (de
) and CUT (
ex=rig) by requiringthat they may not be performed on C-pre-solved pairs and repla
ingCUT (guess) by the inferen
e rule in �gure 5F�a U =t GbV ^ E G 2 GBj�(�) CPT (
ex=
ex)Fa =t G ^ FaU =t GbV ^ EFaU =t GbV is a pair of a redu
ible
hain.Figure 5. Higher-Order Colored Pre-Uni�
ationWith the de�nitions above we obtain a
ompleteness result for CPTsimilar to theorem 4.
paper.tex; 5/04/2001; 17:42; p.28

29THEOREM 5. For any C-uni�
ation problem E the setCPT (E) := f�E 0 jE `CPT E 0 and E 0 is in pre-C-solved formgis a
omplete set of pre-C-uni�ers for E.Proof Sket
h. The proof goes through with exa
tly the same methods,as we have used them in se
tion 3. The only di�eren
e is that we uselemma 3 to a

ount for the restri
ted
ex/
ex-
ase. 2Note that in
ontrast to
lassi
al higher-order pre-uni�
ation we
annot drop the CUT (guess) and CUT (de
) rules altogether, but thegiven restri
tion is severe enough to make pre-C-uni�
ation tra
table.In parti
ular the restri
tion alleviates the need for unspe
i�ed imita-tions in CUT (guess), whi
h makes full uni�
ation in�nitely bran
hing.Obviously, safety is a de
idable property and
olour restri
tions are ef-fe
tively
omputable: uni�
ation problems are �nite, and there
an beat most exponentially many paths in one. Thus a simple generate-andtest pro
edure will do. Computationally, this exponential step will notslow down higher-order uni�
ation, sin
e the �-normalization step isalready non-elementary.3.4. Higher-Order PatternsThere are
ertain synta
ti
 fragments of the simply typed �
al
ulus,where the higher-order uni�
ation problem has better properties thanin the general
ase. We will
on
entrate on higher-order patterns [26,27℄, where the problem is unitary for the un
olored
ase. In the
olored
ase, the problem is slightly more
omplex, and we will pro�t from theunderstanding of
olored
ex/
ex pairs that we have a
hieved in thelast se
tion. Higher-order pattern extensions of rippling have alreadybeen studied by Kraan et al. in the
ontext of program synthesis in [25℄,without arriving at an satisfying algorithm or treatment of the meta-theory. The theory presented below
an a posteriori be taken as a logi
albasis for Kraan's work.For the
olored �-
al
ulus, the de�nition of higher-order patterns isvery similar to the un
olored
ase; in fa
t it
oin
ides with the tradi-tional one for proper formulae.DEFINITION 17. (Higher-Order Pattern). We
all a formulaA 2 w�(�)a higher-order pattern, i� any o

urren
e of a free variable F� inA must be in a subformula B of A of the form FZ'(1) : : : Z'(n), whereZi 2 LV and ' is a partial permutation from k into n, i.e. an inje
-tive mapping from f1; : : : ; kg into f1; : : : ; n � kg, where k is the lengthof �. In other words, all free variables of a higher-order pattern o

urat the leaves, or applied to a list of distin
t bound variables.
paper.tex; 5/04/2001; 17:42; p.29

30 We will
all a C-substitution � a pattern substitution, i� for allXa in Dom(�), �(Xa) is a higher-order pattern. Note that the
lass ofhigher-order patterns is
losed under pattern substitutions.EXAMPLE 6. Let f; a be
onstants and F;G be variables and UVW belo
al variables of appropriate type, then �UVW FaWU , and FaWU ,and �U fA(�V FbUV)aa(GaU) are higher-order patterns, while Fa,�Z F
ZaB, �Z FaZZ, and �UV F
U(V U) are not. Furthermore, all�rst-order formulae and all
losed formulae are higher-order patterns,sin
e they do not
ontain free fun
tion variables. Finally, rigid generalbindings are higher-order patterns, while
exible are not in general.This synta
ti
 fragment allows to spe
ialize the uni�
ation rulesfrom de�nition 11.DEFINITION 18. (Transformations for Pattern Uni�
ation). The in-feren
e rules for UPat are those of CPT , together with the additionalrules for safe
ex/
ex pairs shown in �gures 6 and 7. The �rst one han-dles the
ase, where the heads are identi
al and the se
ond one, wherethey are distin
t.F�k!�a X'(k) =t FbZ (k) ^ E UPat(same)
r(Fa; E) =

r(Fb; E) ^ E ^ FaZ'(k) =t FbZ (k)^Fa =t �W k�'(k) HaW �(l) ^ Fb =t �W k�'(k) HbW �(l)� ' and are partial permutations from k to n� � is a partial permutation from k to l, su
h that �(i) = '(j),i� '(j) = (j), i.e. � pi
ks out all arguments, where ' and
oin
ide.� H is a new variable of type ��(l) ! �Figure 6. Pattern Uni�
ation with Identi
al HeadsColored pattern uni�
ation
annot be unitary, sin
e
on
i
ting
ol-ors on
ex/
ex pairs
an for
e the instantiations to be (un
olored)proje
tions. As we have seen above,
on
i
ting
olors
an entail that
ex/
ex pairs are unsolvable, on the other hand, for pattern uni�
a-tion, they
an also lead multiple solutions (the erasure of whi
h
an
paper.tex; 5/04/2001; 17:42; p.30

31be represented by a more general un
olored higher-order pattern16).Consider for instan
e the pair�UVWZ FaUVWZ =t �UVWZ FbV UWZwhere � is a base type and a; b 2 C. Obviously, there are two mostgeneral solutions.�3 := [�UVWZ W=Fa℄; [�UVWZ W=Fb℄�4 := [�UVWZ Z=Fa℄; [�UVWZ Z=Fb℄F�k!�a Z'(k) =t G�l!�b Z (l) ^ E UPat(di�)a =
 b ^ FaZ'(k) =t GbZ (l) ^ E^Fa =t �W k�'(k) HaW'0(m) ^Gb =t �W l� (l) HbW 0(m)� '; be partial permutations from k (l) to n.� '0 and 0 are partial permutations from m into k; l, su
hthat '0(m) = i and 0(m) = j, i� '(i) = (j).� H is a new variable of type � 0(m) ! �Figure 7. Higher-Order Colored Pattern Uni�
ation with Distin
t HeadsThe tra
table nature of pattern uni�
ation hinges on the observa-tion that the solving of
ex/rigid pairs is deterministi
, that is, allbut the imitation or one proje
tion immediately lead to failure. Thusfor pattern uni�
ation we only
an dire
tly inherit the de
ompositionand
ex/rigid rules from general
olored higher-order uni�
ation andonly have to
on
ern ourselves with the
ex/
ex situations. Clearly, allthe dis
ussion about
exible
hains also applies to higher-order pat-terns, so we keep the
ex/
ex rule for redu
ible
exible
hains. Thisleaves us with the
ase of safe
ex/
ex pairs, where (as we have seenabove)
olor
lashes are not a problem. Therefore, we
an dire
tly adaptthe well-known rules for higher-order pattern uni�
ation: If we havea pair FaUn =t FbV n, then Fa is bound to to �Zn HaWk and Fb to16 This observation shows that a generate-and-test pro
edure for
olored patternuni�
ation is infeasible, sin
e this would have generated the un
olored solution andreje
ted it, erroneously predi
ting the absen
e of
olored solutions.
paper.tex; 5/04/2001; 17:42; p.31

32�Zn HbWk, where theW k are those bound variables, where U i = V i.17Unlike in the un
olored
ase, an appli
ation of this rule does not imme-diately solve the pair (the
olors a and b need not be identi
al), but ittransforms it into a form, in whi
h de
omposition
an do the rest (thiswill always su

eed, i� the pair the rule a
ts upon is safe).For the remaining
ase of safe
ex/
ex pairs with di�ering headvariables, we use a similar argumentation (dire
tly modeled after theun
olored
ase) and rule. From this argumentation (the
ex/rigid andthe safe
ex/
ex
ases are deterministi
 and the redu
ible
ex/
ex
asesonly involve proje
tions), we
an dire
tly derive that
olored patternuni�
ation is de
idable18 and �nitary i.e. pattern uni�
ation problemshave at most �nitely many most general uni�ers.THEOREM 6. (Completeness for UPat). Let E be an uni�
ation prob-lem, then UPat is terminating and yields an irredu
ible problem F ,su
h that either� F is solved and �F is a most general uni�er of E or� F is not solved and E is not uni�able.Furthermore, UPat is
on
uent ex
ept for CPT (
ex=
ex), whi
h is�nitely bran
hing.4. Knowledge RepresentationIn this se
tion we will work on the semanti
s of
olors as they areused to en
ode additional knowledge about formulae into annotationsof symbol o

urren
es. The
olored �-
al
ulus provides the ne
essarydevi
es to maintain this knowledge during the dedu
tion by introdu
ing
olored substitutions and
olored uni�ers. It remains the question howto en
ode the given domain knowledge into
olors and vi
e versa how tode
ode again the inherited knowledge from the annotations distributedover the entire term or formula.In the examples in se
tions 1.1 and 1.2 we have used annotations(
olors) of symbols to guide the dedu
tion pro
ess in su
h a way that17 For any uni�er � we have �(Fa) = �Zn A. Now, A
an only have o

urren
esof Zi, su
h that U i = V i: If we assume that A
ontains an o

urren
e of Zi (say atposition p) with U i 6= V i, then �(F)Un=��[Un=Zn℄A and �(F)Un=��[Un=Zn℄A,so these di�er at position p, whi
h
ontradi
ts the assumption that � uni�es E .18 The termination and
on
uen
e arguments
an be dire
tly modeled after thestandard
ase.
paper.tex; 5/04/2001; 17:42; p.32

33ea
h intermediate result of dedu
tion has to satisfy spe
i�
 restri
-tions. Rippling uses the semanti
 information that we must apply theindu
tion hypothesis to rewrite the indu
tion
on
lusion. Additionallyit assumes that the hypothesis is always homomorphi
ally embeddedinto the intermediate results of manipulating the
on
lusion. Ea
h sym-bol o

urren
e inside the hypothesis
orresponds uniquely to a symbolo

urren
e inside the (manipulated)
on
lusion. We may en
ode thisknowledge by dyeing symbol o

urren
es whi
h are inside the rangeof the mapping white while all others grey. If we need a more granu-lar information about
orresponding symbol o

urren
es in hypothesisand
on
lusion we may even atta
h unique
olors to the
orrespondingo

urren
es instead of
oloring them all uniquely white. Thus we splitup the set of
olor
onstants C into a subset D of
olor
onstants whi
h
ontribute to the skeleton, like for instan
e \white", and other
olorsC n D, like \grey", whi
h indi
ate wave-fronts.En
oding the mapping into annotations we have to supply an appro-priate fun
tion
D whi
h will synthesize the information en
oded intoannotations. In parti
ular we are interested in all symbol o

urren
esof the manipulated
on
lusion whi
h are related to o

urren
es of thehypothesis. We
an easily determine these o

urren
es by the
olor oftheir annotation. Sin
e we also like to extra
t the subterm-relationsin whi
h these symbols o

ur,
D has also to in
orporate knowledgeabout the subterm relations between symbols annotated with
olors ofD. Thus, instead of
omputing a set of unrelated symbol o

urren
es,
D will
onstru
t new (annotated) formulae a

ording to the originalterm stru
ture by using the symbols annotated with
olors of D.We introdu
e the notion of a skeleton in two steps. First, we
hara
-terize the extra
tion and gluing part within the de�nition of an initialskeleton e
D. This skeleton will still
ontain some redundan
ies whi
hwill be removed by applying some redu
tion rules yielding the �nalskeleton
D.Sin
e
D has to deliver the subterm-relations between the symbolo

urren
es under
onsideration, the skeleton is built up along the for-mula
onstru
tion of annotated formulae. Thus, the skeleton inheritsthe stru
ture of the original formula and is basi
ally de�ned as a homo-morphi
 extension of a mapping on symbol o

urren
es. The skeletonof an appli
ation is a set of appli
ations
onstru
ted of the skeletonsof the arguments, also lambda-expressions are translated in a homo-morphi
 way to a set of lambda-expressions using the skeletons of theredex.Sin
e we are interested in symbol o

urren
es annotated with
olorsof D, e
D will map su
h symbols hd into the singleton set fhdg. If asymbol h is annotated with a
olor
 whi
h is not member of D then
paper.tex; 5/04/2001; 17:42; p.33

34we a
tually like to dis
ard this symbol o

urren
e. If h has base type �then e
D will return a singleton set
ontaining a dummy symbol f! topreserve well-typedness. For h of non-base type, the e
D has to provideappropriate �-expressions su
h that
omputing e
D(h
AB) will returnthe union of the skeletons of A and B. This
an be done by mappingh
 to the set of all the possible proje
tions to its arguments.We are left with the
ase of bound variables whi
h have no anno-tations at all. In this
ase e
D again returns a singleton set
ontainingthe bound variable.We summarize the notion of a initial skeleton into the followingde�nition:DEFINITION 19. (Initial Skeleton). LetA 2 pw��(�) be a well-formedformula and D � C be the set of skeleton
olors. Then the initialskeleton e
D is de�ned as follows:� e
D(X) = fXg if X 2 LV,� e
D(hd) = fhdg if d 2 D [X ,� e
D(hd) = ff!g if d 2 (C n D), and the type of h is base,� e
D(hd) = f(�Zn f�1!�! Z1); : : : ; (�Zn f�n!�! Zn)g if d 2 (C nD), where his of type �n ! � (� base type).� e
D(BC) = f(B0C0)jB0 2 e
D(B) and C0 2 e
D(C)g, and� e
D(�Z B) = f�Z B0jB0 2 e
D(B)g.We had to invent type-
onversion fun
tion to obtain typed terms asmembers of the skeleton. Sin
e in some terms, o

urren
es of these type-
onversion fun
tions are redundant, we use the following !-redu
tionrules to remove redundan
ies in the initial skeleton.DEFINITION 20. (!-Redu
tion). We say that a well-formed formulaB is obtained by a well-formed formula A by a one-step !-redu
tion(A �!! B), if it is obtained by applying one of the rules given in Fig.8 to a well-formed part of A As usual we de�ne the transitive
losureof the redu
tion relation �!! with �!�! and use �!��! for the unionof the redu
tion relations �!�, �!�, and �!!.In order to
ompare two skeletons we like to disregard di�eren
es
ausedby ��-equality or !-redu
tion. Hen
e, we
ombine �� and !-redu
tionsto obtain a ��!-redu
tion.
paper.tex; 5/04/2001; 17:42; p.34

35f�!
! (f�!�! X�) �!! f�!
! X� f�!
! f�! �!! f
!f�!�! X� �!! X� �x x �!! f�!�!Figure 8. !-Redu
tion RulesTHEOREM 7. (Strong Normalization). Every sequen
e of ��!-redu
tionsterminates and leads to a unique ��!-normal form.Proof. The Theorem is proven in the appendix (se
tion A). 2Thus, ��!-redu
tion terminates for all �-terms A and results ina unique normal form A #��! . Based on the de�nitions of the initialskeleton and the ��!-redu
tion we de�ne now the skeleton of a higher-order term as follows:DEFINITION 21. (Skeleton). Let A 2 pw��(�) be a well-formed for-mula and D � C be the set of skeleton
olors. Then the skeleton
D(A) of A is de�ned as the ��!-normal form e
D(A) #��! of theinitial skeleton. Noti
e that due to the
on
uen
e of ��!-redu
tion we
an also intertwine this redu
tion and the
omputation of the initialskeleton whi
h results in a one-pass
omputation of the skeleton.The skeleton is independant of the representation of a term wrt. ��-equality, i.e. we do not have to normalize a term before
omputing itsskeleton.LEMMA 5. For all A;B 2 pw��(�) :A =�� B implies
D(A) =
D(B)The proof
an be found in the appendix (se
tion B). As a
onsequen
ewe have to make
ompromises to the granularity in whi
h we
an anno-tate terms. Sin
e we do not restri
t the appli
ation of the �-rule (
om-pared to the non-annotated �-
al
ulus) we
annot store any domainknowledge (annotations) to lo
al variables. Otherwise the unrestri
tedappli
ation of the �-rule would destroy this knowledge.19The skeleton fun
tion denotes an abstra
tion on
olored terms. Rip-pling makes use of this abstra
tion by restri
ting possible dedu
tions19 The introdu
tion of type-
onversion fun
tions guarantee the ���-
ompatibility.Espe
ially there is a subtle relation between mapping non-skeleton symbols to f!(thus introdu
ing some kind of \partial" skeleton) and �-redu
tion as the follow-ing example illustrates:
fag(�UV U)(Aa;Bb) = (�UV U)(Aa; f!) =� fAag =
fag(Aa) =�
fag(�UV U)(Aa;Ba)
paper.tex; 5/04/2001; 17:42; p.35

36to formulas or terms with identi
al skeletons. Restri
ting the proof inthe abstra
t spa
e we are now able to implement a generate-and-testapproa
h whi
h �rst
omputes a dedu
tion step, se
ondly
al
ulates itsabstra
tion (skeleton) and �nally ba
ktra
ks this step if the abstra
-tion does not satisfy the given restri
tions. But in order to plan a proofin the abstra
t spa
e we like to predi
t whether a spe
i�
 dedu
tionstep will satisfy the restri
tions on its abstra
tion without
omputingthe result on a ground level. Thus, the question arises whether we areable to
al
ulate the abstra
tion (skeleton) of the result of a dedu
tionstep only by
onsidering the abstra
tions (skeletons) of all involvedformulas?As rippling is mostly done in a rewriting environment20, we will dis-
uss the issues of reasoning in the abstra
t spa
e in terms of a termrewriting
al
ulus. In prin
iple, term rewriting allows one to dedu
e aterm [�(B)=�℄C from C i� there is an equation A = B and a substi-tution � su
h that �(A) = Cj�. In order to reason entirely in the ab-stra
t spa
e we have to be able to
ompute the skeleton of [�(B)=�℄Cwith the help of the skeletons of C, A and B. In
ase of �rst orderlogi
 we know that
D(A) =
D(B) implies
D(�(A)) =
D(�(B))(Substitution-Compatibility) and that
D(Cj�) =
D(�(B)) implies
D(C) =
D([�(B)=�℄C (Subterm-Compatibility). On
e the abstra
-tions of both sides of a rewrite rule are equal, its use to rewrite a termwill not
hange the abstra
tion of the modi�ed term.We will dis
uss now the higher-order
ase: The property of subterm-
ompatibility is in prin
iple an immediate
onsequen
e of the de�nitionof a skeleton being a homomorphi
 extension of a mapping on symbolo

urren
es. Thus the following lemma holds; its proof is given in theappendix (se
tion B).LEMMA 6. For all A;B 2 pw��(�)
D(A) =
D(Bj�) implies
D(B) =
D([A=�℄B):The
orresponding lemma about substitution-
ompatibility
an not belifted to the higher-order
ase. The reason is that an instantiation mayenable the use of the �-rule whi
h then, may delete parts of the skeleton.EXAMPLE 7. Consider two terms Fda
 and fda
. Let
 2 D whiled 62 D su
h that both terms
oin
ide in their skeletons a
. InstantiatingFd by �X bd will (after �-redu
tion) result in terms bd and fda
 whi
hdo obviously not
oin
ide in their skeleton.20 We will denote the subterm B in A at position � with Aj� and the result ofrepla
ing this o

urren
e of B in A with C with [C=�℄A.
paper.tex; 5/04/2001; 17:42; p.36

37Two possibilities to get rid of this problem immediately suggestthemselves: adding fun
tion variables (regardless of their annotations)always to the skeleton or restri
ting admissible substitutions in or-der to avoid these substitutions. However both will be too restri
tivefor pra
ti
al reasons. What are the pra
ti
al impli
ations of this la
kof substitution-
ompatibility? In order to guarantee that
D(C) =
D([�(B)=�℄C) holds we have now to test the missing property: ea
htime an annotated rewrite rule A = B (satisfying
D(A) =
D(B))is used to modify a term C we have to
he
k whether
D(�(A)) =
D(�(B)) holds. Sin
e this test
an be made very eÆ
iently, the pra
-ti
al impli
ations of the missing property are rather small. We
an stillspe
ulate about a proof on the abstra
t spa
e although we have to keepin mind that in some
ases the re�nement will not be possible be
auseof the missing substitution-property.5. Related WorkSmaill and Green [31℄ developed the notion of higher-order embeddings.An embedding �! is a relation on terms and s �!t | speaking A isembedded in B | denotes intuitively that A is a skeleton of B. As abase
ase ea
h atomi
 expression B is embedded into itself: t �!t. Also aterm A is embedded into an appli
ation (B1B2) if it is embedded intoone of its arguments or A is itself an appli
ation (A1A2) and ea
h Aiis embedded in Bi. A is embedded into an abstra
tion (�U B) if it isembedded into all instantiations (�U B)C for all C or A is itself anabstra
tion (�U A0) and (�U A0)C is embedded into (�U B)C forall C.The notion of embeddings enables a generate-and-test pro
edure21based on standard higher order mat
hing/uni�
ation whi
h performsan (arbitrary) dedu
tion steps and tests whether a spe
i�
 term isembedded into the result of this step. Our approa
h to atta
h addi-tional information at ea
h symbol allows one to maintain the infor-mation about embedding during the dedu
tion pro
ess sin
e skeletonsare stable with respe
t to subterm-repla
ement. This information isalso ne
essary to restri
t the number of possible solutions (e.g duringhigher-order uni�
ation) as soon as possible.On one hand the generate-and-test approa
h requires only the ex-isten
e of an algorithm whi
h tests whether the skeleton is in somesense embedded (
f. [31℄) in a formula whi
h
orresponds to a
he
kwhether the indi
ated pattern is mat
hed by the formula. But on the21 For prin
ipal diÆ
ulties of this approa
h
f. footnote 16.
paper.tex; 5/04/2001; 17:42; p.37

38other hand, then we have no information how parts of the skeleton willbe inherited during the dedu
tion and therefore we have also no infor-mation how to sele
t appropriate lemmata. Even worse, higher-orderuni�
ation usually results in tremendous number of uni�ers and weonly
an signi�
antly redu
e that number if we in
orporate the knowl-edge about the invarian
e of the skeleton into the uni�
ation pro
edure.Thus, there is a strong need to in
orporate a notion of skeleton intothe dedu
tion ma
hinery.Comparing this notion of embedding and our de�nition of skeletonsone observe several
on
eptual di�eren
es. In
ase of appli
ations thede�nition of embeddings does not preserve the intended subterm re-lation on (�rst-order) terms. For example,
onsider a �rst order termg(h(A;C);B) then h(A;B) �!g(h(A;C);B) holds. This
onfusion ofarguments of h and g may
ause severe problems when de�ning ter-mination orderings on rippling with the help of embeddings. In oursetting the skeleton of g(h(A;C);B) is the set fh(A; f!);Bg and theuse of the synta
ti
 type-
onversion fun
tions prevents the mix-up ofarguments. Hen
e, the intended subterm-relation is preserved.6. Con
lusionMotivated by the �rst-order rippling/
oloring method we have devel-oped a
olored higher-order logi
 and presented uni�
ation, pre-uni�
ationand pattern uni�
ation algorithms that we have proven to be
orre
tand
omplete. In
ontrast to other semanti
 annotation te
hniques likesorts, the
oloring te
hnique allows one to add annotations to symbolo

urren
es in �-terms. Thus it is possible to en
ode arbitrary stru
-tural information into
olors and to maintain this information impli
itlyby the
al
ulus during a dedu
tion.From an abstra
t point of view we
an see that the
olored �-
al
ulusand labeled dedu
tion systems [10℄ share basi
 intuitions. Both use an-notations to restri
t the appli
ability of inferen
e rules and provide ame
hanism for maintaining the annotations during the inferen
e. How-ever, while LDS atta
h labels to formulae, HOCU annotates symbolo

urren
es with
olors.It seems plausible that
olored logi
s
an be embedded into suitableLDS if we assume that the labels have the same algebrai
 stru
ture asthe formulae they are atta
hed to. Moreover, any LDS that deals withequality will probably need to maintain labels in su
h a term-stru
turedform, sin
e equality operates on subterm o

urren
es, whi
h have to berepresented in some way. In this
ase the
olored �-
al
ulus allows oneto deal with labels and formulae in a uniform and eÆ
ient way taking
paper.tex; 5/04/2001; 17:42; p.38

39advantage of the
ommon stru
ture of both. We leave a formal analysisof this relation of approa
hes to further resear
h.We have presented two appli
ations of the
olored �-
al
ulus. First,it provides a formal basis for the me
hanization of higher-order reason-ing with equality along the lines of [35, 20, 22℄ whi
h develop heuristi
sthat guide the di�eren
e redu
tion pro
ess in �rst-order equality
al-
uli. Sin
e rippling is an instan
e of this general di�eren
e redu
tionmethodology, the
al
ulus presented in this paper is a basis for animplementation of rippling in a higher-order setting whi
h is requirede.g. in
ase of middle-out reasoning [17, 23℄. Se
ondly, it is also a logi
albasis for an interfa
e for linguisti
 extra-semanti
al information in the
onstru
tion of natural-language semanti
s. The algorithms presentedin this paper and the linguisti
 analyses from [11, 13, 12, 15℄ have beenimplemented in the ChoLi system [8℄.At least the linguisti
 appli
ations suggest the need for more expres-sive
olor languages. In [15℄ we have used feature stru
tures as
olorsto model the intera
tion of linguisti

onstraints. It turns out that theuni�
ation methods presented in this paper are suÆ
ient to treat su
hextensions in a uniform way.A further extension would be to alleviate the restri
tion that
olorsonly annotate free symbol o

urren
es by allowing
olor annotations tosubterm o

urren
es or to bound variables. This would allow to extendthe s
ope of the
al
ulus towards stru
tural phenomena that is indu
edby the full term stru
ture. Referen
es1. Hendrik P. Barendregt. The Lambda-Cal
ulus: Its Syntax and Semanti
s.North-Holland, 1980.2. D. Basin and T. Walsh. A
al
ulus for and termination of rippling. Spe
ialIssue of the Journal of Automated Reasoning, 16(1-2):147{180, 1996.3. Val Breazu-Tannen. Polymorphi
 rewriting
onserves algebrai
 strong normal-ization and
on
uen
e. In Pro
eedings of the ICALP, pages 137{150, 1989.4. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, , and A. Smaill. Rippling:A heuristi
 for guiding indu
tive proofs. Arti�
ial Intelligen
e, 62:185{253,1993.5. Alan Bundy. The use of expli
it plans to guide indu
tive proofs. In Ewing L.Lusk and Ross A. Overbeek, editors, Pro
eedings of the 9th Conferen
e onAutomated Dedu
tion, number 310 in LNCS, pages 111{120, Argonne, Illinois,USA, 1988.6. A. Chur
h. A formulation of the simple theory of types. Journal of Symboli
Logi
, 5:56{68, 1940.7. M. Dalrymple, S. Shieber, , and F. Pereira. Ellipsis and higher-order uni�
a-tion. Linguisti
s and Philosophy, 14:399{452, 1991.
paper.tex; 5/04/2001; 17:42; p.39

408. Ralph Debusmann, Markus Egg, Claire Gardent, Alexander Koller, KarstenKonrad, Joa
him Niehren, Guido S
haefer, Stephan Thater, Verena Winter,and Feiyu Xu. A natural language system for semanti

onstru
tion and eval-uation. CLAUS Report 102, University of the Saarland, Saarbr�u
ken, 1998.9. Gilles Dowek. Third order mat
hing is de
idable. Annals of pure and appliedmathemati
s, 69:135{155, 1994.10. D. Gabbay. Labelled Dedu
tive Systems. Oxford Logi
 Guides, No 33. OxfordUniversity Press, 1996.11. C. Gardent and M. Kohlhase. Higher-order
oloured uni�
ation and naturallanguage semanti
s. In A. Zampolli, editor, Pro
eedings of COLING'96, 1996.12. C. Gardent and M. Kohlhase. Computing parallism in dis
ourse. In Pro
eedings15th International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI), Nagoya,Japan, 1997. Morgan Kaufman Publ.13. Claire Gardent. Sloppy identity. In Christian Retor�e, editor, Logi
al Aspe
tsof Computational Linguisti
s, pages 188{207. Springer, 1997.14. Claire Gardent, Mi
hael Kohlhase, and Karsten Konrad. Higher{order
oloureduni�
ation: a linguisti
 appli
ation. CLAUS Report 97, University of the Saar-land, Saarbr�u
ken, 1997.15. Claire Gardent, Mi
hael Kohlhase, and Karsten Konrad. Higher{order
oloureduni�
ation: a linguisti
 appli
ation. Te
hniques S
ien
es Informatiques, pages1{28, 1999.16. Warren D. Goldfarb. The unde
idability of the se
ond-order uni�
ation prob-lem. Theoreti
al Computer S
ien
e, 13:225{230, 1981.17. J. Hesketh. Using Middle-Out Reasoning to Guide Indu
tion. PhD thesis,University of Edinburgh, Edinburgh, S
otland, 1981.18. J. Hindley and J. Seldin. Introdu
tion to Combinators and Lambda Cal
ulus.Cambridge University Press, 1986.19. Dieter Hutter. Guiding indu
tion proofs. In Mark Sti
kel, editor, Pro
eedingsof the 10th Conferen
e on Automated Dedu
tion, number 449 in LNCS, pages147{161, Kaiserslautern, Germany, 1990.20. Dieter Hutter. Using rippling for equational reasoning. In S. H�olldobler, editor,Pro
eedings 20th German Annual Conferen
e on Arti�
ial Intelligen
e KI-96,pages 121{134, Dresden, Germany, 1996. Springer-Verlag, LNAI 1137.21. Dieter Hutter. Colouring terms to
ontrol equational reasoning. Journal ofAutomated Reasoning, 18:399{442, 1997. Kluwer-Publishers.22. Dieter Hutter. Hierar
hi
al proof planning using abstra
tions. In D. Dankel II,editor, Pro
eedings 10th Annual Florida AI Resear
h Symposium, FLAIRS'97,Tra
k: Using AI methods to
ontrol automated dedu
tion, pages 181{185, Day-tona Bea
h, USA, 1997. M. Fishman.23. A. Ireland and A. Bundy. Produ
tive use of failure in indu
tive proof. Spe
ialIssue of the Journal of Automated Reasoning, 16(1-2):79{111, 1996.24. Mi
hael Kohlhase. A Me
hanization of Sorted Higher-Order Logi
 Based onthe Resolution Prin
iple. PhD thesis, Universit�at des Saarlandes, 1994.25. I. Kraan, D. Basin, , and A. Bundy. Middle-out reasoning for synthesis andindu
tion. Journal of Automated Reasoning, 16(1-2):113{145, 1996.26. Dale Miller. A logi
 programming language with lambda-abstra
tion, fun
tionvariables, and simple uni�
ation. Journal of Logi
 and Computation, 1(4):497{536, September 1991.27. Dale Miller. Uni�
ation under a mixed pre�x. Journal of Symboli
 Computa-tion, 14:321{358, 1992.
paper.tex; 5/04/2001; 17:42; p.40

4128. R. Montague. The proper treatment of quanti�
ation in ordinary english.In R. Montague, editor, Formal Philosophy. Sele
ted Papers. Yale UniversityPress, New Haven, 1974.29. V. Padovani. Filtrage d'order sup�erieur. Th�ese de do
torat, Universit�e ParisVII, 1996.30. Christian Prehofer. De
idable higher-order uni�
ation problems. In AlanBundy, editor, Pro
eedings of the 12th Conferen
e on Automated Dedu
tion,number 814 in LNAI, pages 635{649, Nan
y, Fran
e, 1994. Springer Verlag.31. A. Smaill and I. Green. Higher-order annotated terms for proof sear
h. InPro
eedings of the International Conferen
e on Theorem Proving in HigherOrder Logi
s (TPHOLs'96), 1996.32. Wayne Snyder. A Proof Theory for General Uni�
ation. Progress in ComputerS
ien
e and Applied Logi
. Birkh�auser, 1991.33. R. Statman. Logi
al relations and the typed lambda
al
ulus. Information andComputation, 65, 1985.34. W. Tait. Intensional interpretation of fun
tionals of �nite type I. Informationand Computation, 32:198{212, 1967.35. T. Walsh, A. Nunes, , and A. Bundy. The use of proof plans to sum series. InD. Kapur, editor, Pro
eedings of the 11th Conferen
e on Automated Dedu
tion,pages 325{339, Saratoga Spings, NY, USA, 1992. Springer Verlag, LNCS 607.AppendixA. Strong Normalization of ��!-Redu
tionIn this appendix we will prove termination of the ��!-Redu
tion usedin the de�nition of a skeleton. For the termination proof, we use thewell-known logi
al-relations method due to Tait [34℄ and Statman [33℄.A simpler approa
h using a permutation argument for ��- and !-redu
tion will not work, sin
e in some
ases an �-step has to be sim-ulated by two !-redu
tion steps (the reader is refered to the proof oflemma 11 for details). Neither
an we use the general
ombination re-sult by Breazu-Tannen & Gallier [3℄ that proves strong normalizationof ��R for strongly normalizing algebrai
 R, sin
e ! is not algebrai
.For the
on
uen
e proof we only need to show that ��!-redu
tion islo
ally
on
uent, sin
e this is suÆ
ient for
on
uen
e for well-foundedredu
tions [1℄.A.1. TerminationThe logi
al relation proof of termination has three steps: We de�nea logi
al relation L that
oin
ides with with the desired terminationproperty S at base types and has good
losure properties. Then we showthat L � S (Lemma 8) and that moreover L�(A) for all A 2 pw��(�)
paper.tex; 5/04/2001; 17:42; p.41

42(Lemma 10). Together these two results yield the termination resultfor ��!-redu
tion (Theorem 8).DEFINITION 22. (Logi
al Relation). A set L � pw�(�) of properformulae is
alled a logi
al relation22, i� for all types � =
 ! Æ andall A 2 pw��(�) we have L�(A), i� LÆ(AC) for all C 2 pw�
(�) withL
(C). Clearly, logi
al relations are totally determined by their valueson base types. For any other S � pw�(�), we
all the (unique) logi
alrelation L that
oin
ides with S on base types the logi
al relationindu
ed by S.DEFINITION 23. (Admissible). Let L be a logi
al relation, then ahead redu
tion (�Z
 A�)C �!h� [C=Z℄Ais
alled admissible, i� L
(C). A logi
al relation L is said to be ad-missible if it is
losed under admissible head expansions. (Formally:Let � be a type, and let A�;B� be formulae with A �!h� B, then alogi
al relation L is
alled admissible if L�(B) implies that L�(A).)DEFINITION 24. (Terminating at A).We say that ��!-redu
tion is terminating at A (we write S�(A),i� any sequen
e of ��!-redu
tions starting with A terminates. In thefollowing we will use L for the logi
al relation indu
ed by S.LEMMA 7. If ��!-redu
tion is terminating at C, and B is a subfor-mula of C, then ��!-redu
tion is terminating at BProof. Any in�nite redu
tion sequen
e from B
an be transformedto one from C. 2LEMMA 8. (L � S). Let h be a
onstant or free variable of type � =�n ! �, su
h that � is a base type then� S�i(Ai) implies L�(hAn), and� L�(A) implies S�(A).Proof. We prove the assertion by a simultaneous indu
tion over thetype �. If � is a base type, the se
ond assertion is a trivial
onsequen
eof the de�nition of L. For the �rst assertion we have to
onsider two
ases: If h 6= f�!�! , then we obtain the fa
t that ��!-redu
tion isterminating at hAn, sin
e the Ai are (sin
e the arguments of h are22 The name
omes from the intuition that L is a relation between formulae andtypes.
paper.tex; 5/04/2001; 17:42; p.42

43independent, there
an be no ��!-redexes that are not in the Ai), thusL�(hAn) sin
e � 2 BT (S = L there).If h = f�!�! , thenhAn = (f!(f!(: : : (f!| {z }m B) : : :))A2 : : :An)where the head of B is not f!. We show the assertion by an indu
tionover the numberm, using the previous
ase form = 0. For the indu
tive
ase we note that the �rst two !-rules transform hAn into a formula ofthe same form with redu
ed m and the third rule
annot apply at thetop-level of hAj at all. Thus we have
ompleted the proof of the �rstassertion in the base type
ase.For the indu
tive
ase let � = � !
, and L�(B). By the se
ondindu
tive hypothesis we have S�(B), by the �rst indu
tive hypothesisL
(hAnB). Thus L�(hAn) by de�nition and we have proven the �rstassertion.For the se
ond assertion let L�(A) and X� =2 free(A). With the�rst indu
tive hypothesis (n = 0) we have L�(X), and thus L
(AX)by de�nition. Now we see that ��!-redu
tion is terminating at A,sin
e by the se
ond indu
tive hypothesis we have S
(AX) and S�(A)by lemma 7. 2LEMMA 9. L is admissible.Proof. We have to show that L�([B=Z℄A) implies L�((�Z� A)B).Now let � =
 ! Æ, su
h that Æ 2 BT , furthermore let L�(A), andL
i(Ci). Then (by an iterated appli
ation of the de�nition of L) it issuÆ
ient to show that SÆ((�Z A)BC) (��!-redu
tion is terminatingat (�Z A)BC), sin
e Æ is a base type.So let us assume that L�([B=Z℄A), then by de�nition of L we haveLÆ([B=Z℄AC) and thus SÆ([B=Z℄AC). In parti
ular S�([B=Z℄A) andS
i(Ci) by lemma 7. Furthermore the head redu
tion is admissible andtherefore L�(B) and thus S�(B) by lemma 8. Finally, ��!-redu
tionmust be terminating at A, sin
e an in�nite redu
tion from A wouldimply one from [B=Z℄A (��!-redu
tion is invariant under instanti-ation). Thus there
annot be an in�nite sequen
e of redu
tions from(�Z A)BC that only
ontra
ts redexes from [B=Z℄A and the Ci. Thussu
h a redu
tion sequen
e from (�Z A)BC has the form(�Z A)BC �!���! (�Z A0)B0C0�!h��! [B0=Z℄A0C0�!���! : : :
paper.tex; 5/04/2001; 17:42; p.43

44whereA �!���! A0,B �!���! B0 andCi �!���! C0i. Thus [B=Z℄A �!��[B0=Z℄A0 and in parti
ular (in
ontradi
tion to our assumption), wehave
onstru
ted an in�nite redu
tion[B=Z℄AC �!���! [B0=Z℄A0C0 �!���! : : : 2We will now use the admissibility of L to as
ertain that L� =pw��(�). To make the proof go through, we have to prove the fol-lowing stronger assertion.LEMMA 10. If � is a substitution, su
h that L�(�(X�)) for all X 2Dom(�t), then L�(�(A)) for all A 2 pw��(�).Proof. We prove the assertion by indu
tion on the stru
ture of A.If A is a
onstant, or a variable not in Dom(�), then we obtain theassertion by the �rst
ase of Lemma 8 (n = 0). If A = X�, then L�(A)by assumption.If A = B
!�C
 , then by indu
tive hypothesis we have L
!�(�(B))and L
(�(C)) and therefore L�(�(BC)) sin
e L is logi
al.Finally, if A = �X
 B, then we will show that LÆ(�(A)C) for allC 2 pw�
(�) with L
(C). Without loss of generality, we
an assumethat X =2 Dom(�). Now let �0 := �; [C=X℄. Clearly, �0 meets the
on-dition in the indu
tion hypothesis, so we have LÆ(�0(B)). Furthermore,�(A)C = (�X
 �(B))C redu
es to �0(B) in an admissible head re-du
tion and therefore we have LÆ((�X
 B)C)) by admissibility of L(Lemma 9). 2Colle
ting the results above, we arrive at the desired terminationresult.THEOREM 8. (Termination). ��!-Redu
tion is terminating.Proof. Let A 2 pw��(�) be an arbitrary formula, by lemma 10we have L�(A) (using the empty substitution �) and thus S�(A) bylemma 8. 2A.2. Confluen
eSin
e ��!-redu
tions are �nite, we only need to prove lo
al
on
uen
eto ensure that ��!-redu
tion is
on
uent.LEMMA 11. (Lo
al Con
uen
e). If A �!��! A0 and A �!��! A00then there is a term B su
h that A0 �!���! B and A00 �!���! B.
paper.tex; 5/04/2001; 17:42; p.44

45Proof. Obviously both, �!�! and �!��� satisfy the Chur
h Rosser-property. Thus, in the following we have only to prove that in
aseA �!�� A0 and A �!! A00 there is a term B with A0 �!���! Band A00 �!���! B. As in [1℄ we use M[t℄ to denote a term with aspe
i�
 subterm t inside a so-
alled
ontext M. Let A �!� A0 thenA = M[(�Z C)C0℄ and A0 = M[[C0=X℄C℄. In
ase a !-rule has beenapplied inside C then obviously the same rule is also appli
able in[C0=X℄C. Analogously an appli
ation of a !-rule onC0
an be simulatedby n � 0 appli
ations of the same !-rule on ea
h o

urren
e of C0 in[C0=X℄C. On the other hand suppose the !-rule has been applied insidethe
ontext M then the same !-rule is also appli
able inM[[C0=X℄C℄.Analogous
onsiderations
an be made in
ase of the �-rule.Hen
e, we may restri
t ourselves to the following
on
i
ts:� letA =M[�Z (f�!�! Z)℄ andA0 =M[f�!�! ℄ andA00 =M[�Z Z℄.With B = A0 A00 �!! B.� let A = M[(�Z f�!�! C)B℄ and A0 = M[f�!�! [D=X℄C℄ andA00 = M[(�X C)D℄ Let B = M[[D=X℄C℄ then A0 �!! B andA00 �!�� B.� let A = M[(�Z Z)D℄ and A0 = M[D℄ and A00 = M[(f�!�! B)℄.Let B = D then A00 �!! B.� let A = M[f (�!�)!(�!�)! (�Z Z)℄, A0 = M[f (�!�)!(�!�)! f�!�! ℄and A00 = M[�Z Z℄. Let B = M[f�!�! ℄ then A0 �!! B andA00 �!! B. 2Given the termination and the lo
al
on
uen
e of ��!-redu
tion,we
an dedu
e the Chur
h-Rosser property:THEOREM 9. (Chur
h-Rosser Theorem). If A �!���! A0 and A �!���!A00 then there exits some term B su
h that A0 �!���! B and A00 �!���!B. Proof. By [1℄ termination and lo
al
on
uen
e entail
on
uen
e.B. Properties of the SkeletonWhile the subterm
ompatibility of the initial skeleton is trivially givenby its de�nition, the proof of the subterm
ompatibility of the skeletonis done in two steps. First we state the relation between the skeletonof an appli
ation and the skeletons of its arguments:
paper.tex; 5/04/2001; 17:42; p.45

46LEMMA 12. For all A;B 2 pw��(�) we have:
D(AB) = f(A0B0) #��! j A0 2
D(A);B0 2
D(B)g and
D(�Z A) = f(�Z A0) #��! j A0 2
D(A)gProof. The proof depends basi
ally on the
on
uen
e of ��!-redu
tions:
D(AB) = f(A0B0) #��! j A0 2 e
D(A);B0 2 e
D(B)g= f(A0 #��! B0 #��!) #��! j A0 2 e
D(A);B0 2 e
D(B)g= f(A0B0)j A0 2
D(A);B0 2
D(B)gThe se
ond statement is proven analogously:
D(�Z A) = f(�Z A0) #��! j A0 2 e
D(A)g= f(�Z A0 #��!) #��! j A0 2 e
D(A)g= f(�Z A0) #��! j A0 2
D(A)g 2As a
orollary of lemma 12 we obtain the subterm-
ompatibility ofthe skeleton:COROLLARY 2. For all A;B;2 pw��(�) :
D(Aj�) =
D(B) implies
D(A) =
D([B=�℄A)Now, we show that the skeleton is invariant with respe
t to ��-redu
tion.In a �rst step, to prove this property for the initial skeleton, we intro-du
e the following lemma:LEMMA 13. For all A;B 2 pw��(�) and � 2 V [LV we havee
D([B=�℄A) = f([B0=�℄A0)j A0 2 e
D(A);B0 2 e
D(B)gProof. We prove this lemma by indu
tion on the stru
ture of A:Let A be a symbol distin
t from � or A = � 2 LV, thene
D([B=�℄A) = e
D(A)=�f([B0=�℄A0)j A0 2 e
D(A);B0 2 e
D(B)gLet A = � = X�a , then e
D(A) = fXg or e
D(A) = f��! depending onwhether a 2 D or not, thus we havee
D([B=�℄A) = e
D(B) = f[B0=�℄A0j A0 2 e
D(A);B0 2 e
D(B)
paper.tex; 5/04/2001; 17:42; p.46

47Let A = �W C. Withe
D([B=�℄C) = f[B0=�℄C0j C0 2 e
D(C);B0 2 e
D(B)gas an indu
tion hypothesis we dedu
e:e
D([B=�℄A) = e
D([B=�℄(�W C)) = e
D(�W [B=�℄C)= f(�W C0)j C0 2 e
D([B=�℄C)g= f(�W [B0=�℄C0)j C0 2 e
D(C);B0 2 e
D(B)g= f([B0=�℄(�W C0))j C0 2 e
D(C);B0 2 e
D(B)g= f([B0=�℄A0)j A0 2 e
D(�W C);B0 2 e
D(B)g= f([B0=�℄A0)j A0 2 e
D(A);B0 2 e
D(B)gLet A = (CD). Withe
D([B=�℄C) = f([B0=�℄C0)j C0 2 e
D(C);B0 2 e
D(B)ge
D([B=�℄D) = f([B0=�℄D0)j D0 2 e
D(D);B0 2 e
D(B)gas indu
tion hypotheses we dedu
e:e
D([B=�℄A) = e
D([B=�℄(CD)) = e
D([B=�℄C[B=�℄D)= f(C0D0)j C0 2 e
D([B=�℄C);D0 2 e
D([B=�℄D)g= f(C0D0)j C0 2 [B0=�℄e
D(C);D0 2 [B0=�℄e
D(D);B0 2 e
D(B)g= f[B0=�℄(C0D0)j C0 2 e
D(C);D0 2 e
D(D);B0 2 e
D(B)g= f[B0=�℄A0j A0 2 e
D(CD);B0 2 e
D(B)g 2As a
onsequen
e we obtain the invarian
e of the initial skeletonwrt. ��-redu
tion:LEMMA 14. For all A;B 2 pw��(�) :A =�� B implies e
D(A) =�� e
D(B)Proof. We use the subterm-
ompatibility of e
D to prove this prop-erty by indu
tion on the number of appli
ations of ��-
onversions ne
-essary to equalize A and B. By lemma 2 we only have to
onsidertop-level redu
tions, thus we are left with the following
ases:�!�: e
D(�Z CZ) = f�Z C0j C0 2 e
D(CZ)g= f(�Z C00Z)j C00 2 e
D(C)g =� fC00j C00 2 e
D(C)g = e
D(C)
paper.tex; 5/04/2001; 17:42; p.47

48�!�: e
D((�Z C)D) = f(C0D0)j C0 2 e
D(�Z C);D0 2 e
D(D)g= f(�Z C00)D0j C00 2 e
D(C);D0 2 e
D(D)g= f([D0=Z℄C00)j C00 2 e
D(C);D0 2 e
D(D)g =� e
D([D=Z℄C)2As an immediate
onsequen
e of the lemmata stated above, we ob-tain that also the skeleton is invariant wrt. ��-redu
tion:COROLLARY 3. For all A;B 2 pw��(�) :A =�� B implies
D(A) =
D(B)Proof. Let A �!�� B then lemma 14 guarantees e
D(A) �!��e
D(B). Thus
D(A) = e
D(A) #��!= e
D(B) #��!=
D(B) holds. 2

paper.tex; 5/04/2001; 17:42; p.48

