
Uni�
ation in a �-Cal
ulus withInterse
tion TypesMi
hael KohlhaseFB InformatikUniversit�at des SaarlandesW-6600 Saarbr�u
ken, Germanykohlhase�
s.uni-sb.deFrank PfenningDepartment of Computer S
ien
eCarnegie Mellon UniversityPittsburgh, PA 15213, USAfp�
s.
mu.eduAbstra
tWe propose related algorithms for uni�
ation and
onstraint simpli�
a-tion in �!&, a re�nement of the simply-typed �-
al
ulus with subtypesand bounded interse
tion types. �!& is intended as the basis of a logi
alframework in order to a
hieve more su

in
t and de
larative axiomatiza-tions of dedu
tive systems than possible with the simply-typed �-
al
ulus.The uni�
ation and
onstraint simpli�
ation algorithms des
ribed here laythe groundwork for a me
hanization of su
h frameworks as
onstraint logi
programming languages and theorem provers.1 Introdu
tionThe motivation for our work
omes from the area of logi
al frameworks. Alogi
al framework is a meta-language for the spe
i�
ation and implementa-tion of dedu
tive systems as they arise in logi
 and the study of programminglanguages. Examples of su
h frameworks are LF [?℄, hereditary Harrop for-mulae [6℄, and ALF [?℄. All these frameworks are based on some type theory.They have been used as the basis for the logi
-independent theorem proverIsabelle [8℄ and the logi
 programming languages �Prolog [7℄ and Elf [9℄.Extensive experiments in logi
 and the theory of programming languageshave been
arried out in these implementations.In a re
ent paper [?℄ the se
ond author has proposed a re�nement of the1

type theory �� underlying the LF logi
al framework in order to simplify thepresentation of many dedu
tive systems. This re�nement, ��&, in
orporatessubtypes and interse
tion types. In addition to a more natural re
e
tionof informal mathemati
al pra
ti
e in the spe
i�
ations of languages anddedu
tive systems, we also believe that re�nement types
an be bene�
ialto exe
ution in logi
 programming languages su
h as �Prolog or Elf andto sear
h in theorem provers su
h as Isabelle. In �rst-order languages thepotential of order-sorted type stru
tures have long been realized (see, forexample, [10, ?, ?℄) and we see our work as a natural extension of thesee�orts.At the heart of theorem proving or logi
 programming lies uni�
ation.In this paper we present 3 related algorithms for uni�
ation and
onstraintsimpli�
ation for �!&, a re�nement of the simply-typed �-
al
ulus withsubtypes and bounded interse
tion types. It builds upon Huet's algorithmfor the simply-typed �-
al
ulus [3℄ and extensions to related languages byNipkow and Qian [?℄ and the �rst author [4, 5℄, although the systems arein
omparable in terms of their expressive power. The motivating examplebelow should help to illustrate the di�eren
es. A �-
al
ulus with simplesubtypes as
onsidered by [?℄
ontains no interse
tions and type labels on �-abstra
tions are not interpreted as bounds. This means that the ne
essarysort
omputations for our algorithm are signi�
antly more
omplex. Thesystem
onsidered by the �rst author in [5℄ permits so-
alled term de
la-rations whi
h lead to an unde
idable type-
he
king problem and is thus insome ways more general. On the other hand, in order to model interse
-tion types, one would have to add an in�nite
olle
tion of new types andin�nitely many new term de
larations to a given signature.The rest of this paper is stru
tured as follows. We begin with a moti-vating example in the
ontext of �Prolog, followed by the de�nition of �!&.We then dis
uss general (pre)-uni�
ation in �!&. We
on
lude the paper bypresenting transformations for uni�
ation restri
ted to higher-order patternsin the sense of Miller [?℄.2 A Motivating ExampleThe value of subsorting (sometimes
alled subtyping) for �rst-order logi
programming languages has long been re
ognized and extensively investi-gated (see, for example, [10, ?, ?℄). Type systems with subsorts a�orda
on
ise, yet de
laratively
orre
t formulation of many programs. Fur-thermore, many programming errors manifest themselves as type errors at2

ompile-time. Current higher-order logi
 programming languages with aterm language in
luding �-abstra
tions (su
h as �Prolog or Elf) are basedon simple, polymorphi
, or dependent type dis
iplines, but do not in
orpo-rate a notion of subtyping. This
an be tra
ed in part to a la
k of a uniformand a

urate type system that
ombines fun
tion types (whi
h
lassify �-abstra
tions) with subtyping. As a motivating example we
onsider the
lassi�
ation of legal goals and programs in �Prolog. We begin with thelanguage of formulae.Simple Types A ::= a j o j A1 ! A2Formulae F ::= At j F1 ^ F2 j F1 � F2 j F1 _ F2 j 8x:AF j 9x:AFHere o is the distinguished type for formulae and a stands for expli
itlyde
lared type
onstants. An atom At has the normal form hM1 : : :Mn fora variable or non-logi
al
onstant h, where the type of the whole expressionmust be o. Programs and goals must be restri
ted in order to guaranteethat the uniform proof property is satis�ed for the resulting logi
 and goal-dire
ted sear
h will be
omplete. The restri
tion we show here is to higher-order hereditary Harrop formulae [6℄. The notation Atr stands for rigidatoms, that is, atoms whose head must be a
onstant.Programs D ::= Atr j D1 ^D2 j G � D j 8x:ADGoals G ::= At j G1 ^G2 j G1 _G2 j D � G j 9x:AG j 8x:AGThere is one further restri
tion: subterms of Atr may not
ontain impli
a-tions. If this restri
tion were relaxed, then for
onstants q and r of type oand p of type o! o, the goal pG ^G has a proof given the programp((q _ r) � (r _ q));but it has no uniform proof. The diÆ
ulty is that the subterm (q_r) � (r_q)is not a legal goal, but be
omes a goal after the instantiation of the variableG. Unfortunately this restri
tion also rules out programs su
h as meta-interpreters whi
h
annot lead to a failure of the uniform proof property. Inorder to
ir
umvent this problem, we would like to distinguish legal goals gand legal programs d as re�nements of the type o of formulae. This leads tothe following re�nement de
larationsg :: od :: oBut what then is the type of
onjun
tion, for example? For one, it maps twogoals to a goal, but is also maps two programs to a program. Of
ourse, it3

also still maps two arbitrary formulae to a formula. Similar
onsiderationsapply to impli
ation and we have^ : o! o! o � : o! o! o^ : g ! g ! g � : d! g ! g^ : d! d! d � : g ! d! dThe de
larations for the remaining logi
al
onstants
an now easily be added;we omit them here for the sake of brevity. Multiple typings are not limitedto
onstants: the fun
tion �x: o �y: o y ^ x, for example, should intuitivelyhave pre
isely the same types as ^. In order to see this
onsider the resultof applying this fun
tion to two goals G1 and G2: the result will always bea goal (namely G2 ^ G1). But this fa
t
annot be expressed in a systemof simple subtypes (su
h as the one
onsidered in [?℄): we need to addinterse
tion types, written as A1&A2. With the system we propose belowwe
an infer, for example,(�x: o �y: o y ^ x) : (o! o! o)&(g ! g ! g)&(d! d! d)(�x: o �y: o y � x) : (o! o! o)&(g ! d! g)&(d! g ! d)In
ontrast to other
al
uli, the type labels on �-abstra
tions here must be
onsidered as bounds on the sorts of possible instantiations of the variable.Thus, in order to type-
he
k a �-expression �x:AM we must analyze Mfor every subtype of A. In order to guarantee that this pro
ess remains�nitary and prin
ipal types exist, we distinguish between proper types andsorts. Proper types (su
h as o in our example) divide terms into disjoint
olle
tions. Sorts (su
h as g and d) re�ne the type stru
ture by
lassifyingterms (whi
h must already possess the same proper type) more a

uratelythan is possible with proper types alone. We thus refer to this type systemas a system of re�nement types. Note that sorts may not ne
essarily bedisjoint. For example, every (rigid) atom is both a legal goal and a legalprogram. Thus a new predi
ate pred on integers should be de
lared withpred : int ! (g& d)or we
ould add another sort a of atoms and de
lare it a subsort of both dand g: a :: o a � g a � dpred : int ! aWith this type stru
ture, we
an now safely program with higher-order pred-i
ates without undue restri
tions. The
ounterexample above now fails, sin
e4

G is a variable of sort g and the argument (q _ r) � (r _ q) does not havesort g (only type o). On the other hand, safe usage in a meta-interpretersu
h as 8D: d 8G: g (hyp(D) � solve(G)) � solve(D � G)is permitted if we have the typings solve: g ! g and hyp: d! d.We have many other examples where re�nement types are bene�
ial inhigher-order logi
 programming. For example, in the higher-order repre-sentation of natural dedu
tions [1℄ one
an distinguish normal forms as are�nement of arbitrary derivations instead of expli
itly en
oding two dif-ferent representations. In the implementation of fun
tional languages [?℄re�nement types
an distinguish values from arbitrary expressions insteadof leaving this distin
tion impli
it. The interested reader is referred to [?℄for further examples and dis
ussion.3 Basi
 De�nitionsThe syntax of �!& is that of the simply-typed �-
al
ulus augmented withthe interse
tion operator & for types. The main
hange in the language
on
erns signatures, where we drop the restri
tion that ea
h
onstant bede
lared at most on
e. We furthermore add re�nement de
larations a1 :: a2whi
h de
lares sort a1 as a re�nement of type a2 and subsort de
larationsa1 � a2 whi
h de
lares that a1 is a subsort of a2. The inferen
e rules forvalid signatures guarantee
ertain
onsisten
y properties between multiplede
larations.Types A ::= a j A1 ! A2 j A1&A2Obje
ts M ::=
 j x j �x:AM jM1M2Contexts � ::= � j �; x:ASignatures � ::= � j �; a: Type j �;
:A j �; a1 :: a2 j �; a1 � a2We use a and b to range over type
onstants,
 to range over obje
t
onstants,and x, y, and z to range over obje
t variables. We also restri
t
ontextsso that ea
h variable is de
lared at most on
e. Sin
e we also identify �-
onvertible terms, this does not essentially restri
t the inferen
e rules below.We will
all A&B the interse
tion of A and B, but refer to A and B as its
onjun
ts.Our system is more restri
tive than
ustomary formulations of inter-se
tion types (see, for example, [?, ?, ?℄). The validity judgments belowintrodu
e a distin
tion between proper types and sorts. Proper types behave5

essentially like simple types and do not
ontain interse
tions. Sorts furtherre�ne proper types by enabling a more pre
ise
lassi�
ation of terms, butsorts
an only be interse
ted or
ompared if they re�ne the same propertype. In the
ontext of a fun
tional language as in [2℄, this leads to a de
id-able type inferen
e problem. Here we are more
on
erned with the fa
t thatthe adequa
y of representations in the logi
al framework is preserved. Forthis it is vital that we do not extend the language of �-terms, but only thelanguage of types that
lassify them. Thus the type labels in �-abstra
tionsare restri
ted to proper types. For type-
he
king, a type label A a
ts as abound and the body of the �-term is analyzed for ea
h sort B that re�nes A.By the restri
tions sket
hed above only �nitely many su
h sorts B exist upto a simple synta
ti
 equivalen
e. For further dis
ussion and some examplesthe interested reader is referred to [?℄.3.1 JudgmentsThe validity judgments have the following form. Here, Type is a spe
ialtoken to allow a uniform presentation of the validity judgments for typesand obje
ts. ` � Sig � is a valid signature�̀ � Ctx � is a valid
ontext�̀ A: Type A is a valid type� �̀ M :A M is a valid obje
t of type AWe also need some auxiliary judgments. In parti
ular,�̀ A :: B A re�nes B�̀ A � B A is a subsort of BWe begin with the re�nement judgment for types.�̀ A1 :: B1 �̀ A2 :: B2�̀ A1 ! A2 :: B1 ! B2 �̀ A1 :: B �̀ A2 :: B�̀ A1&A2 :: Ba: Type in ��̀ a :: a a :: a0 in ��̀ a :: a0Note that the re�nement relation is neither transitive nor re
exive. The
onditions on valid signatures will guarantee that exa
tly one of the last6

two rules is appli
able for any de
lared
onstant, and the se
ond only for aunique a0. This implies that in a valid signature � for a given A there existsat most one B su
h that �̀ A :: B. We
all a type A su
h that �̀ A :: A aproper type.The next set of rules de�nes the valid signatures.` � Sig ` � Sig a not de
lared in �` �; a: Type Sig` � Sig �̀ A: Type �̀ A :: A0 �̀ Ai :: A0 for every
:Ai in � (1)` �;
:A Sig` � Sig a2: Type in � a1 not de
lared in �` �; a1 :: a2 Sig` � Sig a1 :: a3 in � a2 :: a3 in �` �; a1 � a2 SigThe rule (1) for
onstant de
larations enfor
es that in a valid signature,all types Ai de
lared for a given
onstant
 re�ne the same proper type A0.Valid
ontexts are straightforward, just as in the simply-typed �-
al
ulus.�̀ � Ctx �̀ � Ctx �̀ A: Type�̀ �; x:A CtxThe rules for valid types enfor
e that all type
onstants are de
lared andthat sorts
an only be interse
ted if they re�ne a
ommon proper type.a: Type in ��̀ a: Type a :: b in ��̀ a: Type �̀ A1: Type �̀ A2: Type�̀ A1 ! A2: Type�̀ A1: Type �̀ A2: Type �̀ A1 :: B �̀ A2 :: B�̀ A1&A2: Type7

Subsorting is
ontravariant in the domain sort, as expe
ted. The rulesguarantee that we
an only
ompare sorts that re�ne a
ommon propertype. a � b in ��̀ a � b �̀ A1 :: B �̀ A2 :: B�̀ A1 &A2 � A1 �̀ A1 :: B �̀ A2 :: B�̀ A1 &A2 � A2�̀ A � B1 �̀ A � B2�̀ A � B1&B2 �̀ A! B1 :: C �̀ A! B2 :: C�̀ (A! B1)&(A! B2) � A! (B1&B2)�̀ B1 � A1 �̀ A2 � B2�̀ A1 ! A2 � B1 ! B2�̀ A :: B�̀ A � A �̀ A � B �̀ B � C�̀ A � CWe introdu
e a partial equivalen
e relation� on types by de�ning �̀ A � Bas an abbreviation for �̀ A � B and �̀ B � A. It is easy to verify that(with respe
t to a valid signature) any proper type has only �nitely manyre�nements up to � equivalen
e.Lemma 3.1 (Basi
 Properties of Sorts) We impli
itly assume that bothsides of ea
h of the equivalen
es below re�ne the same type.(i) A&B � B&A; (ii) A&(B&C) � (A&B)&C;(iii) A&A � A; (iv) (A! B)&(A! C) � A! B&C:In the rules for valid obje
ts we see that the type label of a �-abstra
tionmust be a proper type and that the body of the �-expression may be analyzed

8

for every sort whi
h re�nes this type.x:A in �� �̀ x:A
:A in �� �̀
:A� �̀ M :A1 � �̀ M :A2� �̀ M :A1&A2 � �̀ M :A �̀ A � B� �̀ M :B� �̀ M1:A2 ! A1 � �̀ M2:A2� �̀ M1M2:A1 �̀ B :: A �; x:B �̀ M :C� �̀ �x:AM :B ! C3.2 Algorithmi
 JudgmentsThe judgments given above are de
larative and it is not immediately obvious,for example, if the subsorting or typing judgments are de
idable. FollowingPier
e [?℄, we formulate new versions of these judgments whi
h dire
tlyembody an algorithm for de
iding subsorting and synthesizing a minimaltype for an obje
t.We start with the algorithmi
 version of the subtype judgment, �̀ A vB. It requires an auxiliary operator � on types that is used to un
urryfun
tion types. �̀ a v a a � a0 in � �̀ a0 v b�̀ a v b�̀ A1 v B ! a�̀ A1&A2 v B ! a �̀ A2 v B ! a�̀ A1&A2 v B ! a�̀ A v B � C1 ! C2�̀ A v B ! (C1 ! C2) �̀ B1 v A1 �̀ A2 v B2 ! a�̀ A1 ! A2 v B1 � B2 ! a�̀ A v B ! C1 �̀ A v B ! C2�̀ A v B ! C1&C29

Theorem 3.2 The judgment �̀ A v B is e�e
tively de
idable. Further-more, if A and B are types not
ontaining the � operator su
h that �̀ A :: Cand �̀ B :: C for some C, then �̀ A � B, i� �̀ A v B.Proof: By an interpretation into Pier
e's system [?℄.The se
ond judgment expresses that M has minimal type A, written as� �̀ M 2 A. For the purposes of this system and the remainder of the paper,it is
onvenient to treat interse
tion as an operator on multiple argumentsand o

asionally a set of arguments. This is admissible in view of the basi
properties of & (
f. Lemma 3.1).x:A in �� �̀ x 2 A � �̀
 2 &fAj
:A in �g� �̀ M1 2 &i (Bi ! Ci) � �̀ M2 2 A� �̀ M1M2 2 &fCij �̀ A v Big� �̀ �x:AM 2 &fB ! Cj �̀ B :: A; �; x:B �̀ M 2 CgThe interse
tion operator applied to an empty set is unde�ned. The lastrule
ould lead to an in�nite interse
tion, but there are only �nitely manyre�nements of a proper type up to �. Thus only �nitely many
onjun
ts
ontribute to the interse
tion and we
an operationalize the rule by assum-ing a �xed algorithm for enumerating re�nements of a proper type. Thisinferen
e system is now syntax-dire
ted, and it is therefore immediate thatthe judgment � �̀ M 2 A is de
idable.Theorem 3.3 Given a valid signature �, a
ontext � valid in � and typesA and B valid in �. Then � �̀ M :A i� � �̀ M 2 B and �̀ B � A.Proof: Again, via an interpretation into the system of Pier
e. It is
ru
ialfor this interpretation that the number of �-equivalen
e
lasses of sortsre�ning a proper type is �nite.Lemma 3.4 Let �̀ A :: A1 ! A2, then � �̀ M :A, i� � �̀ �x:A1Mx:A.10

Proof: Via
ompleteness of the algorithmi
 judgments.We will write M � N , if M and N are
onvertible by ��-
onversions.Lemma 3.5 (Normal Form Lemma) Let M be a term su
h that � �̀M :C. Then there is a long normal form N = �x1:F1 : : : xn:Fk hN1 : : : Nm,su
h that h is a
onstant or variable and M � N . As usual we
all h thehead of M .4 General Bindings and Type ConstraintsThe notion of a general binding is
entral to all higher-order uni�
ationalgorithms. In
ontrast to the simply typed �-
al
ulus, general bindings forterms in �!& are not unique up to the
hoi
e of the new variables. Thereforewe obtain additional nondeterminism in the imitation and proje
tion steps.However, in
ontrast to the
ase with full term de
larations [5℄, we have thattype-erasures of all general bindings are unique and the types of the newvariables only depend on the types of the binding and its head. Thereforewe will handle the nondeterminism by introdu
ing type variables (whi
h wedenote by �) for the uni�
ation algorithm and delay the
omputation ofthe a
tual type information for the new variables into type
onstraints. Inorder to simplify the notation we write A for the proper type B su
h that�̀ A :: B. We also assume in the following that all types are valid, thus Aalways exists and is unique.De�nition 4.1 (General Binding) Let h be a
onstant or variable with� �̀ h 2 A and C � &j�l C1j �! : : : �! Ckj �! Dj a sort. Then thegeneral binding G of type C with the head h is the termG = �x1:C1j : : : �xk:Ckj h[y1x1 : : : xk℄ : : : [ynx1 : : : xk℄where yi: &j�l C1j �! : : : �! Ckj �! �ji and the f�ji j1 � i � ng aresolutions of the type
onstraint SChC de�ned below. As Lemma 4.3 willshow, G is a most general term with head h and sort C.If h is a
onstant or a free variable we write the general binding as GhCand
all it a general imitation binding. If h is the bound variable xi, then wewrite GiC and
all it the general i-proje
tion binding. In this
ase we writethe type
onstraint as SCiC .In order for � �̀ GhC :C to hold we have to guarantee that for all 1 � j � l�; x1:C1j ; : : : ; xk:Ckj �̀ h[y1x1 : : : xk℄ : : : [ynx1 : : : xk℄:Dj :11

This in turn requires that h at least map the �ji into Dj . These
onsid-erations together with the
o- and
ontravarian
e of � explain the type
onstraints SChC = A � &1�j�l �j1 �! : : : �! �jn �! Dj;SCiC = V1�j�l Cij � �j1 �! : : : �! �jn �! DjDe�nition 4.2 We will
all a substitution � = [M1=x1; : : : ;Mn=xn℄ well-typed in a
ontext �, i� � �̀ xi:Ai implies � �̀ Mi:Ai. Let W be a setof variables. Then we write � = �[W ℄ if for all x 2 W , �(x) = �(x), and� � �[W ℄ if there exists a well-typed substitution � su
h that � Æ � = �[W ℄.Lemma 4.3 (General Binding Lemma) If � ` M :C and the head ofM is h, then there exists a general binding G of type C with the head h anda well-typed substitution �, su
h that �(G) �M .Proof: By lemma 3.5 we
an assumeM to be in normal form, that is,M hasthe form �x1:F1 : : : �xk:Fk hN1 : : : Nn. We only treat the
ase where h is nota bound variable | the other
ase is similar. Let C = &j�l C1j �! : : : �!Ckj �! Dj and � �̀ M :C. Then �; x1:C1j ; : : : ; xk:Ckj ` hN1 : : : Nn:Djfor all 1 � j � l.Now let A = &j�mA1j ! : : :! Anj ! Bj and � �̀ h 2 A. Thus, sin
ehN1 : : : Nn is well-typed and of type Dj , there is a k � m, su
h that �̀ Bk vDj and there are types F ji , su
h that � �̀ Ni 2 F ji and �̀ F ji v Ajk. We
an easily verify that � �̀ A1k ! : : :! Ank ! Bk v F j1 ! : : :! F jn ! Djfor all j, so the type assignment [F ji =�ji ℄ is a solution of SChC .Now let G be the general binding for the head h and the type CG = �x1:C1j : : : �xk:Ckj h[y1x1 : : : xk℄ : : : [ynx1 : : : xk℄su
h that yi: &j�lC1j �! : : : �! Ckj �! �ji . We note that Cij is just Fiand de�ne �(yr) = �x1:F1 : : : �xk:Fk Nr. Then � is well-typed in the
ontext� and we furthermore have that �(G) � �x1:F1 : : : �xk:Fk hN1 : : : Nn.Lemma 4.4 If � = [M=x℄ [�0 then there exists a general binding G and asubstitution �, su
h that � = [M=x℄[�[�0[dom(�)℄ = �Æ [G=x℄[�0[dom(�)℄.Proof sket
h: Dire
tly from Lemma 4.3.Example 4.5 Let� = B: Type; T :: B;F :: B;^:T �! T �! T;^:T �! F �! F;^:F �! T �! F;^:F �! F �! F:12

ThenGT̂�!F &F�!T = �x:B ^ [y1x℄[y2x℄SCT̂�!F &F�!T = T �! T �! T &T �! F �! F &F �! T �! F&F �! F �! F � �11 �! �12 �! F &�21 �! �22 �! TThe
onstraints on the types of y1 and y2 have the following three solutionsy1:F �! T &T �! F ; y2:F �! T &T �! Ty1:F �! T &T �! F ; y2:F �! T &T �! Fy1:F �! T &T �! T ; y2:F �! T &T �! F5 General Uni�
ation and Pre-Uni�
ationBuilding upon the notion of general binding and type
onstraint simpli-�
ation we give a set of transformations for general uni�
ation and pre-uni�
ation, whi
h we will prove
orre
t and
omplete with the methods of[11℄.De�nition 5.1 (Uni�
ation Problem) A uni�
ation problem is a for-mula in the languageF ::=M := N j 9x:AF j 8u:AF j 9� :: AF j F1 ^ F2 j > j A1 � A2where the types A may now
ontain type variables �. We will
all allsubformulae of F of the form A1 � A2 type
onstraints. The re�nementjudgment is extended in the obvious way (assuming � re�nes A in the s
opeof 9� :: A) and we require that for ea
h type
onstraint A1 � A2 there is aproper type A su
h that A1 :: A and A2 :: A.Sin
e we have de�ned type variables to range only over the (�nite) setof re�nements of a given type, the set of solutions of a type
onstraint ise�e
tively
omputable by a generate-and-test approa
h. It is
lear, however,that this is not a viable implementation strategy. A more reasonable
on-straint simpli�er
an be derived from the algorithmi
 rules for subtyping,but we leave the details to a future paper.In order to simplify the presentation of the algorithm, we assume thatall uni�
ation formulae are in 98-form. Ea
h formula is equivalent to one inthis form by raising [?℄. We will refer to the universally quanti�ed variablesas parameters and use the meta-variables u and v to range over parameters.Note that they may not o

ur in the substitution terms for existential vari-ables, whi
h we denote by x, y, and z. We also use h to stand for either a13

onstant or a parameter. Furthermore, we �x the signature � and omit the
ontext � and simply write M 2 A for the judgment � �̀ M 2 A when the
ontext �
an be re
overed from the pla
e in whi
h M appears.De�nition 5.2 (Provability) The basi
 judgment is � `̀ F (F is prov-able) is de�ned by the following inferen
e rules.� �̀ M :A M � N � �̀ N :A� `̀ M := N � `̀ > � `̀ F � `̀ G� `̀ F ^G� �̀ M :A � `̀ [M=x℄F`̀ 9x:AF �̀ B :: A � `̀ [B=�℄F`̀ 9� :: AF�; u:A `̀ F� `̀ 8u:AF �̀ A � B� `̀ A � BWe
all a substitution � for the existential variables in a uni�
ationformula F legal for F if it is well-typed and no parameters o

ur in theinstantiation terms for �. Note that a proof of a formula F in 98 formuniquely determines a legal substitution � for the existential variables in F .Conversely, any ground instan
e of a legal uni�er for the equations in thematrix of F uniquely determines a proof for F . In slight abuse of notation,we will thus
all su
h a � a uni�er for F . The notion of most general uni�eris extended similarly to formulae.De�nition 5.3 (Solved Form) A uni�
ation formula F is in solved formif it
ontains no sort
onstraints and all of its equations are in solved form,i.e., of the form x :=M , su
h that x 2 A, M 2 B and B � A, neither x norany parameter u is free in M , and x is not free elsewhere in F . It is easy toshow that if F is in solved form with matrix x1 :=M1 ^ : : : ^ xn :=Mn then�F = [M1=x1; : : : ;Mn=xn℄ is a most general uni�er for F .Note that a formula in solved form is not ne
essarily provable from theempty
ontext, sin
e some sorts may be empty. However we feel that thenonemptyness of sorts should be treated in the dedu
tion system that usesthe uni�
ation algorithm, rather than in uni�
ation itself (
f. Theorem 5.5).14

De�nition 5.4 (Transformations for General Uni�
ation) In the de-s
ription of the rules, we use F� to stand for the matrix of F . We omit theobvious versions of the rules where the equations on the left-hand side arereversed.trivial M :=M =) >.de
ompose hM1 : : :Mn := hN1 : : : Nn =)M1 := N1 ^ : : : ^Mn := Nn.merge x := M su
h that x 2 A, M 2 B and B � A, then F� =) x :=M ^ [M=x℄F�, if neither x nor any parameter u o

urs in M and xo

urs elsewhere in F�.imitate xM1 : : :Mm :=
N1 : : : Nn =) xM1 : : :Mm :=
N1 : : : Nn ^ x :=G
A ^ SC
A, where x 2 A.i-proje
t xM1 : : :Mm := N =) xM1 : : : Mm := N ^ x := GiA ^ SCiA wherex 2 A.guess xM1 : : :Mm := yN1 : : : Nn =) xM1 : : :Mm := yN1 : : : Nn ^ x := GhA ^SChA if h is some
onstant or existential variable and x 2 A.simplify
onstraint type
onstraints
an be simpli�ed by any sound
on-straint simpli�er.lam-lam �v:AM := �v:AN =) 8v:AM := N . Note that the type labelson both sides must be the same for the equation to be valid (they areproper types, not sorts).lam-term �v:AM := N =) 8v:AM := N v whereN is not a �-abstra
tion.Furthermore we require the stru
tural rules that deal with quanti�er ex-
hange from [?℄ and rules to erase > from a
onjun
tion.These transformations (and those of the following uni�
ation algorithms)
an be employed by very di�erent algorithms, depending on the strategyinvolved in
onstraint simpli�
ation. Solving type
onstraints eagerly afterea
h imitation and proje
tion step amounts to separate imitation rules forea
h solution.For a realisti
 implementation it seems advantageous to pass the type
onstraints along and wait for more information in form of further instan-tiation. Su
h further instantiation might be provided by further imitation15

steps. An implementation of the algorithm would also add rules to iden-tify failure due to non-appli
ability of rules early and yield a more eÆ
ientalgorithm.The soundness of the transformations
an readily be established fromthe soundness of the
onstraint simpli�er and lemmata 4.3 and 3.4 by usingthe te
hniques from [11℄. Now we will turn to the
ompleteness of thetransformations.Theorem 5.5 (Completeness) For any uni�er � of a uni�
ation formulaF there exists a sequen
e of transformations for general well-typed uni�
a-tion from F to S in solved form, su
h that �S � �[X℄ where X is the set ofexistential variables in F .Proof sket
h: We de�ne a variant of the transformations from De�ni-tion 5.4 that operate on a pair (�; F), where F is a uni�
ation formula and� is a substitution. For � = [M=x℄ [�0 let G be the general binding and �the substitution guaranteed by Lemma 4.4. The transformations imitate,proje
t and guess are of the form (�; F) =) (�0[�[[M=x℄; F^x := G^SC),where � is as in Lemma 4.4.Obviously we get a subsystem of that de�ned in De�nition 5.4, if werestri
t this variant to the uni�
ation formulae. Furthermore in
ontrast tothe unrestri
ted system it
an be shown that all sequen
es of transformationsin this system must terminate with an irredu
ible pair (�; F). On the otherhand by
lose inspe
tion of the transformations using lemma 4.3, we
ansee that irredu
ible pairs are in solved form. Thus we get the
ompletenessresult from De�nition 5.3.The notion of pre-uni�
ation is of interest to automated theorem proving,sin
e pre-uni�ers
an always be extended to uni�ers (see Lemma 5.7) and thepre-uni�
ation problem is often tra
table. We will only state the de�nitionsand the
ompleteness result.De�nition 5.6 (Transformations for General Pre-Uni�
ation) Thetransformations for pre-uni�
ation are the same as those for general uni-�
ation ex
ept that the guess rule is dropped.These rules are applied to an initial uni�
ation problem, until it is inin pre-solved form, that is all equations are in either in solved form or theheads of both sides of the equation are existential variables.Lemma 5.7 Pre-solved uni�
ation problems are always uni�able.16

Proof: Let F be a uni�
ation problem in pre-solved form and let E bean equation xM1 : : :Mm := yN1 : : : Nn in F where x and y are existentialvariables. Then the substitution� = [[�x1:Aj1 : : : xn:Ajn z℄=x; [�y1:Cj1 : : : yn:Cjm z℄=y℄where x; y are existential variables with x 2 &j�kAj1 �! : : : �! Ajn �!Bj , y 2 &j�lCj1 �! : : : �! Cjm �! Dj and z: &j�k Bj &&j�lDj uni�esE. This idea
an be extended to solve all equations of this form simultane-ously.Theorem 5.8 (Completeness of Pre-Uni�
ation) For any pre-uni�er� of a uni�
ation formula F there exists a sequen
e of transformations forgeneral pre-uni�
ation from F to a pre-solved form S, su
h that �S � �[X℄where X is the set of existential variables in F .Corollary 5.9 If F is a
losed uni�
ation problem and F is transformedinto a (pre-)solved form S by a sequen
e of transformations for general uni-�
ation or pre-uni�
ation and all sorts of variables that are existentiallybound in S are nonempty, then `̀ F .6 Uni�
ation Restri
ted to PatternsWe now spe
ialize the algorithm from Se
tion 5 to patterns, whi
h are de-�ned just as in the simply-typed �-
al
ulus: any o

uren
e of an existentialvariable x in 9x1:A1 : : : 9xq:Aq8u1:B1 : : : 8up:Bp Fmust have the form xu'(1) : : : u'(n), where ' is a partial permutation fromn into p, i.e., an inje
tive mapping form 1; : : : ; n to 1; : : : ; p. The transfor-mations for pattern uni�
ations are those of De�nition 5.4 where the ruleguess is repla
ed by the following transformations.De�nition 6.1 (Transformations for Pattern Uni�
ation) Here x andy are existential variables where x:C = &j�k C1j ! : : :! Cnj ! Dj .var-var-same xu'(1) : : : u'(n) := xu (1) : : : u (n) is transformed intox := �v1:B'(1) : : : �vn:B'(n) x0 v�(1) : : : v�(l);where � is a partial permutation satisfying: there exists a k su
h that�(k) = '(i) i� '(i) = (i) and x0: &j�k C�(1)j ! : : :! C�(l)j ! Dj isa new existential variable. 17

var-var-di� xu'(1) : : : u'(n) := y u (1) : : : u (m). Then let '0 and 0 bepartial permutations satisfying: there exists a k su
h that '0(k) = iand 0(k) = j i� '(i) = (j). We transform intox := �v1:B'(1) : : : �vn:B'(n) z v'0(1) : : : v'0(l) ^y := �v1:B (1) : : : �vm:B (m) z v 0(1) : : : v 0(l); wherez : &j�k C 0(1)j ! : : :! C 0(l)j �! DjNote that in the
ase of higher-order patterns the use of the rules proje
tand imitate are deterministi
, that is, all but the imitation or one proje
tionimmediately lead to failure. The sort
onstraints, however, may still havemultiple solutions.Theorem 6.2 (Completeness of Pattern Uni�
ation) Let F be a
loseduni�
ation problem where all obje
ts are higher-order patterns. Then thetransformations of pattern uni�
ation always terminate and either1. yield a uni�
ation problem S in solved form and �S is a uni�er forF . Furthermore, if all sorts of existentially bound variables in S arenonempty, then `̀ F .or 2. yield a uni�
ation problem where none of the transformations are ap-pli
able and F is not provable.7 Con
lusion and Further WorkThe uni�
ation algorithms presented here
an serve as a basis for pra
ti
alimplementations of theorem provers or logi
 programming languages whi
hin
orporate a notion of subtype and interse
tion type. Standard te
hniquesshould be appli
able to a
hieve the same eÆ
ien
y as
urrent implementa-tions of higher-order uni�
ation or pattern uni�
ation whenever no subtypeor re�nement de
larations are made. The presen
e of sort
onditions po-tentially leads to an explosion of the sear
h spa
e during uni�
ation. Intheorem proving this merely shifts work from logi
al inferen
es to uni�
a-tion where it is handled algorithmi
ally, and we expe
t it to improve overallperforman
e. In logi
 programming many sort
omputations
an be shownto be redundant at
ompile-time, given that the goal is always maintainedin well-sorted form. This situation is familiar from (�rst-order) order-sortedlogi
 programming and we believe that su
h stati
 analysis is ne
essary toobtain a pra
ti
al system. 18

We would also like to extend the algorithm to ��&, a type theory withinterse
tion and dependent types proposed in [?℄. An extension of the lan-guage Elf [9℄ along these lines would be based on a
onstraint solver (ratherthan a uni�
ation or pre-uni�
ation algorithm) that solves pattern uni�
a-tion problems, but maintains other equations and sort
onditions as
on-straints. The prin
ipal question in this
ontext is when and to what extentsort
omputation should lead to bran
hing during the
omputation. Thiswill depend in large part upon the results of experimentation with a proto-type implementation.Finally, we would like to
onsider relaxing some of the restri
tions ofthe
urrent system without disturbing its basi
 properties. For example, itmay be possible to admit arbitrary type labels in abstra
tions if we also add
onversion rules that relabel abstra
tions with
ompatible types.A
knowledgments. The �rst author was supported by the \Sonderfor-s
hungsberei
h 314, K�unstli
he Intelligenz" of the Deuts
he Fors
hungsge-meins
haft (DFG) and the \Studienstiftung des deuts
hen Volkes". These
ond author was supported in part by the U.S. Air For
e under Contra
tF33615-90-C-1465, ARPA Order No. 7597.Referen
es[1℄ Amy Felty. Spe
ifying and Implementing Theorem Provers in a Higher-Order Logi
 Programming Language. PhD thesis, Department of Com-puter and Information S
ien
e, University of Pennsylvania, July 1989.[2℄ Tim Freeman and Frank Pfenning. Re�nement types for ML. In Pro-
eedings of the SIGPLAN '91 Symposium on Language Design and Im-plementation, Toronto, Ontario. ACM Press, June 1991. To appear.Also available as Ergo report 91{097.[3℄ G�erard Huet. A uni�
ation algorithm for typed �-
al
ulus. Theoreti
alComputer S
ien
e, 1:27{57, 1975.[4℄ Mi
hael Kohlhase. Order-sorted type theory I: Uni�
ation. SEKI-Report SR-91-18 (SFB), Universit�at des Saarlandes, Saarbr�u
ken, 1991.[5℄ Mi
hael Kohlhase. Beweissysteme mit Logiken h�oherer Stufe. InKarl Hans Bl�asius and Hans-J�urgen B�ur
kert, editors, Deduktionssys-teme, Automatisierung des Logis
hen Denkens,
hapter 6, pages 213{238. R. Oldenbourg Verlag, 2 edition, 1992.19

[6℄ Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre S
edrov.Uniform proofs as a foundation for logi
 programming. Annals of Pureand Applied Logi
, 51:125{157, 1991.[7℄ Gopalan Nadathur and Dale Miller. An overview of �Prolog. InRobert A. Kowalski and Kenneth A. Bowen, editors, Logi
 Program-ming: Pro
eedings of the Fifth International Conferen
e and Sympo-sium, Volume 1, pages 810{827, Cambridge, Massa
husetts, August1988. MIT Press.[8℄ Lawren
e C. Paulson and Tobias Nipkow. Isabelle tutorial and user'smanual. Te
hni
al Report 189, Computer Laboratory, University ofCambridge, January 1990.[9℄ Frank Pfenning. Logi
 programming in the LF logi
al framework. InG�erard P. Huet and Gordon D. Plotkin, editors, Logi
al Frameworks.Cambridge University Press, 1991.[10℄ Gert Smolka. Logi
 Programming over Polymorphi
ally Order-SortedTypes. PhD thesis, Universit�at Kaiserslautern, 1989.[11℄ Wayne Snyder. A Proof Theory for General Uni�
ation. Progress inComputer S
ien
e and Applied Logi
. Birkh�auser, 1991.

20

