
Cut-Simulation in Impredicative Logics

Christoph E. Benzmüller1, Chad E. Brown1, and Michael Kohlhase2

1 Saarland University, Saarbrücken, Germany (chris|cebrown@ags.uni-sb.de)
2 International University Bremen, Bremen, Germany (m.kohlhase@iu-bremen.de)

Abstract. We investigate cut-elimination and cut-simulation in impred-
icative (higher-order) logics. We illustrate that adding simple axioms
such as Leibniz equations to a calculus for an impredicative logic — in
our case a sequent calculus for classical type theory — is like adding cut.
The phenomenon equally applies to prominent axioms like Boolean- and
functional extensionality, induction, choice, and description. This calls
for the development of calculi where these principles are built-in instead
of being treated axiomatically.

1 Introduction

One of the key questions of automated reasoning is the following: “When does a
set Φ of sentences have a model?” In fact, given reasonable assumptions about
calculi, most inference problems can be reduced to determining (un)-satisfiability
of a set Φ of sentences. Since building models for Φ is hard in practice, much
research in computational logic has concentrated on finding sufficient conditions
for satisfiability, e.g. whether there is a Hintikka set H extending Φ.

Of course in general the answer to the satisfiability question depends on the
class of models at hand. In classical first-order logic, model classes are well-
understood. In impredicative higher-order logic, there is a whole landscape of
plausible model classes differing in their treatment of functional and Boolean
extensionality. Satisfiability then strongly depends on these classes, for instance,
the set Φ := {a, b, qa,¬qb} is unsatisfiable in a model class where the universes
of Booleans are required to have at most two members (see property b below),
but satisfiable in the class without this restriction.

In [5] we have shown that certain (i.e. saturated) Hintikka sets always have
models and have derived syntactical conditions (so-called saturated abstract con-
sistency properties) for satisfiability from this fact. The importance of abstract
consistency properties is that one can check completeness for a calculus C by
verifying proof-theoretic conditions (checking that C-irrefutable sets of formulae
have the saturated abstract consistency property) instead of performing model-
theoretic analysis (for historical background of the method in first-order logic,
cf. [10, 13, 14]). Unfortunately, the saturation condition (if Φ is abstractly con-
sistent, then one of Φ ∪ {A} or Φ ∪ {¬A} is as well for all sentences A) is very
difficult to prove for machine-oriented calculi (indeed as hard as cut elimination).

In this paper we investigate further the relation between the lack of the
subformula property in the saturation condition (we need to “guess” whether

to extend Φ by A or ¬A on our way to a Hintikka set for all sentences A) and
the cut rule (where we have to “guess, i.e. search for in an automated reasoning
setting” the cut formula A). A side result is the insight that there exist “cut-
strong” formulae which support the effective simulation of cut in calculi for
impredicative logics.

In Section 2, we will fix notation and review the relevant results from [5]. We
define in Section 3 a basic sequent calculus and study the correspondence be-
tween saturation in abstract consistency classes and cut-elimination. In Section 4
we introduce the notion of “cut-strong” formulae and sequents and show that
they support the effective simulation of cut. In Section 5 we demonstrate that
the pertinent extensionality axioms are cut-strong. We develop alternative ex-
tensionality rules which do not suffer from this problem. Further rules are needed
to ensure Henkin completeness for this calculus with extensionality. These new
rules correspond to the acceptability conditions we propose in Section 6 to en-
sure the existence of models and the existence of saturated extensions of abstract
consistence classes.

2 Higher-Order Logic

In [5] we have re-examined the semantics of classical higher-order logic with the
purpose of clarifying the role of extensionality. For this we have defined eight
classes of higher-order models with respect to various combinations of Boolean
extensionality and three forms of functional extensionality. We have also devel-
oped a methodology of abstract consistency (by providing the necessary model
existence theorems) needed for instance, to analyze completeness of higher-order
calculi with respect to these model classes. We now briefly summarize the main
notions and results of [5] as required for this paper. Our impredicative logic of
choice is Church’s classical type theory.

Syntax: Church’s Simply Typed λ-Calculus. As in [9], we formulate higher-order
logic (HOL) based on the simply typed λ-calculus. The set of simple types T is
freely generated from basic types o and ι using the function type constructor →.

For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z,
X1

β , X2
γ . . .) and a signature Σ of (typed) constants (denoted by cα, fα→β , . . .).

We let Vα (Σα) denote the set of variables (constants) of type α. The signature
Σ of constants includes the logical constants ¬o→o, ∨o→o→o and Πα

(α→o)→o for

each type α; all other constants in Σ are called parameters. As in [5], we assume
there is an infinite cardinal ℵs such that the cardinality of Σα is ℵs for each type
α (cf. [5](3.16)). The set of HOL-formulae (or terms) are constructed from typed
variables and constants using application and λ-abstraction. We let wffα(Σ) be
the set of all terms of type α and wff(Σ) be the set of all terms.

We use vector notation to abbreviate k-fold applications and abstractions as
AUk and λXk A, respectively. We also use Church’s dot notation so that stands
for a (missing) left bracket whose mate is as far to the right as possible (consistent
with given brackets). We use infix notation A ∨ B for ((∨A)B) and binder

notation ∀Xα A for (Πα(λXα Ao)). We further use A ∧ B, A ⇒ B, A ⇔ B
and ∃Xα A as shorthand for formulae defined in terms of ¬, ∨ and Πα (cf. [5]).
Finally, we let (Aα

.
=

α
Bα) denote the Leibniz equation ∀Pα→o (PA) ⇒ PB.

Each occurrence of a variable in a term is either bound by a λ or free. We
use free(A) to denote the set of free variables of A (i.e., variables with a free
occurrence in A). We consider two terms to be equal if the terms are the same
up to the names of bound variables (i.e., we consider α-conversion implicitly).
A term A is closed if free(A) is empty. We let cwffα(Σ) denote the set of
closed terms of type α and cwff(Σ) denote the set of all closed terms. Each term
A ∈ wffo(Σ) is called a proposition and each term A ∈ cwffo(Σ) is called a
sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by
[A/X]B. Since we consider α-conversion implicitly, we assume the bound vari-
ables of B avoid variable capture.

Two common relations on terms are given by β-reduction and η-reduction.
A β-redex (λX A)B β-reduces to [B/X]A. An η-redex (λX CX) (where X /∈
free(C)) η-reduces to C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can
be converted to B by a series of β-reductions and expansions. Similarly, A≡βηB
means A can be converted to B using both β and η. For each A ∈ wff(Σ) there
is a unique β-normal form (denoted A↓β) and a unique βη-normal form (denoted
A↓βη). From this fact we know A≡βB (A≡βηB) iff A↓β ≡ B↓β (A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is of
the form [cAn] where c is a logical constant. An atomic formula is any other
formula in wffo(Σ).

Semantics: Eight Model Classes. For each ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} (the
latter set will be abbreviated by in the remainder) we define M∗ to be the class
of all Σ-models M such that M satisfies property q and each of the additional
properties {η, ξ, f, b} indicated in the subscript ∗ (cf. [5](3.49)). Special cases of
Σ-models are Henkin models and standard models (cf. [5](3.50 and 3.51)). Every
model in Mβfb is isomorphic to a Henkin model (see the discussion following
[5](3.68)).

Saturated Abstract Consistency Classes and Model Existence. Finally, we review
the model existence theorems proved in [5]. There are three stages to obtain-
ing a model in our framework. First, we obtain an abstract consistency class
ΓΣ (usually defined as the class of irrefutable sets of sentences with respect to
some calculus). Second, given a (sufficiently pure) set of sentences Φ in the ab-
stract consistency class ΓΣ we construct a Hintikka set H extending Φ. Third,
we construct a model of this Hintikka set (and hence a model of Φ).

A Σ-abstract consistency class ΓΣ is a class of sets of Σ-sentences. An abstract
consistency class is always required to be closed under subsets (cf. [5](6.1)).
Sometimes we require the stronger property that ΓΣ is compact, i.e., a set Φ is
in ΓΣ iff every finite subset of Φ is in ΓΣ (cf. [5](6.1,6.2)).

To describe further properties of abstract consistency classes, we use the
notation S ∗ a for S ∪ {a} as in [5]. The following is a list of properties a class
ΓΣ of sets of sentences can satisfy with respect to arbitrary Φ ∈ ΓΣ (cf. [5](6.5)):

∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.

∇¬ If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ .

∇β If A≡βB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ .

∇η If A≡βηB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ .

∇∨ If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ .

∇∧ If ¬(A ∨ B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ .

∇∀ If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).

∇∃ If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα which does
not occur in any sentence of Φ.

∇b If ¬(A
.
=

o
B) ∈ Φ, then Φ ∗ A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗ B ∈ ΓΣ .

∇ξ If ¬(λXα M
.
=

α→β
λXα N) ∈ Φ, then Φ ∗ ¬([w/X]M

.
=

β
[w/X]N) ∈ ΓΣ for

any parameter wα ∈ Σα which does not occur in any sentence of Φ.

∇f If ¬(G
.
=

α→β
H) ∈ Φ, then Φ ∗ ¬(Gw

.
=

β
Hw) ∈ ΓΣ for any parameter

wα ∈ Σα which does not occur in any sentence of Φ.

∇sat Either Φ ∗ A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ .

We say ΓΣ is an abstract consistency class if it is closed under subsets and
satisfies ∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and ∇∃. We let Accβ denote the collection of all
abstract consistency classes. For each ∗ ∈ we refine Accβ to a collection
Acc∗ where the additional properties {∇η,∇ξ,∇f,∇b} indicated by ∗ are required
(cf. [5](6.7)). We say an abstract consistency class ΓΣ is saturated if ∇sat holds.

Using ∇c (atomic consistency) and the fact that there are infinitely many
parameters at each type, we can show every abstract consistency class satisfies
non-atomic consistency. That is, for every abstract consistency class ΓΣ , A ∈
cwffo(Σ) and Φ ∈ ΓΣ , we have either A /∈ Φ or ¬A /∈ Φ (cf. [5](6.10)).

In [5](6.32) we show that sufficiently Σ-pure sets in saturated abstract con-
sistency classes extend to saturated Hintikka sets. (A set of sentences Φ is suffi-
ciently Σ-pure if for each type α there is a set Pα of parameters of type α with
cardinality ℵs and such that no parameter in P occurs in a sentence in Φ.)

In the Model Existence Theorem for Saturated Sets [5](6.33) we show that
these saturated Hintikka sets can be used to construct models M which are mem-
bers of the corresponding model classes M∗. Then we conclude (cf. [5](6.34)):

Model Existence Theorem for Saturated Abstract Consistency Classes:
For all ∗ ∈ , if ΓΣ is a saturated abstract consistency class in Acc∗ and Φ ∈ ΓΣ
is a sufficiently Σ-pure set of sentences, then there exists a model M ∈ M∗ that
satisfies Φ. Furthermore, each domain of M has cardinality at most ℵs.

In [5] we apply the abstract consistency method to analyze completeness
for different natural deduction calculi. Unfortunately, the saturation condition
is very difficult to prove for machine-oriented calculi (indeed as we will see in
Section 3 it is equivalent to cut elimination), so Theorem [5](6.34) cannot be
easily used for this purpose directly.

In Section 6 we therefore motivate and present a set of extra conditions for
Accβfb we call acceptability conditions. The new conditions are sufficient to
prove model existence.

Basic Rules
A atomic (and β-normal)

G(init)
∆ ∗A ∗ ¬A

∆ ∗ A
G(¬)

∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B
G(∨−)

∆ ∗ ¬(A ∨ B)

∆ ∗ A ∗ B
G(∨+)

∆ ∗ (A ∨ B)

∆ ∗ ¬ (AC)
?

y

β
C ∈ cwffα(Σ)

G(ΠC

−)
∆ ∗ ¬Π

α
A

∆ ∗ (Ac)
?

y

β
cα ∈ Σ new

G(Π c
+)

∆ ∗ Π
α
A

Inversion Rule
∆ ∗ ¬¬A

G(Inv¬)
∆ ∗A

Weakening and Cut Rules
∆

G(weak)
∆ ∪ ∆

′

∆ ∗ C ∆ ∗ ¬C
G(cut)

∆

Fig. 1. Sequent Calculus Rules

3 Sequent Calculi, Cut and Saturation

We will now study cut-elimination and cut-simulation with respect to (one-sided)
sequent calculi.

Sequent Calculi G. We consider a sequent to be a finite set ∆ of β-normal
sentences from cwffo(Σ). A sequent calculus G provides an inductive definition
for when ⊢⊢G ∆ holds. We say a sequent calculus rule

∆1 · · · ∆n
r

∆

is admissible in G if ⊢⊢G ∆ holds whenever ⊢⊢G ∆i for all 1 ≤ i ≤ n. For any
natural number k ≥ 0, we call an admissible rule r k-admissible if any instance
of r can be replaced by a derivation with at most k additional proof steps. Given
a sequent ∆, a model M, and a class M of models, we say ∆ is valid for M (or
valid for M), if M |= D for some D ∈ ∆ (or ∆ is valid for every M ∈ M). As
for sets in abstract consistency classes, we use the notation ∆ ∗A to denote the
set ∆ ∪ {A} (which is simply ∆ if A ∈ ∆). Figure 1 introduces several sequent
calculus rules. Some of these rules will be used to define sequent calculi, while
others will be shown admissible (or even k-admissible).

Abstract Consistency Classes for Sequent Calculi. For any sequent calculus G
we can define a class ΓG

Σ of sets of sentences. Under certain assumptions, ΓG
Σ is

an abstract consistency class. First we adopt the notation ¬Φ and Φ↓β for the
sets {¬A|A ∈ Φ} and {A↓β |A ∈ Φ}, resp., where Φ ⊆ cwffo(Σ). Furthermore,
we assume this use of ¬ binds more strongly than ∪ or ∗, so that ¬Φ∪∆ means
(¬Φ) ∪ ∆ and ¬Φ ∗ A means (¬Φ) ∗ A.

Definition 1 Let G be a sequent calculus. We define ΓG
Σ to be the class of all

finite Φ ⊂ cwffo(Σ) such that ⊢⊢G ¬ Φ↓β does not hold.

In a straightforward manner, one can prove the following results (see [7]).

Lemma 2 Let G be a sequent calculus such that G(Inv¬) is admissible. For any
finite sets Φ and ∆ of sentences, if Φ ∪ ¬∆ /∈ ΓG

Σ , then ⊢⊢G ¬ Φ↓β ∪ ∆↓β holds.

Theorem 3 Let G be a sequent calculus. If the rules G(Inv¬), G(¬), G(weak),
G(init), G(∨−), G(∨+), G(Π C

−) and G(Π c
+) are admissible in G, then ΓG

Σ ∈ Accβ.

We can furthermore show the following relationship between saturation and
cut (see [7]).

Theorem 4 Let G be a sequent calculus.

1. If G(cut) is admissible in G, then ΓG
Σ is saturated.

2. If G(¬) and G(Inv¬) are admissible in G and ΓG
Σ is saturated, then G(cut)

is admissible in G.

Since saturation is equivalent to admissibility of cut, we need weaker condi-
tions than saturation. A natural condition to consider is the existence of satu-
rated extensions.

Definition 5 (Saturated Extension) Let ∗ ∈ and ΓΣ , Γ ′
Σ ∈ Acc∗ be ab-

stract consistency classes. We say Γ ′
Σ is an extension of ΓΣ if Φ ∈ Γ ′

Σ for every
sufficiently Σ-pure Φ ∈ ΓΣ. We say Γ ′

Σ is a saturated extension of ΓΣ if Γ ′
Σ is

saturated and an extension of ΓΣ .

There exist abstract consistency classes Γ in Accβfb which have no saturated
extension.

Example 6 Let ao, bo, qo→o ∈ Σ and Φ := {a, b, (qa),¬(qb)}. We construct an
abstract consistency class ΓΣ from Φ by first building the closure Φ′ of Φ under
relation ≡β and then taking the power set of Φ′. It is easy to check that this ΓΣ is
in Accβfb. Suppose we have a saturated extension Γ ′

Σ of ΓΣ in Accβfb. Then Φ ∈ Γ ′
Σ

since Φ is finite (hence sufficiently pure). By saturation, Φ ∗ (a
.
=

o
b) ∈ Γ ′

Σ or
Φ ∗¬(a

.
=

o
b) ∈ Γ ′

Σ. In the first case, applying ∇∀ with the constant q, ∇∨ and ∇c

contradicts (qa),¬(qb) ∈ Φ. In the second case, ∇b and ∇c contradict a, b ∈ Φ.

Existence of any saturated extension of a sound sequent calculus G implies
admissibility of cut. The proof uses the model existence theorem for saturated
abstract consistency classes (cf. [5](6.34)). The full proof is in [7].

Theorem 7 Let G be a sequent calculus which is sound for M∗. If ΓG
Σ has a

saturated extension Γ ′
Σ ∈ Acc∗, then G(cut) is admissible in G.

Sequent Calculus Gβ. We now study a particular sequent calculus Gβ defined by
the rules G(init), G(¬), G(∨−), G(∨+), G(Π C

−) and G(Π c
+) (cf. Figure 1). It is

easy to show that Gβ is sound for the eight model classes and in particular for
class Mβ .

The reader may easily prove the following Lemma.

Lemma 8 Let A ∈ cwffo(Σ) be an atom, B ∈ cwffα(Σ), and ∆ be a sequent.
In Gβ

1. ∆ ∗ A ⇔ A := ∆ ∗ ¬(¬(¬A ∨ A) ∨ ¬(¬A ∨ A)) is derivable in 7 steps and
2. ∆ ∗ B

.
=

α
B := ∆ ∗ Πα(λPα→o ¬(PB) ∨ (PB) is derivable in 3 steps.

The proof of the next Lemma is by induction on derivations and is given in
[7].

Lemma 9 The rules G(Inv¬) and G(weak) are 0-admissible in Gβ.

Theorem 10 The sequent calculus Gβ is complete for the model class Mβ and
the rule G(cut) is admissible.

Proof: By Theorem 3 and Lemma 9, Γ
Gβ

Σ ∈ Accβ . Suppose ⊢⊢Gβ
∆ does not

hold. Then ¬∆ ∈ Accβ by Lemma 2. By the model existence theorem for Accβ
(cf. [6](8.1)) there exists a model for ¬∆ in Mβ . This gives completeness of Gβ .
We can use completeness to conclude cut is admissible in Gβ .

Andrews proves admissibility of cut for a sequent calculus similar to Gβ in [1].
The proof in [1] contains the essential ingredients for showing completeness.

We will now show that G(cut) actually becomes k-admissible in Gβ if certain
formulae are available in the sequent ∆ we wish to prove.

4 Cut-Simulation

Cut-Strong Formulae and Sequents. k-cut-strong formulae can be used to effec-
tively simulate cut. Effectively means that the elimination of each application of
a cut-rule introduces maximally k additional proof steps, where k is constant.

Definition 11 Given a formula A ∈ cwffo(Σ), and an arbitrary but fixed num-
ber k > 0. We call formula A k-cut-strong for G (or simply cut-strong) if the
cut rule variant

∆ ∗ C ∆ ∗ ¬C
G(cutA)

∆ ∗ ¬A

is k-admissible in G.

Our examples below illustrate that cut-strength of a formula usually only
weakly depends on calculus G: it only presumes standard ingredients such as
β-normalization, weakening, and rules for the logical connectives.

We present some simple examples of cut-strong formulae for our sequent
calculus Gβ . A corresponding phenomenon is observable in other higher-order
calculi, for instance, for the calculi presented in [1, 4, 8, 11].

Example 12 Formula ∀Po P := Πo(λPo P) is 3-cut-strong in Gβ . This is jus-
tified by the following derivation which actually shows that rule G(cutA) for this
specific choice of A is derivable in Gβ by maximally 3 additional proof steps. The
only interesting proof step is the instantiation of P with formula D := ¬C∨C in
rule G(Π D

−). (Note that C must be β-normal; sequents such as ∆∗C by definition
contain only β-normal formulae.)

∆ ∗ C

∆ ∗ ¬¬C
G(¬)

∆ ∗ ¬C

∆ ∗ ¬(¬C ∨ C)
G(∨−)

∆ ∗ ¬Πo(λPo P)
G(ΠD

−)

Clearly, ∀Po P is not a very interesting cut-strong formula since it implies false-
hood, i.e. inconsistency.

Example 13 The formula ∀Po P ⇒ P := Πo(λPo ¬P ∨ P) is 3-cut-strong in
Gβ. This is an example of a tautologous cut-strong formula. Now P is simply
instantiated with D := C in rule G(Π D

−). Except for this first step the derivation
is identical to the one for Example 12.

Example 14 Leibniz equations M
.
=

α
N := Πα(λP ¬PM ∨ PN) (for arbi-

trary formulae M,N ∈ cwffα(Σ) and types α ∈ T) are 3-cut-strong in Gβ. This
includes the special cases M

.
=

α
M. Now P is instantiated with D := λXα C in

rule G(Π D
−). Except for this first step the derivation is identical to the one for

Example 12.

Example 15 The original formulation of higher-order logic (cf. [12]) contained
comprehension axioms of the form C := ∃Pα1→···→αn→o∀Xn PXn ⇔ Bo where
Bo ∈ wffo(Σ) is arbitrary with P /∈ free(B). Church eliminated the need for such
axioms by formulating higher-order logic using typed λ-calculus. We will now
show that the instance CI := ∃Pι→o ∀Xι PX ⇔ X

.
=

ι
X is 16-cut-strong in Gβ

(note that G(weak) is 0-admissible). This motivates building-in comprehension
principles instead of treating comprehension axiomatically.

3 steps; see Lemma 8
....

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∗ a

.
=

ι
a

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∗ ¬¬(a

.
=

ι
a)

G(¬)
D

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∗ ¬(¬(a

.
=

ι
a) ∨ pa)

G(∨−)

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∨ ¬(a

.
=

ι
a ⇒ pa)

G(∨+)

∆ ∗ ¬¬(¬(pa ⇒ a
.
=

ι
a) ∨ ¬(a

.
=

ι
a ⇒ pa))

G(¬)

∆ ∗ ¬Πι(λXι pX ⇔ X
.
=

ι
X)

G(Π aι
−

)

∆ ∗ Πι→o(λP ι→o ¬Πι(λXι pX ⇔ X
.
=

ι
X))

G(Π pι→o
+)

∆ ∗ CI
G(¬)

Derivation D is:

∆ ∗ pa ∗ ¬pa
G(init)

∆ ∗ ¬¬pa ∗ ¬pa
G(¬)

∆ ∗ C ∆ ∗ ¬C
.... 3 steps; see Example 14

∆ ∗ ¬(a
.
=

o
a)

∆ ∗ ¬(a
.
=

ι
a) ∗ ¬pa

G(weak)

∆ ∗ ¬(¬pa ∨ a
.
=

ι
a) ∗ ¬pa

G(∨−)

As we will show later, many prominent axioms for higher-order logic also
belong to the class of cut-strong formulae.

Next we define cut-strong sequents.

Definition 16 A sequent ∆ is called k-cut-strong (or simply cut-strong) if
there exists a a k-cut-strong formula A ∈ cwffo(Σ) such that ¬A ∈ ∆.

Cut-Simulation. The cut-simulation theorem is a main result of this paper. It
says that cut-strong sequents support an effective simulation (and thus elimina-
tion) of cut in Gβ . Effective means that the size of cut-free derivation grows only
linearly for the number of cut rule applications to be eliminated.

We first fix the following calculi: Calculus Gcut
β extends Gβ by the rule G(cut)

and calculus GcutA

β extends Gβ by the rule G(cutA) for some arbitrary but fixed
cut-strong formula A.

Theorem 17 Let ∆ be a k-cut-strong sequent such that ¬A ∈ ∆ for some k-
cut-strong formula A. For each derivation D: ⊢⊢Gcut

β
∆ with d proof steps there

exists an alternative derivation D′: ⊢⊢
GcutA

β

∆ with d proof steps.

Proof: Note that the rules G(cut) and G(cutA) coincide whenever ¬A ∈ ∆.
Intuitively, we can replace each occurrence of G(cut) in D by G(cutA) in order
to obtain a D′ of same size. Technically, in the induction proof one must weaken
to ensure ¬A stays in the sequent and carry out a parameter renaming to make
sure the eigenvariable condition is satisfied.

Theorem 18 Let ∆ be a k-cut-strong sequent such that ¬A ∈ ∆ for some k-cut-
strong formula A. For each derivation D: ⊢⊢

GcutA

β

∆ with d proof steps and with

n applications of rule G(cut) there exists an alternative derivation D′: ⊢⊢Gβ
∆

with maximally d + nk proof steps.

Proof: A is k-cut-strong so by definition G(cutA) is k-admissible in Gβ .
This means that G(cutA) can be eliminated in D and each single elimination
of G(cutA) introduces maximally k new proof steps. Now the assertion can be
easily obtained by a simple induction over n.

Corollary 19 Let ∆ be a k-cut-strong sequent. For each derivation D: ⊢⊢Gcut
β

∆

with d proof steps and n applications of rule G(cut) there exists an alternative
cut-free derivation D′: ⊢⊢Gβ

∆ with maximally d + nk proof steps.

5 The Extensionality Axioms are Cut-Strong

We have shown comprehension axioms can be cut-strong (cf. Example 15). Fur-
ther prominent examples of cut-strong formulae are the Boolean and functional
extensionality axioms. The Boolean extensionality axiom (abbreviated Bo in the
remainder) is

∀Ao ∀Bo (A ⇔ B) ⇒ A
.
=

o
B

The infinitely many functional extensionality axioms (abbreviated Fαβ) are pa-
rameterized over α, β ∈ T .

∀Fα→β ∀Gα→β (∀Xα FX
.
=

β
GX) ⇒ F

.
=

α→β
G

These axioms usually have to be added to higher-order calculi to reach
Henkin completeness, i.e. completeness with respect to model class Mβfb. For
example, Huet’s constrained resolution approach as presented in [11] is not
Henkin complete without adding extensionality axioms. For instance, the need
for adding Boolean extensionality is actually illustrated by the set of unit liter-
als Φ := {a, b, (qa),¬(qb)} from Example 6. As the reader may easily check, this
clause set Φ, which is inconsistent for Henkin semantics, cannot be proven by
Huet’s system without, e.g, adding the Boolean extensionality axiom. By relying
on results in [1], Huet essentially shows completeness with respect to model class
Mβ as opposed to Henkin semantics.

We will now investigate whether adding the extensionality axioms to a machine-
oriented calculus in order to obtain Henkin completeness is a suitable option.

Theorem 20 The Boolean extensionality axiom Bo is a 14-cut-strong formula
in Gβ.

Proof: The following derivation justifies this theorem (ao is a parameter).

7 steps; see Lemma 8
....

∆ ∗ a ⇔ a

∆ ∗ ¬¬(a ⇔ a)
G(¬)

∆ ∗C ∆ ∗ ¬C
.... 3 steps; see Example 14

∆ ∗ ¬(a
.
=

o
a)

∆ ∗ ¬(¬(a ⇔ a) ∨ a
.
=

o
a)

G(∨−)

∆ ∗ ¬Bo

2 × G(Π a
−)

Theorem 21 The functional extensionality axioms Fαβ are 11-cut-strong for-
mulae in Gβ.

Proof: The following derivation justifies this theorem (fα→β is a parameter).

3 steps; see Lemma 8
....

∆ ∗ fa
.
=

β
fa

∆ ∗ (∀Xα fX
.
=

β
fX)

G(Π aα
+)

∆ ∗ ¬¬∀Xα fX
.
=

β
fX

G(¬)

∆ ∗C ∆ ∗ ¬C
.... 3 steps; see Example 14

∆ ∗ ¬(f
.
=

α→β
f)

∆ ∗ ¬(¬(∀Xα fX
.
=

β
fX) ∨ f

.
=

α→β
f)

G(∨−)

∆ ∗ ¬Fαβ
2 × G(Π f

−
)

∆ ∗ ¬Fαβ α → β ∈ T
G(Fαβ)

∆

∆ ∗ ¬Bo
G(B)

∆

Fig. 2. Axiomatic Extensionality Rules

In [4] and [8] we have already argued that the extensionality principles should
not be treated axiomatically in machine-oriented higher-order calculi and there
we have developed resolution and sequent calculi in which these principles are
built-in. Here we have now developed a strong theoretical justification for this
work: Theorems 20, 21 and 19 tell us that adding the extensionality principles
Bo and Fαβ as axioms to a calculus is like adding a cut rule.

In Figure 2 we show rules that add Boolean and functional extensionality in
an axiomatic manner to Gβ . More precisely we add rules G(Fαβ) and G(B) allowing
to introduce the axioms for any sequent ∆; this way we address the problem
of the infinitely many possible instantiations of the type-schematic functional
extensional axiom Fαβ . Calculus Gβ enriched by the new rules G(Fαβ) and G(B)
is called GE

β . Soundness of the the new rules is easy to verify: In [5](4.3) we show
that G(Fαβ) and G(B) are valid for Henkin models.

Replacing the Extensionality Axioms. In Figure 3 we define alternative exten-
sionality rules which correspond to those developed for resolution and sequent
calculi in [4] and [8]. Calculus Gβ enriched by G(f) and G(b) is called G−

βfb. Sound-
ness of G(f) and G(b) for Henkin semantics is again easy to show.

Our aim is to develop a machine-oriented sequent calculus for automating
Henkin complete proof search. We argue that for this purpose G(f) and G(b) are
more suitable rules than G(Fαβ) and G(B).

Our next step now is to show Henkin completeness for GE
β . This will be

relatively easy since we can employ cut-simulation. Then we analyze whether
calculus G−

βfb has the same deductive power as GE
β .

First we extend Theorem 3. The proof is given in [7].

Theorem 22 Let G be a sequent calculus such that G(Inv¬) and G(¬) are ad-
missible.

1. If G(f) and G(Π c
+) are admissible, then ΓG

Σ satisfies ∇f.

2. If G(b) is admissible, then ΓG
Σ satisfies ∇b.

Theorem 23 The sequent calculus GE
β is Henkin complete and the rule G(cut)

is 12-admissible.

Proof: G(cut) can be effectively simulated and hence eliminated in GE
β by

combining rule G(Fαβ) with the 11-step derivation presented in the proof of
Theorem 21.

Let Γ
G

E
β

Σ be defined as in Definition 1. We prove Henkin completeness of

GE
β by showing that the class Γ

G
E
β

Σ is a saturated abstract consistency class in

∆ ∗ (∀Xα AX
.
=

β
BX)

?

?

y

β

G(f)
∆ ∗ (A

.
=

α→β
B)

∆ ∗ ¬A ∗B ∆ ∗ ¬B ∗A
G(b)

∆ ∗ (A
.
=

o
B)

Fig. 3. Proper Extensionality Rules

Accβfb. We here only analyze the crucial conditions ∇b, ∇f and ∇sat. For the
other conditions we refer to Theorem 3. Note that 0-admissibility of G(Inv¬)
and G(weak) can be shown for GE

β by a suitable induction on derivations as in
Lemma 9.

∇f G(Π c
+) is a rule of GE

β and thus admissible. According to Theorem 22 it is

thus sufficient to ensure admissibility of rule G(f) to show ∇f. This is justified

by the following derivation where N := A
.
=

α→β
B and M := (∀Xα AX

.
=

β

BX)


y

β
(for β-normal A,B).

∆ ∗ (∀Xα AX
.
=

β
BX)

?

?

y

β

∆ ∗ N ∗M
G(weak)

∆ ∗ N ∗ ¬¬M
G(¬)

derivable....
∆ ∗N ∗ ¬N

∆ ∗ N ∗ ¬(¬M ∨ N)
G(∨−)

∆ ∗N ∗ ¬Fαβ
G(ΠA

−),G(ΠB

−)

∆ ∗ A
.
=

α→β
B

G(Fαβ)

∇b With a similar derivation using G(B) we can show that G(b) is admissible.
We conclude ∇b by Theorem 22.

∇sat Since G(cut) is admissible we get saturation by Theorem 4.

Does G−

βfb have the same deductive strength as GE
β ? I.e., is G−

βfb Henkin com-
plete? We show this is not yet the case.

Theorem 24 The sequent calculus G−

βfb is not complete for Henkin semantics.

We illustrate the problem by a counterexample.

Example 25 Consider the sequent ∆ := {¬a,¬b,¬(qa), (qb)} where ao, bo,
qo→o ∈ Σ are parameters. For any M ≡ (D, @, E , υ) ∈ Mβfb, either υ(E(a)) ≡ F,
υ(E(b)) ≡ F or E(a) ≡ E(b) by property b. Hence sequent ∆ is valid for every
M ∈ Mβfb. However, ⊢⊢

G
−

βfb
∆ does not hold. By inspection, ∆ cannot be the

conclusion of any rule.

In order to reach Henkin completeness and to show cut-elimination we thus
need to add further rules. Our example motivates the two rules presented in
Figure 4. G(Init

.
=) introduces Leibniz equations such as qa

.
=

o
qb as is needed in

our example and G(d) realizes the required decomposition into a
.
=

o
b.

∆ ∗ (A
.
=

o
B) (†)

G(Init
.
=)

∆ ∗ ¬A ∗B

∆ ∗ (A1 .
=

α1 B
1) · · · ∆ ∗ (An .

=
αn B

n) (‡)
G(d)

∆ ∗ (hAn .
=

β
hBn)

(†) A,B atomic (‡) n ≥ 1, β ∈ {o, ι}, hαn
→β ∈ Σ parameter

Fig. 4. Additional Rules G(Init
.
=) and G(d)

We thus extend sequent calculus G−

βfb to Gβfb by adding the decomposition

rule G(d) and the rule G(Init
.
=) which generally checks if two atomic sentences

of opposite polarity are provably equal (as opposed to syntactically equal).
Is Gβfb complete for Henkin semantics? We will show in the next Section that

this indeed holds (cf. Theorem 28).
With GE and Gβfb we have thus developed two Henkin complete calculi and

both calculi are cut-free. However, as our exploration shows “cut-freeness” is
not a well-chosen criterion to differentiate between their suitability for proof
search automation: GE inherently supports effective cut-simulation and thus
cut-freeness is meaningless.

The criterion we propose for the analysis of calculi in impredicative logics is
“freeness of effective cut-simulation”.

Other Rules for Other Model Classes. In [6] we developed respective complete
and cut-free sequent calculi not only for Henkin semantics but for five of the eight
model classes. In particular, no additional rules are required for the β, βη and
βξ case. Meanwhile, the βf case requires additional rules allowing η-conversion.
The limited space does not allow us to present and analyze these cases here.

6 Acceptability Conditions

We now turn our attention again to the existence of saturated extension of
abstract consistency classes.

As illustrated by the Example 6, we need some extra abstract consistency
properties to ensure the existence of saturated extensions. We call these extra
properties acceptability conditions. They actually closely correspond to ad-
ditional rules G(Init

.
=) and G(d).

Definition 26 (Acceptability Conditions) Let ΓΣ be an abstract consistency
class in Accβfb. We define the following properties:

∇m If A,B ∈ cwffo(Σ) are atomic and A,¬B ∈ Φ, then Φ ∗ ¬(A
.
=

o
B) ∈ ΓΣ.

∇d If ¬(hAn .
=

β
hBn) ∈ Φ for some types αi where β ∈ {o, ι} and hαn→β ∈ Σ is

a parameter, then there is an i (1 ≤ i ≤ n) such that Φ∗¬(Ai .
=

αi

Bi) ∈ ΓΣ.

We now replace the strong saturation condition used in [5] by these accept-
ability conditions.

Definition 27 (Acceptable Classes) An abstract consistency class
ΓΣ ∈ Accβfb is called acceptable in Accβfb if it satisfies the conditions ∇m and
∇d.

One can show a model existence theorem for acceptable abstract consis-
tency classes in Accβfb (cf. [6](8.1)). From this model existence theorem, one can
conclude Gβfb is complete for Mβfb (hence for Henkin models) and that cut is
admissible in Gβfb.

Theorem 28 The sequent calculus Gβfb is complete for Henkin semantics and
the rule G(cut) is admissible.

Proof: The argumentation is similar to Theorem 10 but here we employ the
acceptability conditions ∇m and ∇d.

One can further show the Saturated Extension Theorem (cf. [6](9.3)):

Theorem 29 There is a saturated abstract consistency class in Accβfb that is
an extension of all acceptable ΓΣ in Accβfb.

Given Theorem 7, one can view the Saturated Extension Theorem as an
abstract cut-elimination result.

The proof of a model existence theorem employs Hintikka sets and in the
context of studying Hintikka sets we have identified a phenomenon related to
cut-strength which we call the Impredicativity Gap. That is, a Hintikka set
H is saturated if any cut-strong formula A (e.g. a Leibniz equation C

.
= D)

is in H. Hence we can reasonably say there is a “gap” between saturated and
unsaturated Hintikka sets. Every Hintikka set is either saturated or contains no
cut-strong formulae.

7 Conclusion

We have shown that adding cut-strong formulae to a calculus for an impredica-
tive logic is like adding cut. For machine-oriented automated theorem proving
in impredicative logics — such as classical type theory — it is therefore not rec-
ommendable to naively add cut-strong axioms to the search space. In addition
to the comprehension principle and the functional and Boolean extensionality
axioms as elaborated in this paper the list of cut-strong axioms includes:

Other Forms of Defined Equality Formulas A
..
=

α
B are 4-cut-strong in Gβ

where
..
=

α
is λXα λYα ∀Qα→α→o (∀Zα (Q Z Z)) ⇒ (Q X Y) (cf. [3]).

Proof: Instantiate Q with λXα λYα C.

Axiom of Induction The axiom of induction for the naturals ∀Pι→o P0 ∧
(∀Xι PX ⇒ P (sX)) ⇒ ∀Xι PX is 18-cut-strong in Gβ . (Other well-founded
ordering axioms are analogous.)
Proof: Instantiate P with λXι a

.
=

o
a for some parameter ao.

Axiom of Choice ∃I(α→o)→o ∀Qα→o ∃Xα QX ⇒ Q(IQ) is 7-cut-strong in Gβ .
Proof: Instantiate Q with λXα C.

Axiom of Description The description axiom ∃I(α→o)→o ∀Qα→o (∃1Yα QY) ⇒
Q(IQ) (see [2]), where ∃1Yα QY stands for ∃Yα QY ∧ (∀Zα QZ ⇒ Y

.
= Z)

is 25-cut-strong in Gβ .
Proof: Instantiate Q with λXα a

.
=

α
X for some parameter aα.

As Example 15 shows, comprehension axioms can be cut-strong. Church’s for-
mulation of type theory (cf. [9]) used typed λ-calculus to build comprehension
principles into the language. One can view Church’s formulation as a first step in
the program to eliminate the need for cut-strong axioms. For the extensionality
axioms a start has been made by the sequent calculi in this paper (and [6]),
for resolution in [4] and for sequent calculi and extensional expansion proofs
in [8]. The extensional systems in [8] also provide a complete method for us-
ing primitive equality instead of Leibniz equality. For improving the automation
of higher-order logic our exploration thus motivates the development of higher-
order calculi which directly include reasoning principles for equality, extension-
ality, induction, choice, description, etc., without using cut-strong axioms.

References

1. P. B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 36(3):414–
432, 1971.

2. P. B. Andrews. General models and extensionality. Journal of Symbolic Logic,
37(2):395–397, 1972.

3. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Kluwer Academic Publishers, second edition, 2002.
4. C. E. Benzmüller. Equality and Extensionality in Automated Higher-Order Theo-

rem Proving. PhD thesis, Saarland University, 1999.
5. C. E. Benzmüller, C. E. Brown, and M. Kohlhase. Higher-order semantics and

extensionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004.
6. C. E. Benzmüller, C. E. Brown, and M. Kohlhase. Semantic techniques for higher-

order cut-elimination. Seki Report SR-2004-07, Saarland University, 2004.
7. C. E. Benzmüller, C. E. Brown, and M. Kohlhase. Cut-simulation in impredicative

logics (extended version). Seki Report SR-2006-01, Saarland University, 2006.
8. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Depart-

ment of Mathematical Sciences, Carnegie Mellon University, 2004.
9. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5:56–68, 1940.
10. K. J. J. Hintikka. Form and content in quantification theory. Acta Philosophica

Fennica, 8:7–55, 1955.
11. G. P. Huet. A mechanization of type theory. In Proceedings of the 3rd International

Joint Conference on Artificial Intelligence, pages 139–146, 1973.
12. B. Russell. Mathematical logic as based on the theory of types. American Journal

of Mathematics, 30:222–262, 1908.
13. R. M. Smullyan. A unifying principle for quantification theory. Proc. Nat. Acad

Sciences, 49:828–832, 1963.
14. R. M. Smullyan. First-Order Logic. Springer, 1968.

