A Time Calculus for Natural Language

Benjamin Han, Michael Kohlhase

Language Technologies Institute
Carnegie Mellon University
{benhdj/ kohlhase}@cs. cmu. edu

Abstract

Automatic extraction and reasoning of temporal properties in a natural language
discourse has not seen wide use in practical systems due to its demand of a rich
and compositional, yet inference-friendly representation of time. We address the
problem by proposing a time calculus within the framework of temporal constraint
satisfaction problems (TCSP) [4], based on our study of the Penn Treebank cor-
pora [11]. The formulation models temporal expressions as a two-level TCSP, thus
enabling a system to answer a wide range of temporal-related queries.

1 Introduction

Time plays an active role in all facets of our lives, yet in many practical
systems incorporating automatic analysis of natural language (NL), real time
has long been a forgotten dimension. The problem is twofold: the nuances of
time manifested in NL requires a rich yet compositional representation, and
the need for advanced reasoning demands a more inference-friendly encoding
of time. Over the years the problem has been addressed in a spectrum of works
from heavily inference-oriented approaches to mostly NL-motivated methods.
These include temporal logics [5,18,2], formal accounts of calendars [13,17,14],
a theory for representing actions and time [1] and its continuation in the
DAML Ontology of Time [9], annotation of temporal expressions in newswire
texts [16] and the recent proposal of TimeML [15]. It is safe to say that
the inference and algebra based approaches lack a principled account of how
NL phenomena such as granularity and under-specification work, while the
linguistically motivated methods need more formal rigor in order to facilitate
a sophisticated inference mechanism.

In this paper we set out to address the problem by proposing a time calcu-
lus for NL, which will enable automatic extraction and reasoning of temporal
properties of a discourse. Such systems could benefit numerous applications:
question answering systems for texts could answer temporal or cause-effect
questions; text summarization systems could provide a chronologically coher-

ent account of events; an intelligence analysis system [8] could derive conclu-
sions based on a set of known cause-effect relations, which may be automati-
cally learned by observing recurring chronological patterns, etc.

In NL time is encoded via verb tense/aspect, and noun (“Wednesday”),
prepositional (“for a while”), adjective (“recent”), and adverbial phrases (“re-
cently”), etc. In this work we focus on representing temporal expressions
(timex) involving calendric terms. At first sight timex may seem trivial to
represent and to reason with, but our close study of the Wall Street Journal
section in Penn Treebank corpora [11] (see [6] for details) has convinced us
otherwise. Some examples are

(i) “on Wednesday”: Most of the timex are under-specified at least in two
ways: they are not directly anchorable on a timeline, and they do not
commit themselves to either a time interval or a point.

(ii) “last week”: More complex timex usually involve shifting from a temporal
pivot (e.g., now) with a specified offset (e.g., a week); the offset not
only specifies a duration but also implies the granularity of interest; e.g.,
regardless of the granularity of the current time, “last week” refers to a
time at week granularity.

(iii) “last Wednesday”: In contrast with the above, shifting with an offset that
is not expressed in metric units behaves differently; e.g., the expression
refers to the Wednesday in the last week.

(iv) “the second Sunday in May”: An ordinal expression is specified by an
ordinal and a range, possibly at different granularity.

Our calculus will need to capture all of the intricacies listed above (and
beyond), and to enable a system to answer temporal-related queries such as
when a specific event might happen. The design is based on the setting of solv-
ing a two-level temporal constraint satisfaction problem (TCSP) [4] (Sec. 2).
Architecturally, real-world calendars are modeled as the lowest level CSP, and
provide the basic vocabularies and services for meaning composition (Sec. 3).
Timex are then captured using a typed formal language (Sec. 4), where the
phenomena such as granularity conversion and re-interpretation are handled
via type coercion. With the proposed operators and relations (Sec. 4.2), both
qualitative and quantitative constraints among various temporal entities can
then be expressed, and the resulting TCSP is solved using a modified all-
pairs-shortest-path algorithm. As with the previous works on TCSP, this
formulation will enable a system to answer a wide range of temporal-related
queries.

2 Constraint-based Temporal Reasoning

Our view toward reasoning with time is in line with the framework formulated
in [4], in which temporal assertions are represented as time-difference con-
straints, and the consistency of the resulting constraint networks is solved us-

2

[10,20] [30,40] 20 40

Q a e a 0 1 2 3 4
0o [0 [10,20] [40,50] [20,30] [60,70]

1 [20-10] [0] [30,40] [10,20] [50,60]

2 [50,-40] [-40-30] [0] [-20,-10] [20,30]

3 [-30,-20] [-20,-10] [10,20] o] [40,50]

4 [-70,-60] [-60,-50] [-30,-20] [-50,-40] [O]

[60,70]

(a)

Fig. 1. STP from Example. 2.1: (a) the constraint network (b) the distance graph
(c) the minimal network

ing methods such as the conventional arc- and path-consistency methods [10].
For a simple TCSP (STP), the class of problems without disjunctive con-
straints, the constraint network can be converted to a simple flow network
and its consistency derived by obtaining the minimal network using an all-
pairs-shortest-path algorithm. In this section we will concentrate on solving
an STP with only binary constraints, together with the necessary modification
in order to make it work with NL.

A binary STP involves a set of temporal variables {X1,..., X}, each of
which represents a time point and has a continuous domain. A constraint
between X; and X is represented by a single interval [a, b, and is interpreted
as a < X; — X; <b. The entire STP can be viewed as a constraint network
where vertices are variables and directed edges are constraints. Each directed
edge can be further doubled by breaking the constraint a < X; — X; < b into
X;—X; <band X; — X; < —a, and the result is a distance graph. Intu-
itively, in such a graph the composition of a sequence of constraints between
two variables is translated to the path distance along the corresponding edges
between the variables, and the conjunction of all constraint compositions be-
tween them has to be the tightest one, or equivalently, the shortest path. The
following example illustrates the idea (adapted from [4]):

Example 2.1 (Example of binary STP) It takes John 30-40 minutes to
commute to work, and it takes Fred 20-30 minutes to do so. Today John left
home between 7:10 and 7:20, and Fred arrived at work between 8:00 and 8:10.
We also know that John arrived about 10-20 minutes after Fred left home.

Fig. 1 shows the corresponding constraint network, the distance graph, and
the minimal network after finding the shortest paths between all pairs of the
variables. The network is consistent, since there is no negative cycle detected.
Note that variable X is added as an arbitrary reference point so that a unary
constraint can be converted to a binary one.

Adopting an STP framework has at least three advantages. First, the min-
imal network enables us to find the minimal set of feasible times of a variable
and the minimal set of relations between any pair of variables. Second, both
quantitative constraints (e.g., the ones in Example 2.1) and qualitative con-
straints (e.g., Allen’s 13 relations [1]) can be converted into such a “metric”
network and solved uniformly [12]. And third, the all-pairs-shortest-path al-

3

gorithm required for obtaining such networks has polynomial time complexity,
and assembling a feasible solution (a set of consistent variable assignments) is
backtrack-free; although a more general TCSP involving disjunctions is still
NP-complete, there are efficient methods exploiting special topologies of the
constraint networks.

It is obvious that the STP formulation has made many
convenient simplifications when solving such problems in a NL
setting. For one, the different granularities often encountered
in real-life scenarios are all left as part of the “preprocessing”.
To illustrate one implication, consider the distance updating
equation at the heart of the all-pairs-shortest-path algorithm: -
dij < min(d;;, dix + di;), where d;; is the distance between @
X; and X, and a distance graph depicted to the right (only
the necessary edges are shown). In a non-leap year, when X;
is assigned with a time February, the shorter path from X; to X; would be
via the “2 months” edge. However if X; is assigned with March, the shorter
path would be the composition of the two “30 days” edges. This complication
arises because some metric unit does not have constant size in terms of a base
unit. We can solve this problem, however, by using this distance updating
equation instead: d;; < argmin{5 di]—,diﬁdkj)}(d(” +9).

Still there are other complications. With the variety of metric units, the
operator ‘+’ and the relation ‘<’ between distances must be defined based
on our linguistic intuition. Since in NL times are usually not given with
respect to an arbitrary reference point (‘Xy’), the distinction between a time
“quantity” (e.g., 2 months) and a “coordinate” (e.g., February) must be made,
and a bridge between the two has to be provided. Our formulation forgoes
the arbitrary X, and uses directly a time coordinate at each variable (with a
modified all-pairs-shortest-path algorithm), and provides necessary operators
for basic time arithmetics. These are the topics of the following sections.

30 days

30 days

3 Calendars

From a representational point of view, a calendar provides the basic vocab-
ularies for composing the meaning of a timex. A “upward” relation between
two metric units, such as days “in” weeks, allows us to interpret timex “last
Wednesday” as the Wednesday in the last week, and a “downward” relation,
such as days are “measured by” hours, allows us to interpret “early Wednes-
day” as, say, the first one-third of the day, expressed in hours.

Within the framework of TCSP, a calendar, formulated as a CSP, serves
as a set of unary constraints for the individual temporal variables, explicated
linguistically via timex; e.g., “February 29” rules out all of the non-leap years
from the domain of the temporal variable. They also play the supporting role
for defining a TCSP, as hinted in Sec. 2. For instances, we need services from
a calendar to compare the ordering of either two time coordinates, or two time

4

quantities, and we need to do arithmetics such as adding a coordinate and a
quantity, or two quantities. Finally, all of the services must take into account
the possible differences in granularities, and engage granularity conversion if
necessary.

In this section we formalize calendars as constraint systems. Although
different in approach, our goal is similar to [13,17,14] in that we want to
abstract away from an actual calendar, so that new calendars can be readily
constructed using the formal tools provided.

3.1 Calendars as Constraint Systems

Temporal entities used in timex can be categorized into two kinds: units and
values. This dichotomy has been motivated by our linguistic observations (see
example ii and iii in Sec. 1), and it is a natural formulation within a constraint-
solving framework. We will first define a unit as analogous to a variable in a
CSP, with the twist that the domain of our “variable” ! is ordered:

Definition 3.1 (Unit) A unit u is a totally ordered set (V,<). We call V
the set of values of u and denote it by V.

Within this view, a “point” in time can be specified by a complete set of
unit assignments, i.e., a solution to the CSP at hand. However to be able to
compare two points, we need to provide a “global” ordering among the values
in addition to their “local” ordering defined within a unit. Thus we depart
from a traditional CSP again by prescribing an ordering among the units.
For example, comparing “2002 May” and “2002 June” follows a lexicographic
order: first compare both years, and then months following a tie in years. This
is embedded in the definition of a unit structure:

Definition 3.2 (Unit Structure) LetU be a finite set of temporal units and
M a relation on U. For uy...u, € U we write uy —pq Uy if (Ur,u,) € M,
and uy = Uy if a sequence (uy ... uy) exists such that w; —p Uity.

We call (U, M) a unit structure iff all of the following hold:

(i) (infinite mazimals) V,, is isomorphic to N for all M-mazimal units u?
and V, is finite otherwise;

(ii) (no cycles) for any u and u' € U s.t. u —%, u', there cannot be u' —}, u;
(iii) (connected) for any u € U there must exist u' € U s.t. u —4, .

For instance, ({month,year}, {(year,month)}) is a unit structure with the
units month: = ({jan, feb,...,dec}, {jan < --- < dec}) and year: = (N, <y).

Definition 3.3 (Unit Chains, Coordinate) Let = (U, M) be a unit struc-
ture, we call a path in p o unit chain in p. Since U is finite, we can always
denote a unit chain as a:= (uq,...,u,). We call « grounded in p, iff the

L Note that this is different from the “variable” described in Sec. 2.
2 4 €U is M-maximal if the only v’ — ¢ u implies v’ = u for all v’ € U.

5

maximal element in « is maximal in L.

We call a mapping c¢ from units to values a coordinate, iff c(u) € V,.
Given a set of units a in pu, we say that ¢ is based on « iff ¢ is defined on
all units in a, i.e., D(c) = «, and ¢ is complete iff « = U. The projection
of ¢ on «, written as c|,, is a coordinate whose domain is cv.

One problem remains for comparing two coordinates. For two coordinates
based on the same grounded unit chain, comparison is straightforward. For
two coordinates based on different chains, however, comparison requires “con-
versions” so that both can be based on the same chain. The required knowl-
edge for such conversions is part of the definition of a calendar component:

Definition 3.4 (Calendar Component) Let = (U, M) be a unit struc-
ture and uw —pq v € U, then we call a total function Cy Vi — 2V4' ¢ cover
function from u to v, iff Cyuw(v) C Curar 0 Cypr(v): = Uv,,ecu,u”(v) Curr o (V")
for each v € V, and u" € U with u — u" — u'. We call a complete set of
cover functions Cag: = {Cyur: Vi = 2% |u —p v/ € U} a cover for p.

We call a tuple k:= (U, M,Cprq) a calendar component, if (U, M) is a
unit structure and Cy is a cover for (U, M).

Extending the unit structure above with a unit qoy: = ({1,2,3,4}, <y) for
“quarter of year” and the relation M by year — qoy — month, the following
cover functions give a calendar component: Cpontn (iyear) = {jan, feb, ... dec},
Caoy(iyear) = {1,2,3,4}, and Cpontn(lqoy) = {jan, feb,mar},.. ..

It is obvious that calendar components are too simplistic to model real-
world calendars. In [7] we have extended this notion to “full” calendars which
are sets of calendar components that are “aligned” by a congruence relation.
The following figure shows two aligned components: the week component and
the year component.

O

{non-weekend, @ {mor ,.:fri}
weekend
} ({1weex, thu}, {2003yesr may, laay }

{sun,mon,...}

month ® day

{1,..,.31}

The alignment relations essentially serve as “constraints by counting” which
allows translation of coordinates among components. In this paper we will
concentrate on the simpler version with calendar components, and refer read-
ers to [7] for more details.

Given an incomplete coordinate of a calendar component, conventional
constraint propagation methods can be used to derive complete and consistent
coordinates; we then define the consistency of a coordinate accordingly:

Definition 3.5 (Coordinate Extensions and Consistency) Let ¢ be a co-
ordinate of calendar component k. A complete coordinate ¢ is an extension
to c iff c(u) = ¢(u) and for all u = W', ¢(v') € Cy(c(u)) in k. We call the

6

entire set of extensions to c, written as Ex(c), o full extension of ¢ in k. A
coordinate ¢ in k is consistent iff E(c) # 0.

Following the example calendar component above, {2003.r,jan} is consis-
tent, but ¢ = {340y,jan} is inconsistent, since ¢ (month) = jan ¢ Cuonen(¢'(qoy)) =
{jul, aug, sep}, hence there can be no extension to ¢

In principle we could maintain a full extension of a coordinate, thus a
coordinate simply acts as an exposure to some of the calendar units, or a
limited peek into the underlying calendar configurations.

We can now define the ordering between two coordinates:

Definition 3.6 (Coordinate Comparison) Let ¢ and ¢ be two coordinates
of calendar component k. If both of them are based on the same grounded chain
(Ury ..., Uup), we say ¢ <iex ¢ iff there exists j = k+ 1 such that c(u;) < c'(u;)
and c(u;) = ' (u;) for all i < k, and ¢ =jex ¢ iff c(u;) = ' (u;) for all i < n.

We say ¢ <jex ¢ iff for all ¢ € Ex(c) and ¢ € E(') that are based on the
same grounded chain, ¢ <iex €'; € <jex € holds iff ¢ <jex ¢ and € <jex ¢ holds
at least once on the same grounded chain.

Following the example above, let ¢; = {1995year,1q0y}, C2 = {1995ycar,apr}
and ¢3 = {1995year,feb}. ¢ <jex €2 holds since all of the extensions in
E(c1) = {{1995year,1q0y,jan}, {1995 car,1qoy,€b}, {1995ycar,1q0y,mar}} are
less then that in (o) = {{1995ycar,2q0y.apr}}. However ¢; Liex ¢3 since
{1995 car,1qoy.mar} Liex {1995car,1qoy,feb}; the reverse does not hold either.

3.2 Modeling Non-Binary Constraints

Not all temporal units in daily use can be easily modeled as in the examples
above. In particular to account for day in a month, we have to consider not
only the month but also the year since February 29 is only present in leap
years. The constraint therefore is a ternary one and we need to convert it into
a binary constraint. We will adapt from the well-known dual-graph approach
for such conversions [3] and introduce complex units whose values are pairs of
values of the existing units:

Definition 3.7 (Dependent Unit Products, DUP) Let k:= (U, M,Cp)
be a calendar component and o, — u — u' — upey € U. We define the de-
pendent unit product u ®c,, u":= ({{(v,w)lv € Vy w € Cyr (v)}, <iew(v,,v,)
), and add usop — uRc,, U, U = u®c,, U, u®c,, U — U and u®c,, U — Upo
to M. The following cover functions are also added:

CUtop;“@CMu, C Cu,u@cMu’ © Cutop,u
Cuuee, (V) ={{v,w)|(v,w) € Vige w}
Cuey s ((0,0)) i = {0}

Cu®cM u,aubot g Cu, 7ub0t O Cu®CM u,’u’ °

It is straightforward to show that Def. 3.7 indeed constructs a calendar com-
ponent based on Def. 3.4.

Consider a more complete calendar com-
ponent (shown to the right) with two DUPs:
unit month ® day models the ternary con-
straint among year, month and day, and
unit soy ® (month ® day) models the qua-
ternary constraint among year, soy (“sea-
sons of year”), month and day. Although al-
ternatively we could construct DUPs out of o
the maximal unit year, we shun away from
such constructs to avoid infinite explosion of
value sets. Our modeling of days of months boils down to the definition
of Cponthwday (iyear): it returns {(i,feb,1)---(i,feb,29)} for leap year i (i =
0 mod 4, i Z 0 mod 100 and i = 0 mod 400), and {(i,feb, 1) --- (i, feb, 28)}
for the others. A coordinate {2003year,f€b,294ay } is then inconsistent since no
extension to it can exist. We skip the description of how to model the seasons
for similarity.

soy ® month ® day

-

month ® day

3.3 Periodicity and Coordinate Arithmetics

Another interesting feature of a calendar is the periodicity of units in one
another:

Definition 3.8 Let (U, M,Cnq) be a calendar component and u' —r u € U,
we say that u is periodic in o', written as u — o', iff for each v € V,,
vE ﬂu'evu, Cur (V).
Continuing the examples, we have month ~— year, qoy — year, etc.
Periodicity allows us to correctly model timex such as “last/every v,”
where v, is a value of unit u: the interpretation is “v in last/every v with
u — u' (see examples in Sec. 1). Another advantage for discovering periodicity
is that it speeds up coordinate arithmetics. For the general case, we need a
notion of successor and predecessor, which is more involved to define.

Definition 3.9 (Coordinate Arithmetics, Special Case) Letk = (U, M,Cp)
be a calendar component, then we define a function & as

¢ Py l: = (¢ By n)[u— c(u) + m)

where | = n|V,|+m such that m < |V,|, andu ~— u'. c[u — v] is the coordinate
that maps u to v € V,, and agrees with ¢ for all units v’ # u € D(c).

4 Representing Temporal Expressions

By using the “vocabularies” provided by a calendar, which we have formal-
ized in Sec. 3, fairly complex timex can be constructed to represent a temporal
point, a set of points, or a duration. The representation of these expressions,

8

called temporal objects, are usually under-specified in many ways (see exam-
ples in Sec. 1), and they often embed implicit granularity conversion when
certain operation is engaged. The under-specification aspect also calls for a
representation which factors out the discourse dependency. In this section
we will describe a formal language for representing timex. The language in-
cludes a set of operators and relations to construct temporal objects, and a
granularity-refined type system to account for phenomena such as granularity
conversion and re-interpretation. Due to the limited space, we refer readers
to [6] for a complete description of the language.

4.1 Temporal Objects and Types

A temporal object can be of one of the three major types: coordinate (€),
quantity (Q) and enumeration (€):

(i) A coordinate is a point in time as defined in Def. 3.3. The simplest
form is a conjunction of value constraints v, where v is a value of unit u;
e.g., “Sept. 9, 1987 is represented as {1987 year,5€P,%ay };

(ii) A quantity denotes a polarity-neutral duration of time. The simplest
form is a conjunction of numeric constraints n;, where n € N, and ¢ can
be a unit or a set of values from a unit chain; e.g., “an hour and 30
minutes” is represented as |1nour, 30minl;

(iii) An enumeration is a set of coordinates. The simplest form is a list of co-
ordinates; e.g., “Tuesday and Thursday” is represented as [{tue}, {thu}].

We use connective ‘,” to conjoin two terms in both € and Q and enumerate
additional terms in €. For disjunctions, we distinguish between language
ambiguity and genuine logical disjunction by using ‘|’ for the former and *;’
for the latter.

More complex objects can be constructed by using one of the infix opera-
tors (later) and relations. For the relations there are two kinds available. A
value relation rel is used as rel v, where v is a value of unit u and rel is one
of <, > and = relations with their usual semantics®. An object relation rel
is used in the form of rel o' in a hosting object o, with the intended reading
o rel o'. We use the same set of value relations for Q, but use Allen’s 13
interval-based relations [1] for € and €. Some examples of complex objects
are {{1987ycar,5€P,%ay } —|2veex|} for “two weeks from Sept. 9, 1987 and
{b {1987 ycar,5€p,9%ay } } for “sometime before Sept. 9, 1987”.

External temporal references are introduced in objects for deictic expres-
sions; e.g., “yesterday” is {_—|1l4ay|}, where the underscore represents the cur-
rent temporal focus. A discourse-level mechanism for managing the temporal
focus is therefore necessary but orthogonal to our discussions. Some of the
under-specified objects ({wed} for example) will need to reference the tempo-
ral focus as well, however some will not when they are used as generics. Again

3 For equality relation = the relation symbol is always dropped.

9

an independent mechanism must be provided for such decisions.

Before introducing the granularity-refined type system, we first define the
granularity of a temporal object as a set of minimal units among all of the
relevant units in the object.

Definition 4.1 (Granularity Function) Let (U, M) be a unit structure. A
total granularity function g: O — 2 is a mapping from an object to a set of
units:

(i) If o € € or Q: g(o):= minp (U,ppr in o 9(term)) where miny, returns a
set of minimal units w.r.t. relation M;

(ii) If o € E: assuming o to be homogeneous, meaning all of its terms must
have the same granularity® , then g(o): = g(term) where term is in o.

The term-level granularity function g(term) is defined as:

(i) if term is of the form ojo0poy then g(term) is the granularity of the
resulting object;

(ii) if term is of the form rel v, where rel is a value relation then g(term): =
{u}.
We now construct a granularity-refined type system by decorating the ma-
jor types with the granularity of an object:

Definition 4.2 (Temporal Types) An object o is said to be of type Ty, if
o 1s of magor type T, where T is one of €, Q or €.

For example, the type of {1nour,30min} 1S Crin-

The design of a granularity-refined type system enables us to define various
typed operators and relations, and coercion kicks in to bring the involved
objects into the required types. This not only can be used to model phenomena
such as granularity conversion shown in the examples in Sec. 1 and certain
re-interpretation, but can also simplify the formulation of various operators
and relations.

Type coercion is possible within the same or among different major types.
The former is realized by a granularity conversion function —, over € and &
with g being the target granularity. Q is excluded since the use of a quantity
never requires a granularity conversion of itself (instead it drives the conversion
of the others). For conversions among different major types we only allow
coercion from € to € which we define as a re-interpretation function C — &,.
The reasons for excluding the other possibilities are (i) coercions between Q
and the other major types do not seem necessary for our purposes; (ii) for
converting € to € it is usually not possible to find a uniform treatment®, and
it is often not necessary as we can canonicalize on € and use € — &, instead.

4 Tt might be worthwhile to loosen this definition to only consider the minimal granularity
for better efficiency.
5 Therefore it is better left to be defined explicitly whenever necessary.

10

We now give a definition for —, (o) for object o, which basically installs a
new set of minimal units into o, and makes sure that all of the “intermediate”
units are also included.

Definition 4.3 (Granularity Conversion Function) Let k be a calendar
component, for coordinate ¢ and the target granularity g (a set of incomparable
units), the granularity conversion function —, (c¢) returns all €|, where
¢ € &E(c) and © is defined as:

0:=D(c)\2UT Uyg
Q:={u'lu -y, v, ueg, ueg()}
U= {u"|u" =5 u" =5 u, ueg, ueqg)}

For enumeration e, —4 (e) is distributed onto each term: for C terms the
definition above applies, for € terms or terms involving operators, —, applies
recursively on any non-Q object.

Two examples are —4ay ({may}) = {may, (>=1, <=31),,.}, and —pontn
({314ay}) = {(jan; mar; may; jul; aug; oct; dec)}.

The re-interpretation € — &,(c) for a coordinate ¢ is basically an ex-
pansion of ¢ into an enumeration of the designated granularity. We use utility
function min(c) and max(c) below: they return the minimal/maximal possible

coordinate from ¢; e.g., min({may, (>=1, <=31),, . }) = {may, lay}).

day

Definition 4.4 (Re-interpretation Function) Let ¢ be a coordinate and g
be the granularity, the re-interpretation function € — &€,(c) is defined as:

(i) € = &Ey(c):= [1 [min(—=, (¢)):max(—, (¢))]] if there exists u € g and
u' € g(e) s.t. v =3, u®; and
(ii) € — &Ey(c) = [=4 ()] otherwise.

An example is € — Egay({may}) = [{may, 140y }:{may, 314ay }].

4.2 Typed Operators and Relations

The operators and relations are typed in our calculus so that coercion can
enforce a type uniformity among the involved objects. To assign types we use
a utility function u(g) to convert a quantity ¢ into a pure-unit quantity - a
quantity with all of its terms being in the form n, where n € N and u is a
unit. Function u(q) is defined as:

(i) changing n,, terms into n,, where n € N, v, is a value of unit u, and
u— u'; and

(ii) changing 7y, v,,.) terms where (v, vs,...) are values of a unit chain
(u,us, . ..), into n, where u; — u.

6 Relation i (in) is an abbreviation of the disjunction of s, £ and d in Allen’s interval
algebra [1].

11

For example u(|2day|) = |2day|, u(|2morning|) = |2day|7 and u(|2(mon,morning)|) =
|2week|~

The table below shows a complete list of the typed operators, where op;
and op; are (from left to right) the two operands, and 7_, denotes an object
of major type T converted to granularity g. The two sets of shifting opera-
tors move the ending coordinate of an enumeration with an offset specified by
a quantity, operator @ selects a coordinate from an enumeration, operator :
forms an interval using either a pair of coordinates or a starting coordinate
and a duration specified by a quantity, operator / enumerates a set of coordi-
nates within a range specified by a coordinate, using a step-size specified by
a quantity 7, and operator A and \ are essentially set intersection/difference
operators.

Type Meaning Example
/= | €5 yutonay X (opz) = Cosyopy, | forward/backward | {-+|Lnontn|}
fuzzy shifting (“next month”)
T4/ | €5 onay X Llopz) = Cosyopy, | forward/backward | {-++|lnontn|}
—— exact shifting (“exactly one month after”)
Q@ Qy(op1) X €5 4opy = Coponny ordinal [|25un| @{may}]
(“the second Sunday in
May”)
[[1vea| @{bi _}]
(“the next nearest Wednes-
day77)
e‘}min x e‘}min - eﬁmin L3
Comin X Qa2 € interval Ezzyiﬁ]un}]”
min = min(g(op1) U g(op2)) YJ:| tmonth
/ € piona) X Lg(ops) = € arithmetic recur- | [[{may}:{aug}]/|1lnontn|]
rence
Eﬁmin x Eﬁmin - Eﬁmin :
A min — minag (g(op1) U g(ops)) enumeration
M ! 2 intersection
S A —
\ e T T min min enumeration dif- | [{-4|Oyear|}\
min = min op1)Ugl(o
w(g(oP) U g(op2)) | goronce [{] Laonn | @+ [Oyene]} 17
(“the rest of the year”)

We also assign types to object relational terms: for Q the relations are all
assigned type Q_, . x Q. . where min is the set of minimal units from the
granularities of the two related objects; for € and € we assign type €., . X
€., .. to all of the possible relations.

We are now ready to give the semantics of fuzzy shifting +. Let ¢ = e+q

where ¢, e and ¢ are a € € and Q respectively. The result, assuming u(q)

7,

" A simpler pattern recurrence is also included in [6]; e.g.,
“every Wednesday from 3pm to S5pm”, and [{x/4

TR

" |, is defined as ¢: = {max(e[—1]) Dy, n' ... By, n™,c,} where e[—1]
is the last coordinate in e under <), (defined in Def. 3.6), and ¢, is the implied

since 18967 .

year’

12

[[{*wed, 15nour }:{17nour }]] for
bi {1896ycar }}] for “every 4 years

constraints of ¢, which is defined as follows: for n, terms there is no implied
constraint; for n, the constraint is {v}; and for n, 4,) the constraint is
{v1,v,...}. An example is given below:

{may}+|2norning| = {max([{may, l4ay}:{may, 31aay}][—1]) Paay 2, {morning}}
= {{may, 314ay} Paay 2, {morning}}
={jun, 24ay, morning}.

Due to space restrictions we refer readers to [7,6] for the definitions of the
other operators.

5 Summary and Future Works

In this paper we have proposed a flexible and inference-friendly time calculus
motivated by our study of the Penn Treebank corpora. Our approach views the
task as a temporal constraint satisfaction problem, which consists of two sets of
constraints: those from within a calendar (unary constraints) and those from
the inter-event temporal relations (binary constraints in the time-difference
form). We have provided a principled account of calendars, on top of which we
have built representations for a variety of temporal expressions. A granularity-
refined type system with coercion allows us to model the phenomena of implicit
granularity conversion and re-interpretation. The resulting TCSP can then
be solved using a modified all-pairs-shortest-path algorithm, and the derived
minimal network can then be used to answer a wide range of temporal-related
queries.

We are currently implementing a system utilizing the formulation and will
in time conduct empirical tests. Other future works include investigating the
complexity impact brought by the various operators, and possible efficiency
improvement via more restrictive cover mappings, such as the string-based
representation proposed in [17] , and modeling the movement of temporal
focus within this framework, etc.

Acknowledgments

The authors are grateful for the numerous valuable comments received from
the anonymous reviewers.

References

[1] Allen, J. F., Towards a General Theory of Action and Time, Artificial
Intelligence 23 (1984), pp. 123-154.

[2] Artale, A. and E. Franconi, Temporal description logics, in: M. F. Dov Gabbay
and L. Vila, editors, Handbook of Time and Temporal Reasoning in Artificial
Intelligence, MIT Press, to appear .

13

[3] Bacchus, F. and P. van Beek, On the conversion between non-binary and binary
constraint satisfaction problems, in: Proceedings of the 15th National Conference
on Artificial Intelligence (AAAI-98) and of the 10th Conference on Innovative
Applications of Artificial Intelligence (IAAI-98) (1998), pp. 311-318.

[4] Dechter, R., I. Meiri and J. Pearl, Temporal constraint networks, Artificial
Intelligence 49 (1991), pp. 61-95.

[5] Gabbay, D., I. Hodkinson and M. Reynolds, “Temporal Logic: Mathematical
Foundations and Computational Aspects,” Oxford University Press, 1994.

[6] Han, B., Time Calculus for Natural Language - Tagging Guidelines,
Unpublished draft, Language Technologies Institute, Carnegie Mellon
University (2003).

[7] Han, B. and M. Kohlhase, A time calculus for natural language, Unpublished
draft, Language Technologies Institute, Carnegie Mellon University, Pittsburgh
(2003).

[8] Hauck, R. V., M. Chau and H. Chen, COPLINK - Arming Law
Enforcement with New Knowledge Management Technologies, in: W. Mclver
and A. Elmagarmid, editors, Advances in Digital Government: Technology,
Human Factors, and Policy, Kluwer Academic Publishers, 2002 .

[9] Hobbs, J. R., G. Ferguson, J. Allen, P. Hayes, I. Niles and A. Pease, A DAML
ontology of time (2002).

[10] Mackworth, A. K., Consistency in networks of relations, Artificial Intelligence
8 (1977), pp. 99-118.

[11] Marcus, M., G. Kim, M. Marcinkiewicz, R. Maclntyre, A. Bies, M. Ferguson,
K. Katz and B. Schasberger, The Penn Treebank: Annotating predicate
argument structure, in: ARPA Human Language Technology Workshop, ARPA
Human Language Technology Workshop, 1994.

[12] Meiri, I., “Temporal Reasoning: A Constraint-based Approach,” Ph.D. thesis,
UCLA (1992).

[13] Ohlbach, H. and D. Gabbay, Calendar logic, Journal of Applied Non-classical
Logics 8(4) (1998), pp. 291-324.

[14] Peng Ning, X., S. Wang and S. Jajodia, An algebraic representation of calendars,
Annals of Mathematics and Artificial Intelligence 36(1-2) (2002), pp. 5-38.

[15] Pustejovsky, J., R. Sauri, A. Setzer, R. Gaizauskas and B. Ingria, TimeML
annotation guidelines (2002).

[16] Setzer, A., “Temporal Information in Newswire Articles: an Annotation Scheme
and Corpus Study,” Ph.D. thesis, University of Sheffield (2001).

[17] Wijsen, J., A string-based model for infinite granularities, in: The AAAI-2000
Workshop on Spatial and Temporal Granularity (2000), pp. 9-16.

14

[18] Wooldridge, M., C. Dixon and M. Fisher, A Tableau-Based Proof Method for
Temporal Logics of Knowledge and Belief, Journal of Applied Non-Classical
Logics 8 (1998), pp. 225-258.

15

