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Abstract. The Grammatical Logical Framework (GLF) is a framework
for prototyping the translation of natural language sentences into logic.
The motivation behind GLF was to apply it to mathematical language, as
the classical compositional approach to semantics construction seemed
most suitable for a domain where high precision was mandatory — even
at the price of limited coverage. In particular, software for formal math-
ematics (such as proof checkers) require formal input languages. These
are typically difficult to understand and learn, raising the entry barrier
for potential users. A solution is to design input languages that closely
resemble natural language. Early results indicate that GLF can be a use-
ful tool for quickly prototyping such languages. In this paper, we will
explore how GLF can be used to prototype such languages and present
a new Jupyter kernel that adds visual support for the development of
GLF-based syntax/semantics interfaces.

1 Introduction

The work of mathematicians is increasingly supported by computer software
ranging from computer algebra systems to proof checkers and automated theo-
rem provers. Such software typically requires a specialized input language, which
users have to learn to use the software themselves and in order to understand
how it was used by other people. The latter is of particular interest when it
comes to computer supported theorem proving. In mathematics, proofs are much
more than mere correctness certificates: they give insights into why a theorem
s true. A computer proof cannot fulfil this duty if the reader cannot under-
stand it in the first place. The obvious consequence is that input languages
should be designed to be as intuitive as possible. In some cases, this could be
in the form of a controlled natural language — a formal language with
well-defined semantics that closely resembles natural language. There are some
general-purpose controlled natural languages, most notably Attempto Controlled
English (ACE) | ]. But for input languages for mathematical software, we
need controlled mathematical languages.

State of the Art A controlled natural language (CNL) consists of ¢) a natural
language fragment e.g. defined by a grammar, i) a formal target language, and
i11) a program that translates from ) to ). Different controlled mathemati-
cal languages (CML) have been developed in the past, especially for automatic
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proof checkers. An example for this is ForThel | ], the language of the Sys-
tem for Automated Deduction (SAD). It appears that ForThelL has reached a
sweet spot between expressivity and parseability. Implemented with hand-crafted
parser combinators in Haskell, however, it is hard to maintain and even harder
to extend. More recently, SAD was extended by some of the people behind
the Naproche system [ ], which has a controlled mathematical language
that supports a “controlled” KTEX input. This resulted in the Naproche-SAD
project [ ]. Over the last few years, research into controlled mathematical
languages has gained momentum with Thomas Hales’ Formal Abstracts project
(e.g. | ])- Its goal is the creation of a controlled mathematical language that
translates into the language of the lean theorem prover — a type theory based on
the calculus of inductive constructions.

Overview In this paper, we present a setup for prototyping controlled mathemat-
ical language. Section 2 describes the underlying technology: the Grammatical
Logical Framework (GLF) | ]. In Section 3 we introduce a new Jupyter kernel
for GLF that makes GLF much more accessible and supports the development
and testing of controlled mathematical languages with a variety of features. All
listings in this paper are screenshots of Jupyter notebooks. In Section 4, we will
discuss some of our insights from our attempts to re-implement ForThel with
GLF. Section 5 concludes the paper.

2 Grammatical Logical Framework

The Grammatical Logical Framework (GLF) | ] is a tool for prototyp-
ing translation pipelines from natural language to logic. As a running exam-
ple, we will develop a pipeline that translates sentences like “the derivative of
any holomorphic function is holomorphic” into expressions in first-order logic:
¥ f(holomorphic(f) = holomorphic(derivative(f))). This translation pipeline
consists of two steps: parsing and semantics construction.

abstract Grammar = { concrete GrammarEng of Grammar = {

cat lincat Stmt=Str;Term=Str; -- ...
Stmt; Term; Notion; Prop; lin

fun state t p = t ++ "is" ++ p;
state : Term->Prop->Stmt; every n = ("every"|"any")++n;
every : Notion -> Term; - .
-- ... integer = "integer";
integer : Notion; even = "even";
even : Prop; derivative t =
derivative : Term -> Term; "the derivative of" ++ t;

Listing 1.1: Sketch of a very simple GF grammar to talk about mathematics.
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Parsing is done with the Grammatical Framework (GF) | ], which
is a powerful tool for the development of natural-language grammars. A GF
grammar consists of an abstract syntax that describes the parse trees and
(possibly multiple) concrete syntaxes that describe how these parse trees cor-
respond to strings in a particular language. Listing 1.1 sketches an example GF
grammar that can parse sentences like “every integer is even”'. The abstract
syntax introduces categories (node types) and function constants that describe
how nodes can be combined. E.g. state combines a term and a property into
a statement. The sentence “every integer is even” thus corresponds to the ex-
pression state (every integer) even. For our simple example, the concrete
syntax is very straight-forward, but in general the concrete syntax has to handle
the complex morphology and syntax of natural language. GF supports this with
a powerful type system and various mechanisms for modularity and reusabil-
ity. GF also supplies the Resource Grammar Library, which provides re-usable
implementations of the morphology and basic syntax for many (> 35) languages.

theory FOL : ur:?LF = view GrammarSemantics :
propositions : type | # o | ?Grammar -> ?DomainTheory =
individuals : type | # 1 | Stmt = o |
not : o—-o | # -1 | Term = (1 = 0) - o |
and : o - o0o—-o0 | #1 A 2| Notion = 1 - o |
Y/ | Prop = 1 - o |
forall : (1 0) o | #V 1 |
exists : (10) - o | # 3 1 | state = [term,pr] term pr |
every = [notion] [p]
V [x] notion x = p x |
theory DomainTheory : ?FOL = /2 |
integer : 1 = o | integer = integer |
even : 1 - o0 | even = even |
derivative : 1 - 1 | derivative = [term] [p]
Y/ | term ([x]p(derivative x))I

Listing 1.2: Example logic, domain theory, and semantics construction in MMT.

The semantics construction describes how the parse trees are translated
into logical expressions. GLF uses the Meta Meta Tool (MMT) for the logic de-
velopment and semantics construction. MMT is a foundation-independent frame-
work for knowledge representation | ]. In MMT, knowledge is represented
as theories, which contain sequences of constant declarations of the form

CONSTANT [: TYPE] [ != DEFINITION] [ | # NOTATION]

! Note that neither parsing nor the semantics construction are concerned with the
validity of a statement.
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While MMT itself is foundation independent, MMT theories are typically based
on the Edinburgh Logical Framework (LF) [ ] and extensions of that in
practice. Listing 1.2 contains a theory rolL that defines the syntax of first-order
logic. First, we need types for propositions and individuals, denoted by o and .
respectively. Afterwards, we can declare logical connectives as binary/ternary op-
erators on propositions with the expected prefix/infix notations. For quantifiers,
we use higher-order abstract syntax. Together with a domain theory, this allows
us to express the meaning of our example sentence as Vz(integer(z) = even(z)).

Before we can define the semantics construction, we need to be able to rep-
resent GF parse trees as MMT terms. For this, GLF creates a language theory
from the abstract syntax, i.e. an MMT theory that contains the GF categories as
type constants and the GF functions as function constants. Then, we can define
the semantics construction as an MMT view from the language theory into the
domain theory (see Listing 1.2). A view maps every constant in the source the-
ory to a term in the target theory — e.g. statements are mapped to propositions
(o) and properties to unary predicates (:—o). A term like “every integer” should
have the meaning Ap.Vz(integer(z) = p(x)), i.e. we apply properties to terms,
not the other way around. Note that Ax.M is denoted in MMT by [x] M.

With all this in place, we can parse the sentence “every integer is even” to ob-
tain the parse tree state (every integer) even, and then apply the semantics
construction to obtain the MMT expression

([term,prop] term prop) (([n] [p] V [x] n x = p x) integer) even,
which S-reduces to the desired V [x] integer x = even x.

Given the declarative treatment of semantics construction and target logic,
GLF can serve as the basis for a rapid prototyping system for the development
and implementation of controlled (mathematical) languages. To complete that,
we need a good user interface (the extended GF shell that GLF comes with does
not qualify).

3 Jupyter Integration

Jupyter [Jup] provides a user environment for working with notebooks, which
can contain code cells, explanatory text and interactive widgets. The code cells
can be executed in-document, resulting in a very interactive experience. We
developed a new Jupyter kernel to bring these features to GLF.

The code cells in a GLF notebook either enrich the language context or con-
tain executable commands. The language context consists of GF grammars
and MMT theories and views. A user can explore and test the language context
with commands for e.g. parsing a sentence with the specified grammar and
applying the semantics construction.

When a code cell is executed, the first step is to identify its content type.
We use simple pattern matching for this. If the code cell extends the language
context, we write its content to a file. The file name is simply the name of
the grammar/theory/view, which is also extracted during the pattern matching.
Afterwards, grammars are imported into GF and MMT (for the language theory)
and theories and views are imported into MMT.
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For this, GF and MMT are running as subprocesses —

in the background and the GLF kernel communicates NB IG(tanel
with them via pipes and HTTP respectively. The user
gets feedback whether the imports succeeded along e
with possible error messages. M
If a code cell contains commands, on the other hand, R
they are executed and the output is returned to the Towie, view | MMT

user. As GF is an integral part of the system, the GLF

kernel supports all of the GF shell commands by simply passing them on to
the GF shell. On top of that, we have added a number of kernel commands
peculiar to GLF. Some of them are stand-alone commands such as for specifying
where the GF and MMT files should be stored. Other commands are intended
to be used in combination with GF commands. In the GF shell, commands can
be combined with the pipe operator |. For example, one might want to use the
parse command to obtain the parse tree of an English sentence and then use the
linearize command to transform the parse tree into e.g. an Italian sentence.
The Jupyter kernel imitates this behaviour, i.e. if the user enters a command of
the form a | b, the output of command a is used as input for command b. By
imitating this behaviour, rather than letting the GF shell handle the piping, we
can add kernel commands that can also be used in combination with pipes, which
lets them blend in more naturally. The construct command takes a parse tree
as argument and sends a semantics construction request to MMT. Therefore, it is
commonly used in combination with the parse command. The show command
can be used for in-notebook visualization of parse trees (see Figure 1). It is
usually used in combination with certain GF commands that generate graph
descriptions in the .dot format. The show command then uses GraphViz to
generate images that are displayed in a widget. If there are multiple parse trees
(e.g. due to ambiguity), a drop-down menu is created, where the user can select
which parse tree to display.

The GLF kernel provides a number of convenience features. Syntax high-
lighting is based on CodeMirror. In JupyterLab, which has been used for the
screenshots in this paper, syntax highlighting is provided by an extension. The
syntax highlighting also depends on the content type of the cell, i.e. different
rules are used for GF content, MMT content and commands.

Other features are built around tab-completion. MMT theories often use uni-
code characters for notations. The Jupyter kernel has a list of (currently 426)
character sequences that can be tab-completed into unicode characters This is
based on a similar list used in other MMT services. The character sequences
are inspired by I#TEX macros, which most users should be familiar with. For
example, \subseteq is completed to C.

Tab-completion is also used for stub generation. A common workflow when
writing a GF grammar is to first write the abstract syntax and then implement
(possibly multiple) concrete syntaxes. A concrete syntax simply defines a lin-
earization for all symbols introduced in the abstract syntax. The GLF kernel
comes with a small script that can parse GF’s abstract syntaxes — as long as
they only contain commonly used features — and then generate a stub for the
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Statements and definitions are parsed differently

parse -cat=Statement "S is empty iff S has no elements" | view tree | show
iffStmt : Statement
applyPredicate : Statemant applyPredicate : Statement
—— SN T
—
positive : Polarity dAtToTerm : Term isAdjective : DoesPredicate positive : Polarity dtToTerm : Term hasNoPosNoun : DoasPredicate
—~—
/ \ / \ —~—
stToDefiniteTerm : DefiniteTerm adj02Adj : PrimAdjective stToDefiniteTerm : T Te np noNames : N: <Opt.
\
| | | \
varToSymbTerm : SymbTerm empty Adj0 ToS: 3 element RNPO : RawNounP0
var S : Variable wvar S : Variable
parse -cat=Statement "S is empty iff S has no elements" | construct

(empty V_S)e-3[V_new:1](element V_new V_S)AT

Fig. 1: Fragment of a GLForTheL notebook.

concrete syntaxes. This allows the user to fill out the concrete syntax without
having to repeatedly scroll back to the abstract syntax to copy all the symbol
names. Similarly, views for the semantics construction have to map every symbol
in the abstract syntax to a logical expression, so stubs are generated for that as
well (Figure 2). Experience has shown that it is beneficial to add the types of
function constants as comments in the generated stubs.

Smaller GLF pipelines like the exam-
ple in Section 2 can be conveniently imple-
mented and tested in Jupyter notebooks. Of
course, larger projects (like the GLForThel
project discussed in the next section) are
usually not implemented inside notebooks,
but rather in text editors and IDEs. GLF
pipelines inherit the modularity of GF gram-
mars and MMT pipelines, and the GLF ker-
nel can use grammars/theories/views de-
fined elsewhere. This way, notebooks can
be used for testing and documenting the
pipeline, as well as for interactively explor-
ing specific problems during the course of
the project.

4 Case Study: GLForThelL

view GrammarSemantics : http://mathht
stmt = _ |
Term = _ |
Notion = _ |
Prop = _ |

// state : Term — Prop — Stmt |[

state = _ |

// every : Notion — Stmt |
every = _ |

// integer : Notion |[
integer = _ |

// even : Prop |

Fig. 2: Generated stub.

ForTheL [Pas07] is the controlled mathematical language of the System for Auto-
mated Deduction. We have recently started to experiment with re-implementing
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ForThel in GLF (we call the result GLForTheL). This can serve as a case study
that highlights both the capabilities of GLF and the role of Jupyter notebooks
during development. In the following paragraphs, we will discuss some of the
challenges we encountered during the implementation of GLForTheL.

Binding Variables Our running example already covers quantification in natural
language ( “every integer”). However, in mathematical language this is further
complicated by the use of variables, as exemplified in this ForThel statement:
“there is an integer N that is even”

Here, N has to be bound to a quantifier. This is a problem in GLF, because NV
is treated as a constant during the semantics construction. Our current work-
around in GLForThel is a special A binder that turns the bound constant into
a variable. For example, the semantics construction might map the statement
above to 3(N N. (int(N) A even(N))), where A’ and N are simple (function)
constants. A post-processing step transforms the “bound constant” N into a
variable (including all its occurrences in the body) and replaces A by a real .

Redundancy in Logical Ezpressions The handling of variable sequences in GLForThelL
results in some artefacts in the logical expressions. An example are trailing A true

in some statements. While simple artefacts like this could be removed by MMT,
there are also more complicated redundancies: GLForThel translates the state-
ment “there are sets X,Y such that every element of X is an element of Y” into
the expression

Y EXset(Y)AVn(ne X =neY) A set(X)AVn(ne X =neY)))

because both X and Y are “sets such that every...”. We are currently working
on an extension of GLF that adds an inference step to the pipeline (see | D,
which could — among other things — be used to implement advanced simplifi-
cation algorithms.

Lexicon Management Adding another word to the grammar usually requires new
entries to the abstract syntax, concrete syntax, domain theory, and semantics
construction. To simplify this, we have developed a tool that automatically cre-
ates these entries from a custom lexicon file. Especially in mathematics, though,
there is another problem: new words and notations are introduced whenever
needed, so the lexicon is growing while a document is processed. This problem is
currently unsolved in GLF, which relies on a pre-defined lexicon. In the context
of controlled languages, it may be argued that a document should have a pream-
ble defining the necessary lexicon. Another solution could be a two-pass process,
where a document-specific lexicon could be generated in a pre-processing step
that harvests the definienda.

Better Target Logic: DRT Discourse Representation Theory (DRT) | ] solves
various problems that arise from using first-order logic as the target representa-
tion in compositional natural-language semantics by introducing discourse rep-
resentation structures as an intermediate representation, which can be compiled
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into first-order logic. Variants of DRT have been repeatedly used in the context
of mathematical language (e.g. | D.

Neither ForThelL nor GLForThelL use DRT. One of the consequences is that
statements like

“if the square of some integer N is even then N is even”
get translated into
(Ju(int(v) A even(square(v)))) = even(N),

because “some” usually means that the expression is existentially quantified
(think e.g. of “H is contained in some ball B C U”). Of course, one would
expect to get

Yo((int(v) A even(square(v))) = even(v)).

To remedy this in the future, we are currently looking into different ways of
representing DRT in MMT.

From Sentences to Discourse GLF operates on the sentence level. This becomes
a problem when variables are introduced in one sentence ( “let G be a group”)
and then used in another sentence. Our implementation extracts the restrictions
(G : group) and keeps G as a free variable in the following sentences. In general,
our goal is to extend GLF with an inference step (as mentioned above), which
could be used to combine this information. It would also allow experimentation
with other discourse-level challenges such as anaphor resolution.

5 Conclusion and Evaluation

We have introduced a new Jupyter front-end for GLF; together they form a rapid
prototyping system for controlled mathematical languages.

So far, it has been mostly used in a one-semester course on logic-based natural
language processing [ | at FAU Erlangen-Niirnberg. In previous years, we
connected GF and MMT via some rather fragile Scala code, which was so incon-
venient that we mostly used GF and MMT independently. Last semester we had
the first iteration of the lecture using GLF and Jupyter. In the lab sessions (half
of the course), we explored different natural-language semantics phenomena by
implementing the language-to-logic pipeline in GLF. Since the class was rather
small, we basically asked the students to tell us what to enter into the notebook
and could immediately test the ideas. After some cleanup, the notebooks could
be shared with students — much more easily than the messy file collections we
had had in previous years. The modularity of GLF also allowed us to try different
semantics constructions for the same grammar. We also used Jupyter notebooks
for homework assignments, providing partial implementations where the stu-
dents had to implement the critical parts. The students also had the option to
implement the homework without Jupyter notebooks (using command line tools
for testing), but almost all students chose to use Jupyter notebooks. One of the
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biggest challenges was the installation on students’ computers. This was further
complicated by the need for updates throughout the semester as we improved
the implementation. Going forward, we are planning to provide Docker images
and online notebooks that can be used instead.

The newly reached maturity of GLF allowed us to return to our original
motivation to apply it to mathematical language. As a larger case study, we have
discussed our attempts to implement GLForThel, a variant of ForThel, which
was our first larger project. Since the goal of GLForThel is to imitate ForThel,
our experimentation was primarily focused on the ways technical challenges can
be handled. While Jupyter notebooks were the go-to tool for these experiments,
they were less useful for implementing the actual GLForThel project, since it was
much larger (currently 39 different node types and over 50 production rules).
GLForTheL imposes tighter restrictions on the input language than ForThel,
rejecting ungrammatical statements like “S are a sets”, which are accepted by
ForThelL. For a long time we supported both a German and an English concrete
syntax. All this was possible without much effort, due to GF’s powerful grammar
mechanisms.

At its current state, our GLForThel re-implementation can translate two
example files from the SAD repository (excluding proofs). Since GLForThelL re-
quires well-formed English sentences, it will never have the same coverage as
ForThel, but this was not our goal after all. One of the more complex sentences
GLForTheL can currently handle is the definition “a subset of S is a set T such
that every element of T belongs to S”, which results (after some a-renaming for
readability) in

VT.(subsetof T S) < (set T) AVx.(elementof x T) AT = (belongto x S) A T.

Expanding the coverage to more examples mostly boils down to extending the
lexicon and adding the occasional grammatical rule. However, more work is
needed to handle binary relations imposed on variable sequences as in “let z, ¥y,
z be pairwise linearly independent vectors”.

Our GLForThelL case study also indicated the need for a processing step after
the semantics construction. | ] describes an extension of GLF that adds
an inference component, which can be used for e.g. simplification, ambiguity
resolution or theorem proving. Additional work is needed for lexicon management
and regression testing.

Overall, we believe our experiences with GLForThelL confirm our hypothesis
that GLF+Jupyter provide a flexible framework for the quick prototyping of
controlled mathematical languages. The Jupyter kernel along with a link to an
online version can be found at | ] and the GLForThel code at | ]
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