
Formula Semantification and Automated Relation
Finding in the On-line Encyclopedia for Integer

Sequences2

Enxhell Luzhnica and Michael Kohlhase

Computer Science, Jacobs University Bremen, Germany

Abstract. The On-line Encyclopedia of Integer Sequences (OEIS) is an important
resource for mathematicians. The database is well-structured and rich in math-
ematical content but is informal in nature, so knowledge management services
are not directly applicable. In this paper we provide a partial parser for the OEIS
that leverages the fact that, in practice, the syntax used in its formulas is fairly
regular. Then, we import the result into OMDoc to make the OEIS accessible to
OMDoc-based knowledge management applications. We exemplify this with a
formula search application based on the MathWebSearch system and a program
that finds relations between the OEIS sequences.

1 Introduction

Integer sequences are important mathematical objects that appear in many areas of mathe-
matics and science and are studied in their own right. The On-line Encyclopedia of Integer
Sequences (OEIS) [Inc15] is a publicly accessible, searchable database documenting
such sequences and collecting knowledge about them. Sequences can be looked up using
a text-based search functionality that OEIS provides, most notably by giving the name
(e.g. “Fibonacci”) or starting values (e.g. “1, 2, 3, 5, 8, 13, 21”). However, given that the
source documents describing the sequences are mostly informal text, more semantic
methods of knowledge management and information retrieval are limited.

In this paper we tackle this problem by building a formula parser for the source
documents and exporting them in content MathML, the pertinent XML-based standard.
This opens up the OEIS library to knowledge management applications, which we
exemplify by a semantic search application based on the MathWebSearch [HKP14]
system that permits searching for text and formulas and by a relation finder that induces
new relations from the parsed formulae. This paper is based on [Luz16] to which we
refer for details we had to elide.

2 The OEIS

The OEIS is a web information system about integer sequences. Started in 1964 by Neil
Sloane, an active community now curates over 250 000 sequences, collecting their starting
values, literature references, implementations, and formulae that encode representations
and relations between sequences. This data is stored in a line-keyed ASCII documents

2 Luzhnica-Kohlhase

internally. We introduce this by way of the snippet in Figure 1 – we will use the Fibonacci
numbers as the running example. There we see a document fragment with identification
(%I), values (%S), name (%N) and reference (%D) lines, followed by three formula lines (%F)
and the author line (%A). The formula lines are the main object of interest in this paper.

%I A000045 M0692 N0256
%S A000045 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987
%N A000045 Fibonacci numbers: F(n) = F(n−1) + F(n−2) with F(0) = 0 and F(1) = 1.
%D A000045 V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
%F A000045 F(n) = ((1+sqrt(5))^n−(1−sqrt(5))^n)/(2^n∗sqrt(5))
%F A000045 G.f.: Sum_{n>=0} x^n ∗ Product_{k=1..n} (k + x)/(1 + k∗x). − _Paul D. Hanna_,

Oct 26 2013
%F A000045 This is a divisibility sequence; that is , if n divides m, then a(n) divides a(m)
%A A000045 _N. J. A. Sloane_, Apr 30 1991

Fig. 1: The OEIS sources for Sequence A000045 (Fibonacci Numbers)

The bulk of formulae in the OEIS consist of generating functions used to represent
sequences efficiently by coding the terms of a sequence as coefficients of powers of
a variable x in a formal power series. Unlike an ordinary series, this formal series is
allowed to diverge, meaning that the generating function is not always a true function
and the “variable” is actually an indeterminate.

There are different types of generating functions, including ordinary generating
functions, exponential generating functions, Lambert series, Bell series, and Dirich-
let series. The ordinary generating function (or just generating function) of a se-
quence a0, a1, a2 . . . , an−1, an, . . . is the infinite series:

GF (x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 + anx
n + . . . =

∞∑
i=0

aix
i (1)

For example, the sequence A000012 = (1, 1, 1, 1, 1, . . .) can be represented as:

1 + x+ x2 + . . . =
1

1− x
(2)

We know that the equation above only holds for |x| < 1 but we ignore the issues
of convergence, as already mentioned. Thus, the ordinary generating function of this
sequence can be written as 1

1−x .

3 Parsing OEIS Formulae

We built a partial parser for OEIS formulas by identifying and analyzing well-behaved
formulas to produce a workable grammar. We leverage the fact that, although there is no
standardized format for OEIS formulas, many of them use a sufficiently regular syntax. At
the core, the parser uses a rather standard grammar for infix, suffix, and prefix operators
and binding operators with precedences. Instead of presenting it in detail we discuss
some of the challenges we encountered:

Semantification and Relation finding for the OEIS 3

Open Set of Primitives Since the formulas are not standardized, not only is the syntax
flexible, but so is the set of primitive operators that are used. For instance, the formulas
in Figure 1 (on lines 5-6) use square root, power, as well as the sum (Σ) and product
(Π) binders. The challenges arise because of the many different notations used for such
primitives. For instance, in line 6 of Figure 1 the range for sum and product is given in
two different ways. Similar problems appear with limits and integrals as well as numerous
atypical infix and suffix operators. In order to parse these correctly, we investigate the
documents and the grammar failures manually and incrementally extend the grammar.

Ambiguity As it is often the case with informal, presentation-oriented formulas, there can
be ambiguity in the parsing process when there exist several reasonable interpretations.
Since the OEIS syntax is not fixed, this is quite common, so we do additional disam-
biguation during parsing to resolve most of the ambiguities. Some common ambiguities
are:

– Implicit multiplications: a*(x+y) is usually written as a(x+y) which is ambiguous
since it can also be parsed as a function application.

– Natural way of using the power operator: T^2(y) is used for (T (y))2, however T^y(
x^2+2) is ambiguous.

– Unbracketed function applications: sin x is a common way of writing sin(x). How-
ever, this form of function application can also be parsed as multiplication between
variable sin and x, as in Pi x.

We employ heuristics based on a type system that we use to assign types to each of the
parsed terms to resolve these ambiguities.

Delineating formulas OEIS formula lines freely mix text and formulas so it is required to
correctly distinguish between text and formula parts within the lines in order to accurately
parse each line. For instance, line 6 in Figure 1 starts with the text G.f.: (meaning
“Generating function:”) and continues with the formula. The line then has the author and
date, separated from the formula by a dash (-) which could also be interpreted as a minus
and, therefore, a continuation of the formula. In the extraction of the formulas we use
the help of a dictionary. The text in the OEIS documents has words that are not found
in the dictionaries since it contains many technical terms so we first run a pre-parsing
procedure which enriches the dictionary. The final grammar tries to parse words until it
fails and then tries to parse formulas; this process repeats.

Formula parsing The formula parser is implemented using the Packrat Parser for which
Scala provides a standard implementation. Packrat parsers allow us to write left recursive
grammars while guaranteeing a linear time worst case which is important for scaling to
the OEIS.

There are 223866 formula lines in OEIS and the formula parser succeeds on 201384
(or 90%) of them. Out of that, 196515 (or 97.6%) contain mathematical expressions.
Based on a manual inspection of selected formulas we determined that most parser fails
occur because of logical connectives since those are not yet supported. Other failures
include wrong formula delineation because of unusual mix of formulas and text. We did

4 Luzhnica-Kohlhase

a manual evaluation of the parsing result for 40 randomly selected OEIS documents and
evaluated 85% of successfully parsed formulas as semantically correct.

The importer is implemented in Scala as an extension for the Mmt system and consists
of about 2000 lines of code. It is available at https://svn.kwarc.info/repos/MMT/
src/mmt-oeis/.

There are 257654 documents inOEIS totaling over 280MBof data. TheOMDoc/MMT
import expands it to around 9GB, partly due to the verbosity of XML and partly due
to producing the semantic representation of formulas. The total running time is around
1h40m using an Intel Core i5, 16GB of RAM and a SATA hard drive.

Search MathWebSearch (MWS) is an open-source, open-format, content-oriented
search engine for mathematical expressions. We refer to [HKP14] for details.

To realize the search instance in MWS we need to provide two things:
1. A harvest of MathML-enriched HTML files that the search system can resolve

queries against. The content-MathML from the files will be used to resolve the
formula part of the query while the rest of the HTML will be used for the text part.
The harvest additionally requires a configuration file that defines the location in
the HTML files of MWS-relevant metadata such as the title, author or URL of the
original article. This, together with the HTML itself is used when presenting the
query results.

2. A formula converter that converts a text-based formula format into MathML. This
will be used so that we can input formulas for searching in a text format (in our case
OEIS-inspired ASCII math syntax) rather than writing MathML directly.

To produce the harvest of the OEIS library for MWS we export the HTML from the
content imported into Mmt. We reuse the Mmt presentation framework and only enhance
it with OEIS-specific technicalities such as sequence name or OEIS link. For the formula
converter we use the same parser used for OEIS formulas and described above, except
extended with one grammar rule for MWS query variables. Figure 2 shows (a part of)
the current interface answering a query about Fibonacci numbers. The search system is
available at http://oeis.search.mathweb.org.

4 Relation Finding

Part of the mathematical interest in the OEIS is that it gives interpretations of sequences
and provides a basis for establishing relations between them. Consequently extending
the latter has been an important concern. As the initial values of the sequences were the
only machine-actionable part of the OEIS, relation-finding has concentrated on them.
However it is important to note that even an exact match of initial subsequences can never
verify a relation, thus any numeric match can only be a relation conjecture. An extreme
example of two sequences that match for 777451915729367 terms but are not equal, is⌊

2n
log(2)

⌋
and

⌈
2

21/n−1

⌉
[N J12]. Ralf Stephan found 117 conjectures from which 17 of

them are still open [Ste04].
Our database of parsed formulae allows us to do better: we can directly look for

relations between the formula representations, most prominently between the generating
formulae. The approach we follow is mathematically simple. We will show two methods,

Semantification and Relation finding for the OEIS 5

Fig. 2: Text and Formula Search for OEIS

the second building on top of the first. Refer to [Luz16] for a more elaborate discussion
and another method.

Method 1 In this case, we normalize the ordinary generating functions of the sequences
and check for equality between the normalized expressions. The normalization rules are
defined as follows:

cG c - constant G - generating function
(Const)

G

xnG x - the indeterminate of G G - generating function
(Unshift)nG

P/Q P,Q - polynomials
(Sort)

(
∑n

i=0 pix
i)/(

∑m
i=1 qix

i) pn > 0 qn > 0

Intuitively, in this case we are checking if sequences are scaled and/or shifted versions
of each other. These relations are not meant to be interesting or new.

Method 2 In this case we check if a sequence can be expressed as a sum of other sequences
existing in the OEIS, possibly transformed and/or normalized.

A simplified algorithm roughly follows this pseudocode:

foreach sequence
foreach ogf in ordinaryGeneratingFunction(sequence)
add normalize(ogf) to hashSet

foreach sequence
foreach ogf in ordinaryGeneratingFunction(sequence)
pdf = partialFractionDecomposition(ogf)

6 Luzhnica-Kohlhase

partialFractions = decompose(partialFractions(pfd))
relationsExists =
forall pgf in partialFractions
transformedPartialFractions = normalize(applyTransformations(pgf))
transformedPartialFractions.intersection(hashSet).length > 0

if (relationsExists)
print relations

We will now explain the functions that we are using above.
Let GFn be one of the ordinary generating functions of sequence An. The partial

fraction decomposition (partialFractionDecomposition) would leave us with GFn =∑n
j=1 Gj whereGj is also an ordinary generating function. The function partialFractions

extracts the summands, in this case, the partial fractions (ordinary generating functions)
themselves. The function decompose does a further step of decomposition. If Gj =

P
Q

where P,Q are polynomials (P =
∑n

i=0 aix
i) then it rewrites Gj =

∑n
i=0

aix
i

Q . These
summands are then considered partial fractions too.

The transformations are integration, differentiation and unit. The transformations
are selected such that expressions that match under these transformations can be easily
related both mathematically and semantically.

(a) OEIS Relation Graph of Current Relations (b) OEIS Relation Graph after Method 2

The points around the circle represent the theories and the blue lines views between them. The
theories presented here are only the ones for which we have parsed the generating functions.

Fig. 3: OEIS Relation Graphs

The relation finder is implemented in Scala and is available at https://github.
com/eluzhnica/OEIS. The page will be kept up to date with results. The implemen-
tation of the normalization rules makes use of the parsing tree of the expression. The
transformations are done using SageMath [Dev16] as a math engine. Our Scala code
communicates with a local SageMath server using a REST API.

We show below some examples of the relations found from each method.

Semantification and Relation finding for the OEIS 7

Method 1 This is more of a sanity check of the data. Due to the nature of these relations,
these are self-evident relations. Additionally, these relations can be effectively searched
utilizing a numerical method. An instance that our algorithm finds is that sequence
A001478(n) = −A000027(n). Sequence A001478 is the sequence of the negative
integers, while A000027 is the sequence of positive integers.

Method 2 An example of this method, which we have submitted and it is accepted in the
OEIS (https://oeis.org/A037532), is as follows.

A037532(n) =
5

57
A049347(n− 1) +

3

57
A049347(n) +

29

171
A000420(n)− 2

9
(3)

There is one subtlety that needs to be explained. The sequence with ordinary generating
function 1

1−x is the sequence (1, 1, 1, . . .). However, for simplicity we write down 2
9

instead of 2
9A000012(n).

Since our parser runs over all the formulas of OEIS, we have extracted the existing
explicit relations in OEIS and made a graph (Figure 3a) showing the existing connections
between sequences . The second method enriches the theory graph as shown in Figure
3b.

We converted the parsed generating functions to the SageMath syntax and checked
if SageMath can compute with the expressions. From manual inspection, we found out
that most of the unaccepted cases were referencing functions defined somewhere within
the document. For instance, 1 +Q(0) where the function Q(n) is defined later on in the
sequence document. We currently do not resolve these references.

Parsed Generating Functions 43 005
SageMath verified Generating Functions 16 065
Parsed Ordinary Generating Functions 35 953

SageMath verified Ordinary Generating Functions 13 400
Method 1 relations 4 859

Sequences in Method 1 relations 853
Method 2 relations 297 284 646

Method 2 relations without normalization 66 427

Table 1: Evaluation of the Relation Finder
Method 1 reports 4859 relations of that kind. However, in total only 853 sequences

can be normalized to other existing sequences.
It is noticeable that there are a lot of relations generated from the second method.

This is due to the number of relations found using the normalization rules (Method 1).
Take for instance, G = A+B + C, and say that each of A,B,C is an OEIS sequence
and is related with 3 other sequences under the normalization rules. Then the number of
relations that we can form is actually 43. For this reason, we also report the number of
relations when we remove the relations that come due to the normalization. So, in the
example above the relation would count only once, instead of 43.

Out of three submissions, two relations are already accepted in the OEIS. One of
them has already been presented in Equation 3 and the other relation is A001787(n) =
A007283(n)n6 which can be found at https://oeis.org/A001787. The unaccepted

8 REFERENCES

submission was not perceived to add new information since a similar relation was already
present. The submitted relations were selected randomly.

5 Conclusions and Future Work

We improved the digitalization of the OEIS by parsing the formulae. Even though our
parser can definitely be improved, it already supports two important added-value services.
First, the MathWebSearch instance on OEIS which allows the users to search the OEIS
by text formula queries. Second, a way of generating knowledge from OEIS, specifically,
relations between sequences. The relation finding experiment presented above only uses
very simple mechanisms for finding relations between generating functions. We make
the parsed and induced formulae in content MathML form at https://github.com/
eluzhnica/OEIS to allow other parties to extend our methods and find even more
relations.

Acknowledgements We acknowledge financial support from the OpenDreamKit Horizon
2020 European Research Infrastructures project (#676541), and thank the OEIS commu-
nity for support Neil Sloane for giving us access to a full OEIS dump and Jörg Arndt
for fruitful discussions. All the work reported in this paper has only been possible, since
the OEIS foundation had the foresight to license the contents under a CreativeCommons
license that allows derivative works.

Sustainability To make our work sustainable, we would need to i) periodically re-run our
system on future versions of theOEIS and ii) feed the results back into the knowledge base.
The first needs a setup which facilitates change management, minimally a way to query
the OEIS for changes like the OAI-PMH, but even better, maintaining the OEIS sources
in a revision control system like GIT. For the second we note that with the huge volume
of induced formulae, manual submission to the OEIS cannot be the answer. Automated
submission – while simple to implement – would overwhelm the OEIS editors.

References

[1] Radu Hambasan, Michael Kohlhase, and Corneliu Prodescu. “MathWebSearch at
NTCIR-11”. In: NTCIR Workshop 11 Meeting. Ed. by Noriko Kando, Hideo Joho,
and Kazuaki Kishida. Tokyo, Japan: NII, Tokyo, 2014, pp. 114–119.

[2] The OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http:
//oeis.org/. 2015.

[3] Enxhell Luzhnica. “Formula Semantification and Automated Relation Finding in
the OEIS”. B. Sc. Thesis. Jacobs University Bremen, 2016. url: https://github.
com/eluzhnica/OEIS/doc/Enxhell_Luzhnica_BSC.pdf.

[4] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http : / /
neilsloane.com/doc/eger.pdf. 2012.

[5] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
7.1). http://www.sagemath.org. 2016.

[6] Ralf Stephan. State of 100 Conjectures From The OEIS. http://www.ark.in-
berlin.de/conj.txt. 2004.

