Formal Aspects of Computing (2001) 3: 1-17
© 2001 BCS

LOUTL: Lovely (XMEGA User Interface

Jorg Siekmann, Stephan Hess,

Christoph Benzmiiller, Lassaad Cheikhrouhou, Armin Fiedler, Helmut Horacek, Michael
Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Martin Pollet, Volker Sorge

FB Informatik, Universitit des Saarlandes, Germany

http://www.ags.uni-sb.de

Keywords: Automated Deduction, Mathematics, User Interface, Agents, Dis-
tributed Artificial Intelligence, Human Computer Interaction

Abstract. The capabilities of a automated theorem prover’s interface are essen-
tial for the effective use of (interactive) proof systems. LOUZ is the multi-modal
interface that combines several features: a graphical display of information in a
proof graph, a selective term browser with hypertext facilities, proof and proof
plan presentation in natural language, and an editor for adding and maintaining
the knowledge base. LOUT is realized in an agent-based client-server architecture
and implemented in the concurrent constraint programming language OZz.

1. Introduction

The effective use of an interactive theorem proving system depends not least on
the capabilities of its user interface. A major problem is the adequate access to
the overwhelming amount of information manipulated by these systems. This
requires structure-oriented overview facilities, and selective and precise content-
oriented display.

The LOUT system is a state-of-the-art user interface for IMEGA, a proof as-
sistant system for mainstream mathematics based on proof planning [BCFT97].
Some of LOUT’s distinct features are the graphical visualization of the informa-
tion in proofs, a selective term browser as well as proof and proof plan presen-
tation in natural language. The user can add new information to partial proofs,
which helps to understand and guide the proof search. LQUZ is implemented as
a client in the distributed agent architecture MATHWEB [FK99, FHJT99].

Correspondence and offprint requests to: Prof. Dr. Jérg Siekmann, FB 14, Universitit des
Saarlandes, D-66041 Saarbriicken, Germany

We start the paper with the design motivation which influenced the devel-
opment, of the LOUTZ system. In Section 3, various display facilities including
graphical and natural language presentations are described. This is followed in
Section 4 by an illustration of a number of control mechanisms for the effective
use of proof techniques. Section 5 is devoted to the client-server architecture.
Finally, we discuss some related work and directions for further work.

2. Design Objectives

In the field of interactive theorem proving, design principles for the development
of graphical user interfaces are still relatively rare. Some guidelines are presented
in [Eas98]. The design objectives that we have focused on for our interface are:

Multi-Modal Visualization In any proof state the system should display the
proof information to the user at different levels of abstraction and detail and
furthermore in different modes (e.g. as the graphical representation of a proof
tree, as a linearized proof, or in verbalization mode).

Lean Processing The interface should work reasonably fast, and its installa-
tion in other environments should be possible with minimal effort and storage
requirements.

Anticipation The system should minimize the necessary interaction with the
user by suggesting commands and parameters at each proof step. Optimally,
the system should be able to do the straightforward steps autonomously.

One principle mentioned in [Eas98] is the guideline that “there should be a num-
ber of complementary views of the proof construction and the user should be
able to choose to see any number of the views simultaneously”. In other words, a
multi-modal visualization is desirable. Most proof systems however concen-
trate just on one single view of the proof rather than on alternative presentations.
In contrast, LOUT provides different and complementary views of a proof such as
a graphical display or a linearized proof (see Section 3). The traditional graphical
tree representation of the proof is enhanced by dedicated browsers for selected
textual information (see Figure 1) and intensive use is made of hypertext tech-
niques in order to illustrate connections between physically distant, but logically
related portions of proofs in both the text-based and the graphical modes. For
instance it is easy to inspect a proof line’s premises with these links and to re-
turn to the starting point by clicking on the corresponding history button in the
symbol-bar. To add a natural language view of proofs, LOUZ calls the PROVERB
proof presentation system that structures and verbalizes proofs in natural lan-
guage (see Section 3.3).

The lean processing principle has led to a distributed system architecture
of LOUT [QOMEGA, where LOUT is realized as an autonomous software agent (see
Section 5), which can be sent over the Internet as an applet while the QMEGA
server resides on a dedicated host. Since LOUT is an autonomous agent, it main-
tains its own representation of the proof state and autonomously computes the
visualization information by using local computational resources, thus reducing
the communication bandwidth to a minimum. Thus the architecture inherits the
advantage from two kinds of setup: From one, where the whole deduction system
is installed locally on the client machine (local computation) as well as from one,
where the logical and graphical computations are centralized on a server the user

communicates with, say, by a remote X connection. This enables the realization
of the concept of direct manipulation [Shn92], which allows for immediate
feed-back and a minimal time a user has to wait until an action takes effect.
Direct manipulation is supported since LOUZ can react to many forms of user
interaction immediately by manipulating its internal representation of the proof
state rather than calling the server.

Anticipation to minimize user interaction, has always been a concern of
interactive systems, for instance by disabling commands that are nonsensical (i.e.
pre-selecting legal actions) or generating lists of commands that are advisable
in a current situation. In LOQU7Z’s internal representation of the proof state,
many interface-related reasoning tasks can be performed without the help of
the underlying proof system. For example, LOUZ supports and complements
the agent-based command suggestion mechanism [BS98a] provided by its host
system (QMEGA.

We shall elaborate on these issues in the following sections.

3. Multi-modal Views

LOUT’s presentation features are, to a certain extent, influenced by (QMEGA’s
central three-dimensional proof data structure PDS, which will be presented in
section 3.1. The two subsequent sections discuss the principal proof presentation
capabilities in LOUZ: a structural tree visualization with references to terms
and inference steps and a natural language display. To start with, consider the
following example:!

Theorem 1. (Example) Given that a C b and b C ¢. Then a C c.

A proof of this theorem can be generated in QMEGA in many ways, the easiest
is by calling an external reasoner for such a simple problem, e.g. the first-order
theorem prover OTTER [McC94], which quickly finds the proof. This external
proof is then translated into dMEGA’s proof format and inserted into the central
proof data structure PDS. Now, LOUT provides different components to view
this data structure (see Figure 1 for a screen-shot). As in traditional theorem
proving systems, LOUZ can present a proof in a linear text form, in our case as
a higher-order variant of Gentzen’s natural deduction (ND) calculus (as in the
upper right frame in Figure 1). The formula of the highlighted line is pretty-
printed in the term browser (see the lower right frame in Figure 1). For long
proofs, such a presentation lacks transparency and structure. Therefore LOUZ
offers two additional representations:

e as a tree that models the logical dependencies between the different proof
lines, (see the upper left frame in Figure 1),

e as a text in natural language as it would appear in a mathematical textbook
(see Xdvi-window in the lower right corner of Figure 1). Currently, only
completed proofs can be presented in natural language.

Furthermore LOUT uses hypertext techniques to visualize essential connec-
tions, e.g. between the proof lines in the standard linearized proof and the cor-
responding nodes in the tree representation.

1 All examples in this paper are chosen for presentation purposes, not as an example of realistic
scale.

_-{Lovely Omega User interface @leibniz (Proof Plan: SUBSET-1) Main Window (=153
Fle Edit View Go Theories Planner Agents ProVerh Misc Tactics Presentation Extem Verfy Rules Options Help
i T f)
ClE@ 5 nl +2e G IO RO| € a
Map Label Hypothesis Term Method Premises
[X[|Asst ASSL ach HrP Ay
ASs2 Ass2 b <ce HYP
CONC ASS1 ASS2 acc Defnl d
L1 Ass2 Asst Yde-40. (a de-40} = (¢ de-40) FORALLI L
Lz Ass1 ¥de-52, (a de=52) o (b de=52) DefnE ASSL
3 553 Wic=84, (b do=647 = (o do=4) PefnE 557
LS LB 2 el HYP
L7 ASSL LS b cl ASSERTION L2 LS
L8 ASS2 ASSL LE e el ASSERTION L
Le ASS2 ASS1 LS c el WEAKEN L8
L4 Assi ASS2 (acld = (ccl) IHPT L
_=| Commands x|
Li
- Suggestions
suest it
oEmy-comthscr
oEm-eupatin
oEm_eupans
oerst
:| oerst
(= 5] 2 IEET IEET]
Pretty Term
=0 c1 , ———ﬁ
[;
] 5 5 K Xevi: subset
Output | Message | e | Wammg}} e
3 [ile o1 A onn
(1) aCb.
THE PID: 2510 i iE
; B9sec (total run-time Oses) HesbA. A0 HEsBRt = 45 Habid) ke
$ G9sec {total run-time Osec)
* B4 {total —t. L] = - -
setairaral frinsEine oSee ¥de-52. ¢a dc-52) S (b de-52) Theorem 1 o c.
vde-40. (a de-d0) > {o de=d0)
Proof:
<
s {3) b C cimplies that if deoy € b degy € ¢ for all dess.
| Yee-64.4b des6d) o {c desad) (1) @ Cb leads to dess € o implying that dess € b for all dess.
5] = | Let ¢y € a. That implics that ¢ € b That implies that ¢ € ¢. 0 C ¢
because if dey € a degg € ¢ for all deso
e omsox) @0 WMo Oo Co @0 Ao Ao Ao S0 Trio Dephio Ll

Fig. 1. The LOUT interface presenting the proof for Theorem 1. The standard text presentation
is given in the upper right frame, whereas the corresponding proof tree is given in the upper left
frame. The term browser in the lower right frame displays the formula of the currently focused
proof line/node. The lower left frame provides information on different message streams from
the QMEGA system. The lower-right Xdvi-window presents the verbalized proof as generated
by PROVERB.

The command menu bar on top of the entire frame in Figure 1 provides access
to QMEGA’s proof tools that are organized in pull-down menus. Icons are used
as shortcuts to specific commands or sub-menus. Command suggestions for the
next proof step are presented for quick and easy selection in a special suggestion
window. Finally, a control window (see the lower left frame in the window dis-
played in Figure 1) provides access to the output streams of MEGA’s processes.
In the following subsection we shall present the details of this visualization and
the motivation underlying its design.

3.1. Hierarchical Proof Plan Data Structure

Finding a proof with MEGA can be viewed as a process that interleaves proof
planning [Mel98, CS98], plan execution, and verification, all of which is data-
driven by the so-called Proof Plan Data Structure (PDS).

This hierarchical data structure represents a (possibly partial) proof at dif-
ferent levels of abstraction, called proof plans. Its nodes correspond to steps of
the derivation and are justified by methods. Conceptually, each justification rep-
resents a proof plan for the corresponding derivation step at a lower level of
abstraction (the ezpansion of the justification). It is computed when the method

is expanded. A proof plan can be recursively expanded, until a proof at the cal-

4

culus level has been reached. In QMEGA, we keep the original proof plan in the
expansion hierarchy of the PDS. Thus, the PDS makes explicit the hierarchi-
cal structure of proof plans and retains it for further applications such as proof
explanation or analogical transfer of plans.

When the expansion process is completed, a verifier can check the correctness
of the proof. The expansion of macro steps provides the basis for an integration
of external reasoning components—such as an automated theorem prover (ATP)
or a computer algebra system (CAS)—if each reasoner’s results can (on demand)
be transformed into a sub-PDS. New pieces can be added to the PDS by directly
calling methods and rules, by inserting facts from a database, or by calling some
external reasoner.

LOUL supports QMEGA’s three-dimensional PDS in many ways. For in-
stance, different layers of the PDS can be analyzed separately and switching
to another layer is supported by context menus for each node. In this sense,
LOUT implements the philosophy of multi-dimensional representations of proofs
within its visualization and control facilities.

3.2. Visualization — Proofs as Tree-like Maps with Associated
Content

If the proof information is conveyed in only one mode by the user interface, it
can lead to problems:

e Presentation in linear form fails to convey the structure of a proof.

e Presentation in tree form may soon become difficult to survey because of the
large annotations associated with each node.

Because of the inadequacies of purely linear or tree formats, a central design
decision in LOQUT was to separate the structure of the proof tree from its content.
Consequently, the visualization of a proof in LOUT consists of three parts:

e a proof tree in a purely structural form, where the individual nodes convey
status information through their shape and color.

e a linear form of the content of the proof, by individual lines.

e a number of co-reference facilities for the connections within and between the
tree and the linear proof visualization forms.

The linear form of the proof display is fairly standard in most of its parts,
where each derivation step is presented in one single line. These steps of a deriva-
tion usually fit into a reasonably sized window as the associated display demon-
strates (see the upper right part of Figure 1). This may not be the case for entries
in the part named “term”. Therefore a separate frame selectively displays a sin-
gle term in full length, which can be activated by clicking on the term of interest
in the linear format.

Logical proofs are in general acyclic directed graphs rather than trees, hence
the graphical display of such structures poses problems: If a pure tree display
is produced by duplicating identical subproofs, the tree may grow very large.
If, alternatively, multiple subtrees are displayed only once with pointers to the
other positions, these pointers may easily render the visualization confusing and
unmanageable. Therefore, LOUZ represents nodes with multiple predecessors
(i.e. subproofs used more than once) as co-reference nodes: The subproof is

displayed only in one place, and the other occurrences are represented as a special
node the co-reference node. In a sense, co-reference nodes take the role of a
lemma, but a co-reference node is not necessarily promoted into a lemma.

Using this convention, proof graphs can be visualized in LOUZ as proper
trees, where node categories (representing the status of the node in the PDS)
are expressed by color and shape. The shape illustrates the major node category
and color variations express more fine-grained distinctions:

Terminal nodes are represented by wupward pointing triangles, where assump-
tions, assertions, and hypotheses are distinguished by their color (green, yel-
low, and orange).

Intermediate nodes are represented by circles, where ground, expanded, and
unezpanded nodes are distinguished by color (dark blue, bright blue, and
light blue).

Open nodes are represented by squares. Since there are no further categorical
distinctions for open nodes, they have the same color (red).

Co-reference nodes, which may or may not be terminal nodes, are represented
by downward pointing triangles, they are uniquely colored in grey.

Open nodes represent subgoals in the proof which have not been solved yet,
i.e. they are subject to further derivations. Intermediate nodes represent the re-
spective level of abstraction in the PDS: Ground nodes are at 2MEGA’s calculus
level, i.e. a set of ND rules that is large enough to ensure completeness. The other
intermediate nodes represent inference steps at higher levels of abstraction. Ex-
panded nodes are nodes where the expansion to the next lower level was already
calculated, but is not displayed. In unexpanded nodes, the expansion has not yet
been calculated.

In order to obtain a good view of the proof tree, the user has commands to
manipulate the appearance of that tree:

zooming between tree overviews and enlarged tree parts,
scrolling to a desired tree part,
focusing on a subtree by cutting off the remaining tree parts,

abstracting away from details of a subtree derivation by hiding the display of
that subtree, which then appears as a double-sized red triangle.?

Because of the different forms of proof display, especially tree structure and
content, various overview formats are offered for the entire proof, where the
references between elements of this overview are very selective and only triggered
by explicit user commands. There are four different forms of co-references in
LOUT’s display:

e Co-references within the linear form, including the “Pretty Term” frame. Two
facilities are offered here. One is activating the “Pretty Term” browser, which
is done by clicking on the term of interest. The selected term is then displayed
in full length in the “Pretty Term” frame, while the line in which that term
appears is highlighted (see Figure 1). The other facility is for inspecting
individual justifications of a derivation, which is achieved by clicking on the
premise of interest in a selected line of proof. Again, this line is highlighted.

2 Note that this subtree abstraction is different from abstraction levels in the PDS.

e Co-references within the proof tree. Through this facility the connection of
a co-reference node is re-established temporarily. Pointing to a co-reference
node leads to the temporary appearance of a line between that node and the
node it co-refers to, that is, the root of the subtree representing the subproof
hidden behind the co-reference node.

e Co-references between the linear form and the proof tree. The connection be-
tween structure and content can be established through this facility. Clicking
on a node activates a yellow box next to that node in the tree display which
contains a label and a term. The referred line in the linear form of the proof
is highlighted.

e Co-references between plain text and the proof tree, the linear form and the
menu bars of LOUL. There are currently two co-references of this kind. One
is from the node of a proof tree or proof line to a verbalization of the justifica-
tion of this node in natural language as described in section 3.3. The second
kind of co-reference is from hypertext documents (like the online documen-
tation), where hyperlinks can be used to directly activate LOUZ commands
(see section 4).

3.3. Proofs in Natural Language

While £OUZ cannot read natural-language input yet,® it makes use of the
PROVERB system [HF97] to present proofs in natural language. PROVERB em-
ploys state-of-the-art techniques of natural language processing and generation.

Like most application-oriented natural language generation systems,
PROVERB has a pipelined architecture [Rei94] consisting of three processing
phases, each realized by a dedicated component: a macro-planner, a micro-
planner, and a surface realizer. The macro-planner linearizes a proof and plans
communicative acts by a combination of hierarchical planning and focus-guided
navigation. The micro-planner then maps communicative acts and domain con-
cepts into linguistic resources, it paraphrases and aggregates such resources to
produce a text structure that contains all necessary syntactic information. The
realizer TAG-GEN [KF95] executes this text structure and generates the sur-
face sentences that are passed on to IATEX2e. The formatted text is then finally
displayed in an Xdvi-window (cf. Figure 1).

While the underlying architecture is standard for many language generation
systems, PROVERB has a number of special features that are particularly useful
for presenting mathematical proofs: a focus mechanism to control the presenta-
tion of proof steps in context, paraphrasing capabilities to augment the system’s
expressiveness, and aggregation operators that can be employed to express facts
that share some of their referents and predicates.

The focus mechanism is inspired by Reichman’s theory of discourse [Rei85]. It
hypothesizes a set of nested focus spaces which regulate referential accessibility
of discourse referents, that is, lemmata, theorems, and logical facts in the domain
of mathematical proofs. The focus spaces are used to anticipate whether or not
a particular discourse referent in the communicative act considered is in the
addressee’s focus of attention. This determines for example whether the premises

3 We are currently working in a collaborative effort within the SFB 378 to read a mathematical
text from a text book.

for a derivation step are omitted, explicitly repeated, or implicitly hinted at by
the conclusion or the method justifying that step.

The paraphrasing capabilities are based on the systematization of Meteer’s
Text Structure [Met92] that guarantees the compositional expressibility of do-
main concepts in natural language terms through a hierarchy of semantic cate-
gories. For example, depending on the embedding context the logical predicate
para(C1,C2) can verbally be expressed as a quality relation (“line C'1 is parallel
to C2”), as a process relation (“line C1 parallels C2”), or as a property ascription
(“lines C1 and C2 are parallel” or “the parallelism of lines C'1 and C2”).

Finally, the aggregation operators constitute some specific instances of gen-
eral and linguistically-motivated structure modification operations, such as those
found in [DH93]. Apart from domain-specific, pattern-based optimization rules,
there are two sorts of aggregation operators with a general scope in PROVERB
that handle predicate grouping and semantic embedding. The predicate group-
ing aggregation condenses two assertions with the same predicate into a single
one, e.g. Set(F) A Set(G) can compactly be expressed as “F and G are sets”.
Semantic embedding allows the skilful verbalization of one assertion, such that it
embeds into another one. For example in Set(F') A Subset(F, G) the verbalization
of Set(F') as the noun phrase “the set F” allows this expression to be embedded
into “F is a subset of GG,” yielding “The set F is a subset of G”.

Altogether, implementing the linguistically motivated concepts of focus
spaces, paraphrasing, and aggregation into PROVERB significantly contributes
to the production of a shorter and better readable proof verbalization in com-
parison to a direct verbalization of the lines of a proof trace. The presentation of
mathematical proofs in natural language by PROVERB can be further improved
by taking into account the user’s background knowledge and associated reasoning
capabilities.

A more recent presenta-

tion facility is the natural |™ Help
language presentation at the

Locotion:

ComplexEstimate«:]

more abstract level of proof [weneedto estimate the mognitude of

plans [ML99] Proof planning is | ¢4fF %y + {Funcg =¥ — (limitl + limit2} |

’ . A = |41 = ({funcg =} - limit22) + |¢F =) - limitl]|[

based on reasoning StepS S1mi- To do this, we use the Triangle Inequality and

lar to those used by mathemati- |ebtem

. . | C6tF =3 + (Fumcg =2} — {(limitl + limitZ2} |

cians. It is therefore more nat- | - (|1 « ttrunce %) - Limit2)] + [4F 0 - Limitd |5,
ural tg generate a verbahzat'mn e g o

on this level. The communica- 1. There exists anm suchthat |1| < m, and
tion with the user is facilitated B, | GReg e = Mmiehl| € G0 2 @ & mwd e

. . . 3. |eF w3 - limitl] < (e ~ 23,
by presenting a verbalization of | rhen
a method in a hypertext window R 0 ¢ (Fanee o) - dhamiel - i) |
. m * e ® m + e
when the corresponding node of - .

the tree presentation is clicked |=xIMoredetails o
on. This hypertext presentation | :
of a method offers further links
to the verbalization of proofs
of subgoals introduced by the
method (see Figure 2). Currently, this local presentation of methods can be
aggregated to a global presentation of the whole proof plan, but needs further
elaboration.

Fig. 2. Verbalization of a Proof Planning Method.

4. Controlling (MEGA

QOMEGA’s main functionalities are available via the structured menu bar in LOUT’s
main window. Its entries partition the conceptually different facilities of the
QMEGA-system into topics, such as Theories, Extern, Planner, and Agent. These
provide all commands of the respective conceptual category. Commands may be
further grouped into submenus. For example, the topic Rule provides different
inference rules that define the basic calculus of the QMEGA system. These rules
are grouped into categories reflecting their logical effect on a proof, for instance
elimination or introduction rules.

One important feature of LOUT is its dynamic and generic menu extension,
i.e. commands are incrementally added at run-time when they are required and
the user can easily create new menu entries by specifying new commands. This
is achieved by defining commands separately from QMEGA’s core system. Some
commands are then loaded initially. Others—for instance, commands that exe-
cute domain specific tactics are loaded only when the appropriate theory (see
below) is imported. Thereby a command is always attached to a single menu
topic and, if appropriate, to one or several submenus.

Theories Mathematical knowledge in {dMEGA is hierarchically structured with
respect to so-called theories, which contain signature information, axioms, def-
initions, theorems, lemmata, and the basic means to construct proofs, namely
rules, tactics, planning methods, and control knowledge for guiding the proof
planner.

Each theorem 7 has its home theory and therefore a proof of 7 can use
the theory’s signature extensions, axioms, definitions, and lemmata without ex-
plicitly introducing them. A simple inheritance mechanism allows the user to
incrementally build larger theories.

The user can both use and manage QIMEGA’s knowledge base through LOQUT.
In particular, it is possible to load theories or their single components incremen-
tally and separately, browse through available assertions and import them into
the active proof. Furthermore, if a theorem has been proved and the proof is
verified, it can be stored in its home theory.

Rules and Tactics correspond to inference steps at different levels of abstrac-
tion. (We will refer to both rules and tactics with the generic term inference).
While rules belong to a (low level) logic calculus, tactics are more abstract. They
are programs that, when executed, produce a sequence of less abstract inference
steps. Generally, each inference is associated with exactly one command which
invokes it in a given partial proof.

The hierarchic organization of theories and their incremental importation
not only affects their availability for a proof but also £LQUZ’s menu structure.
Since theories contain rules and tactics, these are also incrementally loaded and
each attached command is dynamically appended to the corresponding topic in
the menu. Since rules are always defined in {2MEGA’s base theory, they are just
sorted by their type: elimination rules, introduction rules, structural rules, etc.
The menu for tactics is divided into sub-menus according to the theories the
tactics belong to. These sub-menus can be further classified according to the
categories specified within these theories. This supports the user in navigating
and finding appropriate inferences. An inference can be listed in several subtopics

_—l=subst =]

Inferences are applied by ex- 1 reds
The substituted line < |[conc 5 2
ecuting the attached commands. ’7#2 = i | &3 M‘
In general, it is necessary to pro- Fm unsunsutteatne ¢ |[Asst o+ | K2 M‘
vide some arguments for the ap- #3 Node
plication of an inference, which F"“ equation to be applied. ¢ | [NIL | N2 M‘

can be specified inside a generic ’7“ Hstet ‘
command window. The com- — = L leello

mand window adjusts itself au- | > oo IR -

tomatically to the number of ar- Ty | o | ==l B |
guments and provides some help

to find the requested parameters

(cf. Figure 3 for an example). Fig. 3. Command Widget

The user specifies the arguments

either by manually entering them or by a mouse-click on the appropriate node.

Planner (QMEGA’s proof planner searches in the space of partial proof plans,
where methods are the plan operators. The planner transforms a partial PDS
by method application and by recursive method expansion until it obtains a
complete PDS, i.e. a PDS which represents (can be expanded into) an ND
proof.

The commands for QMEGA’s planner are grouped into LOQUT’s planner menu.
The interface displays the growing partial plan as an abstraction of the PDS.

Concurrent ATPs

L
i Otter Protein p Tps
Proof found Proof found Proof found Proof found Proof found Failed
Time Resource: 00:05:00 | | Time Resource: 00:05:00 | | Time Resource: 00:05:00 | | Time Resource: 00:05:00 | | Time Resource: 00:05:00 | | Time Resource: 00:05:00 | | Time Resource:):05:0
Running Time: ~ 00:00:06 | | Running Time: ~ 00:00:07 | | Runming Time: 00:0008 | | Running Time: 00:00:22 | | Running Time: 00:00:08 | | Rumning Time: 00:00:15 | | Running Time: 10:00:0;
State: Stop State: Stop State: Stop State: Stop State: Stop State: Killed State: Stop
[T [=] [T [=] (=] [T [T

Fig. 4. Concurrent ATPs

External Systems (QMEGA employs several ATPs, constraint solvers, and CASs
as external reasoners to be applied to specific proof problems. Automated the-
orem provers that are currently available to Q2MEGA are the first-order sys-
tems OTTER, SPASS, PROTEIN, BLIKSEM, SATCHMO, WALDMEISTER, and EQP,
(cf. [BCFT97, HF96, FK99]) and the higher-order theorem provers TPS
(cf. [BS98b] and LEO [BK98]. The computer algebra systems include the ex-
perimental system pCAS (cf. [KKS98]) as well as the full-blown systems GAP,
MAPLE, and MAGMA.

An interesting aspect of QMEGA is its ability to employ several ATPs con-
currently. The graphical user interface supports the control of parallel ATPs by
providing a special widget as displayed in Figure 4, which helps the user to mon-
itor the activities of every single running ATP. Messages report the status of
an ATP as either not available, still running, or whether the prover has found a
proof or failed to do so. The window enables the user to interactively tailor the
time resources given to single ATPs or to kill running processes entirely.

Command Suggestion Mechanism Another feature of {MEGA that can only
be fully exploited with a graphical user interface is its elaborate mechanism to

10

guide the user when interactively proving a theorem. It suggests commands, ap-
plicable in the current proof state more precisely commands that invoke some
ND-rules or tactics together with sets of suitable instantiations of the command
arguments. It is based on two layers of autonomous, concurrent agents which
steadily work in the background of the (IMEGA system and dynamically update
their computational behavior with respect to the state of the proof and/or spe-
cific user queries of the suggestion mechanism. By exchanging information via
blackboards the agents cooperatively accumulate useful command suggestions
which are then heuristically sorted and presented to the user.

These suggestions are displayed in a separate window (see the right side of
Figure 1). The entries of this window are constantly updated by the suggestion
mechanism, which is based on the computation of the society of agents. The
command that is most likely to be useful in the current proof state is always in
the first position. However, the user can choose any of the proposed commands.
As long as the command is not yet executed (by confirming the argument settings
in the corresponding command widget), the suggestions are still updated, giving
the user the opportunity to rethink his decision.

The suggestion mechanism always proposes a command together with sev-
eral possible sets of instantiations for the command’s arguments. Such a set is a
meaningful combination of parameters, e.g. proof lines, terms, etc., the command
is applicable to. The sets are heuristically sorted and the best one is immediately
proposed to the user by providing it as default arguments to the command. How-
ever, all other computed sets of argument instantiations can still be displayed and
chosen within the respective command widget. One can browse the suggestions
or ask for a single argument (cf. the arrow buttons on the lower left and next to
the arguments in Figure 3, respectively). Furthermore, the user can specify one
or several of the arguments as fixed and call the suggestion mechanism again by
clicking on the recompute button (cf. Figure 3) to get possible suggestions for
the remaining parameters.

Online Help The online documentation of (YMEGA contains descriptions of
commands, planning methods, and the content of the theories. It is based on
HTML and can be viewed with any standard web browser. Besides the usual
references to related help topics, the hyperlink mechanism is extended to allow
interaction with LOUZ, i.e. the execution of commands and call of menus by
clicking on links within a help page. This yields a nice tool that is used inter
alia to introduce new users to the system (see Figure 5). Furthermore the docu-
mentation of theorems and problems contains commands to import them into a
current problem or to execute a proof script respectively.

5. The Agent Architecture

A mathematical assistant system calls for an open and distributed system ar-
chitecture. In such an architecture, the developer of a deduction system or a
respective tool upgrades it to a so-called mathematical service by wrapping it
into an agent-oriented parcel, with an interface to a common mathematical soft-
ware bus [Hom96, HCI6).

The functionality of the software bus is realized in the MATHWEB system
(see [FK99, FHJT99] for details) by the trader model shown in Figure 6, which
limits the central administration of the bus to a so-called trading point that

11

Netscape: Loui Help Systen
File Edit View Go Communicator Help

4« # A 4 2 £ 4 3 &£ B I

Back Forword Reload Home Search Guide Images Print Security Atap

" Bookmarks & Location: [rtcp:/fians. ags uni—b.de/~omega/primer/ /|

(4 programming 4 omega (4 rends (4 my 4 computer 4 phil [books 4 search (4 deduction (4 culture (4 language (4 mathematics (4 uni-sh

and has the conclusion
(comy {not hl),
which should be proved.

‘When you click on one of the lines, the focused term will be displayed in the lower right frame. This frame is called term browser and shows the current
formulain detail, The corresponding node of the focused line simultancously starts to blink in the upper left frame, which contains the proof tree, The lovwer
lett frame shows different output streams of the the OMEG A -System,

Infroduction The proof tree is a graphical representation of the current proof, which will help you to survey especially the development of longer proofs. When you click

4 First Session on one of the nodes, a short description is displayed and the corresponding line in the text frame is focused, The colour and shape indicate the current

Tactcs status of the node, The red square stands for an open line, i.e. aline that has not been proved, the green triangle indicate an assumption of the problem. You

n gents get a description of each kind of node when you move the pointer to the coloured icons at the bottom line of the window.

Atp Now we will prove the theorem, The pull down menus of the LOUT window provide access to OMEG A’s different proof facilifies. We solve our example

%Eﬂnf Planmin by calling an external first arder logic prover, swhich’s proof will be transformed to OMEG A's inference system.

cories

POST Let’s prove the theorem, (Click the OE~button, We use the defaults.)

Ezamples . . . -
The. circle node turned blue respectively the open line is now closed, but the proof s not finished yet. The light blue circles represent lines that are. justified

by tactics, i.e. a sequence of rules of the natural deduction (ND) calculus. Since we would have to prove the soundness of the extended celeulus for every
new introduced tactic, OMEG As principle to ensure the correctness of a derivation lies in the expansion of every tactic to ND rules for which the

A}:icms_ soundness is guaranteed.
Categories
Cormmand Ezpand all nodes to ND level
Definitions
Fragments Al justifications in the method rovr of the text representation are now ND rules, We can call OMEG A’s proof checker, which verifies that every rule
Wethods application in the expanded proof is correct.
g.in:nl:;n;s Check the proof. (Click OF, since we want to check everything)
Ehﬁﬂﬁﬁ§ Well done! You have proved your first theorem with OMEG A !
W
Exercise 1: Take any book with 2 description of gentzen's natural deduction caleulus, Try to understand OMEG 4 line justifications. Try to understand
Omesa the proof, (¥ou may use the rerbalisation in natural enelish produced by the subsystem PROVERB.)
Homepage
A First Session With Rules& Tactics
Please send. Asyouhave seen above, each proof line is justified and introduced by an application of a tactic or rule. Now we manually apply rules and tactics to prove
comments, our next example. It states that the logical conjunction is cormmutative,
suggestions and ~
uég ‘We first split the conjunction of the apen line with the rule Andi (and—introduction). Note that the introduction rule was used for eliminating the
reports to the conjunction because it was applied backwards, that is to an open node. In the next step the tactic Ande (and—elimination) splits the conjunction of the
assumption and we can close the two open nodes. Now we check the proof.
Omega Group I P i
& [1o0% e e 0P N2
—

Fig. 5. The Online Help System.

provides routing and authentification information to the mathematical services.
We will describe this model in more detail below.

We have implemented and experimented with our MATHWEB system, where
the integrated theorem proving systems and tools can be distributed worldwide
and interact over the Internet. They can be dynamically added to and subtracted
from the coordinated reasoning repertoire of the complete system. For this, we
have embedded all of QMEGA’s external reasoners presented in the previous sec-
tion. Now, they jointly handle an average load of tens of thousands of inference
problems a day.

LOUT is now just one of the cooperating mathematical services, but it is
special in the sense that it is the only part directly visible to and interacting
with the user. In this way it has to meet special requirements: LOQUZ must be
able to display the mathematical services that are currently active, it must be
able to suggest external services that may be appropriate for the current task,
and it must be able to control external systems of which it might not always be
able to get complete information.

Locating the services that are currently available is achieved by providing
LOUT with a list of services that might be available, and it then tries to con-
tact each of these services during initialization and tests whether a connection
with the service is possible. Apart from this, LOUZ’s own representation of the
service’s capabilities is currently limited to a general classification of the service,
for instance whether it is a theorem prover or a computer algebra system, and
some information about command syntax and flag settings that are important

12

Service SPASS

) OTTER Point
Service (02)
Point
(Oz2) .] TPS
offer service offer service
Qmega
Trading Point]
distributed Oz ppplication (02) offer service

URL
request
Aeny ince PROTEIN
Service
- o Point
o distributed Oz application o (02)

Fig. 6. The Architecture for Distributed Mathematical Services.

for controlling the service needs extension by a list of more specific qualities and
weaknesses of the service.

Given its limited knowledge about collaborating services, LOUT’s answer to
the problem of finding the right one is pragmatic: it simply starts all problem-
related services on the mathematical bus. The user can eliminate those reasoners
that she thinks might not be suitable to solve the problem. LOQUZ will call
selected services in parallel in order to maximize the likelihood of success and
minimize the waiting time of the user. The use of several reasoners for the same
task has the additional advantage of cross-validating results if needed. In any
case, the proofs found by these systems have to be transformed into the internal
proof format of the QMEGA system; this proof transformation process itself runs
in parallel to the ongoing user interaction.

The Maintenance Advantage The agent architecture that separates IMEGA’s
logical kernel from its graphical user interface has increased both its efficiency
and maintainability.

It is quite common in local computer networks that users have relatively
low-speed machines on their desktop, whereas some high-speed servers that are
accessible for everyone operate in the background. Running the user interface
on the local machine uses the local resources that are sufficient for this task,
while the more powerful servers can be exploited for the really complex task of
actually searching for a proof.

The maintenance advantage applies to both the user and the developer.
QOMECA is a rather large system (roughly 17 MB of Common Lisp (CLOS)
code for the main body of the current version), comprising numerous associated
modules (such as the integrated automated theorem provers and computer alge-
bra systems) written in various programming languages. It is a difficult task to
install the complete system, in particular, successful installation depends on the
presence of (proprietary) compilers or interpreters for the respective program-
ming languages.

In our architecture the user only installs the LOUT client, which connects

13

to the main system and exchanges data with it via the Internet. Thus the user
interacts with the client, which can be physically anywhere in the world, while the
QMEGA kernel is still on our server (here in Saarbriicken, where it is maintained
and developed). Since LOUT is realized via the distributed programming system
environment Mozart/Oz [Smo95],* which is freely available for various platforms
including UNIX and the MS-Windows family of operating systems, this keeps the
software and hardware requirements of the user moderate. The installation of the
client is further simplified by running LQUZ as a Netscape applet, i.e. LOUZL is
automatically downloaded via the Internet. Thus we are able to provide current
versions of OMEGA and LOUT without the need for re-installation at the user’s
site.

To reduce the bandwidth needed for communication, 2MEGA implements an
incremental approach based on SMALLTALK’s MVC triad®, which only transmits
the parts of the PDS that are changed by a user action. This not only improves
response time for a low-bandwidth Internet connection but also focuses the user’s
attention to the effects of an action.

Since the presentation of the proof tree is defined by a context-free grammar,
it is rather easy to connect LOUZ to provers other than (IMEGA; we have exper-
imented with LEo [BK98] and INKA [HS96] and A-CrLaM [RSG98]. In this sense
LOUT can be seen as a generic proof viewer.

Distributing OMEGA Up to this point, we have considered a client-server net-
work with one server that is dedicated to Q2MEGA itself and several clients that
use this server. In reality, a MEGA network may consist of several servers that
can be accessed via a gateway service. The gateway daemon runs on one machine
that provides the QMEGA service. It can start the actual 2MEGA process and its
associated modules on any of the servers, depending on their current work load.
In this way, we are able to employ the whole computational power of a local area
network with a background of several larger servers.

6. Related Work

User interfaces are the subject of an important discipline in computer science
with its own conferences, workshops and research groups. Many industrial appli-
cations spend substantial effort just on the interface with up to eighty percent
of the systems source code being developed for a friendly interface. The tech-
niques and methods of this discipline slowly but surely find their way even to
rather theoretically oriented fields such as automated theorem proving, where
the importance is increasingly well recognized.

Most interfaces of ATP systems provide graphical illustrations of proof struc-
tures and their elements, and facilities to set up commands in the proof environ-
ment. The semantics of proof steps are often expressed by graphical objects and
annotations. Examples for this sort of visualization are binary decision diagrams
for first-order deduction systems [PS95], which have special display facilities for
the relation between quantified formulae and their instantiation, and natural
deduction displays of sequent proofs [Bor97] where the scoping structure of the

4 http://www.mozart-oz.org/
5 See for instance http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html for an
overview.

14

proof is visualized by adjacent or by nested boxes enclosing segments of proof
lines. Another presentation technique displays proof steps in an appropriately
formatted and interactive way. The THEOREMA system [BJK197] can present a
proof in natural language by employing fixed natural language schemata. Details
that are temporarily hidden can be exposed by clicking on the corresponding root
of the proof line.

A verbalization component on top of Nuprl uses a natural language generator
and presents proofs at the level of tactics [HMBC99].

CtCoQ [BKT94] is a rather elaborate presentation system which distributes
the proof information about a proof over three sections of a multi-paned window:
a Command window records the script of commands sent to the proof engine, a
State window contains the current goals to be proved, and a Theorems window
contains the results of queries into the proof engine’s theorem database.

Other approaches put particular emphasis on visualization by making the
tree format of the proof structure explicit in the display. The user interface of
the SEAMLESS system [EM97] provides display facilities for a proof graph at
different levels of abstraction in a framed window: a variety of lay-out operations
includes zooming and reuse of lemmata.

The user interface of INKA [HS96] allows for the display of induction proof
sketches at varying levels of detail. Its features include status information, typ-
ically expressed by different coloring, context-sensitive menus of possible user
actions, and proof by pointing.

The proof verification systems VSE [HLST96] has a very elaborate user inter-
face that enables the proof engineer to verify industrial software by visualizing
relations between underlying theories (specifications).

The ILF system [Dah98] uses an interface to display proofs in natural lan-
guage and in a tree like structure, where the logical content of nodes is displayed
separately. Furthermore, queries can be sent to the MIZAR library and several
first-order automatic theorem provers running in parallel under control of the
interface.

QIMEGA in some sense combines features of SEAMLESS, CTCoqQ, and ILF.
Its graphical display is similar to that of SEAMLESS, but the set of node cat-
egories and their display is fixed to the particular proof environment. However,
LOUT’s tree visualization can easily be adapted to a different set of node cate-
gories and display options. Its display of status information is similar to that of
CtCoq, but the database window is handled differently. The concurrent handling
of external reasoners is related to ILF, but since QMEGA’s logic is higher-order,
a larger variety of automatic systems has been integrated. The handling of co-
references and the combination of tree-like and linear display together with the
hyper-link mechanism to visualize references between both are unique to LOUZ.

7. Conclusions

LOUT represents an agent-based, distributed approach to user interfaces for
theorem provers. It provides advanced communication facilities via an adaptable
proof tree visualization technique and through various selective proof object
display methods which enable the user to better understand the proof and to
guide the proof search.

Even though LOQUZ was originally developed for the (MEGA system it is not
restricted to it in principle. We have also used it as an independent interface to

15

various other deduction systems. However much more work has to be invested
to generalize it to a universal user interface for theorem provers.

References

[BCF+97]

[BJK*97]
[BK98]
[BK'T94]

[Bac98]

[Bor97]

[BS98a]

[BS98D]

[CS98]

[Che98]

[Dahog]

[DH93]

[Eas98]

[EM97]

[FHJ*99]

[FK99)

[HC96)

[HF96]

C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann,
and V. Sorge. QQIMEGA: Towards a mathematical assistant. In W. McCune, edi-
tor, Proceedings of the 14th Conference on Automated Deduction, number1249 in
LNALI, pages 252 255, Townsville, Australia, 1997. Springer Verlag.

B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
An Overview of the Theorema Project. In ISSAC’97, Hawaii, 1997.

C. Benzmiiller and M. Kohlhase. LEO, a Higher Order Theorem Prover. In
Kirchner and Kirchner [KK98], pages 139 144.

Y. Bertot, G. Kahn, and L. Therry. Proof by Pointing. Theoretical Aspects of
Computer Software, 789:141-160, 1994.

R. C. Backhouse, editor. Proceedings of the Workshop on User Interfaces for
Theorem Provers, number98/08 in Computing Science Reports, Eindhoven, the
Netherlands, 1998. Eindhoven University.

R. Bornat. Natural Deduction Displays of Sequent Proofs: Experience with the
Jape Calculator. In First International Workshop on Proof Transformation and
Presentation, Dagstuhl Castle, 1997.

C. Benzmdiller and V. Sorge. A Focusing Technique for Guiding Interactive Proofs.
Submitted to the 8th International Conference on Artificial Intelligence: Method-
ology, Systems, Applications, 1998.

C. Benzmiiller and V. Sorge. Integrating TPS with QMEGA. In Jim Grundy
and Malcolm Newey, editors, Theorem Proving in Higher Order Logics: Emerging
Trends, Technical Report 98-08, Department of Computer Science and Computer
Science Lab, pages 1 19, Canberra, Australia, October 1998. The Australian Na-
tional University. available from http://cs.anu.edu.au/techreports/recent.html.
L. Cheikhrouhou and J. Siekmann. Planning diagonalization proofs. In Pro-
ceedings of 8th International Conference on Artificial Intelligence: Methodology,
Systems, Applications (AIMSA’98), LNAI, Sozopol, Bulgaria, 1998.

I.. Cheikhrouhou. A multi-modi Proof Planner. In J. Dix and S. Hélldobler,
editors, Inference Mechanisms in Knowledge-Based Systems: Theory and Appli-
cation (Proceedings of WS at KI’98), Fachberichte INFORMATIK 19/98, pages
91 102, Koblenz, Germany, September 1998. University of Koblenz-Landau.

I. Dahn. Using ILF as a User Interface for Many Theorem Provers. In Backhouse
[Bac98], pages 75 86.

H. Dalianis and E. H. Hovy. Aggregation in Natural Language Generation. In
M. Zock, G. Adorni, and G. Ferrari, editors, Proceedings of the jth FEuropean
Workshop on Natural Language Generation, pages 67-73, 1993.

K. Eastaughffe. Support for Interactive Theorem Proving: Some Design Principles
and Their Application. In Backhouse [Bac98], pages 96-103.

J. Eusterbrock and N. Michalis. A World-Wide Web Interface for the Visualization
of Constructive Proofs at Different Abstraction Layers. In First International
Workshop on Proof Transformation and Presentation, Dagstuhl Castle, 1997.
Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael Kohlhase, and
Volker Sorge. Agent-oriented integration of distributed mathematical services.
Journal of Universal Computer Science, 5:3, pp. 156 187, 1999.

Andreas Franke and Michael Kohlhase. System description: MATHWEB, an agent-
based communication layer for distributed automated theorem proving. to appear
in CADE’99, 1999.

K. Homann and J. Calmet. Structures for Symbolic Mathematical Reasoning and
Computation. In J. Calmet and C. Limogelli, editors, Design and Implementation
of Symbolic Computation Systems, DISCO’96, number1128 in LNCS, pages 216
227, Karlsruhe, Germany, 1996. Springer Verlag.

X. Huang and A. Fiedler. Presenting Machine-Found Proofs. In M.A. McRobbie
and J.K. Slaney, editors, Proceedings of the 13th Conference on Automated De-

16

[HF97]

[HLS*96]

[HMBCY9]

[Hom96]

[HS96]

[KF95]

[KK98]

[KKS98]

[McC94]
[Met92]
[Mel98]

[ML99]

[PS95)

[Rei85]
[Rei94]

[RSGI8]

[Shn92]
[Smo95]

duction, number1104 in LNAI, pages 221-225, New Brunswick, NJ, USA, 1996.
Springer Verlag.

X. Huang and A. Fiedler. Proof Verbalization as an Application of NLG. In
M. E. Pollack, editor, Proceedings of the 15th International Joint Conference on
Artificial Intelligence (I1JCAI), Nagoya, Japan, 1997. Morgan Kaufmann.

Dieter Hutter, Bruno Langenstein, Claus Sengler, Jérg H. Siekmann, Werner
Stephan, and Andreas Wolpers. Verification support environment. High Integrity
Systems, 1(6), 1996.

A.M. Holland-Minkley, R. Barzilay, and R.L. Constable. Verbalization of high-
level formal proofs. In National Conference on Artificial Intelligence (AAAI-99),
pages , 1999.

K. Homann. Symbolisches Losen mathematischer Probleme durch Kooperation
algorithmischer und logischer Systeme. PhD thesis, Unversitit Karlsruhe, 1996.
D. Hutter and C. Sengler. A Graphical User Interface for an Inductive Theorem
Prover. In International Workshop on User Interface Design for Theorem Proving
Systems, 1996.

A. Kilger and W. Finkler. TAG-Based Incremental Generation. Computational
Linguistics, 1995. forthcoming.

C. Kirchner and H. Kirchner, editors. Proceedings of the 15th Conference on
Automated Deduction, number1421 in LNAI, Lindau, , Germany, 1998. Springer
Verlag.

M. Kerber, M. Kohlhase, and V. Sorge. Integrating Computer Algebra Into Proof
Planning. Journal of Automated Reasoning, 1998. Special Issue on the Integration
of Computer Algebra and Automated Deduction; forthcoming.

W. W. McCune. Otter 3.0 Reference Manual and Guide. Technical Report ANL-
94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA, 1994.

M. W. Meteer. Ezpressibility and the Problem of Efficient Text Planning. Pinter
Publishes, London, 1992.

E. Melis. Al-techniques in proof planning. In European Conference on Artificial
Intelligence (ECAI-98), pages 494 498, Brighton, 1998. Kluwer.

E. Melis and U. Leron. A proof presentation suitable for teaching proofs. In
9th International Conference on Artificial Intelligence in Fducation, AI-ED’99,
pages , Le Mans, 1999. I0S Press.

J. Posegga and K. Schneider. Interactive First-Order Deduction with BDDs. In
International Workshop on User Interface Design for Theorem Proving Systems,
Glasgow, 1995.

R. Reichman. Getting Computers to Talk Like You and Me. MIT Press, 1985.
E. Reiter. Has a Consensus NL Generation Architecture Appeared, and is it
Psycholinguistically Plausible? In Proceedings of the 7th International Workshop
on Natural Language Generation, pages 163-170, Kennebunkport, Maine, USA,
1994.

J. Richardson, A. Smaill, and I. Green. Proof Planning in Higher-Order Logic
with AClam. In Kirchner and Kirchner [KK98], pages 139-144.

B. Shneiderman. Designing the User Interface, Volume 2. Addison-Wesley, 1992.
G. Smolka. The Oz Programming Model. In J. v. Leeuwen, editor, Computer
Science Today, Volume 1000 of LNCS, pages 324-343. Springer-Verlag, 1995.

17

