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t. The 
apabilities of a automated theorem prover's interfa
e are essen-tial for the e�e
tive use of (intera
tive) proof systems. L
UI is the multi-modalinterfa
e that 
ombines several features: a graphi
al display of information in aproof graph, a sele
tive term browser with hypertext fa
ilities, proof and proofplan presentation in natural language, and an editor for adding and maintainingthe knowledge base. L
UI is realized in an agent-based 
lient-server ar
hite
tureand implemented in the 
on
urrent 
onstraint programming language Oz.1. Introdu
tionThe e�e
tive use of an intera
tive theorem proving system depends not least onthe 
apabilities of its user interfa
e. A major problem is the adequate a

ess tothe overwhelming amount of information manipulated by these systems. Thisrequires stru
ture-oriented overview fa
ilities, and sele
tive and pre
ise 
ontent-oriented display.The L
UI system is a state-of-the-art user interfa
e for 
mega, a proof as-sistant system for mainstream mathemati
s based on proof planning [BCF+97℄.Some of L
UI's distin
t features are the graphi
al visualization of the informa-tion in proofs, a sele
tive term browser as well as proof and proof plan presen-tation in natural language. The user 
an add new information to partial proofs,whi
h helps to understand and guide the proof sear
h. L
UI is implemented asa 
lient in the distributed agent ar
hite
ture MathWeb [FK99, FHJ+99℄.Corresponden
e and o�print requests to: Prof. Dr. J�org Siekmann, FB 14, Universit�at desSaarlandes, D-66041 Saarbr�u
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We start the paper with the design motivation whi
h in
uen
ed the devel-opment of the L
UI system. In Se
tion 3, various display fa
ilities in
ludinggraphi
al and natural language presentations are des
ribed. This is followed inSe
tion 4 by an illustration of a number of 
ontrol me
hanisms for the e�e
tiveuse of proof te
hniques. Se
tion 5 is devoted to the 
lient-server ar
hite
ture.Finally, we dis
uss some related work and dire
tions for further work.2. Design Obje
tivesIn the �eld of intera
tive theorem proving, design prin
iples for the developmentof graphi
al user interfa
es are still relatively rare. Some guidelines are presentedin [Eas98℄. The design obje
tives that we have fo
used on for our interfa
e are:Multi-Modal Visualization In any proof state the system should display theproof information to the user at di�erent levels of abstra
tion and detail andfurthermore in di�erent modes (e.g. as the graphi
al representation of a prooftree, as a linearized proof, or in verbalization mode).Lean Pro
essing The interfa
e should work reasonably fast, and its installa-tion in other environments should be possible with minimal e�ort and storagerequirements.Anti
ipation The system should minimize the ne
essary intera
tion with theuser by suggesting 
ommands and parameters at ea
h proof step. Optimally,the system should be able to do the straightforward steps autonomously.One prin
iple mentioned in [Eas98℄ is the guideline that \there should be a num-ber of 
omplementary views of the proof 
onstru
tion and the user should beable to 
hoose to see any number of the views simultaneously". In other words, amulti-modal visualization is desirable. Most proof systems however 
on
en-trate just on one single view of the proof rather than on alternative presentations.In 
ontrast, L
UI provides di�erent and 
omplementary views of a proof su
h asa graphi
al display or a linearized proof (see Se
tion 3). The traditional graphi
altree representation of the proof is enhan
ed by dedi
ated browsers for sele
tedtextual information (see Figure 1) and intensive use is made of hypertext te
h-niques in order to illustrate 
onne
tions between physi
ally distant, but logi
allyrelated portions of proofs in both the text-based and the graphi
al modes. Forinstan
e it is easy to inspe
t a proof line's premises with these links and to re-turn to the starting point by 
li
king on the 
orresponding history button in thesymbol-bar. To add a natural language view of proofs, L
UI 
alls the Proverbproof presentation system that stru
tures and verbalizes proofs in natural lan-guage (see Se
tion 3.3).The lean pro
essing prin
iple has led to a distributed system ar
hite
tureof L
UI/
mega, where L
UI is realized as an autonomous software agent (seeSe
tion 5), whi
h 
an be sent over the Internet as an applet while the 
megaserver resides on a dedi
ated host. Sin
e L
UI is an autonomous agent, it main-tains its own representation of the proof state and autonomously 
omputes thevisualization information by using lo
al 
omputational resour
es, thus redu
ingthe 
ommuni
ation bandwidth to a minimum. Thus the ar
hite
ture inherits theadvantage from two kinds of setup: From one, where the whole dedu
tion systemis installed lo
ally on the 
lient ma
hine (lo
al 
omputation) as well as from one,where the logi
al and graphi
al 
omputations are 
entralized on a server the user2




ommuni
ates with, say, by a remote X 
onne
tion. This enables the realizationof the 
on
ept of dire
t manipulation [Shn92℄, whi
h allows for immediatefeed-ba
k and a minimal time a user has to wait until an a
tion takes e�e
t.Dire
t manipulation is supported sin
e L
UI 
an rea
t to many forms of userintera
tion immediately by manipulating its internal representation of the proofstate rather than 
alling the server.Anti
ipation to minimize user intera
tion, has always been a 
on
ern ofintera
tive systems, for instan
e by disabling 
ommands that are nonsensi
al (i.e.pre-sele
ting legal a
tions) or generating lists of 
ommands that are advisablein a 
urrent situation. In L
UI's internal representation of the proof state,many interfa
e-related reasoning tasks 
an be performed without the help ofthe underlying proof system. For example, L
UI supports and 
omplementsthe agent-based 
ommand suggestion me
hanism [BS98a℄ provided by its hostsystem 
mega.We shall elaborate on these issues in the following se
tions.3. Multi-modal ViewsL
UI 's presentation features are, to a 
ertain extent, in
uen
ed by 
mega's
entral three-dimensional proof data stru
ture PDS, whi
h will be presented inse
tion 3.1. The two subsequent se
tions dis
uss the prin
ipal proof presentation
apabilities in L
UI : a stru
tural tree visualization with referen
es to termsand inferen
e steps and a natural language display. To start with, 
onsider thefollowing example:1Theorem 1. (Example) Given that a � b and b � 
. Then a � 
.A proof of this theorem 
an be generated in 
mega in many ways, the easiestis by 
alling an external reasoner for su
h a simple problem, e.g. the �rst-ordertheorem prover Otter [M
C94℄, whi
h qui
kly �nds the proof. This externalproof is then translated into 
mega's proof format and inserted into the 
entralproof data stru
ture PDS. Now, L
UI provides di�erent 
omponents to viewthis data stru
ture (see Figure 1 for a s
reen-shot). As in traditional theoremproving systems, L
UI 
an present a proof in a linear text form, in our 
ase asa higher-order variant of Gentzen's natural dedu
tion (ND) 
al
ulus (as in theupper right frame in Figure 1). The formula of the highlighted line is pretty-printed in the term browser (see the lower right frame in Figure 1). For longproofs, su
h a presentation la
ks transparen
y and stru
ture. Therefore L
UIo�ers two additional representations:� as a tree that models the logi
al dependen
ies between the di�erent prooflines, (see the upper left frame in Figure 1),� as a text in natural language as it would appear in a mathemati
al textbook(see Xdvi-window in the lower right 
orner of Figure 1). Currently, only
ompleted proofs 
an be presented in natural language.Furthermore L
UI uses hypertext te
hniques to visualize essential 
onne
-tions, e.g. between the proof lines in the standard linearized proof and the 
or-responding nodes in the tree representation.1 All examples in this paper are 
hosen for presentation purposes, not as an example of realisti
s
ale. 3



Fig. 1. The L
UI interfa
e presenting the proof for Theorem 1. The standard text presentationis given in the upper right frame, whereas the 
orresponding proof tree is given in the upper leftframe. The term browser in the lower right frame displays the formula of the 
urrently fo
usedproof line/node. The lower left frame provides information on di�erent message streams fromthe 
mega system. The lower-right Xdvi-window presents the verbalized proof as generatedby Proverb.The 
ommand menu bar on top of the entire frame in Figure 1 provides a

essto 
mega's proof tools that are organized in pull-down menus. I
ons are usedas short
uts to spe
i�
 
ommands or sub-menus. Command suggestions for thenext proof step are presented for qui
k and easy sele
tion in a spe
ial suggestionwindow. Finally, a 
ontrol window (see the lower left frame in the window dis-played in Figure 1) provides a

ess to the output streams of 
mega's pro
esses.In the following subse
tion we shall present the details of this visualization andthe motivation underlying its design.3.1. Hierar
hi
al Proof Plan Data Stru
tureFinding a proof with 
mega 
an be viewed as a pro
ess that interleaves proofplanning [Mel98, CS98℄, plan exe
ution, and veri�
ation, all of whi
h is data-driven by the so-
alled Proof Plan Data Stru
ture (PDS).This hierar
hi
al data stru
ture represents a (possibly partial) proof at dif-ferent levels of abstra
tion, 
alled proof plans . Its nodes 
orrespond to steps ofthe derivation and are justi�ed by methods. Con
eptually, ea
h justi�
ation rep-resents a proof plan for the 
orresponding derivation step at a lower level ofabstra
tion (the expansion of the justi�
ation). It is 
omputed when the methodis expanded. A proof plan 
an be re
ursively expanded, until a proof at the 
al-4




ulus level has been rea
hed. In 
mega, we keep the original proof plan in theexpansion hierar
hy of the PDS. Thus, the PDS makes expli
it the hierar
hi-
al stru
ture of proof plans and retains it for further appli
ations su
h as proofexplanation or analogi
al transfer of plans.When the expansion pro
ess is 
ompleted, a veri�er 
an 
he
k the 
orre
tnessof the proof. The expansion of ma
ro steps provides the basis for an integrationof external reasoning 
omponents|su
h as an automated theorem prover (ATP)or a 
omputer algebra system (CAS)|if ea
h reasoner's results 
an (on demand)be transformed into a sub-PDS. New pie
es 
an be added to the PDS by dire
tly
alling methods and rules, by inserting fa
ts from a database, or by 
alling someexternal reasoner.L
UI supports 
mega's three-dimensional PDS in many ways. For in-stan
e, di�erent layers of the PDS 
an be analyzed separately and swit
hingto another layer is supported by 
ontext menus for ea
h node. In this sense,L
UI implements the philosophy of multi-dimensional representations of proofswithin its visualization and 
ontrol fa
ilities.3.2. Visualization { Proofs as Tree-like Maps with Asso
iatedContentIf the proof information is 
onveyed in only one mode by the user interfa
e, it
an lead to problems:� Presentation in linear form fails to 
onvey the stru
ture of a proof.� Presentation in tree form may soon be
ome diÆ
ult to survey be
ause of thelarge annotations asso
iated with ea
h node.Be
ause of the inadequa
ies of purely linear or tree formats, a 
entral designde
ision in L
UI was to separate the stru
ture of the proof tree from its 
ontent.Consequently, the visualization of a proof in L
UI 
onsists of three parts:� a proof tree in a purely stru
tural form, where the individual nodes 
onveystatus information through their shape and 
olor.� a linear form of the 
ontent of the proof, by individual lines.� a number of 
o-referen
e fa
ilities for the 
onne
tions within and between thetree and the linear proof visualization forms.The linear form of the proof display is fairly standard in most of its parts,where ea
h derivation step is presented in one single line. These steps of a deriva-tion usually �t into a reasonably sized window as the asso
iated display demon-strates (see the upper right part of Figure 1). This may not be the 
ase for entriesin the part named \term". Therefore a separate frame sele
tively displays a sin-gle term in full length, whi
h 
an be a
tivated by 
li
king on the term of interestin the linear format.Logi
al proofs are in general a
y
li
 dire
ted graphs rather than trees, hen
ethe graphi
al display of su
h stru
tures poses problems: If a pure tree displayis produ
ed by dupli
ating identi
al subproofs, the tree may grow very large.If, alternatively, multiple subtrees are displayed only on
e with pointers to theother positions, these pointers may easily render the visualization 
onfusing andunmanageable. Therefore, L
UI represents nodes with multiple prede
essors(i.e. subproofs used more than on
e) as 
o-referen
e nodes: The subproof is5



displayed only in one pla
e, and the other o

urren
es are represented as a spe
ialnode { the 
o-referen
e node. In a sense, 
o-referen
e nodes take the role of alemma, but a 
o-referen
e node is not ne
essarily promoted into a lemma.Using this 
onvention, proof graphs 
an be visualized in L
UI as propertrees, where node 
ategories (representing the status of the node in the PDS)are expressed by 
olor and shape. The shape illustrates the major node 
ategoryand 
olor variations express more �ne-grained distin
tions:Terminal nodes are represented by upward pointing triangles, where assump-tions, assertions, and hypotheses are distinguished by their 
olor (green, yel-low, and orange).Intermediate nodes are represented by 
ir
les, where ground, expanded, andunexpanded nodes are distinguished by 
olor (dark blue, bright blue, andlight blue).Open nodes are represented by squares. Sin
e there are no further 
ategori
aldistin
tions for open nodes, they have the same 
olor (red).Co-referen
e nodes, whi
h may or may not be terminal nodes, are representedby downward pointing triangles, they are uniquely 
olored in grey.Open nodes represent subgoals in the proof whi
h have not been solved yet,i.e. they are subje
t to further derivations. Intermediate nodes represent the re-spe
tive level of abstra
tion in the PDS : Ground nodes are at 
mega's 
al
uluslevel, i.e. a set of ND rules that is large enough to ensure 
ompleteness. The otherintermediate nodes represent inferen
e steps at higher levels of abstra
tion. Ex-panded nodes are nodes where the expansion to the next lower level was already
al
ulated, but is not displayed. In unexpanded nodes, the expansion has not yetbeen 
al
ulated.In order to obtain a good view of the proof tree, the user has 
ommands tomanipulate the appearan
e of that tree:zooming between tree overviews and enlarged tree parts,s
rolling to a desired tree part,fo
using on a subtree by 
utting o� the remaining tree parts,abstra
ting away from details of a subtree derivation by hiding the display ofthat subtree, whi
h then appears as a double-sized red triangle.2Be
ause of the di�erent forms of proof display, espe
ially tree stru
ture and
ontent, various overview formats are o�ered for the entire proof, where thereferen
es between elements of this overview are very sele
tive and only triggeredby expli
it user 
ommands. There are four di�erent forms of 
o-referen
es inL
UI 's display:� Co-referen
es within the linear form, in
luding the \Pretty Term" frame. Twofa
ilities are o�ered here. One is a
tivating the \Pretty Term" browser, whi
his done by 
li
king on the term of interest. The sele
ted term is then displayedin full length in the \Pretty Term" frame, while the line in whi
h that termappears is highlighted (see Figure 1). The other fa
ility is for inspe
tingindividual justi�
ations of a derivation, whi
h is a
hieved by 
li
king on thepremise of interest in a sele
ted line of proof. Again, this line is highlighted.2 Note that this subtree abstra
tion is di�erent from abstra
tion levels in the PDS.6



� Co-referen
es within the proof tree. Through this fa
ility the 
onne
tion ofa 
o-referen
e node is re-established temporarily. Pointing to a 
o-referen
enode leads to the temporary appearan
e of a line between that node and thenode it 
o-refers to, that is, the root of the subtree representing the subproofhidden behind the 
o-referen
e node.� Co-referen
es between the linear form and the proof tree. The 
onne
tion be-tween stru
ture and 
ontent 
an be established through this fa
ility. Cli
kingon a node a
tivates a yellow box next to that node in the tree display whi
h
ontains a label and a term. The referred line in the linear form of the proofis highlighted.� Co-referen
es between plain text and the proof tree, the linear form and themenu bars of L
UI . There are 
urrently two 
o-referen
es of this kind. Oneis from the node of a proof tree or proof line to a verbalization of the justi�
a-tion of this node in natural language as des
ribed in se
tion 3.3. The se
ondkind of 
o-referen
e is from hypertext do
uments (like the online do
umen-tation), where hyperlinks 
an be used to dire
tly a
tivate L
UI 
ommands(see se
tion 4).3.3. Proofs in Natural LanguageWhile L
UI 
annot read natural-language input yet,3 it makes use of theProverb system [HF97℄ to present proofs in natural language. Proverb em-ploys state-of-the-art te
hniques of natural language pro
essing and generation.Like most appli
ation-oriented natural language generation systems,Proverb has a pipelined ar
hite
ture [Rei94℄ 
onsisting of three pro
essingphases, ea
h realized by a dedi
ated 
omponent: a ma
ro-planner, a mi
ro-planner, and a surfa
e realizer. The ma
ro-planner linearizes a proof and plans
ommuni
ative a
ts by a 
ombination of hierar
hi
al planning and fo
us-guidednavigation. The mi
ro-planner then maps 
ommuni
ative a
ts and domain 
on-
epts into linguisti
 resour
es, it paraphrases and aggregates su
h resour
es toprodu
e a text stru
ture that 
ontains all ne
essary synta
ti
 information. Therealizer TAG-GEN [KF95℄ exe
utes this text stru
ture and generates the sur-fa
e senten
es that are passed on to LATEX2e. The formatted text is then �nallydisplayed in an Xdvi-window (
f. Figure 1).While the underlying ar
hite
ture is standard for many language generationsystems, Proverb has a number of spe
ial features that are parti
ularly usefulfor presenting mathemati
al proofs: a fo
us me
hanism to 
ontrol the presenta-tion of proof steps in 
ontext, paraphrasing 
apabilities to augment the system'sexpressiveness, and aggregation operators that 
an be employed to express fa
tsthat share some of their referents and predi
ates.The fo
us me
hanism is inspired by Rei
hman's theory of dis
ourse [Rei85℄. Ithypothesizes a set of nested fo
us spa
es whi
h regulate referential a

essibilityof dis
ourse referents, that is, lemmata, theorems, and logi
al fa
ts in the domainof mathemati
al proofs. The fo
us spa
es are used to anti
ipate whether or nota parti
ular dis
ourse referent in the 
ommuni
ative a
t 
onsidered is in theaddressee's fo
us of attention. This determines for example whether the premises3 We are 
urrently working in a 
ollaborative e�ort within the SFB 378 to read a mathemati
altext from a text book. 7



for a derivation step are omitted, expli
itly repeated, or impli
itly hinted at bythe 
on
lusion or the method justifying that step.The paraphrasing 
apabilities are based on the systematization of Meteer'sText Stru
ture [Met92℄ that guarantees the 
ompositional expressibility of do-main 
on
epts in natural language terms through a hierar
hy of semanti
 
ate-gories. For example, depending on the embedding 
ontext the logi
al predi
atepara(C1; C2) 
an verbally be expressed as a quality relation (\line C1 is parallelto C2"), as a pro
ess relation (\line C1 parallels C2"), or as a property as
ription(\lines C1 and C2 are parallel" or \the parallelism of lines C1 and C2").Finally, the aggregation operators 
onstitute some spe
i�
 instan
es of gen-eral and linguisti
ally-motivated stru
ture modi�
ation operations, su
h as thosefound in [DH93℄. Apart from domain-spe
i�
, pattern-based optimization rules,there are two sorts of aggregation operators with a general s
ope in Proverbthat handle predi
ate grouping and semanti
 embedding. The predi
ate group-ing aggregation 
ondenses two assertions with the same predi
ate into a singleone, e.g. Set(F ) ^ Set(G) 
an 
ompa
tly be expressed as \F and G are sets".Semanti
 embedding allows the skilful verbalization of one assertion, su
h that itembeds into another one. For example in Set(F )^Subset(F;G) the verbalizationof Set(F ) as the noun phrase \the set F" allows this expression to be embeddedinto \F is a subset of G," yielding \The set F is a subset of G".Altogether, implementing the linguisti
ally motivated 
on
epts of fo
usspa
es, paraphrasing, and aggregation into Proverb signi�
antly 
ontributesto the produ
tion of a shorter and better readable proof verbalization in 
om-parison to a dire
t verbalization of the lines of a proof tra
e. The presentation ofmathemati
al proofs in natural language by Proverb 
an be further improvedby taking into a

ount the user's ba
kground knowledge and asso
iated reasoning
apabilities.

Fig. 2. Verbalization of a Proof Planning Method.

A more re
ent presenta-tion fa
ility is the naturallanguage presentation at themore abstra
t level of proofplans [ML99℄. Proof planning isbased on reasoning steps simi-lar to those used by mathemati-
ians. It is therefore more nat-ural to generate a verbalizationon this level. The 
ommuni
a-tion with the user is fa
ilitatedby presenting a verbalization ofa method in a hypertext windowwhen the 
orresponding node ofthe tree presentation is 
li
kedon. This hypertext presentationof a method o�ers further linksto the verbalization of proofsof subgoals introdu
ed by themethod (see Figure 2). Currently, this lo
al presentation of methods 
an beaggregated to a global presentation of the whole proof plan, but needs furtherelaboration. 8



4. Controlling 
mega
mega's main fun
tionalities are available via the stru
tured menu bar in L
UI'smain window. Its entries partition the 
on
eptually di�erent fa
ilities of the
mega-system into topi
s, su
h as Theories, Extern, Planner, and Agent. Theseprovide all 
ommands of the respe
tive 
on
eptual 
ategory. Commands may befurther grouped into submenus. For example, the topi
 Rule provides di�erentinferen
e rules that de�ne the basi
 
al
ulus of the 
mega system. These rulesare grouped into 
ategories re
e
ting their logi
al e�e
t on a proof, for instan
eelimination or introdu
tion rules.One important feature of L
UI is its dynami
 and generi
 menu extension,i.e. 
ommands are in
rementally added at run-time when they are required andthe user 
an easily 
reate new menu entries by spe
ifying new 
ommands. Thisis a
hieved by de�ning 
ommands separately from 
mega's 
ore system. Some
ommands are then loaded initially. Others|for instan
e, 
ommands that exe-
ute domain spe
i�
 ta
ti
s|are loaded only when the appropriate theory (seebelow) is imported. Thereby a 
ommand is always atta
hed to a single menutopi
 and, if appropriate, to one or several submenus.Theories Mathemati
al knowledge in 
mega is hierar
hi
ally stru
tured withrespe
t to so-
alled theories, whi
h 
ontain signature information, axioms, def-initions, theorems, lemmata, and the basi
 means to 
onstru
t proofs, namelyrules, ta
ti
s, planning methods, and 
ontrol knowledge for guiding the proofplanner.Ea
h theorem T has its home theory and therefore a proof of T 
an usethe theory's signature extensions, axioms, de�nitions, and lemmata without ex-pli
itly introdu
ing them. A simple inheritan
e me
hanism allows the user toin
rementally build larger theories.The user 
an both use and manage 
mega's knowledge base through L
UI.In parti
ular, it is possible to load theories or their single 
omponents in
remen-tally and separately, browse through available assertions and import them intothe a
tive proof. Furthermore, if a theorem has been proved and the proof isveri�ed, it 
an be stored in its home theory.Rules and Ta
ti
s 
orrespond to inferen
e steps at di�erent levels of abstra
-tion. (We will refer to both rules and ta
ti
s with the generi
 term inferen
e).While rules belong to a (low level) logi
 
al
ulus, ta
ti
s are more abstra
t. Theyare programs that, when exe
uted, produ
e a sequen
e of less abstra
t inferen
esteps. Generally, ea
h inferen
e is asso
iated with exa
tly one 
ommand whi
hinvokes it in a given partial proof.The hierar
hi
 organization of theories and their in
remental importationnot only a�e
ts their availability for a proof but also L
UI 's menu stru
ture.Sin
e theories 
ontain rules and ta
ti
s, these are also in
rementally loaded andea
h atta
hed 
ommand is dynami
ally appended to the 
orresponding topi
 inthe menu. Sin
e rules are always de�ned in 
mega's base theory, they are justsorted by their type: elimination rules, introdu
tion rules, stru
tural rules, et
.The menu for ta
ti
s is divided into sub-menus a

ording to the theories theta
ti
s belong to. These sub-menus 
an be further 
lassi�ed a

ording to the
ategories spe
i�ed within these theories. This supports the user in navigatingand �nding appropriate inferen
es. An inferen
e 
an be listed in several subtopi
s9



Fig. 3. Command Widget
Inferen
es are applied by ex-e
uting the atta
hed 
ommands.In general, it is ne
essary to pro-vide some arguments for the ap-pli
ation of an inferen
e, whi
h
an be spe
i�ed inside a generi

ommand window. The 
om-mand window adjusts itself au-tomati
ally to the number of ar-guments and provides some helpto �nd the requested parameters(
f. Figure 3 for an example).The user spe
i�es the argumentseither by manually entering them or by a mouse-
li
k on the appropriate node.Planner 
mega's proof planner sear
hes in the spa
e of partial proof plans,where methods are the plan operators. The planner transforms a partial PDSby method appli
ation and by re
ursive method expansion until it obtains a
omplete PDS, i.e. a PDS whi
h represents (
an be expanded into) an NDproof.The 
ommands for 
mega's planner are grouped into L
UI 's planner menu.The interfa
e displays the growing partial plan as an abstra
tion of the PDS .

Fig. 4. Con
urrent ATPsExternal Systems 
mega employs several ATPs, 
onstraint solvers, and CASsas external reasoners to be applied to spe
i�
 proof problems. Automated the-orem provers that are 
urrently available to 
mega are the �rst-order sys-temsOtter, Spass, ProTeIn,Bliksem, Sat
hmo,Waldmeister, and EQP,(
f. [BCF+97, HF96, FK99℄) and the higher-order theorem provers Tps(
f. [BS98b℄ and Leo [BK98℄. The 
omputer algebra systems in
lude the ex-perimental system �CAS (
f. [KKS98℄) as well as the full-blown systems GAP,Maple, and Magma.An interesting aspe
t of 
mega is its ability to employ several ATPs 
on-
urrently. The graphi
al user interfa
e supports the 
ontrol of parallel ATPs byproviding a spe
ial widget as displayed in Figure 4, whi
h helps the user to mon-itor the a
tivities of every single running ATP. Messages report the status ofan ATP as either not available, still running, or whether the prover has found aproof or failed to do so. The window enables the user to intera
tively tailor thetime resour
es given to single ATPs or to kill running pro
esses entirely.Command Suggestion Me
hanism Another feature of 
mega that 
an onlybe fully exploited with a graphi
al user interfa
e is its elaborate me
hanism to10



guide the user when intera
tively proving a theorem. It suggests 
ommands, ap-pli
able in the 
urrent proof state|more pre
isely 
ommands that invoke someND-rules or ta
ti
s|together with sets of suitable instantiations of the 
ommandarguments. It is based on two layers of autonomous, 
on
urrent agents whi
hsteadily work in the ba
kground of the 
mega system and dynami
ally updatetheir 
omputational behavior with respe
t to the state of the proof and/or spe-
i�
 user queries of the suggestion me
hanism. By ex
hanging information viabla
kboards the agents 
ooperatively a

umulate useful 
ommand suggestionswhi
h are then heuristi
ally sorted and presented to the user.These suggestions are displayed in a separate window (see the right side ofFigure 1). The entries of this window are 
onstantly updated by the suggestionme
hanism, whi
h is based on the 
omputation of the so
iety of agents. The
ommand that is most likely to be useful in the 
urrent proof state is always inthe �rst position. However, the user 
an 
hoose any of the proposed 
ommands.As long as the 
ommand is not yet exe
uted (by 
on�rming the argument settingsin the 
orresponding 
ommand widget), the suggestions are still updated, givingthe user the opportunity to rethink his de
ision.The suggestion me
hanism always proposes a 
ommand together with sev-eral possible sets of instantiations for the 
ommand's arguments. Su
h a set is ameaningful 
ombination of parameters, e.g. proof lines, terms, et
., the 
ommandis appli
able to. The sets are heuristi
ally sorted and the best one is immediatelyproposed to the user by providing it as default arguments to the 
ommand. How-ever, all other 
omputed sets of argument instantiations 
an still be displayed and
hosen within the respe
tive 
ommand widget. One 
an browse the suggestionsor ask for a single argument (
f. the arrow buttons on the lower left and next tothe arguments in Figure 3, respe
tively). Furthermore, the user 
an spe
ify oneor several of the arguments as �xed and 
all the suggestion me
hanism again by
li
king on the re
ompute button (
f. Figure 3) to get possible suggestions forthe remaining parameters.Online Help The online do
umentation of 
mega 
ontains des
riptions of
ommands, planning methods, and the 
ontent of the theories. It is based onHTML and 
an be viewed with any standard web browser. Besides the usualreferen
es to related help topi
s, the hyperlink me
hanism is extended to allowintera
tion with L
UI , i.e. the exe
ution of 
ommands and 
all of menus by
li
king on links within a help page. This yields a ni
e tool that is used interalia to introdu
e new users to the system (see Figure 5). Furthermore the do
u-mentation of theorems and problems 
ontains 
ommands to import them into a
urrent problem or to exe
ute a proof s
ript respe
tively.5. The Agent Ar
hite
tureA mathemati
al assistant system 
alls for an open and distributed system ar-
hite
ture. In su
h an ar
hite
ture, the developer of a dedu
tion system or arespe
tive tool upgrades it to a so-
alled mathemati
al servi
e by wrapping itinto an agent-oriented par
el, with an interfa
e to a 
ommon mathemati
al soft-ware bus [Hom96, HC96℄.The fun
tionality of the software bus is realized in the MathWeb system(see [FK99, FHJ+99℄ for details) by the trader model shown in Figure 6, whi
hlimits the 
entral administration of the bus to a so-
alled trading point that11



Fig. 5. The Online Help System.provides routing and authenti�
ation information to the mathemati
al servi
es.We will des
ribe this model in more detail below.We have implemented and experimented with ourMathWeb system, wherethe integrated theorem proving systems and tools 
an be distributed worldwideand intera
t over the Internet. They 
an be dynami
ally added to and subtra
tedfrom the 
oordinated reasoning repertoire of the 
omplete system. For this, wehave embedded all of 
mega's external reasoners presented in the previous se
-tion. Now, they jointly handle an average load of tens of thousands of inferen
eproblems a day.L
UI is now just one of the 
ooperating mathemati
al servi
es, but it isspe
ial in the sense that it is the only part dire
tly visible to and intera
tingwith the user. In this way it has to meet spe
ial requirements: L
UI must beable to display the mathemati
al servi
es that are 
urrently a
tive, it must beable to suggest external servi
es that may be appropriate for the 
urrent task,and it must be able to 
ontrol external systems of whi
h it might not always beable to get 
omplete information.Lo
ating the servi
es that are 
urrently available is a
hieved by providingL
UI with a list of servi
es that might be available, and it then tries to 
on-ta
t ea
h of these servi
es during initialization and tests whether a 
onne
tionwith the servi
e is possible. Apart from this, L
UI 's own representation of theservi
e's 
apabilities is 
urrently limited to a general 
lassi�
ation of the servi
e,for instan
e whether it is a theorem prover or a 
omputer algebra system, andsome information about 
ommand syntax and 
ag settings that are important12
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hite
ture for Distributed Mathemati
al Servi
es.for 
ontrolling the servi
e needs extension by a list of more spe
i�
 qualities andweaknesses of the servi
e.Given its limited knowledge about 
ollaborating servi
es, L
UI 's answer tothe problem of �nding the right one is pragmati
: it simply starts all problem-related servi
es on the mathemati
al bus. The user 
an eliminate those reasonersthat she thinks might not be suitable to solve the problem. L
UI will 
allsele
ted servi
es in parallel in order to maximize the likelihood of su

ess andminimize the waiting time of the user. The use of several reasoners for the sametask has the additional advantage of 
ross-validating results if needed. In any
ase, the proofs found by these systems have to be transformed into the internalproof format of the 
mega system; this proof transformation pro
ess itself runsin parallel to the ongoing user intera
tion.The Maintenan
e Advantage The agent ar
hite
ture that separates 
mega'slogi
al kernel from its graphi
al user interfa
e has in
reased both its eÆ
ien
yand maintainability.It is quite 
ommon in lo
al 
omputer networks that users have relativelylow-speed ma
hines on their desktop, whereas some high-speed servers that area

essible for everyone operate in the ba
kground. Running the user interfa
eon the lo
al ma
hine uses the lo
al resour
es that are suÆ
ient for this task,while the more powerful servers 
an be exploited for the really 
omplex task ofa
tually sear
hing for a proof.The maintenan
e advantage applies to both the user and the developer.
mega is a rather large system (roughly 17 MB of Common Lisp (CLOS)
ode for the main body of the 
urrent version), 
omprising numerous asso
iatedmodules (su
h as the integrated automated theorem provers and 
omputer alge-bra systems) written in various programming languages. It is a diÆ
ult task toinstall the 
omplete system, in parti
ular, su

essful installation depends on thepresen
e of (proprietary) 
ompilers or interpreters for the respe
tive program-ming languages.In our ar
hite
ture the user only installs the L
UI 
lient, whi
h 
onne
ts13



to the main system and ex
hanges data with it via the Internet. Thus the userintera
ts with the 
lient, whi
h 
an be physi
ally anywhere in the world, while the
mega kernel is still on our server (here in Saarbr�u
ken, where it is maintainedand developed). Sin
e L
UI is realized via the distributed programming systemenvironment Mozart/Oz [Smo95℄,4 whi
h is freely available for various platformsin
luding UNIX and the MS-Windows family of operating systems, this keeps thesoftware and hardware requirements of the user moderate. The installation of the
lient is further simpli�ed by running L
UI as a Nets
ape applet, i.e. L
UI isautomati
ally downloaded via the Internet. Thus we are able to provide 
urrentversions of 
mega and L
UI without the need for re-installation at the user'ssite.To redu
e the bandwidth needed for 
ommuni
ation, 
mega implements anin
remental approa
h based on Smalltalk's MVC triad5, whi
h only transmitsthe parts of the PDS that are 
hanged by a user a
tion. This not only improvesresponse time for a low-bandwidth Internet 
onne
tion but also fo
uses the user'sattention to the e�e
ts of an a
tion.Sin
e the presentation of the proof tree is de�ned by a 
ontext-free grammar,it is rather easy to 
onne
t L
UI to provers other than 
mega; we have exper-imented with Leo [BK98℄ and InKa [HS96℄ and �-Clam [RSG98℄. In this senseL
UI 
an be seen as a generi
 proof viewer.Distributing 
mega Up to this point, we have 
onsidered a 
lient-server net-work with one server that is dedi
ated to 
mega itself and several 
lients thatuse this server. In reality, a 
mega network may 
onsist of several servers that
an be a

essed via a gateway servi
e. The gateway daemon runs on one ma
hinethat provides the 
mega servi
e. It 
an start the a
tual 
mega pro
ess and itsasso
iated modules on any of the servers, depending on their 
urrent work load.In this way, we are able to employ the whole 
omputational power of a lo
al areanetwork with a ba
kground of several larger servers.6. Related WorkUser interfa
es are the subje
t of an important dis
ipline in 
omputer s
ien
ewith its own 
onferen
es, workshops and resear
h groups. Many industrial appli-
ations spend substantial e�ort just on the interfa
e with up to eighty per
entof the systems sour
e 
ode being developed for a friendly interfa
e. The te
h-niques and methods of this dis
ipline slowly but surely �nd their way even torather theoreti
ally oriented �elds su
h as automated theorem proving, wherethe importan
e is in
reasingly well re
ognized.Most interfa
es of ATP systems provide graphi
al illustrations of proof stru
-tures and their elements, and fa
ilities to set up 
ommands in the proof environ-ment. The semanti
s of proof steps are often expressed by graphi
al obje
ts andannotations. Examples for this sort of visualization are binary de
ision diagramsfor �rst-order dedu
tion systems [PS95℄, whi
h have spe
ial display fa
ilities forthe relation between quanti�ed formulae and their instantiation, and naturaldedu
tion displays of sequent proofs [Bor97℄ where the s
oping stru
ture of the4 http://www.mozart-oz.org/5 See for instan
e http://st-www.
s.uiu
.edu/users/smar
h/st-do
s/mv
.html for anoverview. 14



proof is visualized by adja
ent or by nested boxes en
losing segments of prooflines. Another presentation te
hnique displays proof steps in an appropriatelyformatted and intera
tive way. The Theorema system [BJK+97℄ 
an present aproof in natural language by employing �xed natural language s
hemata. Detailsthat are temporarily hidden 
an be exposed by 
li
king on the 
orresponding rootof the proof line.A verbalization 
omponent on top of Nuprl uses a natural language generatorand presents proofs at the level of ta
ti
s [HMBC99℄.CtCoq [BKT94℄ is a rather elaborate presentation system whi
h distributesthe proof information about a proof over three se
tions of a multi-paned window:a Command window re
ords the s
ript of 
ommands sent to the proof engine, aState window 
ontains the 
urrent goals to be proved, and a Theorems window
ontains the results of queries into the proof engine's theorem database.Other approa
hes put parti
ular emphasis on visualization by making thetree format of the proof stru
ture expli
it in the display. The user interfa
e ofthe SEAMLESS system [EM97℄ provides display fa
ilities for a proof graph atdi�erent levels of abstra
tion in a framed window: a variety of lay-out operationsin
ludes zooming and reuse of lemmata.The user interfa
e of INKA [HS96℄ allows for the display of indu
tion proofsket
hes at varying levels of detail. Its features in
lude status information, typ-i
ally expressed by di�erent 
oloring, 
ontext-sensitive menus of possible usera
tions, and proof by pointing.The proof veri�
ation systems VSE [HLS+96℄ has a very elaborate user inter-fa
e that enables the proof engineer to verify industrial software by visualizingrelations between underlying theories (spe
i�
ations).The ILF system [Dah98℄ uses an interfa
e to display proofs in natural lan-guage and in a tree like stru
ture, where the logi
al 
ontent of nodes is displayedseparately. Furthermore, queries 
an be sent to the MIZAR library and several�rst-order automati
 theorem provers running in parallel under 
ontrol of theinterfa
e.
mega in some sense 
ombines features of SEAMLESS, CtCoq, and ILF.Its graphi
al display is similar to that of SEAMLESS, but the set of node 
at-egories and their display is �xed to the parti
ular proof environment. However,L
UI 's tree visualization 
an easily be adapted to a di�erent set of node 
ate-gories and display options. Its display of status information is similar to that ofCtCoq, but the database window is handled di�erently. The 
on
urrent handlingof external reasoners is related to ILF, but sin
e 
mega's logi
 is higher-order,a larger variety of automati
 systems has been integrated. The handling of 
o-referen
es and the 
ombination of tree-like and linear display together with thehyper-link me
hanism to visualize referen
es between both are unique to L
UI.7. Con
lusionsL
UI represents an agent-based, distributed approa
h to user interfa
es fortheorem provers. It provides advan
ed 
ommuni
ation fa
ilities via an adaptableproof tree visualization te
hnique and through various sele
tive proof obje
tdisplay methods whi
h enable the user to better understand the proof and toguide the proof sear
h.Even though L
UI was originally developed for the 
mega system it is notrestri
ted to it in prin
iple. We have also used it as an independent interfa
e to15



various other dedu
tion systems. However mu
h more work has to be investedto generalize it to a universal user interfa
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