
Towards Ontological Support for Principle Solutions in
Mechanical Engineering

Thilo Breitsprecher1, Mihai Codescu2, Constantin Jucovschi3, Michael Kohlhase3,
Lutz Schröder2, and Sandro Wartzack1

1 Department of Mechanical Engineering,
Friedrich-Alexander-Universität Erlangen-Nürnberg

2 Department of Computer Science, FAU Erlangen-Nürnberg
3 Computer Science, Jacobs University Bremen

Abstract. The engineering design process follows a series of standardized stages
of development, which have many aspects in common with software engineering.
Among these stages, the principle solution can be regarded as an analogue of
the design specification, fixing as it does the way the final product works. It is
usually constructed as an abstract sketch (hand-drawn or constructed with a CAD
system) where the functional parts of the product are identified, and geometric
and topological constraints are formulated. Here, we outline a semantic approach
where the principle solution is annotated with ontological assertions, thus making
the intended requirements explicit and available for further machine processing;
this includes the automated detection of design errors in the final CAD model,
making additional use of a background ontology of engineering knowledge. We
embed this approach into a document-oriented design workflow, in which the
background ontology and semantic annotations in the documents are exploited
to trace parts and requirements through the design process and across different
applications.

1 Introduction

Much like software engineering design (in an ideal world), the design of artifacts in me-
chanical engineering follows a multi-stage process in which abstract requirements are
successively refined into a final solution. In fact, this process of systematic engineer-
ing design is to some degree standardized in models that bear substantial resemblance
to the V-model, such as the German VDI 2221 [25]. However, only the last stage in
this process, corresponding to the actual implementation in software engineering, has
well-developed tool support, in the shape of CAD systems that serve to document the
final design. Other stages of the design process are typically documented in natural lan-
guage, diagrams, or drawings. There is little or no support available for interconnecting
the various stages of the design, let alone verifying that decisions made in one stage are
actually implemented in the next stage.

Here, we embark on a program to fill this gap, focusing for a start on the last step
in the development process, in which we are given a principle solution and need to
implement this solution in the final design, a CAD model. The principle solution fixes
important design decisions in particular regarding physical layout, materials, and con-
nections but does not normally carry a commitment to a fully concrete physical shape.



2

It is typically represented by a comparatively simple drawing, produced using plain
graphics programs (e.g. within standard presentation tools) or even by hand. As such, it
has a number of interesting features regarding the way it does, and also does not, con-
vey certain information. The basic issue is that while one does necessarily indicate only
one concrete shape in the drawing, not all aspects and details of this sketch are actually
meant to be reflected in the final design. Some of this is obvious; e.g. it is clear that slight
crinkles in a hand drawing are not intended to become dents in the final product, and
to some (possibly lesser) degree it is also clear that not everything that is represented
as a straight line or a rectangle in a simple sketch will necessarily be realized by the
same simple geometry in the actual design. Other aspects are less straightforward; e.g.
symmetries in the drawing such as parallelism of lines or equal lengths of certain parts,
right angles, and even the spatial arrangement and ordering of certain components may
constitute integral parts of the principle solution or mere accidents of the sketch. Other
aspects of the design may be indicated by standard graphical symbolism; e.g. crosses
often represent bolts. To aid human understanding of the principle solution, it is typi-
cally accompanied by a natural-language explanation that (hopefully) clears up most of
the ambiguities; other aspects of the design are understandable only in the context of
sufficient implicit knowledge, i.e. based on the experience of the design engineer.

The approach we propose in order strengthen and explicate the links between the
stages of the design process is, then, to integrate the documents associated to each stage
into a unified document-oriented workflow using a shared background ontology. This
ontology should be strong enough to not only record mere hierarchical terminologies
but also, in our concrete scenario of principle solutions, to capture as far as possible
the qualitative design intentions reflected in the principle sketch as well as the requisite
engineering knowledge necessary for its understanding. Such an ontology will in par-
ticular support the tracing of concepts and requirements throughout the development
process; we shall moreover demonstrate on an example how it enables actual verifica-
tion of a final design against constraints indicated in the principle solution.

Technically, we realize this approach by means of a modular semantic middleware
architecture, the Multi-Application Semantic Alliance Framework (MASally), which
connects a system of knowledge management web services to standard applications
– in particular document players and CAD systems – via a network of thin API han-
dlers that essentially make the framework parametric in the choice of CAD system.
Background knowledge and design intentions are represented in a modular ontology
that provides material for user assistance and forms the basis for the verification of de-
sign constraints. The formalized engineering knowledge required for the latter task is
managed within the heterogeneous logical framework provided by the Heterogeneous
tool set HETS [19], with the Web Ontology Language (OWL) [8] playing the role of the
primary representation logic for the sake of its good computational properties. Sources
of ontological knowledge include, besides manually extracted knowledge on engineer-
ing and basic geometry, semantic annotations of the principle sketch and the extraction
of assertional knowledge from a CAD model. We illustrate our framework by means
of an example where we verify aspects of the design of an assembly crane against the
principle solution.



3

2 A Document-Oriented Process with Background Knowledge

We recall the stages of the engineering design process according to VDI 2221 [25].

S1 Problem: a concise formulation of the purpose of the product to be designed.
S2 Requirements List: a list of explicitly named properties of the envisioned product.

It is developed in cooperation between designer and client and corresponds to the
user specification document in the V-model.

S3 Functional Structure: a document that identifies the functional components of the
envisioned product and puts them into relation with each other.

S4 Principle Solution: an abstract sketch capturing the most important aspects of the
design.

S5 Embodiment Design: a CAD design that specifies the exact shape of the finished
product.

S6 Documentation: accompanies all steps of the design process.

We will now drill in on step S4, since machine support, which offers the most obvious
handle for adding value using semantic methods.

2.1 Principle Solutions

According to Pahl and Beitz [20], one can develop a principle solution for a product
by combining working principles that correspond to the sub-functions identified in the
function structure of the product. The search for applicable working principles and their
ensuing combination in the principle solution is essential for the further product devel-
opment. For example, the manufacturing costs are determined to a large extent by these
decisions. However, a combination of working principles cannot be fully evaluated un-
til it is turned into a suitable representation. At this highly creative stage of the design
process, the engineer does not want to consider the formalities inherent to a full-fledged
CAD system. For this reason, probably the most common representations of principle
solutions in mechanical engineering are old-fashioned hand-drawn sketches. Develop-
ing the principle solution mainly involves the selection of materials, a rough dimen-
sional layout, and other technological issues. The design engineer can refer to various
support tools for support in the search for working principles, such as the design cat-
alogues of Roth [22] and Koller [14]. The degree of detail of a sketch varies between
the two main levels of the design: while at the assembly level, the focus is mainly on
the topology of the product, to ensure compatibility of the principles to be combined, at
the level of parts and sub-assemblies more attention is given to the actual shape of the
product to be developed. In the following, we discuss an example of a representation of
a principle solution.

2.2 Case Study: An Assembly Crane

Our main case study concerns an assembly crane for lifting heavy machine compo-
nents in workshops. This example has been used in a practical design assignment for
engineering students at the Chair of Engineering Design at the University of Erlangen-
Nürnberg in the winter term of 2012. In this design exercise, students were given a



4

principle solution (Figures 1 and 2) along with some requirements (e.g. specified max-
imum power consumption, maximum torque, and maximum weight) and were asked to
design an embodiment. Thus we have realistic documents for phases S4 and S5 of a
representative and non-trivial design task to study.

Fig. 1. Principle Solution: Assembly Crane

The assembly crane to be de-
signed can be divided into mod-
ules performing various functions.
The modules are indicated by
numbers in the figure: the main
frame with a vertical beam, a can-
tilever, and parallel horizontal base
profiles (1); and a lifting system,
consisting of an electrically pow-
ered winch unit (2), connected via
a cable (3), which is guided via de-
flection rollers, to a crane hook (4).
This allows lifting, lowering and
holding the machine components
to be assembled. The requirements
of the crane, which have been de-
fined in a previous step, concern
the material to be used (standard
steel profiles for high strength and
stiffness), the topology (the legs of
the crane must be parallel, the ver-
tical and the horizontal cantilever
are perpendicular, the motor (2) must not be attached to the frame within the crane’s
working space), dimensions (maximum total height, minimum space between base pro-
files, minimum cantilever length) and manufacturing process constraints (weldment of
main frame profiles and bolt connection of winch unit and main frame).

Fig. 2. Principle Solution for the Winch Unit.

Figure 2 details the princi-
ple solution of the winch unit:
It consists of a drum (6a), which
is welded (generally, the require-
ment of a weldment is indi-
cated by a folded arrow) be-
tween two side plates (6b). In
order to ensure correct reel-
ing of the cable, the drum is
thread-structured (6). The main
shaft (7) is driven by an electric
worm-geared flange motor (5)
that is connected to the winch
frame (11) via blind-hole bolts

(indicated by crosses in the sketch). In order to decelerate the winch, to hold the load,
and to allow emergency stops, a lamella disk break (9) is installed; it is connected to the



5

main shaft by a suitable shaft-hub connection (10) that can withstand sudden increases
in torque (e.g. due to emergency stops). An arrangement of locating and non-locating
bearings (8) supports the main shaft. The ball bearings have to be arranged in such a
way that axial forces are kept from the motor. The winch frame is realized as a stiff, yet
weight-minimized, welded assembly, made of steel and is connected to the main frame
of the crane with through-hole bolts.

3 Semantic Support for a Document-Oriented Engineering
Workflow

Every step of the engineering design process results in particular documents, e.g. text
documents for S1 to S3 and S6, an image for S4 (hand-drawn or produced in a simple
graphics program), and a CAD assembly in S5. One of our goals is to integrate these
into a document-oriented workflow, using semantic technologies.

3.1 A Semantic Annotation System

We build on the MASally architecture presented in [12] (under the name FFCad, con-
siderably extended here to embrace document-oriented workflows), which assumes that
the background knowledge shared by the manufacturer, design engineer, and the clients
is reified into a flexiformal ontology (the cloud in Figure 3) and that the documents
are linked into that ontology via a semantic illustration mapping. This illustration is a
mapping (depicted by dashed arrows in Figure 3) from fragments or objects in the doc-
uments to concepts in the ontology (dotted circles), which may themselves be intercon-
nected by ontology relations (solid arrows). The ontology (a term that we understand in
a broad sense) itself is a federation of ontology modules describing different aspects of
the engineering domain that are interconnected by meaning-preserving interpretations
(see Section 4 for details).

Purpose S1

Requirements S2

Functional Structure S3

Principle Solution S4
Embodiment S5

Documentation S6

·

·

·

STEP

Function

Parts

Phys

Federated Engineering Ontology

Fig. 3. An Ontology-Supported Document-Oriented Design Process



6

In addition to the ontology links, we assume that the documents themselves are seman-
tically linked via relations (the dotted arrows between the Si) that model the process of
goal refinement in the development process. These two primary relations are augmented
with fine-grained annotations about document status, versioning, authorship, etc. Note
that our approach crucially extends metadata-based approaches in that the annotations
and relations point to document fragments – e.g. text fragments down to single symbols
in formulae, regions in sketches, or shapes/sub-assemblies in CAD objects.

All of these explicit annotations in the documents are the basis for semantic services
that can be integrated into the documents (and their player applications) via the MASally
framework, which we describe next.

3.2 Semantic Services via the MASally System

The Multi-Application Semantic Alliance Framework (MASally) is a semantic middleware
that allows embedding semantic interactions into (semantically preloaded) documents.
The aim of the system is to support the ever more complex workflows of knowledge
workers with tasks that so far only other humans have been able to perform without
forcing them to leave their accustomed tool chain.

3D model + semlinks

CAD system

Alex

Theo

Text Model + semlinks

Project Docs

Alex

Theo

Desktop

abs. CAD model

abs. text model

Sally

Comet

Comet

Comet

Comet

Project documentation
– semiformal –

Background knowledge
(physics, engineering)

ISO/DIN norms
– semiformal –

...

Planetary

REST

Fig. 4. The MASally Architecture

The MASally system is realized as
– a set of semiformal knowledge management web services (comprised together with

their knowledge sources under the heading Planetary on the right of Figure 4);
– a central interaction manager (Sally, the semantic ally) that coordinates the provi-

sioning and choreographing of semantic services with the user actions in the various
applications of her workflow;

– and per application involved (we show a CAD system and a document viewer for
S4/S5 in Figure 4)



7

• a thin API handler Alex that invades the application and relates its internal
data model to the abstract, application-independent, content-oriented document
model in Sally;

• an application-independent display manager Theo, which super-imposes in-
teraction and notification windows from Sally over the application window,
creating the impression the semantic services they contain come from the ap-
plication itself.

This software and information architecture is engineered to share semantic technologies
across as many applications as possible, minimizing the application-specific parts. The
latter are encapsulated in the Alexes, which only have to relate user events to Sally, high-
light fragments of semantic objects, handle the storage of semantic annotations in the
documents, and export semantically relevant object properties to Sally. In particular, the
Theos are completely system-independent. In our experience developing an Alex for an
open-API application is a matter of less than a month for an experienced programmer;
see [5] for details on the MASally architecture.

Fig. 5. Navigating the Refinement Relation

To fortify our intuition about se-
mantic services, let us consider the
following situation. The design en-
gineer is working on the principle
solution from Figure 1 – a sketch re-
alized as a vector image, displayed
in an (in this case browser-based)
image viewer. The user clicked on
a detail of the sketch and received a
(Theo-provided) menu that

1. identifies the object as ‘Sheave S13’ (the image is extended with an image map,
which allows linking the region ‘S13’ with the concept of a ‘sheave’ in the ontol-
ogy); further information about the object can be obtained by clicking on this menu
item;

2. gives access to the project configuration that identifies the other documents in the
current design;

3. gives access to the to the design refinement relation between the project documents:
here, the object S13 is construed as a design refinement of the requirement S3 in
the principle solution and has been further refined into objects S17 and S19 in the
CAD assembly and the plans generated from that;

4. allows direct interaction with the ontology (e.g. by definition lookup; see Figure 6,
here triggered from the CAD system for variety);

5. gives shortcuts for navigation to the other sheaves in the current project.

Generally, the MASally system supports generic help system functionalities (def-
inition lookup, exploration of the concept space, or semantic navigation: lookup of
concrete CAD objects from explanations) and allows focus-preserving task switching
(see [10] for a discussion). All we need for this are annotations of the VDI2221 rela-
tions, ontology links and of course the ontology itself, which we will discuss next.



8

Fig. 6. Definition Lookup

4 The Federated Engineering Ontology

We now come to the design of the ontology that acts as the central representation of the
background knowledge and the common ground of all actors in the design process. It
serves as a synchronization point for semantic services, as a store for the properties of
and relations between domain objects, and as a repository of help texts for the MASally
system. As it has to cover quite disparate aspects of the respective engineering domain
at different levels of formality, it is unrealistic to expect a homogeneous ontology in a
single representation regime. Instead, we utilize the heterogeneous OMDoc/MMT frame-
work [11, 21] that allows representing and interrelating ontology modules via meaning-
preserving interpretations (i.e. theory morphisms). In particular, OMDoc/MMT supports
the notion of meta-theories so that we can have ontology modules represented in OWL2
alongside modules written in higher-order logic, as well as informal modules given in
natural language. The OMDoc/MMT meta-morphisms relate all of these and moderate
a joint frame of reference. Reasoning support is provided by the verification environ-
ment of the Heterogeneous Tool Set HETS [19], a proof management tool that interfaces
state-of-the-art reasoners for logical languages. HETS mirrors the heterogeneity of the
representation framework: new logics, logic translations or concrete syntaxes of lan-
guages can be plugged in without having to modify the heterogeneous and the deduc-
tive components of HETS. In our verification of design constraints, we employ, within
OMDoc/MMT/HETS, the Distributed Ontology, Modeling and Specification Language
DOL [17, 18] that provides specific support for heterogeneity in ontologies.

4.1 A Verification Methodology

We propose a general methodology for the verification of qualitative properties of
CAD assemblies against principle solutions. While the checking of explicit quantita-
tive constraints in principle solutions is supported by a number of research tools (e.g.



9

the ProKon system [15]; in fact, some CAD systems themselves include constraint lan-
guages such as CATIA Knowledge Expert, which however are not typically interrelated
with explicit principle solutions), there is to our knowledge currently no support for
checking qualitative requirements given by the principle solution.

Example 1. In our case study introduced in Section 2.2, commonly encountered viola-
tions (in realizations produced by engineering students) of qualitative requirements in
the principle solution were the following:

– the horizontal base profiles of the frame were not parallel;
– the types of weldments used did not ensure high stiffness and the local weldment

area was not designed properly (e.g. missing ribs or stiffenings);
– the ball bearings were arranged in such a way that the non-locating bearing was

closer to the motor, and thus the axial forces were transmitted into the motor.

We are going to use the requirement that the legs of the frame should be parallel as a
running example throughout the rest of the section. It is clear that the other examples
can be treated similarly.

Ontology of geometry Ontology of CAD features

Ontology of rules

TM |=TR

Fig. 7. Verification of qualitative properties of CAD designs.

The first step is to provide a formal terminology for expressing the qualitative properties
that a CAD design should fulfill. Since we are at the stage S5 of the engineering design
process, we have to collect requirements from all previous stages, in particular S1 - ex-
plicit requirements - and S4 - further restrictions on the acceptable designs introduced
by the principle solution. Here, we concentrate on geometric properties of physical ob-
jects and therefore we tackle this goal by developing an ontology of geometric shapes.
We then need to have means to formally describe the aspects of a CAD design that are
relevant for the properties that we want to verify. Since we want to verify geometric
properties, we are going to make use of an ontology of CAD features. We then need
to formulate general rules regarding geometric properties of objects constructed by re-
peated applications of CAD features. This gives us a new ontology, of rules relating
geometric properties and CAD features.



10

We now come to the task of verification of a concrete CAD design against the re-
quirements captured by a given principle solution. In a first step, we generate a repre-
sentation of the requirements as an ABox TR over the ontology of rules, in a way that
will be explained below. The next step is to generate a representation of the CAD design
as another ABox TM over the same ontology of rules, and then to make use of the rules
to formally verify that TM logically implies TR. This process is illustrated in Figure 7.

4.2 Ontology of Shapes

We begin setting up our verification framework by developing an ontology of abstract
geometric objects, with their shapes and properties. The shape of a geometric object
would seem to be a well-understood concept; however, the task of formalizing the se-
mantics of shapes and reasoning about them is difficult to achieve in a comprehensive
way. For a broader discussion, including some attempts to develop ontologies of geo-
metric shapes, see, e.g., the proceedings of the Shapes workshop [16].

Our ontology, inspired by CYC [6], concentrates on geometric primitives of interest
for CAD design . The central concept is that of PhysicalObject, which may be of an un-
specified shape or can have a 2-dimensional or 3-dimensional shape. Moreover, a Phys-
icalObject may be rigid or mobile, and holes are represented as NegativeShapedThings.
The known shapes, organized in a taxonomy, provide further concepts. The object and
data properties of the ontology are either parameters of the geometric shapes (e.g. di-
ameter of a circle, or length of the sides of a square) or general geometric properties,
like symmetric 2D- and 3D-objects and parallel lines.

Example 2. We present the fragment of the ontology of shapes that is relevant for as-
serting that two objects are parallel. This is given as a DOL specification that extends
our OWL formalization of geometry with the axiom that two lines are parallel if the
angles of their intersections with a third line are equal. Since the intersection of two
lines is a relation with three arguments, the two intersecting lines and the angle formed
by them, we use reification to represent it as a concept Intersection, together with a role
intersectsWith that gives for an intersection the first constituent line, a class LineAngle
for pairs of lines with angles (together with projection relations hasAngle and hasLine)
and a role lineAngleOf giving the pair of the second line of an intersection with the
angle between the two lines. We use Manchester syntax for OWL, with o denoting role
composition.

spec GEOM =. . .
ObjectProperty: isParallelWith
Domain: PhysicalObject
Range: PhysicalObject
SubPropertyChain: hasIntersection o hasLineAngle o lineAngleOf o intersectsWith

4.3 Ontology of CAD Features

Inspired by [3], our ontology of features contains information about the geometry and
topology of the CAD parts. Its concepts are assemblies and their parts, feature construc-
tors and transformers, 2D sketches and their primitives, or constraints (see Example 3



11

below). Object and data properties are introduced for parameters of primitives, binary
constraints or for composition rules (an assembly is formed with parts, a part has a 2D
sketch base etc.).

Example 3. We present again in detail only a fragment of the ontology of features that
is relevant for verifying that two objects are parallel. We have a concept of Part of an as-
sembly and each part has been constructed in a 3D space which has 3 axes of reference.
We record this by an object property hasAxis, with the inverse isAxisOf. Furthermore,
3D parts can be constrained at the assembly level. The constraint of interest for us is
an angle constraint that specifies the angle formed between two axes, two edges or two
faces of two chosen parts. Since this is again a relation with three arguments, we use
reification, in a similar way as in Example 2, that is, we have a class AngleConstraint
and three roles, fstLine and sndLine giving the two lines that are constrained and angle
giving the specified angle.

4.4 Ontology of rules

The next step is to relate via rules the concrete designs using feature transformers and
constructors, given as elements of the ontology of features, to the abstract shapes in the
ontology of geometry. It is worth mentioning that the rules can be themselves subject
to verification (a proof of concept was given in [13]). The advantage of our approach is
that the task of verifying the rules, which can be quite complex, is separated from the
task of checking correctness of individual CAD designs, which makes use of the rules.

Example 4. We record below that each part is a geometric object, that an angle con-
straint in an assembly gives rise to an intersection between the constrained lines and
that two parts of an assembly are parallel if their axes are parallel.

spec RULES = FEATURES and GEOM
then Class: Part

SubClassOf: PhysicalObject
ObjectProperty: isParallelWith
SubPropertyChain: hasAxis o isParallelWith o isAxisOf
ObjectProperty: fstLine
SubPropertyChain: intersectionOfAngle o intersectsWith
ObjectProperty: sndLine
SubPropertyChain: intersectionOfAngle o hasLineAngle o hasLine
ObjectProperty: angle
SubPropertyChain: intersectionOfAngle o hasLineAngle o hasAngle

4.5 Generating the ABoxes and proving correctness

The principle solution is available as an image file, together with a text document that
records additional requirements introduced in the principle solution, thus further re-
stricting the acceptable realizations of the design. Each part of the sketch has been
identified as a functional part of the principle solution and given a name; this yields
the required individual names for our ABox. The assertions regarding the individuals



12

Fig. 8. Making assertions regarding individuals explicit using AKTiveMedia [4]

thus obtained are added as semantic annotations to the text that accompanies the image
(Figure 8).

Example 5. The following ABox expresses that the parts identified as leg1 and leg2 of
the principle solution should be parallel:

spec PS ABOX = GEOM
then Individual: leg2

Individual: leg1
Facts: isParallelWith leg2

The ABox of the CAD design is generated from its history of construction, using
the Alex for CAD. The following part of this ABox expresses that the two legs of the
crane have been explicitly constrained to be perpendicular to the main frame in the
CAD model:

spec CAD ABOX = FEATURES
then Individual: a1 Types: Line
Individual: a2 Types: Line
Individual: a3 Types: Line
Individual: leg1 Types: Part Facts: hasAxis a1
Individual: leg2 Types: Part Facts: hasAxis a2
Individual: frameBase Types: Part Facts: hasAxis a3
Individual: alpha Types: Angle Facts: valueOf 90
Individual: ac1 Types: AngleConstraintFacts: fstLine a1, sndLine a3, angle alpha
Individual: ac2 Types: AngleConstraint Facts: fstLine a2, sndLine a3, angle alpha

To complete all gaps in Figure 7, we have to show that all models (in the sense of
interpretations of a logical theory) of the ABox generated from the CAD design are
models of the ABox generated from the principle solution. DOL uses views to express
that, as in the example below.

Example 6. Checking that the two legs of the crane are parallel amounts to checking
correctness of the DOL view

view VERIF : PS ABOX to CAD ABOX

using one of the provers interfaced by HETS, e.g. the Pellet reasoner for OWL [23]; as
expected, the reasoner makes short work of this.



13

5 Related Work

In previous work [13], we have developed an export function from SOLIDWORKS that
generates from the internal representation of a CAD design a description of its construc-
tion in a variant of higher-order logic. One can then relate this construction to abstract
geometric shapes and prove this relation to be correct using a higher-order proof assis-
tant. In the context of the methodology introduced in Section 4.1, each such relation
between the construction and its abstract geometric counterpart gives rise to a formally
verified rule in the ontology of rules. At the informal level, we have moreover devel-
oped a semantic help system for CAD objects based on the Semantic Alliance Frame-
work [12], and have illustrated the use of this information for semantically supported
task switching [10].

Several ontologies of features have been developed, with the typical scenario being
interoperability and data interchange between CAD systems, rather than verification of
qualitative properties of CAD assemblies. We mention here only OntoSTEP [2], which
aims to enrich the semantics of CAD objects when exported using the ISO-standard
interchange format STEP; it has the advantage of being independent of the choice of
CAD system. Our heterogeneous approach allows integrating OntoSTEP (or any other
ontology of features) into our federated engineering ontology and relating it to our
ontology of features, without having to modify our verification methodology.

Various approaches have been explored to integrate semantics into the engineering
design process. One such approach is the so-called feature technology, which has been
researched by several institutes. According to [24], features are an aggregation of ge-
ometry items and semantics. Different types of features are defined (eg. form features,
semantic features, application features, compound features), depending strongly on the
technical domain and the product life-cycle phase in which features are used. We ex-
pect features to play a role in further semanticizing step S5 (embodiment, Section 2) in
future work.

The computer-supported tracing of the design relations described in Section 3 is
related to techniques of requirements tracing (RT; see [9] for an overview over the
current state of the art). Current RT approaches are restricted to software engineering
workflows; they are usually dissociated from the documents that describe the (software)
artifacts and manage the requirements separately. We contend that our approach that
puts the VDI 2221 documents into the center of the workflow integrates more directly
with existing engineering design workflows

As mentioned in Section 2.1, the most common representation of a principle so-
lution in mechanical engineering are probably old-fashioned hand-drawn sketches.
However, alternative approaches have been developed. Albers [1] proposes the gen-
eral Contact-and-Channel Model (CCM) for a model-based engineering design process.
The basic idea is that every technical system can be represented as a system of work-
ing surface pairs and channel and support structures. In our case study, an example
of a working surface pair would be the shaft-hub connection between the winch main
shaft and the lamella disk break, and the main shaft, where the break torque of the disk
break is channeled to the winch drum in order to stop the cable, would be a channel and
support structure. Approaches of this kind are candidates for integration with our onto-



14

logical process model in future extensions covering the step from the function structure
to the principle solution.

6 Conclusions

We have described a framework for semantic support in engineering design processes,
focusing on the step from the principle solution to the embodiment, i.e. the CAD model.
We base our framework on a flexiformal background ontology that combines informal
and semiformal parts serving informational purposes with fully formalized qualitative
engineering knowledge and support for annotation of principle sketches with formal
qualitative constraints. The latter serve to separate contingencies of the sketch from
its intended information content, and enable automated verification of the CAD model
against aspects of the principle solution. We combine this approach with a document-
oriented workflow that also relies on the background ontology for tracking the identity
of parts through the design process and across different applications, which are accessed
in a unified manner within the MASally framework.

We have illustrated our approach on the partial verification of a CAD model of
an assembly crane, showing in particular that the ability to draw logical inferences is
important when verifying qualitative constraints (related pre-existing systems support
only quantitative constraints, typically verified by direct calculation). The logic-based
approach thus allowed the system to, e.g., accept two parts as satisfying a parallelism
constraint formulated in the principle solution although the CAD model did not directly
contain such a constraint, which instead had to inferred by combining other constraints
in the model.

We currently use OWL as the logical core of our verification framework, represent-
ing the requisite background knowledge in a TBox and generating ABoxes from the
principle sketch and the CAD model. In principle, our approach is logic-agnostic, being
based on heterogeneous principles, in particular through use of the Heterogeneous Tool
Set HETS and the Distributed Ontology, Modeling and Specification Language DOL
[17, 18]. It is thus easily possible to go beyond the expressivity boundaries of OWL
where necessary, e.g. by moving some parts of (!) the ontology into first-order logic
or, more conservatively, by using rule-based extensions of OWL such as SWRL [7] —
this will increase the complexity of reasoning but the HETS system will localize this
effect to those parts of the ontology that actually need the higher expressive power.
Use of SWRL will in particular increase the capabilities of the system w.r.t. arithmetic
reasoning.

Acknowledgements. We thank Oliver Kutz and Till Mossakowski for fruitful dis-
cussions. The work presented in this paper was supported by the German Research
Foundation (DFG) under grant KO-2484/12-1 / SCHR-1118/7-1 (FormalCAD).

References

1. A. Albers and C. Zingel. Extending SysML for engineering designers by integration of the
contact and channel–approach (CCM) for function-based modeling of technical systems. In
Systems Engineering Research, CSER 2013, vol. 16 of Proc. Comput. Sci., pp. 353 – 362.
Elsevier, 2013.



15

2. R. Barbau, S. Krima, R. Sudarsan, A. Narayanan, X. Fiorentini, S. Foufou, and R. D. Sri-
ram. OntoSTEP: Enriching product model data using ontologies. Computer-Aided Design,
44:575–590, 2012.

3. G. Brunetti and S. Grimm. Feature ontologies for the explicit representation of shape seman-
tics. J. Comput. Appl. Technology, 23:192–202, 2005.

4. A. Chakravarthy, F. Ciravegna, and V. Lanfranchi. Aktivemedia: Cross-media document
annotation and enrichment. In Semantic Web Annotation of Multimedia (SWAMM-06), 2006.

5. C. David, C. Jucovschi, A. Kohlhase, and M. Kohlhase. Semantic Alliance: A frame-
work for semantic allies. In J. Jeuring, J. A. Campbell, J. Carette, G. Dos Reis, P. Sojka,
M. Wenzel, and V. Sorge, eds., Intelligent Computer Mathematics, number 7362 in LNAI,
pp. 49–64. Springer Verlag, 2012.

6. D.Lenat. Cyc: A Large-Scale Investment in Knowledge Infrastructure. Communications of
the ACM, 38(11):33–38, 1995.

7. I. Horrocks, P. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL rules: A proposal and
prototype implementation. J. Web Sem., 3:23–40, 2005.

8. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: the
making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

9. International council on systems engineering website. http://www.incose.org.
10. A. Kohlhase, M. Kohlhase, C. Jucovschi, and A. Toader. Full semantic transparency: Over-

coming boundaries of applications. In P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, and
M. Winckler, eds., Human-Computer Interaction – INTERACT 2013, vol. 8119 of Lecture
Notes in Computer Science, pp. 406–423. Springer, 2013.

11. M. Kohlhase. OMDOC – An open markup format for mathematical documents [Version 1.2].
Number 4180 in LNAI. Springer Verlag, Aug. 2006.

12. M. Kohlhase. Knowledge management for systematic engineering design in CAD systems.
In F. Lehner, N. Amende, and N. Fteimi, eds., Professionelles Wissenmanagement Manage-
ment, Konferenzbeiträge der 7. Konferenz, pp. 202–217. GITO Verlag, 2013.

13. M. Kohlhase, J. Lemburg, L. Schröder, and E. Schulz. Formal management of CAD/CAM
processes. In A. Cavalcanti and D. Dams, eds., 16th International Symposium on Formal
Methods (FM 2009), number 5850 in LNCS, pp. 223–238. Springer Verlag, 2009.

14. R. Koller and N. Kastrup. Prinziplösungen zur Konstruktion technischer Produkte. Springer,
1994.

15. M. Kratzer, M. Rauscher, H. Binz, and P. Göhner. Konzept eines Wissensintegrationssystems
zur benutzerfreundlichen, benutzerspezifischen und selbständigen Integration von Konstruk-
tionswissen. In Design for X–22. DfX-Symposium, 2011.

16. O. Kutz, M. Bhatt, S. Borgo, and P. Santos, eds. The Shape of Things, SHAPES 2013, vol.
1007 of CEUR Workshop Proceedings, 2013.

17. T. Mossakowski, O. Kutz, M. Codescu, and C. Lange. The distributed ontology, modeling
and specification language. In Workshop on Modular Ontologies, WoMo 2013, vol. 1081 of
CEUR Workshop Proceedings, 2013.

18. T. Mossakowski, C. Lange, and O. Kutz. Three semantics for the core of the distributed
ontology language (extended abstract). In International Joint Conference on Artificial Intel-
ligence, IJCAI 2013. IJCAI/AAAI, 2013.

19. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set, HETS. In Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2007, vol. 4424 of
LNCS, pp. 519–522. Springer, 2007.

20. G. Pahl, W. Beitz, J. Feldhusen, and K.-H. Grote. Engineering Design. Springer Verlag, 3rd
edition, 2007.

21. F. Rabe and M. Kohlhase. A scalable module system. Information & Computation, 0(230):1–
54, 2013.

22. K. Roth. Konstruieren mit Konstruktionskatalogen. Springer, Berlin, 1994.



16

23. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 2007.

24. VDI. Informationsverarbeitung in der Produktentwicklung – Feature-Technologie – VDI
2218, 1999. (Information technology in product development – Feature Technology).

25. VDI-Gesellschaft Entwicklung Konstruktion Vertrieb. Methodik zum Entwickeln und Kon-
struieren technischer Systeme und Produkte, 1995. English title: Systematic approach to the
development and design of technical systems and products.


