
Formal Management of CAD/CAM Processes

Michael Kohlhase, Johannes Lemburg, Lutz Schröder, and Ewaryst Schulz

DFKI Bremen, Germany
<firstname>.<lastname>@dfki.de

Abstract. Systematic engineering design processes have many aspects
in common with software engineering, with CAD/CAM objects replac-
ing program code as the implementation stage of the development. They
are, however, currently considerably less formal. We propose to draw
on the mentioned similarities and transfer methods from software en-
gineering to engineering design in order to enhance in particular the
reliability and reusability of engineering processes. We lay out a vision
of a document-oriented design process that integrates CAD/CAM docu-
ments with requirement specifications; as a first step towards supporting
such a process, we present a tool that interfaces a CAD system with
program verification workflows, thus allowing for completely formalised
development strands within a semi-formal methodology.

1 Introduction

Much of our life is shaped by technical artifacts, ranging in terms of intrinsic com-
plexity from ball point pens over pacemakers, automobiles, and nuclear power
stations to robots. These artifacts are the result of engineering design processes
that determine their quality, safety, and suitability for their intended purposes
and are governed by best practices, norms, and regulations. The systematic de-
velopment of products is guided by descriptions of problems and their solutions
on different levels of abstraction, such as the requirements list, the function
structure, the principle solution, and eventually the embodiment design. The
elements of these representations are linked by dependencies within and across
the different levels of abstraction. The present state of the art in computer-aided
design and manufacture of industrial artifacts (CAD/CAM) does not support
this cross-linking of dependencies. Consequently, e.g. non-embodied principle
solutions are still often shared and stored in the form of hand-made sketches
and oral explanations. In other words, large parts of the engineering process are
not completely representable in current CAD/CAM systems, which are focused
primarily on the embodiment level.

Contrastingly, software engineers have long acknowledged the need for a for-
mal representation of the entire software development process. In particular,
formal specification and verification of software and hardware systems is with-
out alternative in safety-critical or security areas where one cannot take the risk
of failure. Formal method success stories include the verification of the Pentium
IV arithmetic, the Traffic Collision Avoidance System TCAS, and various secu-
rity protocols. In many cases, only the use of logic-based techniques has been

able to reveal serious bugs in software and hardware systems; in other cases,
spectacular and costly failures such as the loss of the Mars Climate Orbiter
could have been avoided by formal techniques. Norms such as IEC 61508 make
the use of formal methods mandatory for software of the highest safety integrity
level (SIL 3). Thus, formal methods will form an integral part of any systematic
methodology for safe system design.

The main goal of the present work is to outline how formal methods, hitherto
used predominantly in areas such as software development and circuit design that
are inherently dominated by logic-oriented thinking anyway, can be transferred
to the domain of CAD/CAM, which is more closely tied to the physical world. In
particular, we wish to tie formal specification documents in with a semi-formal
engineering design process. Potential benefits for the CAD/CAM process include

– formal verification of physical properties of the objects designed
– tracing of (formalized) requirements across the development process
– improved control over the coherence of designs
– semantically founded change management.

We lay out this vision in some more detail, relating it to an extended discussion
of current best practice in engineering design (Section 2), before we proceed to
report a first step towards enabling the use of formal methods in engineering
design: we describe a tool that extracts formal descriptions of geometric objects
from CAD/CAM designs (Section 3). Specifically, the tool exports designs in the
CAD/CAM system SolidWorks into a syntactic representation in the wide-
spectrum language HasCasl [10], thereby making the connection to a formal
semantics of CAD/CAM objects in terms of standard three-dimensional affine
geometry as defined in a corresponding specification library. We apply the tool
in a case study (Section 4) involving a toy but pioneering example where we
prove that a simple CAD drawing implements an abstractly described geometric
object, using the semi-automatic theorem prover Isabelle/HOL, interaction with
which is via logic translations implemented in the Bremen heterogeneous tool
set HeTS [8].

2 A Document-oriented Process for CAD/CAM

Best practices for designing technical artifacts are typically standardized by
professional societies. In our exposition here, we will follow the German
VDI 2221 [12], which postulates that the design process proceeds in well-
defined phases, in which an initial idea is refined step-by-step to a fully spec-
ified product documentation. We observe that the process is similar to the
software engineering process and that the stages in the design process re-
sult in specification documents, as they are e.g. found in the V-model (see
Fig. 1). In contrast to software engineering approaches like the V-model,
however, VDI 2221 (and actual current practice in engineering design) do
not provide a mechanism to ensure consistency between the design stages,

2

Fig. 1. The V-model of Software Engineering

or methods for verifying that
products actually meet require-
ments specified in preceding
phases of the development. In
fact, the VDI 2221 process cor-
responds only to the left shank
of the process depicted in Fig. 1,
while the quality control process
(the right shank in Fig. 1 and
the main contribution of the V-
model) is left unspecified.

2.1 The Engineering Design Process

To make the correspondence between VDI 2221 and the V-model explicit we
review the six1 stages and relate them to the V-model before we illustrate them
with a simple example.

S1 Purpose/Problem: a concise formulation of the purpose of the product to
be designed.

S2 Requirements List: a list of explicit named properties of the envisioned
product. It is developed in cooperation between designer and client and
corresponds to the user specification document in the V-model.

S3 Functional Structure: A document that identifies the functional compo-
nents of the envisioned product and puts them into relation with each other.

S4 Solution in Principle: a specification of the most salient aspects of the
design. It can either be a CAD design like the one in Fig. 2 below or a hand
drawing [7].

S5 Embodiment Design/“Gestalt”: a CAD design which specifies the exact
shape of the finished product.

S6 Documentation: accompanies all steps of the design process.

Note that most of these design steps result in informal text documents, with
step S5 being the notable exception. In the envisioned document-oriented engi-
neering design process we will concentrate on these documents, enhance them
with semantic annotations and link them to background specifications to enable
machine support: e.g. requirements tracing, management of change, or verifica-
tion of physical properties. Before discussing this vision in more detail, let us set
up an example by considering a rational reconstruction of the design process of
a machinists’ hammer according to DIN 1041.

2.2 The Design of a Hammer

1 In fact, [12] specifies additional stages for determining modular structures and de-
veloping their embodiments, which we will subsume in steps S3 and S5

3

The Purpose of a Hammer The first and most important step in setting up a
requirements list is the specification of the purpose of the product. The purpose
describes the intended use of the product solution-neutrally. This is the highest
level of abstraction within the design process. In the case of a hammering tool,
the purpose can be in the form of a very simple definition:

A hammer is an apparatus for transmitting an impulse to an object.

In reference to a hand-tool in contrast to e.g. a hammer mill, the purpose can
be narrowed to:

A hammer is an apparatus for the manual generation and transmission
a defined impulse to an object.

Ideally, the list of requirements of a product should be unambiguous, clear
and complete. This ideal goal is seldom fulfilled in a real life design process. This
is due e.g. to implicit customer wishes, which in fact often are more important
to the market-success of a product than the well-known and explicitly named
requirements. In the case of the hammer, the requirements might include the
following.

Explicit Requirements

E1 The hammer has to fulfill the standard DIN 1041 and all related subsequent
standards, namely: DIN 1193, DIN 1195, DIN 5111, DIN 68340 and DIN
ISO 2786-1.

E2 The handle has to be painted with a clear lacquer over all and with colour
RAL 7011 (iron grey) at 10 cm from the lower end.

E3 Two company logos of 20mm length are placed on both sides of the handle.

Implicit Requirements

I1 The hammer must be usable for right-handed and left-handed persons.
I2 The hammer should be ergonomic.
I3 The hammer must fit into a standard tool chest.
I4 The hammer shall look strong and matter-of-fact.

Functional Specification of a Hammer Within the design process, the func-
tional specification is done by setting up the function structure that breaks down
the complex problem into manageable smaller sub-functions and represents the
logical interrelationships of the given tasks. As in the previous design steps, the
function structure is still solution neutral. The aim is to open up a preferably
broad solution field, which will be narrowed by explicit named criteria within
further steps of the design process.

The function structure is intended to explain interrelationships within the fu-
ture embodied product; therefore, the connection between function structure and
the given product has to be clear. Every sub-function can be found within the
product, or the product is not a suitable solution. On the other hand, function
structures are not appropriate as a tool for reverse engineering, because the rela-
tion between the embodied product and the underlying functions is ambiguous.

4

On the right,
we depict one
possible func-
tional struc-
ture for the hammer as an apparatus for the manual generation and transmission
of a defined impulse to an object.

The Principle Solution for a Hammer From the functional specifica-
tion, we develop a principle solution (see Fig. 2). This solution abstracts from

Fig. 2. A principle solution for a Hammer

the physical traits of
the eventual product
and identifies the
functional parts. For
a hammer, one of
these is the handle,
here a cylindrical
part of the hammer
shaft used for grip-
ping. The fact that it
is symmetric/cylin-
drical is a response to
the requirement E1.
The handle is con-
nected to an inert mass (depicted by a solid ball in Fig. 2) which is again
connected to an active surface that delivers the impact on the object. The size
and form of the active surface will be determined by the requirement E2. In
fact, the principle solution reveals that there is a second possible active area of
the hammer, opposite to the primary one; Fig. 2 shows three variants of the
principle solution with differing secondary active surfaces.

The Embodiment of a Hammer Note that the principle solution is not
a finished design yet, since it abstracts from most of the physical traits of a
hammer, e.g. the dimensions of the shaft and the form of the head, which will be
specified in the embodiment design step. Here, the ultimate three-dimensional
shape and the materials of the product are derived, taking into account material
properties, manufacturability constraints, and aesthetic factors. These can lead
to the widely differing final designs we see in use today.

2.3 A Document-Oriented Design Process

We propose to reinforce the systematic engineering design process laid out above
with technologies and practices from software engineering and Formal Methods
to obtain a document-oriented process where designs are semantically enhanced
and linked to formal and semi-formal specifications. It is crucial to note that the
various design documents necessarily have differing levels of rigour, ranging from

5

informal and hard-to-quantify requirements like E2 to mathematical proofs of
security-relevant properties, e.g. in aerospace applications. Additionally, differ-
ent product parts and aspects underlie differing economic and security-related
constraints, so that design quality control must be supported at various levels
of formality. As a consequence, design documents need to be encoded in a docu-
ment format that supports flexible degrees of formality , such as OMDoc (Open
Mathematical Documents [6]). The OMDoc format concentrates on structural
aspects of the knowledge embedded in documents and provides a markup in-
frastructure to make it explicit by annotation. Crucially, the format supports a
fine-granular mixture of formal and informal elements and thus supports, e.g.,
the stepwise migration from informal user requirements to specifications ex-
pressed in formal logics supported by verification environments like the Bremen
heterogeneous tool set HeTS [8]. The format itself is semi-formal, i.e. focuses
on explicitly structured documents where relevant concepts are annotated by
references to content dictionaries that specify the meaning of the terms used in
design documents. Semi-formal design documents already bring added value to
the engineering process by enabling machine support for many common quality
control tasks like requirements tracing and management of change which are
based on an explicitly given dependency relation (see [1] for details). Fully for-
mal development strands embedded in a semi-formal process additionally allow
for the rigorous verification of critical properties in a design, thus providing a
reliable link between various stages of the engineering design process. It is this
aspect that we concentrate on in the following.

3 Invading SolidWorks

We now illustrate how the document-oriented formal/semi-formal methodology
in engineering design processes laid out in the last section can be supported
by means of an integration of formal methods tools with the widely used CAD
system SolidWorks [11]. The latter serves mainly as a demonstration platform;
our overall approach is sufficiently general to apply equally well to any other
CAD system that provides suitable interfaces.

To access concrete CAD designs, we provide a SolidWorks plug-in that ex-
tracts the designs as formal specifications, i.e. as lists of terms denoting sketches
and features, and as formulas expressing constraints relating these sketches and
features. These data are obtained using the SolidWorks API, and are output
as a HasCasl [10] specification encoded in an OMDoc file [6].

Overview of HASCASL HasCasl is a higher order extension of the standard
algebraic specification language Casl (Common Algebraic Specification Lan-
guage) [2,9] with partial higher order functions and type-class based shallow
polymorphism. The HasCasl syntax appearing in the specifications shown in
the following is largely self-explanatory; we briefly recall the meaning of some
keywords, referring to [10] for the full language definition. Variables for individu-
als, functions and types are declared using the keyword var. The keyword type

6

declares, possibly polymorphic, types. Types are, a priori, loose; a free type,
however, is an algebraic data type built from constructor operations following
the standard no-junk-no-confusion principle. Types are used in the profiles of
operations, declared and, optionally, defined using the keyword op. Operations
may be used to state axioms in standard higher order syntax, with some ad-
ditional features necessitated through the presence of partial functions, which
however will not play a major role in the specifications shown here (although
they do show up in the geometric libraries under discussion). Names of axioms
are declared in the form %(axiom name)%.

Beyond these basic specification constructs, HasCasl inherits mechanisms
for structured specification from Casl. In particular, named specifications are
introduced by the keyword spec; specification extensions that use previously
defined syntactic material in new declarations are indicated by the keyword
then; and unions of syntactically independent specifications are constructed
using the keyword and. Annotation of extensions in the form then %implies
indicates that the extension consists purely of theorems that follow from the
axioms declared previously. Named specifications may be parameterized over
arbitrary specifications. They may be imported using the given name. Named
morphisms between two specifications can be defined using the keyword view
to express that modulo a specified symbol translation, the source specification
is a logical consequence of the target specification. HasCasl is connected to the
Isabelle/HOL theorem prover via HeTS [8].

The SOLIDWORKS Object Model In order to obtain a formal representation
of CAD designs, we define the SolidWorks object types as algebraic data types
in a HasCasl specification2 following the SolidWorks object hierarchy, using
a predefined polymorphic data type List a of lists over a. (All specifications
shown below are abridged.)

spec SolidWorks = AffineRealSpace3DWithSets
then free types

SWPlane ::= SWPlane (SpacePoint : Point ; NormalVector : VectorStar ;
InnerCS : Vector);

SWArc ::= SWArc (Center : Point ; Start : Point ; End : Point);
SWLine ::= SWLine (From : Point ; To : Point);
SWSpline ::= SWSpline (Points : List Point);
SWSketchObject ::= type SWArc | type SWLine | type SWSpline;
SWSketch ::= SWSketch (Objects : List SWSketchObject ;

Plane : SWPlane);
SWExtrusion ::= SWExtrusion (Sketch : SWSketch; Depth : Real);
. . .
SWFeature ::= type SWExtrusion | . . .

2 All mentioned HasCasl specifications can be obtained over the web from: https:
//svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/

7

https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/

This provides a formal syntax of CAD designs, which we then underpin with a
formal geometric semantics. The constructs are classified as follows.

– Base objects are real numbers, vectors, points, and planes, the latter given
by a point on the plane, the normal vector and a vector in the plane to
indicate an inner coordinate system.

– Sketch objects: From base objects, we can construct sketch objects which are
lines defined by a start and an end point, arcs also given by start and end,
and additionally a center point, and splines given by a list of anchor points.

– Sketch: A plane together with a list of sketch objects contained in it consti-
tutes a sketch.

– Features represent three dimensional solid objects. They can be constructed
from one or more sketches by several feature constructors, which may take
additional parameters.

We will focus in the following on the extrusion feature constructor which
represents the figure that results as the space covered by a sketch when moved
orthogonally to the plane of the sketch for a given distance.

In order to reason about formal SolidWorks designs, we equip them
with a semantics in terms of point sets in three-dimensional affine space (i.e.
in R3 equipped with the standard affine structure). For example, the term
SWLine(A,B) is interpreted as a line segment from point A to point B in R3.
Formally, the semantics is based on point set constructors that correspond to
the syntax constructors, specified as follows.

spec SolidWorksSemanticConstructors =
AffineRealSpace3DWithSets

then ops
VWithLength(v : Vector ; s : Real) : Vector =

v when v = 0 else (s / (|| v || as NonZero)) ∗ v ;
VPlane(normal : Vector) : VectorSet = λ y : Vector • orth (y, normal);
VBall(r : Real) : VectorSet = λ y : Vector • || y || ≤ r ;
ActAttach(p : Point ; vs : VectorSet) : PointSet = p + vs;
ActExtrude(ax : Vector ; ps : PointSet) : PointSet =
λ x : Point • ∃ l : Real ; y : Point

• l isIn closedinterval (0, 1) ∧ y isIn ps ∧ x = y + l ∗ ax ;

Using these semantic constructors, the point set interpretation of, e.g., planes
and features is given by the following specification.

spec SolidWorksWithSemantics = SolidWorks
and SolidWorksSemanticConstructors
then ops

i : SWExtrusion → PointSet ;
i : SWPlane → PointSet

8

vars o, x, y, z : Point ; n : VectorStar ; ics : Vector ;
l : Real ; plane : SWPlane

• i (SWPlane (o, n, ics)) = ActAttach (o, VPlane n);
• i (SWExtrusion (SWSketch ([SWArc (x, y, z)], plane), l))

= (let cp = x ;
r1 = vec (cp, y);
ball = ActAttach (cp, VBall || r1 ||);
planeI = i plane;
scaledAxis = VWithLength (NormalVector plane, l)

in
ActExtrude (scaledAxis, ball intersection planeI))

when y = z else emptySet ;

In the case study of the next section, we will show a concrete example which
illustrates the use of the plug-in in the context of our envisioned development pro-
cess. The case study is mainly concerned with the verification of designs against
abstract requirements. Further potential uses of the invasive approach include
semantic preloading, i.e. automated rapid prototyping of designs from abstract
specifications, as well as requirements tracing and a closer general integration
of specifications and designs, e.g. by user-accessible links between specifications
and parts in the SolidWorks design.

4 Case Study: Simple Geometric Objects

We will now illustrate what form a formal strand of the integrated formal/semi-
formal development process advocated above might take on a very basic case
study: we construct a simple object in the CAD/CAM system, specifically a
cylinder, export its formal description using our tool, and then formally verify
that it implements a prescribed abstract geometric shape, i.e., that it really is a
cylinder. Simple geometric objects like cylinders form the basic repertoire from
which complex technical artifacts are built up; for instance, the principle solution
of a hammer in Fig. 2 represents the handle by a cylinder.

Naively, one would imagine that there is really nothing to verify about a
geometric object: a cylinder is a cylinder is a cylinder. But as soon as one starts
using a real CAD system, it becomes clear that the situation is actually more
complex. The mathematical concept of a three-dimensional geometric object is
a set of points in three-dimensional euclidean space, typically described by a
general formation principle and a number of parameters. E.g. in the case of a
(solid) cylinder, the parameters are

– the coordinates of some anchor point, say the centre of the cylinder,
– the spatial direction of the axis,
– the height h and the radius r,

and the formation principle for cylinders prescribes that these parameters de-
scribe the set of points p such that

9

– p has distance at most r from the axis (regarded as an infinite straight line);
– the orthogonal projection of p onto the axis has distance at most h from the

centre point, and
– p lies in the positive half space determined by the base plane.

On the other hand, the design that we extract from our CAD construction takes
a totally different form: instead of defining a point set using the above-mentioned
parameters, we construct the cylinder as a feature by applying a suitable feature
constructor to more basic two-dimensional objects called sketches as laid out in
Section 3. Additionally, we may impose constraints on the dimensions involved,
e.g. equality of two sides in a triangle, a point which we have not explicitly
treated in Section 3. Specifically, the construction of a cylinder in SolidWorks
would typically proceed as follows.

– Create a plane.
– Insert a circle into the plane, described as a circular arc with coincident start

and end points.
– Extrude the circle to a certain depth.

Fig. 3. A cylinder in SolidWorks

Thus, the
cylinder is con-
structed a feature
stemming from
the extrusion fea-
ture constructor
which is anchored
in the sketch
consisting of one
sketch object, the
circle. We shall
generally refer
to a combination
of features as
described above
as a concrete
design, while a definition via mathematical point sets will be called an abstract
design. While in the above case it is easy to see intuitively that the concrete
design matches the abstract design, i.e. that extruding a circle really yields a
cylinder, the formalisation of this intuition is by no means an entirely trivial
enterprise, and more complex objects quickly lead to quite challenging verifica-
tion tasks – imagine e.g. having to check that two given circular extrusions of
two circles yield two interlocking chain links. Additional complexity arises from
the above-mentioned constraints – e.g. one may initially leave the height of the
cylinder open, cut part of the cylinder off using a skewed plane placed at a
defined angle to the base plane and touching the perimeter of the bottom circle,
and then impose that the height of the short side of the arising cut cylinder is
half that of the long side, thus completely determining the height.

10

It is therefore desirable to have machine support for checking that an abstract
design is actually implemented by a given concrete design. Besides the mere fact
that one can verify geometric shapes, added benefits include

– Easy proofs of physical and geometric properties of the objects involved –
e.g. once one has matched the abstract cylinder to the concrete cylinder, one
can now prove on the abstract side (much more easily than on the concrete
side) that the cylinder adheres to a prescribed surface area, volume, or mass
(if the density is known).

– Better control over the cohesion and consistency of the design – e.g. if it
turns out that the design fails to match the abstract object, this may mean
that the designer has accidentally left extraneous degrees of freedom. Such
errors may later lead to blocked designs that cannot be completed due to
unsatisfiability of their constraints, a notorious problem in computer-aided
construction; verification against abstract designs may help detecting such
errors at an early stage of the development process.

– The abstract design may in fact properly abstract from the concrete shape of
the final object, e.g. by leaving less relevant dimensions open (within certain
ranges) or omitting features that do not play a central role in the present
stage of the design process, thus providing for a property-centered approach
to evolutionary design.

Further possible semantic services enabled by the connection between abstract
and concrete designs within HeTS include semantic annotation and require-
ments tracing as discussed in Section 2. A more visionary potential application
of abstract designs is the automated derivation of concrete designs, i.e. rapid
prototyping by compilation of abstract designs into preliminary formally veri-
fied CAD documents.

A collection of geometry libraries The basis of the proposed formal geo-
metric verification framework is a collection of HasCasl specification libraries,
structured as follows. The abstract specification of three dimensional basic geom-
etry is contained in a library which provides the fundamental types and objects
such as the data types Point and Vector for points and vectors in R3, types for
point sets and vector sets, and operations on these types. These specifications
use specification instantiations from an abstract library of linear algebra and
affine geometry which provides the basic notions of a Euclidean vector space
such as linear dependency, norm and distance, the inner product and orthog-
onality, and the operations which relate points and vectors in affine geometry.
For instance, the basic definition of an affine space, i.e. intuitively a vector space
without origin, is given as follows.

spec AffineSpace[VectorSpace[Field]] =
type Point
op + : Point × Space → Point %(point space map)%

vars p, q : Point ; v, w : Space

11

• p + v = p + w ⇒ v = w %(plus injective)%

• ∃ y : Space • p + y = q %(plus surjective)%

• p + (v + w) = p + v + w ; %(point vector plus associative)%

then %implies

∀ p : Point ; v, w : Space
• p + v + w = p + w + v ; %(point vector plus commutative)%

end

spec ExtAffineSpace [AffineSpace[VectorSpace[Field]]] = %def

op vec : Point × Point → Space
∀ p, q : Point • p + vec (p, q) = q ; %(vec def)%

then %implies

vars p, q, r : Point ; v, w : Space
• vec (p, q) + vec (q, r) = vec (p, r) %(transitivity of vec plus)%

• vec (p, q) = − vec (q, p) %(antisymmetry of vec)%

• p + v = q ⇒ v = vec (p, q); %(plus vec identity)%

end

(Here, we employ a pattern where specifications are separated into a base
part containing only the bare definitions and an extended part containing derived
operations, marked as such by the semantic annotation %def.)

The libraries for SolidWorks consists of the data types and semantics in-
troduced in section 3 and a library which contains common concrete design
patterns such as, e.g., the construction of a cylinder described earlier in this
section. They also contain views stating the correctness of these patterns, as
exemplified next. Constructions exported from SolidWorks using our tool can
then be matched with design patterns in the library via (trivial) views, thus
inheriting the correctness w.r.t. the abstract design from the design pattern.

4.1 A proof of a refinement view

We illustrate the verification of concrete design patterns against abstract designs
on our running example, the cylinder. The abstract design is specified as follows.

spec Cylinder = AffineRealSpace3DWithSets
then op Cylinder(offset : Point ; r : RealPos; ax : VectorStar) : PointSet =

λ x : Point • let v = vec (offset, x) in
|| proj (v, ax) || ≤ || ax ||
∧ || orthcomp (v, ax) || ≤ r
∧ (v ∗ ax) ≥ 0;

We wish to match this with the concrete design pattern modelling the CAD
construction process outlined above (importing the previously established fact
that planes in SolidWorks are really affine planes):

12

spec SolidWorksCylByArcExtrusion =
SolidWorksPlane is AffinePlane

then op
SWCylinder(center, boundarypt : Point ; axis : VectorStar): SWFeature =
let plane = SWPlane (center, axis, V (0, 0, 0));

arc = SWArc (center, boundarypt, boundarypt);
height = || axis ||

in SWExtrusion (SWSketch ([arc], plane), height);

view SWCylByAE IsCylinder : Cylinder to
{SolidWorksCylByArcExtrusion
then op

Cylinder(offset : Point ; r : RealPos; axis : VectorStar): PointSet =
let boundary = λ p : Point • let v = vec (offset, p)

in orth (v, axis) ∧ || v || = r ;
boundarypt = choose boundary

in i (SWCylinder (offset, boundarypt, axis));
}

The above view expresses that every affine cylinder can be realized by our
concrete design pattern. In induces a proof obligation stating that the operation
Cylinder defined in the view by means of i◦SWCylinder is equal to the operation
Cylinder defined in the specification Cylinder, the source of the view. Listing 1.1
shows this proof obligation translated to an Isabelle/HOL assertion.

Listing 1.1. Proof obligation as Isabelle/HOL assertion
theorem def of Cylinder :
”ALL axis offset r .
Cylinder ((offset , r), axis) =
(% x. let v = vec(offset , x)

in (|| proj(v, gn inj(axis)) || <=’ || gn inj(axis) || &
|| orthcomp(v, gn inj(axis)) || <=’ gn inj(r)) &

v ∗ 4 gn inj(axis) >=’ 0’’)”

We will sketch the corresponding proof in Isabelle/HOL, using a slightly more
readable notation than those in the original Isabelle source code3. After the un-
folding of function definitions such as SWCylinder , SWExtrusion, i , ActExtrude
and some bookkeeping steps involving let-environments, conditionals, and func-
tion equality, we arrive at an equivalence of the form

(1) Exists l:Real , y:Point.
(1.1) l in [0..1] /\ (1.2) y in (ball intersection plane) /\ (1.3) x = y + l ∗ axis

<=> (2)
(2.1) ||vp|| <= ||axis|| /\ (2.2) ||vo || <= r /\ (2.3) v ∗ axis >= 0

3 The Isabelle source code for this proof can be obtained over the web
from: https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/
Real3D/SolidWorks/CylinderView.thy

13

https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy

with free variables x, offset, r and axis and a local environment containing
the following variables with their bindings (see Table 1 for an explanation of the
occurring function symbols)
(0.1) boundary = \p. let v=vec(offset, p) in orth(v, axis) /\ ||v || = r
(0.2) bp = choose(boundary)
(0.3) r1 = vec(offset , bp)
(0.4) pln = SWPlane offset axis 0
(0.5) arc = SWArc offset bp bp
(0.6) ht = ||axis ||
(0.7) ball = ActAttach(offset, VBall(||r1 ||))
(0.8) plane = i(pln)
(0.9) v = vec(offset , x)
(0.10) vp = proj(v, axis)
(0.11) vo = orthcomp(v, axis)

Function Description

[0..1] closed unit interval

intersection binary set intersection

* overloaded binary operator (inner product, scalar multiplication, ...)

|| || norm of a vector

vec the vector connecting two points

orth the orthogonality predicate for two vectors

choose usual choice operator for a predicate

SWPlane SolidWorks constructor for a plane (see Section 3)

SWArc SolidWorks constructor for an arc (see Section 3)

VBall vector set constructor for a ball (see Section 3)

ActAttach point set constructor adding a vector set to a point (see Section 3)

i interpretation function (see Section 3)

proj orthogonal projection of a vector onto another

orthcomp the orthogonal component of an orthogonal decomposition

Table 1. Function symbols and their meaning

The key to the proof is the relation between v, y and l and the orthogonal
decomposition of v along the axis: v = vp + vo. From (0.8) together with
(0.4) and the semantics definition for a plane, we obtain plane = offset +
VPlane(axis) = offset + {z | orth(z,axis)}, and with (1.2), which gives
us y in plane, we have y = offset + y’ with y’ satisfying orth(y’,axis).
Similarly we obtain from (0.7) that y = offset + y’’ with y’’ <= ||r1||
and of course y’ = y’’ by injectivity of the addition of vectors to points in
affine space. Substituting y into (1.3) gives us x = offset + y’ + l * axis.

On the other hand, from (0.9) we have x = offset + v = offset + vo +
vp with vp a multiple of axis and vo orthogonal to it. Hence we obtain offset
+ y’ + l * axis = offset + vo + vp and thus y’ + l * axis = vo + vp.
As l * axis and vp are linearly dependent and each side of the equation is the
unique orthogonal decomposition of v, we obtain finally our relation as y’ = vo
and l * axis = vp.

To show (1) => (2) using this relation it remains to establish the following.

14

(1’) l in [0..1] /\ (1.2 ’) y in ball
=> (2)

(2.1 ’) || l ∗ axis || <= ||axis|| /\ (2.2 ’) ||y’ || <= r
/\ (2.3 ’) (vo + l ∗ axis) ∗ axis >= 0

The rest is now real arithmetic together with the distributive law of the inner
product and some basic facts concerning the inner product and the norm, thus
concluding the correctness proof of the concrete design pattern for cylinders.

5 Conclusion and Further Work

We have argued that systematic engineering design processes (as laid down e.g.
in VDI 2221) have many commonalities with software engineering. To trans-
fer methods from software engineering to engineering design we have to deal
with the fact that engineering design processes are considerably less formal and
are geared towards producing CAD/CAM objects instead of program code. We
have formulated a semi-formal, document-oriented design process that integrates
CAD/CAM documents with specification documents of various degrees of for-
malisation, up to and including fully formal specification and verification. To
support the CAD/CAM parts of this design process, we have extended a widely
used CAD system with an interface for exporting CAD objects to the Bremen
heterogeneous tool set HeTS, specifically to translate them into specifications
in the wide-spectrum language HasCasl. Thereby, we turn CAD documents
into fully formal documents within our process, as the export mechanism defines
a rigorous geometric semantics for CAD designs. Moreover, we have illustrated
the formal proof obligations that may arise in this process, and have presented
a sample proof that verifies the implementation of a simple abstract geometric
object by a CAD design.

The work reported here forms part of a long-term endeavor where we want
to rethink the systematic engineering design process as a whole. Further steps
in this program include the systematic development of a library of abstract
construction patterns, improved automated proof support for geometric proofs
possibly using an integration of computer algebra systems into the HeTS frame-
work, rapid prototyping of CAD/CAM objects from abstract specifications, and
verification of CAD/CAM designs against formalised industrial standards. The
reasoning support for formalised geometry may eventually profit from existing
results on automated theorem proving in geometry including [3,13,4] and, most
recently, from the Flyspeck project [5], either by reuse of concepts or by actually
importing existing theorems using the heterogeneous mechanisms provided by
HeTS.

Acknowledgements

The work reported here was supported by the FormalSafe project conducted
by DFKI Bremen and funded by the German Federal Ministry of Education

15

and Research (FKZ 01IW07002). We gratefully acknowledge discussions with
Bernd Krieg-Brückner, Dieter Hutter, Christoph Lüth, and Till Mossakowski,
and thank Tanmay Pradhan for his work on the SolidWorks plugin.

References

1. S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. Maya: Maintaining
structured documents. In OMDoc – An open markup format for mathematical
documents [Version 1.2] [6], chapter 26.12.

2. M. Bidoit and P. D. Mosses. Casl User Manual, vol. 2900 of LNCS. Springer
Verlag, 2004.

3. S.-C. Chou. Mechanical Geometry Theorem Proving. Reidel, Dordrecht, 1988.
4. H.-G. Gräbe. The SymbolicData GEO records - a public repository of geometry

theorem proof schemes. In Automated Deduction in Geometry, vol. 2930 of LNCS,
pp. 67–86. Springer Verlag, 2004.

5. T. C. Hales. Introduction to the Flyspeck project. In Mathematics, Algorithms,
Proofs, vol. 05021 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

6. M. Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. Number 4180 in LNAI. Springer Verlag, 2006.

7. J. P. Lemburg. Methodik der schrittweisen Gestaltsynthese. PhD thesis, Fakultät
für Maschinenwesen, RWTH Aachen, 2008.

8. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In
O. Grumberg and M. Huth, eds., Proceedings of the 13th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems TACAS-
2007, number 4424 in LNCS, pp. 519–522, Berlin, Germany, 2007. Springer Verlag.

9. P. D. Mosses, ed. Casl Reference Manual. LNCS 2960 (IFIP Series). Springer
Verlag, 2004.

10. L. Schröder and T. Mossakowski. HasCasl: Integrated higher-order specification
and program development. Theoret. Comput. Sci., 410:1217–1260, 2009.

11. Introducing SolidWorks. SolidWorks Corporation, Concord, MA, 2002.
12. VDI-Gesellschaft Entwicklung Konstruktion Vertrieb. Methodik zum Entwickeln

und Konstruieren technischer Systeme und Produkte, 1995. English title: System-
atic approach to the development and design of technical systems and products.

13. W.-T. Wu. Mechanical Theorem Proving in Geometries, vol. 1 of Texts and Mono-
graphs in Symbolic Computation. Springer, 1994.

16

	Formal Management of CAD/CAM Processes
	Michael Kohlhase, Johannes Lemburg, Lutz Schröder, and Ewaryst Schulz

