
intro.tex 1134 2013-02-28 16:52:04Z kohlhase

XLSearch: A Search Engine for Spreadsheets

anonymous review

February 28, 2013

Abstract

Spreadsheets are end-user programs and domain models that are heavily
employed in administration, financial forecasting, education, and science be-
cause of their intuitive, flexible, and direct approach to computation. As a
result institutions are swamped by millions of spreadsheets that are becoming
increasingly difficult to manage, access, and control.

This note presents the XLSearch system, a novel search engine for spread-
sheets. It indexes spreadsheet formulae and efficiently answers formula queries
via unification (a complex query language that allows metavariables in both
the query as well as the index). But a web-based search engine is only one
application of the underlying technology: Spreadsheet formula export to web
standards like MathML combined with formula indexing can be used find sim-
ilar spreadsheets or find common formula errors.

1 Introduction

Spreadsheets are end-user programs and domain models that are heavily employed
in administration, financial forecasting, education, and science because of their in-
tuitive, flexible, and direct approach to computation. It has been estimated that
each year tens of millions professionals and managers create hundreds of millions of
spreadsheets [Pan00]. But we do we have hardly any tools to mine this immense
body of reified knowledge, models, and programmatic experience.

Existing tools center around risk management for spreadsheets via spreadsheet
audits that create spreadsheets inventories for an organization, estimate risks of in-
dividual spreadsheets, and introduce best practices for risk control (see e.g. [Bur08;
NO01]), code reviews that semi-automatically detect risky parts and practices
in spreadsheets and try to ameliorate them, and test methodologies that semi-
automatically generate test cases for spreadsheets, see e.g. [Rot+01]. Except for
the first step in spreadsheet audits, all of these tools are local – i.e. apply to single
spreadsheets. A notable exception is the EUSES spreadsheet corpus and the statis-
tics gathered for it in [FR05]. But even this corpus only contains ca. 4.500 spread-
sheets, a number that is multiple orders of magnitude smaller than the spreadsheet
inventories of large organizations or what is known to search engines: A spreadsheet
auditor reported 107 spreadsheets in a single fortune-50 company at EuSpRIG 2010
and a Google search for filetype:xls reports 1.5 × 107 hits.

For global services on spreadsheets we need tools that scale to very large corpora.
In practice this means two things: i) standardized, web-scalable representation for-
mats and ii) sub-linear processing algorithms. In this paper, we provide both for the
case of spreadsheet formulae, and apply this to a concrete application: the XLSearch
engine, which allows to efficiently find spreadsheets by querying for their formulae.

1

spshp.tex 1120 2013-02-28 14:25:18Z kohlhase

Organization In the next section, we will present a machine-understandable vo-
cabulary for the ca. 360 functions, constants, and references used in current spread-
sheet programs; this acts as the basis for representing spreadsheet formulae as con-
tent MathML expressions. This representation allows us to utilize a pre-existing
retrieval engine for mathematical formulae (the MathWebSearch system), which we
will describe in section 3 to make this paper self-contained. Section 4 presents an
application that harvests formulae and result fragments from a spreadsheet for in-
dexing in MathWebSearch. In Section 5, we describe the XLSearch system, a novel
search engine for spreadsheets as one possible application we can build with these
components. Section 6 concludes the paper and discusses other applications of the
combination of MathML representations and indexing/querying.

Running Example To make the technical exposition more coherent, we will the
following situation as a running example:

Semantex Inc, a successful financial consulting company has just changed
its financial forecasting policy from linear extrapolation to second-order La-
grange extrapolation and is now faced with changing the spreadsheets it
is using for forecasting. This change impacts everything from the reporting
spreadsheets to tables embedded into powerpoint presentations. Fortunately,
Semantex Inc has recently carried out a spreadsheet audit and thus has a
good overview over all documents that contain spreadsheet tables.

In such a situation, a spreadsheet formula search engine like XLSearch can help, since
it can search for variants of the linear extrapolation formula

f(x) ∼ f(a) +
x− a

b− a
(f(b) − f(a)) (1)

for a function f from its values at a ≤ b. Even though this example was chosen more
for expository qualities than for business realism, it already reveals many qualities
of the solution.

Acknowledgements Work on the concepts presented here has been partially sup-
ported by the German Research Foundation (DFG) under grant KO 2428/10-1 and
HU 737/6-1 and the Leibniz association under grant SAW-2012-FIZ KA-2. The
authors are indebted to the SiSsI group for discussions and insights on abstract
spreadsheets.

2 Spreadsheet Formulae in MathML: SPSHP Ontology

MathML [Aus+10] is a W3C standard for the representation of mathematical for-
mulae. It contains two two sub-languages: i) “presentation MathML” for the layout
of mathematical formulae – this supports the high-quality presentation of mathe-
matical formulae in browsers and XML-based publishing workflows, and ii) “content
MathML” for the representation of the functional structure of formulae – this sup-
ports interoperability between mathematical software systems. The latter is relevant
for our purposes in this paper. Content MathML represents formulae as operator
trees consisting of applications of functions to arguments (the apply elements in
Figure 1), variables, numbers (mn elements), strings, and symbols. The latter are

2

spshp.tex 1120 2013-02-28 14:25:18Z kohlhase

represented by csymbol elements; the meaning of a symbol is specified by referenc-
ing a content dictionary (CD), which provides information about properties of the
functions, definitions, notation definitions and types and identifying the concept in
the CD by name (the body of the csymbol element).

<math xmlns=”http://www.w3.org/1998/Math/MathML”
cdgroup=”http://oaff.info/spshp/”>

<apply>
<csymbol cd=”spsht−arith”>times</csymbol>
<apply>
<csymbol cd=”spsht−arith”>sum</csymbol>
<apply>
<csymbol cd=”spshform”>range</csymbol>
<mn>1</mn><mn>5</mn><mn>1</mn><mn>8</mn>

</apply>
</apply>
<mn>2</mn>

</apply>
</math>

Figure 1: SUM(A5:A8)*2 in content MathML

So the main task in defining a MathML representation for spreadsheet formulae
lies in providing a set of CDs that specify the underlying vocabulary.

We provide a set of content dictionaries [SPSHP] for the formula translation.
We jointly call them the SPSHP ontology. See Figure 2 for a depiction of the
theory graph (a modular graph of theories that provide vocabularies of concepts and
axiomatizations of the properties of their objects connected by theory morphisms –
meaning-preserving transformations; see [Koh06; RK13]).

types values

bool string num spshterror

spshform

arith

stats math info datime financial eng db ref text

spshp

Figure 2: SPSHP: An Ontology for Spreadsheet Functions

The SPSHP Content Dictionaries The starting points of the SPSHP ontology
in Figure 2 are the theories types (spreadsheets naturally induce a type system with
flexary functions, optional arguments, and subtypes) and values which introduces
the concept spreadsheet values. These are specialized into the subtypes for num-
bers (theory num with integers, floating point and complex numbers), strings (theory
strings), and truth values (bool). The theory spsht provides the basic building blocks

3

spshp.tex 1120 2013-02-28 14:25:18Z kohlhase

of spreadsheets (cells, rows, columns, tables) and their types. Theory error represen-
tations of typesheet errors raised by spreadsheet programs. Theory arith provides
representations of the elementary arithmetic operations, which are not represented
by spreadsheet functions but by the operators +, −, and ∗, etc.

From all this material, theory spshform introduces the concepts of “value ex-
pressions” (expressions constructed from cell/range references, functions, strings,
and numbers; the evaluate to spreadsheet values or errors) and value expression
lists. Together with the flexary function types the latter induce natural types of
spreadsheet functions like SUM, which take arbitrarily many arguments that can
be interpreted as lists of cell values. For instance in the formula SUM(A5:A8,7,3)
the range description A5:A8 induces a set of values in the spreadsheet computation.
Theories stats to text provide the symbol declarations of the ca. 360 spreadsheet
functions themselves; they follow the grouping found in spreadsheet applications.
Finally, the theory spshp collects all the SPSHP theories by importing them for
convenience.

Interoperability So far, we have been able to keep the CDs in the SPSHP on-
tology independent of the particular spreadsheet application (MS Excel, OpenOffice
Calc, Apple Numbers, Google Spreadsheet, etc.), as the formula languages of the
applications have been standardized for interoperability. But there are functions
whose implementations differ between applications, e.g. the COUNTIF function to
count the number of cells which contain a certain value. If the cells A1 and A2 con-
tain the value TRUE, then the formula COUNTIF(A1:A2;1) evaluates 0 in Excel and
to 2 in OpenOffice Calc.

oo-stats xls-stats

stats

spshp

ooc xls

i : ϕ

j : ψ

Figure 3: Interop. in SPSHP

In this case, we extend the SPSHP theory graph
with application-specific theories as indicated in the
picture on the right. Here oo-stats and xls-stats are
theories that specify functions whose semantics dif-
fer and that therefore cannot be specified in the
application-independent theory stats. The theories
ooc (for OpenOffice Calc) and xls (for MS Excel) are
convenience theories collect the application-specific
theories – note that by inheritance the theories *-
stats contain all the functions from stats – just like
spshp does in the application independent case. Intuitively these theories repre-
sent the sub-ontologies for specific applications and are used for concrete translation
projects. Note that e.g. ooc and xls share the majority of the specification and
thus are a good basis for spreadsheet system interoperability (without translation)
at the semantic level. But note that even the application-specific functions are often
aligned and very similar, thus we can specify views between the application-specific
theories. OMDoc views 1 map concepts of the source theory to expressions in the
target theory. For the view j : ψ we have to implement the COUNTIF function from
theory xls-stats in terms of the function COUNTIF from theory oo-stats, e.g. by remov-
ing truth values from the value formula lists in the arguments (the dual view i : ϕ
can be defined similarly). Note furthermore that the views between the application-
specific component theories induce top-level views between theories ooc and xls that
can (eventually) be used for semantic interoperation between spreadsheet applica-

1represented as dashed arrows in Figure 3; the label j : ψ specifies the name i and the translation
ϕ.

4

harvest.tex 1134 2013-02-28 16:52:04Z kohlhase

tions, since they allow to meaning-preserving translations of spreadsheet (formulae)
between applications.

3 Indexing and Querying Formulae by Unification

MathWebSearch is an unification-based search engine for the efficient retrieval of
mathematical formulae [MWS; KMP12]. The system consists of the three main
components pictured in Figure 4. The crawler subsystem collects data from the cor-
pora2. It transforms the mathematical formulae in the corpus into MWS Harvests
(XML files that contain formula-URIreference pairs) and feeds them into the core
system. The core system (the MathWebSearch daemon mwsd) builds the search index
and processes search queries: it accepts the MathWebSearch input formats (MWS
Harvest and MWS Query ; see [KP]) and generates the MathWebSearch output for-
mat (MWS Answer Set). These are communicated through the RESTful interface
restd which provides a public HTTP API conforming to the REST paradigm. The
system supports two main workflows:

1. The crawler sends an MWS Harvest to mwsd. The XML is parsed and an
internal representation is generated. This is used to update the Substitution
Indexing Tree and consequently the database.

2. The user sends an MWS Query to mwsd. The XML is parsed, an internal
query is generated. Using an efficient traversal of the index tree, formulas
matching the search term are retrieved and aggregated into a result. This is
translated to an MWS Answer Set and sent back to the user.

The system has been tested on large sets of formulae. Memory usage is linear (on
average, 40 Mb for 1 Million formulae), while query times are fairly constant with
respect to index size3, averaging at 40 ms per query.

Figure 4: MWS-0.5 System Structure

4 Harvesting Formulae from Spreadsheets

In this section we describe the process of parsing spreadsheets and generating for-
mula harvests that can be used by MathWebSearch. We are not only interested in
the formulae but also in the context they are used in. Therefore we describe in
Subsection 4.1 what context information we extract and the structure of the re-
sulting harvest. Our formula parser and converter is described in Subsection 4.2,
our structure detection module for finding the context information is presented in

2Note that we envision essentially one crawler per corpus. The crawlers are specialized to the
respective formula representation, the organization and access methods to the corpus, etc.

3However, they do depend on the complexity of the query

5

harvest.tex 1134 2013-02-28 16:52:04Z kohlhase

(a) Spreadsheet with Linear Extrapolation (b) Snippet of B7:F11 with Legends

Figure 5: A spreadsheet and a cutout of a computed functional block

Subsection 4.3 and finally the harvest generator is described in Subsection 4.4. We
describe to process of generating the harvest by using a slight modification of the
Winograd spreadsheet from [KK09] (see Figure 5(a)). Our spreadsheet uses linear
extrapolation for calculating the revenues and expenses in the projected years (see
Section 1).

4.1 The Harvest Structure

Following [KK09] we use the term legend for those non-empty cells that do not
contain input or computed values but contain text strings that give auxiliary in-
formation on the cells that do. We call a grid region a functional block (FB), if
that region could be interpreted as a function which maps elements from a legend
to values. As the function is meant to be an intended function of the spreadsheet
creator it is immaterial whether the values are calculated or inputted. For example,
the region B13:F13 of Figure 5(a) could be interpreted as a function, which maps
years to the total expenses in that year and the region B4:F4 as a function that
maps a year to the revenues of that year. We call a functional block computed if
all formulae are cp-similar, i.e. if they only differ in their cell references like B4-B13
and C4-C13. Because all expenses for the projected years are calculated by linear
extrapolation the area E7:F11 in Figure 5(a) is a computed FB. A formal model
which defines functional blocks and legends as mathematical objects is introduced
in [Lig12].

MathML Formula

Position information

Keywords

Excel formula

XHTML Snippet

Table 1: Harvest for a FB

To compute a harvest we need to find all com-
puted functional blocks in a spreadsheet together
with the parts of the legends surround them. For
each computed FB we create a harvest of the struc-
ture shown in Table 1. The contents of the sur-
rounding legend cells are used as keywords which
can be used to curtail the formula search. Because
all formulae in a computed FB are cp-similar, we
create one location-independent MathML represen-
tation per FB with the parser from Section 4.2. For
representing a functional block as search result to a user a XHTML snippet that
contains the FB and the surrounding legends is generated, like it is shown in Fig-
ure 5(b) for the FB E7:F11. Furthermore the concrete formula of the upper-left
cell from to FB is saved for the search result representation. At last the position

6

harvest.tex 1134 2013-02-28 16:52:04Z kohlhase

information to find the spreadsheet and the region in which the FB was found is
also stored.

4.2 Formula Parsing

We used the open source parser generator Antlr [Par13] to create a parser that
transforms an Excel4 formula into an abstract syntax tree (AST). Figure 6 shows
the resulting AST for the formula C7+(E$3−C$3)/(D$3−C$3)∗(D7−C7) from cell
E7. The parser is aware of different operator priorities, nested formula and cross
worksheet references and transforms cell references like A5 to an integer based row
and column pair. Creating MathML from ASTs is an easy programming exercise
given a vocabulary of spreadsheet symbols that act as counterparts of the AST
nodes. The SPSHP presented in Section 2 fills this requirement.

Figure 6: Abstract Syntax Tree of C7+(E$3−C$3)/(D$3−C$3)∗(D7−C7)

4.3 Structure Detection in Spreadsheets

To find functional blocks and their legends we use a simplification of our struc-
ture detection unit (SDU, see [Lig13]), which classifies each cell as “legend”, “FB”,
“empty” or “hidden” and then aggregates regions into computed FB with legends.

Cell Classification SDU uses a simple heuristics to classify some cells: formula
cells are always “FB” and “nonempty”, non-formula cells that contain at least 75%
letters are classified as “legend”. This heuristics are appropriate, because a misclas-
sification of a non formula functional block cell as legend is unproblematic, as it will
just be integrated into the context of a computed FB (see “Area Detection” below).
In particular, this heuristic correctly classifies the cells of Figure 5(a), except B3:F3,

4As formulae in other spreadsheet programs have nearly the same syntax as Excel our parser
can also parse those but needs specific adjustments.

7

xlsearch.tex 1134 2013-02-28 16:52:04Z kohlhase

B4:D4 and B7:D115. Afterwards hidden cells (like the cells C1:F1, C2, D2 and F2 in
Figure 5(a)) are set to the type of the cell that hides the other ones (e.g. C1:F1 are
set to the type “legend” of cell B1 in Figure 5(a)).

Area Detection After classifying cells, SDU marks regions with cp-similar for-
mulae as a functional block. In our example (see Figure 5(a)) we obtain the blocks
E4:F4, B13:F13, B15:F15, and E7:F11. Then SDU searches for the legends of each
functional block. It starts in the first row of the FB and iterates upwards until it
finds a row which contains at least one legend cell and no functional block cell in
those cells that are right above the functional block. Then it iterates further upwards
to the last row that is not empty and does not contain a functional block cell. The
region between those rows which is right above the FB is taken as a legend region for
the functional block. SDU repeats that search on the left side of the functional block
and iterates through the columns instead of the rows. In our example in Figure 5(a)
SDU finds a legend area in E1:F3 and A7:A11 for the functional block E7:F11.

4.4 Harvest Generation

For the generation of a XHTML snippet like in Figure 5(b) from the results of the
area detection, we use the Apache POI API [POI] to get the relevant data from
a spreadsheet. Therefore we create a document representation of the the original
spreadsheet, delete all worksheets except the one that contains the functional block.
From the remaining sheet we delete all rows and columns which do not contain a
cell that is part of the functional block or surrounding legend. Afterwards we use
the HTML exporter from Apache POI to create an HTML document which is then
transformed to XHTML by using JTidy [Jti].

For transforming a spreadsheet to a snippet, merged cells need some special
attention. In example, the cell B1 in Figure 5(a) contains the header ”Year” that
is also relevant for the functional block E7:F11. Therefore we move the content
of merged cells that are partially inside and partially outside of a relevant legend
region from the outside (e.g. from B1) to the inside part (e.g. to E1). As the HTML
converter is not aware of merged regions we delete all of them afterwards to avoid
confusion.

5 XLSearch, a Search Engine

We will now assemble a spreadsheet search engine from the components introduced
above. Like any web search engine, XLSearch consists of a crawler, the core index-
ing/query engine (see 3), and a front-end that accepts queries and displays results.

Crawler As we imagine that the XLSearch engine will usually be deployed in
institutional settings, which – after a spreadsheet audit – have created a spread-
sheet inventory, we have restricted ourselves to a simple crawler that maps the
MathML converter from Section 4.2 over a list of URIs of spreadsheets and gener-
ates MathWebSearch harvests from that are passed on to mwsd for indexing. But
for the application in the 1search, we do not want concrete cell references in the
index, since they are meaningless outside spreadsheet context. Therefore our parser
variablizes cell and range references to MathWebSearch meta-variables (q:qvar in

5These cells can classified by other heuristics or via decision trees (see [Lig13])

8

xlsearch.tex 1134 2013-02-28 16:52:04Z kohlhase

Figure 7), which can be instantiated in the search. In our example, the formula
C7+(E$3−C$3)/(D$3−C$3)∗(D7−C7) becomes the MathML expression in Figure 7.

<math xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:q=http://search.mathweb.org/ns>

<apply>
<csymbol cd=”spsht−arith”>opAdd</csymbol>
<q:qvar name=”X0”/>
<apply>
<csymbol cd=”spsht−arith”>opMul</csymbol>
<apply>
<csymbol cd=”spsht−arith”>opDiv</csymbol>
<apply>
<csymbol cd=”spsht−arith”>opSub</csymbol>
<q:qvar name=”X1”/>
<q:qvar name=”X2”/>

</apply>
<apply>
<csymbol cd=”spsht−arith”>opSub</csymbol>
<q:qvar name=”X3”/>
<q:qvar name=”X2”/>

</apply>
</apply>
<apply>
<csymbol cd=”spsht−arith”>opSub</csymbol>
<q:qvar name=”X4”/>
<q:qvar name=”X0”/>

</apply>
</apply>

</apply>
</math>

Figure 7: Index Entry for C7+(E$3−C$3)/(D$3−C$3)∗(D7−C7)

Front End For simplicity, we use a web-based front-end that resembles web search
engines for XLSearch; other front-ends, which e.g. embed XLSearch functionality
into the spreadsheet program itself are imaginable, but are left to future research.
Figure 8 shows a typical situation: the user has entered the query in the text box
at the top. The query interface

1. accepts spreadsheet formulae in native syntax extended with query variables
(names prefixed by ?)

2. converts them to MathML by the parser from Section 4.2 extended by a rule
that transforms ?foo to <q:qvar name=”foo”/>, and

3. sends that to mwsd via its RESTful interface via a HTTP POST request.
In our example we see the formula ?fa+(?x−?a)/(?b−?a)∗(?fb−?fa), which queries
the index for linear extrapolation formulae.

mwsd returns a list of hits, all representing indexed formulae which unify with
the query. Each hit carries a harvest datum as in Table 1 and keywords extracted
from the containing FB, providing further information to the user. In Figure 8, the
mwsd has found three hits. For each of these, the raw Excel formula, keywords and
the URI reference (the URI of the spreadsheet and the FB identifier) are displayed.
By clicking the second hit, a result snippet is revealed, in the form of the functional
block with legends.

9

concl.tex 1127 2013-02-28 16:25:44Z kohlhase

Figure 8: The XLSearch Web Front End

Deployment & Demo We have deployed an instance of XLSearch at http:

//opal.eecs.jacobs-university.de:8000/xl/ which indexes the EUSES corpus
[FR05] with ca. 4.5 thousand spreadsheets.

6 Conclusion

We have presented a novel search engine that allows to find and access spreadsheets
by their formulae. Such a search engine has multiple applications: it can be used to
spot problematic formulae (e.g. known errors) in large spreadsheet corpora, or find
re-usable tables (code blocks) in legacy spreadsheets leading to cost savings.

The main algorithmic core of the XLSearch engine is the pre-existing MathWeb-
Search formula search engine, which has been under constant development in our
group for half a decade. For the application in the spreadsheet domain, we have de-
veloped a standardized vocabulary (the SPSHP ontology) that allows to transform
spreadsheet formulae into content MathML, which is the core of the input/query
format of MathWebSearch.

Further Applications As the average query time is in range of 50 milliseconds
searches can even be utilized for very interactive settings. For instance a variation
of Netspeak [Net] for spreadsheet formulae. While Netspeak is able to find the most
common word that is used in a phrasal context our search engine finds the most
common subformulae in a formula context. This can be very helpful for finding a
very long and complex formula which can be just partially remembered by a user.
Alternatively the spreadsheet system could monitor the number of similar formulae
by sending off unification queries every time delimiters balance. As formulae in an
organization are bound to be similar, an unexpected drop in the similar formula
number could indicate a typo or error; and the author can be alerted in real time.

The SPSHP ontology supports applications in its own right: via the standardized
format Formulae can be exported to other applications, e.g. via the clipboard (which

10

http://opal.eecs.jacobs-university.de:8000/xl/
http://opal.eecs.jacobs-university.de:8000/xl/

concl.tex 1127 2013-02-28 16:25:44Z kohlhase

supports MathML). Furthermore, formulae can be simplified or partially evaluated
by standard symbolic computation systems, which can also also be used for query ex-
pansion, i.e. by searching for the variant SUM(C7;(E$3−C$3)/(D$3−C$3)∗(D7−C7))
of the linear interpolation formula.

Future Work Currently, the search engine hits are ranked by alphabetically sort-
ing the file URIs. We expect that – as in Web search – ranking will be a crucial
factor in the efficacy of search, and we want to explore this aspect further. We
conjecture that for spreadsheets, where pagerank-like algorithms are hardly appli-
cable, application-specific traits will have to be taken into account: [Sha+12] finds
“Studies suggest that location, file type, time, keywords, and associated events are
the attributes best remembered”; we are currently thinking about organizing search
results by a file system tree widget with folding and unfolding interactions, if the
corpus is organized this way.

Finally, we are thinking about including cognitive cues like the user-selected
names for cells and ranges (see e.g. [Bew03; Spr]) into the search process as additional
keywords.

References

[Aus+10] Ron Ausbrooks et al. Mathematical Markup Language (MathML) Ver-
sion 3.0. W3C Recommendation. World Wide Web Consortium (W3C),
2010. url: http://www.w3.org/TR/MathML3.

[Bew03] Philip L. Bewig. “In Excel, Cell Names Spell Speed, Safety”. In: Journal
of Accountancy (Nov. 2003). url: http://www.journalofaccountancy.
com/issues/2003/nov/inexcelcellnamesspellspeedsafety.htm.

[Bur08] Tim Burdick. Improving Spreadsheet Audits in Six Steps. 2008. url:
http://www.theiia.org/intAuditor/itaudit/archives/2008/

march/improving-spreadsheet-audits-in-six-steps/.

[FR05] Marc Fisher and Gregg Rothermel. “The EUSES Spreadsheet Corpus:
A Shared Resource for Supporting Experimentation with Spreadsheet
Dependability Mechanisms”. In: In 1st Workshop on End-User Software
Engineering. 2005, pp. 47–51.

[Jti] JTidy. url: http://jtidy.sourceforge.net/ (visited on 04/08/2012).

[KK09] Andrea Kohlhase and Michael Kohlhase. “Compensating the Computa-
tional Bias of Spreadsheets with MKM Techniques”. In: MKM/Calcu-
lemus Proceedings. Ed. by Jacques Carette et al. LNAI 5625. Springer
Verlag, July 2009, pp. 357–372. isbn: 978-3-642-02613-3. url: http:

//kwarc.info/kohlhase/papers/mkm09-sachs.pdf.

[KMP12] Michael Kohlhase, Bogdan A. Matican, and Corneliu C. Prodescu. “Math-
WebSearch 0.5 – Scaling an Open Formula Search Engine”. In: Intelli-
gent Computer Mathematics. Conferences on Intelligent Computer Math-
ematics (CICM) (Bremen, Germany, July 9–14, 2012). Ed. by Johan
Jeuring et al. LNAI 7362. Berlin and Heidelberg: Springer Verlag, 2012,
pp. 342–357. isbn: 978-3-642-31373-8. url: http://kwarc.info/kohlhase/
submit/aisc12-mws.pdf.

11

http://www.w3.org/TR/MathML3
http://www.journalofaccountancy.com/issues/2003/nov/inexcelcellnamesspellspeedsafety.htm
http://www.journalofaccountancy.com/issues/2003/nov/inexcelcellnamesspellspeedsafety.htm
http://www.theiia.org/intAuditor/itaudit/archives/2008/march/improving-spreadsheet-audits-in-six-steps/
http://www.theiia.org/intAuditor/itaudit/archives/2008/march/improving-spreadsheet-audits-in-six-steps/
http://jtidy.sourceforge.net/
http://kwarc.info/kohlhase/papers/mkm09-sachs.pdf
http://kwarc.info/kohlhase/papers/mkm09-sachs.pdf
http://kwarc.info/kohlhase/submit/aisc12-mws.pdf
http://kwarc.info/kohlhase/submit/aisc12-mws.pdf

concl.tex 1127 2013-02-28 16:25:44Z kohlhase

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical
documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. url:
http://omdoc.org/pubs/omdoc1.2.pdf.

[KP] Michael Kohlhase and Corneliu Prodescu. MathWebSearch Manual. Web
Manual. Jacobs University. url: https://svn.mathweb.org/repos/
mws/doc/manual/manual.pdf (visited on 04/07/2012).

[Lig12] Christian Liguda. “Modeling the Structure of Spreadsheets”. In: Work-
shop on Knowledge and Experience Management. Ed. by Kerstin Bach
and Michael Meder. 2012, pp. 13 –17. url: http://dfki.de/~bach/
FGWM-2012-Proc.pdf.

[Lig13] Christian Liguda. “From Spreadhsheet Data to Structured Knowledge”.
manuscript, in preparation. Feb. 2013.

[MWS] Math Web Search. url: https://trac.mathweb.org/MWS/ (visited on
01/08/2011).

[Net] Netspeak - Search for Words. url: http://www.netspeak.org/ (visited
on 04/08/2012).

[NO01] David Nixon and Mike O’Hara. “Spreadsheet Auditing Software”. In:
Symp. of the European Spreadsheet Risks Interest Group (EuSpRIG 2001).
2001.

[Pan00] Raymond R. Panko. “Spreadsheet Errors: What We Know. What We
Think We Can Do.” In: Symp. of the European Spreadsheet Risks Interest
Group (EuSpRIG 2000). 2000.

[Par13] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Program-
mers, 2013.

[POI] Apache POI - the Java API for Microsoft Documents. url: https://
poi.apache.org/ (visited on 04/08/2012).

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. Manuscript,
submitted to Information & Computation. 2013. url: http://kwarc.
info/frabe/Research/mmt.pdf. Submitted.

[Rot+01] Gregg Rothermel et al. “A Methodology for Testing Spreadsheets”. In:
ACM Transactions on Software Engineering and Methodology 10 (2001),
pp. 110–147.

[Sha+12] Moushumi Sharmin et al. “On slide-based contextual cues for presenta-
tion reuse”. In: Proceedings of the 2012 ACM international conference
on Intelligent User Interfaces. IUI ’12. Lisbon, Portugal: ACM, 2012,
pp. 129–138. isbn: 978-1-4503-1048-2.

[Spr] Spreadsheet Page Excel Tips: Naming Techniques. url: http://spreadsheetpage.
com/index.php/tip/naming_techniques/ (visited on 04/08/2012).

[SPSHP] An Ontology for Spreadsheet Programs. url: https://tnt.kwarc.info/
repos/stc/projects/sissi/trunk/spshp.

12

http://omdoc.org/pubs/omdoc1.2.pdf
https://svn.mathweb.org/repos/mws/doc/manual/manual.pdf
https://svn.mathweb.org/repos/mws/doc/manual/manual.pdf
http://dfki.de/~bach/FGWM-2012-Proc.pdf
http://dfki.de/~bach/FGWM-2012-Proc.pdf
https://trac.mathweb.org/MWS/
http://www.netspeak.org/
https://poi.apache.org/
https://poi.apache.org/
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://spreadsheetpage.com/index.php/tip/naming_techniques/
http://spreadsheetpage.com/index.php/tip/naming_techniques/
https://tnt.kwarc.info/repos/stc/projects/sissi/trunk/spshp
https://tnt.kwarc.info/repos/stc/projects/sissi/trunk/spshp

	Introduction
	Spreadsheet Formulae in MathML: SPSHP Ontology
	Indexing and Querying Formulae by Unification
	Harvesting Formulae from Spreadsheets
	The Harvest Structure
	Formula Parsing
	Structure Detection in Spreadsheets
	Harvest Generation

	XLSearch, a Search Engine
	Conclusion

