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Abstract. We present a tableaux-based model generation calculus
for DRT, which gives us anincrementalapproach to discourse pro-
cessing in the presence of world knowledge. We show the usefulness
of such as system for several discourse phenomena.

1 Introduction

Natural Language Processing (NLP) is one of the core areas ofArtifi-
cial Intelligence. While some of the subtasks of NLP, such asspeech
recognition and syntactical analysis have made considerable progress
towards practical applicability, the area of natural language seman-
tics has so far mainly concentrated on representational issues and on
the semantics construction process proper. The field of “dynamic se-
mantics” studies logical systems that are well-suited for representing
the meaning of discourses and in particular anaphoric binding. It has
developed various “discourse logics”, e.g. Discourse Representation
Theory (DRT) [8] or Dynamic Predicate Logic (DPL) [6].

Semantic analysis, – inference on the basis of semantic informa-
tion and world knowledge – still is largely uncharted territory in dy-
namic semantics. It is needed, among other things, for the recon-
struction of linguistically unspecified parts of the discourse or for
restricting ambiguities introduced by prior analysis processes, i.e.,
multiple syntactic readings or lexical ambiguities. Both need to take
into account the pragmatics of the discourse and backgroundknowl-
edge about the specific situation.

For instance there are pragmatic principles that a discourse should
be consistentand informative, that is, every contribution to the dis-
course should introduce new information which is not contradictory
to previous parts. Thus a reading can be discarded if it breaks one of
these (or similar) requirements. The consistency of an utteranceU
with respect to a prior discourseD can be checked by determining
whether the logical formsU=D of U=D together with an axiomati-
zationW of the world knowledge aresatisfiable, i.e. whether there
is a modelM for U ^ D ^W. Informativity can be modeled by
entailment(U is informative forD iff W ^D 6j= U, see [22, 2] for
a linguistic account of the inference problems involved).

Thus, semantic analysis and automated reasoning in discourse log-
ics are a crucial necessity in NLP from the application2 point of
view. Thedynamicaspect is essential, since classical first-order logic
(FOL) is incapable of expressing cross-sentential phenomena like
anaphoric binding. Observe for instance that the conclusion of a log-
ical consequence may be interpreted only with (anaphoric) reference
to the premises, as in example (1) from [23]

If a man owns a house, then he owns a garden.
Suppose Socrates is a man who owns a house.| {z }j=

He owns a garden.

(1)1 Dept. of Computer Science, Universität des Saarlandes, Saarbrücken, Ger-
many, email: kohlhase@cs.uni-sb.de2 Especially in discourse (or dialogue) processing applications, where the
numbers readings of the sentencesmultiply to that of the whole discourse.

In this paper, we will study these phenomena in the context of
DRT. This is a dynamic variant of FOL, where so-called discourse
referents take the place of bound variables to account for dynamic
phenomena in natural language. In contrast to bound variables, the
scope of referents is not governed by the subterm relation informu-
lae, but by the so-called accessibility relation induced bythe dynamic
connectives:: , seqmerge, and)) .

Traditionally, DRT models discourse understanding as a process of
incrementallybuilding a Discourse Representation Structure (DRS;
the boxes in 3) for a discourse. The DRS representing the meaning of
the full discourse is computed by first adjoining the DRS for the new
sentence using the sequential merge operator “;; ” and then actually
merging the DRSes by so-called� -reduction. E.g. discourse (2) is
represented and reduced in (3).

(2) A man sleeps. He snores.

(3)
Uman(U)sleep(U) ;; Vmale(V )snore(V ) !� U; Vman(U)sleep(U)snore(V )

In a separate step, anaphoric bindings (in our exampleHe) are recon-
structed. In our example by adding the conditionU = V to the last
DRS in (3) to the resulting DRS (see [8] for details).

This “dynamic” approach is certainly more natural than one based
on FOL, where the first sentence would have been represented as9X man(X)^sleep(X). Here the scope of the existential quantifiers
is closed, preventing the resolution of the anaphorHe. Unfortunately,
current dynamic interpretation procedures are purely syntax-based
and fail to take into account world knowledge.

Recently, the inference technique ofmodel generation(initially
developed for automated theorem proving [15]) has been verysuc-
cessfully applied as a semantic analysis technique. It is anintegrated,
logic-basedapproach to sentence understanding in the presence of
world knowledge (see e.g. [4, 1, 12]). In this paper, we present a
model generation calculus for DRT, that extends the resultsabove to
DRT (section 4). We demonstrate the usefulness of such as system
on several discourse processing examples in section 5.

2 Discourse Representation Theory

We use a variant DRT+ of DRT. As in classical DRT [8], we have
two syntactic categories of objects in DRT: DRSes and conditions. A
DRS is a pairÆX C3 whereX � R is a set ofdiscourse referents
(which we denote byU; V;W : : :) and aconditionC, which can be
an atom, a negated DRS, a disjunction or an implication of DRSes.3 We take the liberty to write DRSes in this linear notation instead of

using boxes, since it makes the inference procedures simpler to write
down. Furthermore, we will writeÆfU1; : : : ; UngC as ÆUnAn or asÆU1 ÆU2 : : : ÆUnC or even asÆU1D, whereD = ÆU2 : : : ÆUnC.



Conditions: C ::= p(U1A1 ; : : : ; UnAn ) j C1 ^ C2j ::D j D1 __D2 j D1 )) D2
DRSes: D ::= ÆfU1A1 ; : : : ; UnAn gC j D1 ;; D2� -equality: ÆX C1 ;; Æ YC2 �!� ÆX [ Y C1 ^ C2

We assume that discourse referents in DRT+ are sorted, i.e. that
there is a sort hierarchy (a setS = A ; B ; C : : : of sorts and a par-
tial ordering relation� onS) which is given a priory (see [19] for an
introduction to sorted FOL). We annotate the sorts of discourse refer-
ents in the subscript, when they are not clear from the context. In our
examples, we will use the sortsM ; F; N for genders “male, female”
and “neuter” andH for humans (of course we haveM � H ; F � H ).

Traditionally, the semantics of DRSes is given by the following
relativisation mapping into FOL:0BBB� UnAnC1

...Cm 1CCCAfo = 9UnAn (Cfo1 ^ � � � ^Cfom )(p(U1A1 ; : : : ; UnAn ))fo = p(U1An ; : : : ; UnAn )(UA = VB)fo = UA = VB(::D)fo = :Dfo(C1 __C2)fo = Cfo1 _Cfo20BBB� UnAnC1
...Cm )) D1CCCAfo= 8UnAn (Cfo1 ^ � � � ^Cfom ) Dfo)

An (equivalent) alternative is to give a direct denotational semantics
of DRT. For this, we presuppose the notion of a sorted FO modelM = (U ; I), whereU = SA2S UA is theuniverse of discourse
such thatUA � UB, iff A � B andI an interpretation of constants
such thatI(A ) 2 UA .

Definition 1 (State) Let M: = (U ; I) be a sorted FO model, then
we call a referent assignment':R ! U a state, iff it is well-sorted
('(UA ) 2 UA ). We write'[X ℄ , if '(U) =  (U) for all U =2 X .

Definition 2 (Dynamic Interpretation) Let M = (U ; I) be a
sorted FO model and' a state, then we callIÆ a dynamic inter-
pretation4 iff

1. IÆ'(p(Un)) = T, iff ('(Un)) 2 I(p).
2. IÆ'(A ^B) = T, iff IÆ'(A) = T andIÆ'(B) = T.

3. IÆ'(::D) = T, if �2(IÆ'(D)) = ;.
4. IÆ'(D __E) = T, if �2(IÆ'(D)) 6= ; or �2(IÆ'(E)) 6= ;.
5. IÆ'(D ) E) = T, if for every  2 �2(IÆ'(D)) there is a� 2 �2(IÆ'(E)) with '[�1(IÆ'(E))℄� .

6. IÆ'(ÆX C℄) = hX ; f :'[X ℄ andIÆ'(C) = Tgi.
7. IÆ'(D1 ;; D2) =h�1(IÆ'(D)) [ �1(IÆ'(E)); �2(IÆ'(D)) \ �2(IÆ'(E))i

Conditions are evaluated to truth values; DRSes as pairshX ;Si,
whereX � R is a set of discourse referents andS a set of states
(we denote pair-projections by�1 and�2).

We will call a DRSD valid inM, if �2(IÆ'(D)) 6= ; andsatisfi-
able, iff there is a modelM whereD is valid.4 This is a variant of Zeevat’s semantics [25] for DRT, see [11]for details.

For instance the DRS (3 with anaphor resolutionU = V ) trans-
lates to (4) and has the direct semantics given in (5), assuming a
sorted FO modelM = (U ; I) with a 2 UH.

(4) 9XH; YHman(X) ^ sleep(X) ^ snore(Y ) ^X := Y
(5)

DfUH; VHg; f[a=U ℄; [a=V ℄: a 2 I(man)\I(snore)\I(sleep)E
It is easy to verify that the FO formula in (4) is satisfiable, iff

there is a FO model, such that�2(5) 6= ;. As a consequence, va-
lidity and satisfiability of DRSes can in principle be checked by a
translation approach: we can obtain FO models for a DRS by first
translating it into FOL, and then using a traditional model building
or refutation system (see [2] for an implementation and evaluation of
this approach).

The main computational problem with this approach is that itis not
incremental, since translation closes all dynamic contexts. The main
difference between the semantical representations in (4) and (5) is
that in the FOL translation5, the scope of the existential quantifiers is
fixed and the only possibility to add new sentences (with anaphors)
is to adjoin them at the level of DRS representations and retranslate.
Certainly, this is not practically feasible for larger discourses even
though there are linear time translations [24].

3 (Automated) Deduction for Discourse Logics

There have been several attempts to mechanize dynamic logics, i.e.
to develop calculi and inference procedures for the satisfiability, va-
lidity and entailment problems for dynamic logics. [20, 18,17, 9,
23, 16] give deductive calculi that operate either on DRSes or on FO
formulae with dynamic (DPL) semantics.

[20, 17, 9] present calculi for thevalidity problemin DRT and [16]
for that in DPL. In FOL, it is sufficient to study the validity problem,
since it subsumes the entailment problem: FOL admits a deduction
theorem, soA1; : : : ;An j= C iff A1^: : :^An ) C is valid. Clas-
sical DRT [8] does not admit a deduction theorem, since the symmet-
ric merge operator
 which is the dynamic analogue of conjunction
does not have the necessary accessibility relation.

The sequential merge operator;; of DPL, does6; and as a con-
sequence [16] is currently the only calculus that can be usedto
check for dynamic entailment. Unfortunately, it suffers from the
same lack of incrementality as the translation approach. Totest that
a discourseA1 ;; : : : ;; An does not entail a new utteranceC (e.g.
to check for informativity) Monz and De Rijke’s calculus needs to
transformA1 ^ : : : ^ An ) C to a dynamicclause normal form
that can be refuted by a variant of the resolution calculus. Since dy-
namic conjunction is not symmetric, it is impossible to reuse the
computed clause normal form for subsequent informativity checks
(CNF(:(A1^:::^An)C)) andCNF(:(A1^:::^An))[CNF(:C) differ).

Saurer’s natural deduction calculus for DRT [18] whichis in-
cremental is only sound for checking validity and static entailment
(which does not take into account anaphoric binding). Jan van Ei-
jck’s sequent-based approach [23] directly addresses theentailment
problembut has not been developed for mechanization in an auto-
mated theorem prover. Therefore the incrementality issue is hard to
judge.

In this situation, we will generalize an inference technique from
FOL that is inherently incremental, namely that ofmodel generation.5 Note that this only holds for classical FOL. In DPL [6] that assumes a dy-

namic semantics similar to ours but keeps classical FO syntax, the scope
of quantifiers is governed by similar principles as the DRT accessibility
relation. Therefore it is possible to simply adjoin the semantics of new sen-
tences by (dynamic) conjunction (which corresponds to;; ).6 This is the reason, why we use;; for sentence composition in DRT+.



This inference approach is dual to that of refutation theorem proving:
instead of trying to find a refutation showing unsatisfiability of the
negation of the formula to be proven, model generation triesto show
satisfiability by constructing a model.

In the next section, we will generalize the notion of Herbrand mod-
els used in FO model generation to DRT and then generalize theRM
model generation calculus [14, 13] accordingly. Then we will show
in section 5 that the calculus can be used to account for a variety of
linguistic phenomena.

4 Model Generation for DRT

In this section, we will develop a “model generation calculus” for
DRT. In contrast to FOL, the scope of discourse referents is not gov-
erned by the term structure, but by the DRT accessibility relation.
The truth definition with respect toIÆ crucially depends on the cur-
rent state', therefore, “model generation” for dynamic logics must
also generate states and dynamic interpretations along theway.

FO model generation relies on the well-known Herbrand theo-
rem that singles out Herbrand models as canonical representatives of
models (if a FO theory is satisfiable at all, then it must be satisfiable
in a Herbrand model).

Definition 3 (First-Order Herbrand Model) Let L be a (sorted)
FO language, then the setHL = SA2S HLA of closed terms (of sortA ) in L is called theHerbrand universe of L. Let M = (U ; I)
be a (sorted) FO model, then we callM a Herbrand Model , iffUA � HLA andI(t) = t 2 U for all ground termst 2 HL.

In a Herband model, only the interpretation of predicate symbols
must be specified, e.g. by giving values on the closed literals ofL.
Thus any Herbrand modelM can be uniquely represented (under a
closed-world assumption) by the set of closed atoms it makestrue
(the so-calledHerbrand baseAT (M)).

A Herbrand modelM is calledfinite if its universe of discourseU
is finite andminimal if for all M0 the following holds:AT (M0) �AT (M) ) M0 = M. It is calleddomain minimal if jU(M)j �jU(M0)j.

The tableaux-based model generation procedureTÆ, which we will
introduce in this section constructs a Herbrand model together with
a state and a dynamic interpretation to verify that a given DRS is
satisfiable. DRT is ideal for model generation applicationssince it

does not contain function symbols, i.e.HDRT+ is a set of constants;
as a consequence it is possible to generate finite Herbrand models.

The TÆ model generation calculus is based on theRM calculus
(see Definitions 4 and 5), which has been originally developed for
a certain form of non-monotonic reasoning, called minimal entail-
ment [14].:AT T (:)AF :AF T (:)AT ATAF T (?)?(A ^B)T T (^)ATBT (A ^B)F T (_)AF ���� BF (8XA A)T T (8)[a1=X℄AT(8XA A)F T (9)[a1=X℄AF ���� : : : ���� [an=X℄AF ���� [newA =XA ℄AF
Definition 4 (Static Model Generation) The static model genera-
tion calculus consists of the usual tableau rules for the connectives

and the model generation rules for the quantifiers. TheT (8) rule
tests the scope on all members of the Herbrand universeHA of the
current branch (HA = fa1; : : : ; ang); it must be applied exhaus-
tively to obtain a saturated branch. TheT (9) rule reuses constants
that occur in the current branch and alternatively introduces a new
constantnewA . In this way,T (9) minimizes the size of the universe
and also avoids Skolem functions which would introduce problem-
atic function symbols into the Herbrand universe. When extending
the Herbrand universe of a branch bynewA , all T (8) must be re-
instantiated with respect tonewA .

To get a feeling for the model construction process, let us consider a
simple (static) sentenceNo man walksin a situation including a man
(say Peter). The logical form is:(9Xman(X)^walk(X)) (obtained
e.g. as:: (ÆU man(U) ^ walk(U))fo) and we have the tableauman(peter)T(9Xman(X) ^ walk(X))F(man(peter) ^ walk(peter))Fman(peter)F? ����walk(peter)F (6)T (8) converts the negative existential (interpreted as a universal via9xA = :8X :A) into a negative conjunction which is then split
into two branches byT (^). The left one is contradictory with the
information already present in the model, so we obtain the minimal
Herbrand modelfman(peter)T;walk(peter)Fg.

This example gives us the opportunity to compare the influence
of sorts. If we had chosen to model the predicateman as a sortM an, then the declarationpeter::M an would be part of the signature
and we would have interpreted the second sentence as the following
tableau: (9XManwalk(X))Fwalk(peter)F (7)

It is easy to see that the introduction of sorts yielded a smaller ini-
tial representation and a more guided computation (withoutinfertile
branches for half the population). In particular, sorts make the model
generation calculus less vulnerable to computational inefficiency in-
duced by non-trivial but unstructured universes. Of coursethe sim-
ple sort system employed for our examples has to be extended to a
more elaborate one for real-world applications, we will notpursue
this here, and leave the integration of more expressive sortsystems
like terminological logics e.g. KL-ONE for future work.RM is a refutation complete FO tableau calculus where each open
saturated branch is a Herbrand model. [12] proves thatRM is com-
plete for finite satisfiability, i.e.RM is a decision procedure for the-
ories that either are unsatisfiable or have a finite model. Addition-
ally,RM is complete for finite minimal models that also are domain
minimal: if a theory is finitely satisfiable, then one of the models gen-
erated byRM will be minimal with the smallest possible universe.
These properties are inherited by theTÆ calculus defined below, mak-
ing it an ideal basis for the linguistic applications. The proofs are
straightforward, we cannot exhibit the proofs here for space restric-
tions.

Definition 5 (Dynamic Model Generation) The TÆ calculus ex-
tends static model generation by the inference rules in the box be-
low. Like T (9), the ruleTÆ(Æ) is existential in nature, it introduces a
witness constantnew with the consequences for universal formulae
discussed above. Furthermore, it extends the state represented by the
current branch in all possible ways bystatenodes of the form[=U ℄.
In this way it captures the accessibility relation of DRT. Sentence
composition (;; ) is mechanized by adding the respective DRS at all
leaves (instantiated by the state represented in the respective branch).



Conditions are mechanized by translation, since they cannot change
the current state, but only the Herbrand-representation ofthe current
model. ÆUA AT HA = fa1; : : : ; ang TÆ(Æ)[a1=U ℄[an=U ℄AT ���� : : : ���� [a1=U ℄[an=U ℄AT ���� [newA =UA ℄[newA =UA ℄AT::D TÆ(:: )(::D)fo D )) D0 TÆ()) )(D )) D0)fo D __D0 TÆ(__ )(D __D0)fo

The dynamic interpretation induced by a given branchB in
the tableau is determined by the positive literalsLitT(B) and
the state '(B) induced by the state nodes. It is the pairhDom('); f':Litsemtrue(B)gi. Note that dynamic interpreta-
tion generalizes the induced Herbrand model by (dynamic) state in-
formation.

If we reconsider our example from above, we can see that we ob-
tain the tableau in (6/7) resulting in the minimal dynamic Herbrand
interpretationh;; f;:man(peter)T;walk(peter)Fgi. This is plausi-
ble, since our little discourse is static (does not have any anaphoric
potential).

5 Linguistic Applications

We will now test the proposed model generation approach to dis-
course processing on some well-known examples from the literature.

Anaphora resolution is just a simple consequence of the search for
minimal models. Consider for instance the discourse (2). Then we
obtain the following tableau:ÆUMman(U) ^ sleep(U)T[1M=UM℄man(1M)Tsleep(1M)TÆV M snore(V )T[1M=VM℄snore(1M)T ���� [2M=VM℄snore(2M)T
which leads to the two dynamic interpretationshfUM; VMg; f[1M=UM℄; [1M=VM℄:man(1M); sleep(1M); snore(1M)gihfUM; VMg; f[1M=UM℄; [2M=VM℄:man(1M); sleep(1M); snore(2M)gi

We can see that the anaphor resolution is a direct consequence of
theTÆ(Æ) rule. Both possible interpretations (one whereHe refers to
the sleeping man introduced before, and also the deictic useof He
that does not need an antecedent or accommodates (infers) one) have
been derived. However, only the first one is minimal, and leads to the
preferred interpretation.

The particular computation in this example only relies on the fact
that there are no men in the context (more would have lead to more
interpretations). The number of e.g. women is irrelevant due to the
presence of sorts: in both applications of theTÆ(Æ) rule, the discourse
referents could only by assigned to constants of sortM . Even if
we choose not to represent gender by sorts but by the unary predi-
catesmale; female (say, since we are in a context, where genders can
change), the interpretation process works, only that withn women
we would get2n additional closed branches as in the tableau (6)
compared to the one in (7)

Traditional approaches to anaphora resolution would have ob-
tained the same behavior, but on different grounds. There, the in-
formation about gender would have been treated on asyntacticba-
sis, making the (reasonable) assumption that the world knowledge

that “men are not women” is hard-wired into the grammar. While
this is reasonable for syntactically marked properties like gender, the
inference-based approach also generalizes to other sorts.

Let us now consider an example, where real world knowledge
comes into play. To resolve the pronouns and the implicit reference
in her husbandin (8), we need to know thatif a femaleX is married
to a maleY , thenY isX ’s only husband, which is encoded in (10).

(8) Mary is married to Jeff. Her husband is not in town.

(9)
ÆUF; VMU = mary ^ ÆÆ(U; V ) ^ V = je�;; ÆWM;W 0Fhub(W;W 0) ^ :intn(W )

(10)
8XF; YMÆÆ(X;Y ) )(hub(Y;X) ^ 8Z hub(Z;X) ) Z := Y )

Model generation usingTÆ yields a (rather large) tableau, whose
branches all contain the interpretation�fU; V;W;W 0g;� [mary=U ℄; [je�=V ℄; [je�=W ℄; [mary=W 0℄: ÆÆ(mary; je�); hub(je�;mary);:intn(je�) ��
and only differ in some additional negative facts that have been cre-
ated by the world knowledge, for instanceÆÆ(mary;mary)F.

The figure below shows one branch of the model generationwith-
outusing the world knowledge (10). In the associated reading, we get
a new discourse referent1M that denotes Mary’s husband although
we already have given the information that Mary’s husband isJeff.(ÆUF; VMU := mary ^ ÆÆ(U; V ) ^ V := je�)T[mary=U ℄(ÆV mary := mary ^ ÆÆ(mary; V ) ^ V := je�)T[je�=V ℄(mary := mary ^ ÆÆ(mary; je�) ^ je� := je�)Tmary := maryTÆÆ(mary; je�)Tje� := je�T(ÆWMW 0Fhub(W;W 0) ^ :intn(W ))T[1M=W ℄(ÆW 0 hub(1M;W ) ^ :intn(1M))T[mary=W 0℄(hub(1M;mary) ^ :intn(1M))Thub(1M;mary)Tintn(1M)F

Let us now turn to a phenomenon, called bridging. Concretely, we
will analyze the utterance

(11) The Boston office called.

(12) ÆUH; VN;WNboston(U) ^ oÆe(V ) ^ alled(W ) ^rel(U; V ) ^ rel(V;W )
introduced by Hobbs et al. in [7]. This sentence has at least three
pragmatic problems that need world knowledge: resolving the ref-
erence of “the Boston office”, expanding the metonymy to “[Some
person at] the Boston office called”, and determining the implicit re-
lation between Boston and the office.

We will do this model generation from roughly the same world
knowledge as in [7]:

(13) boston(b); oÆe(o),
(14) 8XH; YNemployed(X;Y ) ) rel(X;Y )
(15) 8XN; YNintn(X;Y ) ) rel(X;Y )
Given this input,TÆ will (among others) generate the following



tableau branch: (12)[b=U ℄; [o=V ℄; [1H=W ℄alled(1H)ToÆe(o)Tboston(b)Tintn(o; b)Temployed(1H; o)T
This model is minimal, since the last five literals are already present
in any Herbrand model, since they are entailed by the world knowl-
edge. If we have additional knowledge, such asemployed(harry; o),
then we obtain additional minimal models, in this case the one, where1H is replaced byharry.

Naturally, a more thorough analysis of the example would also
take into account the uniqueness presupposition induced bythe, or
the salience of relatedness. In [10], we have aRM-like model gen-
eration calculus with saliences and a system for weighting inferences
like that the weighted abduction system introduced in [7]. This leads
to a more flexible notion of minimality of interpretations and thus
to better predictions about preferred interpretations. Furthermore,
the possibility to to resource-bounded best-first search helps control
search spaces involved in model generation. It will be a logical next
step to transport these methods toTÆ, to combine the advantages.

6 Conclusion

We have presented a model-generation calculus for DRT and proven
it sound and (refutationally and minimal model) complete with re-
spect to a natural dynamic (state-based) semantics for DRT.In con-
trast to other calculi for dynamic discourse logics, our approach of-
fers anincrementalinference procedure that allows to integrate world
knowledge into the natural language understanding process.

We have exhibited a variety of examples that suggest that theincre-
mental, dynamic model generation procedure can serve as a plausible
analysis for natural language understanding. The underlying model-
generation-based approach has been validated for the static case in
e.g. [4, 1, 12]. While our examples support this claim at a technical
level, the psycholinguistic literature supports the model-based anal-
ysis from a conceptual and scientific point:

Numerous psycholinguistic studies have shown that during dis-
course comprehension readers or listeners not only represent the log-
ical form of a text but also construct a representation of thestates
of affairs described by the text, i.e. a representation, theelements of
which are mental tokens standing for the referents of linguistic ex-
pressions (for an overview see [26]). These representations are con-
structed on-line during discourse comprehension in an incrementally
manner (e.g. [3], they are enriched by a large amount of worldknowl-
edge (cf. [21]) and their major function is to provide the basis for
anaphor resolution (e.g. [5])

An interesting question that remains to be answered is how the dy-
namics inherent in the model construction process (e.g. newwitness
constants are introduced into the Herbrand universe) and the dynam-
ics explicit in discourse logics like DRT [8] or DPL [6] interact. The
analysis in this paper suggests that they can happily coexist, and even
more that for inference purposes, model generation can be harnessed
to implement an adequate inference procedure for dynamic/discourse
logics. To determine whether this effect can be extended to the whole
field of dynamic semantics we will leave to further research.
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