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Abstract. Formal libraries are treasure troves of detailed mathematical
knowledge, but this treasure is usually locked into system- and logic-
specific representations that can only be understood by the respective
theorem prover system. In this paper we present an ontology for using
relational information on mathematical knowledge and a corresponding
data set generated from the Isabelle and Coq libraries. We show the
utility of the generated data by setting a relational query engine that
provides easy access to certain library information that was previously
hard or impossible to determine.

1 Introduction and Related Work

Overview and Contribution For many decades, the development of a universal
database of all mathematical knowledge, as envisioned, e.g., in the QED man-
ifesto [Qed], has been a major driving force of computer mathematics. Today
a variety of such libraries are available. However, integrating these libraries, or
even reusing or searching in a single library can be very difficult because it cur-
rently requires understanding both the formal logic underlying it and the proof
assistant used to maintain it.

We support these goals by extracting from the libraries semantic web-style
relational representations, for which simple and standardized formalisms such as
OWL2 [MPPS09], RDF [RDF04], and SPARQL [W3c] as well as highly scalable
tools are readily available. Now it is well-known that relational formalisms are
inappropriate for symbolic data like formulas, algorithms, and proofs. But our
key observation is that if we systematically abstract all symbolic data away and
only retain what can be easily represented relationally, we can already realize
many benefits of library integration, search, or reuse.

Concretely, our contribution is threefold. Firstly, in §2, we design ULO, an
upper library ontology for mathematical knowledge. We make ULO available as
OWL2 XML file and propose it as a standard ontology for exchanging high-level
information about mathematical libraries.

? The authors were supported by DFG grants RA-18723-1 and KO-2428/13-1 OAF
and EU grant Horizon 2020 ERI 676541 OpenDreamKit.



Secondly, in §3, we generate ULO data from concrete libraries in RDF for-
mat. For this paper we restrict ourselves to Coq and Isabelle as representative
example libraries. Both datasets are massive, resulting in ≈ 107 RDF triples
each, requiring multiple CPU-hours to generate. We have OMDoc/MMT ex-
ports for about a dozen other libraries, including Mizar, HOLLight, TPS, PVS,
from which we can generate ULO exports as well, but leave that to future work.

Thirdly, we demonstrate how to leverage these lightweight, high-level repre-
sentations in practice. As an example application, in §4, we set up a relational
query engine based on Virtuoso. It answers complex queries instantaneously, and
even simple queries allow obtaining information that was previously impossible
or expensive to extract. Example queries include asking for all theorems of any
library whose proof uses induction on N, or all authors of theorems ordered by
how many of the proofs are incomplete, or all dependency paths through a par-
ticular library ordered by cumulative check time (which would enable optimized
regression testing).

Other applications enabled by our work include, e.g., graph-based visualiza-
tion, cross-referencing between libraries, or integrating our formal library meta-
data with other datasets such as publication metadata or Wikidata.

Related Work The problem of retrieving mathematical documents that contain
an instance or a generalization of a given formula has been frequently addressed
in the literature [GC16]. The main difficulty is the fact that the formula structure
is fundamental, but at the same time the matching must be up to changes to
this structure (e.g. permutation of hypothesis, re-arrangement of expressions up
to commutativity and associativity).

One solution is the technique presented in [Asp+06; AS04] that was applied
to the Coq library. It consists in computing RDF-style triples that described
the formula structure approximately, so that instantiation is captured by the
subset relation of set of triples and matching up-to structural changes comes
for free because the triples only record approximate shapes. Such a description
is completely logic-independent, can be applied as well to other systems, and
can be integrated with constraints over additional triples (e.g. over keywords,
author, dependencies, etc). The Whelp search engine implemented the technique
but is no longer maintained.

[Lan11] explores using the linked open data language and tool stack for rep-
resenting mathematical knowledge. In particular, it presents various OWL on-
tologies, which are subsumed by the ULO, but does not have the data exports
for the theorem prover libraries, which severely limited the reach of applications.

General purpose query languages for mathematical libraries data were previ-
ously introduced in [ADL12; Rab12]. Our experience is that the key practicality
bottleneck for such languages is not so much the detailed definition of the lan-
guage but the availability of large datasets for which querying is implemented
scalably. This is the idea behind the approach we take here.
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2 ULO: The Upper Library Ontology

We use a simple data representation language for upper-level information about
libraries. This Upper Library Ontology (ULO) describes objects in theorem
prover libraries, their taxonomy, and relations as well as organizational and
information. The ULO allows the export of upper-level library data from theorem
prover libraries as RDF/XML files (see §3), and gives meaning to them. The
ULO is implemented as an OWL2 ontology, and can be found at https://gl.

mathhub.info/ulo/ulo/blob/master/ulo.owl. All new concepts have URIs
in the namespace https://mathhub.info/ulo, for which we use the prefix ulo:
below.

In the sequel we give an overview of the ULO, and we refer to [ULO] for the
full documentation. For each concept, little icons indicate whether our extractors
for Isabelle “ ” and Coq “ ” provide at least partial support (see also §3).

2.1 Individuals

Individuals are the atomic objects relevant for mathematical libraries. Notably,
they do not live in the ulo namespace but in the namespace of their library.

These include in particular all globally named objects in the library such
as theories/modules/etc, types, constants, functions, predicates, axioms, theo-
rems, tactics, proof rules, packages, directories, files, sections/paragraphs, etc.
For each library, these individuals usually share a common namespace (an ini-
tial segment of their URI) and then follow a hierarchic schema, whose precise
semantics depends on the library.

Additionally, the individuals include other datasets such as researchers as
given by their ORCID or real name, research articles as given by their DOI,
research software systems as given by their URI in swMATH5, or MSC6 and
ACM7 subject classes as given by their respective URIs. These individuals are
not generated by our export but may occur as the values of key-value attributions
to the individuals in prover libraries.

2.2 Classes

Classes can be seen as unary predicates on individuals, tags, or soft types. The
semantic web conventions tend to see them simply as special individuals that oc-
cur as values of the is-a property of other individuals. Figure 1 gives an overview
of the most important classes in the ULO.

Logical Role The logical classes describe an individual’s formal role in the logic,
e.g., the information that N is a type but 0 an object.

5 https://swmath.org/software/NUMBER
6 http://msc2010.org/resources/MSC/2010/CLASS
7 https://www.acm.org/publications/class-2012
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ulo:theory refers to any semantically meaningful group of named objects
(declarations). There is a wide range of related but subtly different concepts
using words such theory, class, signature, module type, module, functor, locale,
instances, structure, locale interpretation, etc.

Inside theories, we distinguish five classes of declarations depending on what
kind of entity is constructed by an individual: ulo:type if it constructs types
or sorts like N or list; ulo:function if it constructs inhabitants of types like
+ or nil; ulo:predicate if it constructs booleans/propositions such as = or
nonEmpty; ulo:statement 8 if it establishes the truth of a proposition such as
any axioms, theorem, inference rule; and finally ulo:universe if it constructs
collections of types such as Set or Class.

Fig. 1. ULO Classes

Note that while we hold the distinction of these five
classes to be universal, concrete logics may not always
distinguish them syntactically. For example, HOL iden-
tifies functions and predicates, but the extractor can
indicate whether a declaration’s return type is the dis-
tinguished type of booleans. Similarly, Curry-Howard-
based systems identity predicates and types as well as
statements and objects, which an extractor may choose
to separate.

Orthogonally to the above, we distinguish declara-
tions by their definition status: ulo:primitive if it
introduces a new concept without a definition such as
an urelement or an axiom; and ulo:derived if it can
be seen as an abbreviation for an existing concept like
a defined operator or a theorem. For example, inter-
secting the classes ulo:statement and ulo:derived,
we capture all theorems.

While the primitive-derived distinction is clear-cut
for definition-based systems like Coq, it is trickier for
axiom-based systems like Isabelle: an Isabelle definition
actually consists of a primitive concept with a defining
axioms for it. For that purpose, we introduce the ulo:

defines property in §2.3.

Physical Role The physical classes describe an individual’s role in the physical
organization of a library. This includes for an individual i:

– ulo:section if i is an informal grouping inside a file (chapter, paragraph
etc.)

– ulo:file if i is a file

8 We have reconsidered the name of this class many times: all suggested names can be
misunderstood. The current name stems from the intuition that axioms and theorems
are the most important named truth-establishing declarations, and statement is a
common way to unify them. Arguably more systematic would be proof : anything
that establishes truth is formalized as an operator that constructs a proof.

4



– ulo:folder if i is a grouping level above source files inside a library, e.g.,
a folder, sub-package, namespace, or session

– ulo:library if i is a library. Libraries have logical URIs and serve as the
root objects containing all other individuals. A library is typically maintained
and distributed as a whole, e.g., via a GitHub repository. A library has a
logical URI and the URIs of individuals are typically formed relative to it.

– ulo:library-group if i is a group of libraries, e.g., a GitHub group.
In addition we define some classes for the lowest organizational level, called log-
ical paragraphs. These are inspired by definition–example–theorem–proof seen
in informal mathematics and often correspond to LATEX environments. In for-
mal libraries, the individuals of these classes may be the same as the ones for
the logical classes or different ones. For example, a document-oriented system
like Isabelle could assign a physical identifier to a paragraph and a different
logical one to the formal theorem inside it. These identifiers could then have
classes ulo:proposition and ulo:statement respectively. A purely formal sys-
tem could omit the physical class or add it to the logical identifier, e.g., to mark a
logical definition as an ulo:example or ulo:counter-example. Some of these,
in particular, theorems given informal classes like “Lemma” or “Hauptsatz”, a
string which can be specified by the ulo:paratype relation (see below).

2.3 Properties

All properties are binary predicates whose first argument is an individual. The
second argument can be an individual (object property) or a value (data
property). Unless mentioned otherwise, we allow the same property to be used
multiple times for the same individual.

The two kinds are often treated differently. For example, for visualization
as a graph, we can make individuals nodes (using different colors, shapes etc.
depending on which classes a node has) and object properties edges (using differ-
ent colors, shapes, etc. for different properties). The data properties on the other
hand would be collected into a key-value list and visualized at the node. Another
important difference is during querying: object properties are relations between
individuals and thus admit relational algebra such as union and intersection or
symmetric and transitive closure. Data properties on the other hand are usually
used with filters that select all individuals with certain value properties.

Library Structure Individuals naturally form a forest consisting e.g., of (from
roots to leafs) library groups, libraries, folders, files, section, modules, groups of
mutual recursive objects, constants. Moreover, the dependency relation between
individuals (in particular between the leaves of the forest) defines an orthogonal
structure.

ulo:specifies(i, j) expresses that j is a child of i in the forest structure.
Thus, taking the transitive closure of ulo:specifies starting with a library,
yields all individuals declared in a library.

ulo:uses(i, j) expresses that j was used to check i, where j may include
extra-logical individuals such as tactics, rules, notations. A very frequent case is
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for j to be an occurrence of a logical individual (e.g. a constant or a theorem).
The case of occurrences leads to the question about what information can be
attached to an occurrence. Examples could be: the number of repetitions of the
occurrence; whether the occurrence of a constant induces a dependency on the
type only, or on the actual definition as well; where the occurrence is located
(e.g. in the statement vs proof, in the type vs body or in more specific positions,
like as the head symbol of the conclusion, see [Asp+06] for a set of descriptions of
positions that is useful for searching up to instantiation). For now we decided to
avoid to specify occurrences in the ontology, for the lack of a clear understanding
of what properties will really be useful for applications. Integrating the ULO
ontology with occurrenes is left for future work towards ULO 1.0.

Semantic Relations between Declarations Relational representations treat indi-
viduals as black boxes. But sometimes it is helpful to expose a little more detail
about the internal structure of a declaration. For that we define the following
properties:
– ulo:defines(i, j) is used to relate a declaration j to its definition i if the

two have different identifiers, e.g., because they occur in different places in
the source file, or because i is a defining axiom for a constant j.

– ulo:justifies(i, j) relates any kind of argument i to the thesis j it sup-
ports. The most important example is relating a proof to its theorem state-
ment if the two have different identifiers.

– ulo:instance-of(i, j) relates a structuring declaration j to the theory-
like entity i that realizes, e.g., a module to its module type, an instance to its
(type) class, a model to its theory, or an implementation to its specification.

– ulo:generated-by(i, j) expresses that i was generated by j, e.g., the user
may define an inductive type j and the systems automatically generated an
induction schema i.

– ulo:inductive-on(i, j) expresses that i is defined/proved by induction on
the type j.

Informal Cross-References First we define some self-explanatory cross-references
that are typically (but not necessarily) used to link individuals within a li-
brary. These include ulo:same-as, ulo:similar-to, ulo:alternative-for,
ulo:see-also, ulo:generalizes, and ulo:antonym-of.

Second we define some cross-references that are typically used to link a knowl-
edge item in a library to the outside. Of particular relevance are:
– ulo:formalizes(i, j) indicates that j is an object in the informal realm,

e.g., a theorem in an article, that is formalized/implemented by i.
– ulo:aligned-with(i, j) indicates that i and j formalize/implement the same

mathematical concept (but possibly in different ways).

Data Properties All properties so far were object properties. Data properties
are mostly used to attach metadata to an individual. We do not introduce
new names for the general-purpose metadata properties that have already been
standardized in the Dublin Core such as dcterms:creator, dcterms:title,
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dcterms:contributor, dcterms:description, dcterms:date, dcterms:isVersionOf,
dcterms:source, dcterms:license. But we define some new data properties
that are of particular interest for math libraries:
– ulo:name(i, v) attributes a string v to a declaration that expresses the

(user-provided) name as which it occurs in formulas. This is necessary in
case an individual generated URI is very different from the name visible to
users, e.g., if the URI is generated from an internal identifier or if the name
uses characters that are illegal in URIs.

– ulo:sourceref(i, v) expresses that v is the URI of the physical location
(e.g., file, line, column in terms of UTF-8 or UTF-16 characters) of the source
code that introduced i.

– ulo:docref(i, v) expresses that v is the URI reference to a place where f
is documented (usually in some read-only rich text format).

– ulo:check-time(i, v) expresses that v is the time (a natural number giving
a time in milliseconds) it took to check the declaration that introduced i.

– ulo:external-size(i, v) expresses that v measures the source code of i
(similar to positions above).

– ulo:internal-size(i, v) expresses that v is the number of bytes in the
internal representation of i including inferred objects and generated proofs.

– ulo:paratype(i, v) gives the “type” of a logical paragraph, i.e. something
like “Lemma”, “Conjecture”, . . . . This is currently a string, but will become
a finite enumeration eventually.

Locations, sizes, and times may be approximate

Organizational Status Finally, we define a few (not mutually exclusive) classes
that library management–related information such as being experimental or dep-
recated. Many of these are known from software management in general. The
unary properties are realized as data properties, where the object is an explana-
tory string, the binary relations as object properties. An important logic-specific
class is ulo:automatically-proved — it applies to any theorem, proof step, or
similar that was discharged automatically (rather than by an interactive proof).

3 Exporting ULO Data from Prover Libraries

3.1 Exporting from Isabelle

Overview Isabelle is generally known for its Isabelle/HOL library, which provides
many theories and add-on tools (implemented in Isabelle/ML) in its Main theory
and the main group of library sessions. Some other (much smaller) Isabelle logics
are FOL, LCF, ZF, CTT (an old version of Martin-Löf Type Theory), but today
most Isabelle applications are based on HOL. User contributions are centrally
maintained in AFP, the Archive of Formal Proofs (https://www.isa-afp.org):
this will provide substantial example material for the present paper (see §3.3).

The foundations of Isabelle due to Paulson [Pau90] are historically connected
to logical frameworks like Edinburgh LF: this fits nicely to the LF theory of
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MMT [RK13]. The Isabelle/MMT command-line tool [Wen18b] exports the λ-
calculus of Isabelle/Pure into MMT as LF terms, with some add-on structures.

From a high-level perspective, Isabelle is better understood as document-
oriented proof assistant or document preparation system for domain-specific for-
mal languages [Wen18a]. It allows flexible nesting of sub-languages, and types,
terms, propositions, and proofs (in Isabelle/Isar) are merely a special case of
that. The result of processing Isabelle document sources consists of internal
data structures in Isabelle/ML that are private to the language implementa-
tions. Thus it is inherently difficult to observe Isabelle document content by
external tools, e.g. to see which λ-terms occur in nested sub-languages.

PIDE is an approach by Wenzel to expose aspects of the ML language en-
vironment to the outside world, with the help of the Isabelle/Scala library for
“Isabelle system programming”. A major application of Isabelle/Scala/PIDE
is Isabelle/jEdit, which is a Java-based text editor that has been turned into
a feature-rich Prover IDE over 10 years of development [Wen18c]. To imple-
ment Isabelle/MMT [Wen18b], Wenzel has upgraded the Headless PIDE server
of Isabelle2018 to support theory exports systematically. The Isabelle/MMT
command-line tool uses regular Scala APIs of MMT (without intermediate files),
and results are written to the file-system in OMDoc and RDF/XML format.

Isabelle2019 exports logical foundations of theory documents (types, consts,
facts, but not proof terms), and aspects of structured specifications (or “little
theories”): locales and locale interpretations, which also subsumes the logical
content of type classes. Isabelle/MMT (repository version e6fa4b852bf9) turns
this content into OMDoc and RDF/XML. This RDF/XML extractor supports
both DC (Dublin Core Meta Data) and our ULO ontology (§2).

Individuals Formal entities are identified by their name and kind as follows:

– The name is a long identifier (with dot as separator, e.g. Nat.Suc) that is
unique within the current theory context (including the union of all theory
imports). Long names are managed by namespaces within the formal context
to allow partially qualified names in user input and output (e.g. Suc). The
structure of namespaces is known to the prover, and not exported.

– The kind is a short identifier to distinguish the namespaces of formal entities,
e.g. type for type constructors, const for term constants, fact for lists of
theorems that are recorded in the context, but also non-logical items like
method (Isar proof methods), attribute (Isar hint language) etc.

This name/kind scheme is in contrast to usual practice in universal λ-calculus
representations like MMT/LF, e.g. there could be a type Nat.nat and a separate
term constant of the same name. Moreover the qualification in long names only
uses theory base names, not their session-qualified long name (which was newly
introduced in Isabelle2017). So in order to support one big space of individuals
over all Isabelle sessions and theories, we use the subsequent URI format that
essentially consists of a triple (long-theory-name, entity-name, entity-kind):

https://isabelle.in.tum.de?long-theory-name?entity-name|entity-kind
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For example, https://isabelle.in.tum.de?HOL.Nat?Nat.nat|type refers to
the type of natural numbers in the Isabelle/HOL.

Logic The primitive logical entities of Isabelle/Pure are types, terms, and theo-
rems (facts). Additionally, Isabelle supports various theory-like structures. These
correspond our declaration classes as follows:
– ulo:theory refers to global theory and local locale contexts. There are

various derivatives of locale that are not specifically classified, notably class
(type classes) and experiment (locales with inaccessible namespace).

– ulo:type refers to type constructors of Isabelle/Pure, and object-logic types
of many-sorted FOL or simply-typed HOL. These types are syntactic, and
not to be confused with the “propositions-as-types” approach in systems like
Coq. Dependent types are represented as terms in Isabelle.

– ulo:function refers to term constants, which are ubiquitous in object-logics
and applications. This covers a broad range of formal concepts, e.g. logical
connectives, quantifiers (as operators on suitable λ-terms), genuine constants
or mathematical functions, but also recursion schemes, or summation, limit,
integration operators as higher-order functions.

– ulo:statement refers to individual theorems, which are projections from the
simultaneous fact lists of Isabelle. Only the head statement of a theorem
is considered, its proof body remains abstract (as reference Isar to proof
text). Theorems that emerge axiomatically (command axiomatization) are
marked as ulo:primitive, properly proven theorems as ulo:derived, and
theorems with unfinished proofs (command sorry) as ulo:experimental.

The ulo:specifies and ulo:specified-in relations connect theories and lo-
cales with their declared individuals. The ulo:uses relation between those repre-
sents syntactic occurrence of individuals in the type (or defining term) of formal
entities in Isabelle: it spans a large acyclic graph of dependencies. Again, this
excludes proofs: in principle there could be a record of individuals used in the
proof text or by the inference engine, but this is presently unimplemented.

The ulo:source-ref property refers to the defining position of formal enti-
ties in the source. Thanks to Isabelle/PIDE, this information is always available
and accurate: the Prover IDE uses it for highlighting and hyperlinks in the editor
view. Here we use existing URI notation of MMT, e.g. https://isabelle.in.
tum.de/source/FOL/FOL/FOL.theory#375.19.2:383.19.10 with offset / line /
column of the two end-points of a text interval.

The ulo:check-time and ulo:external-size properties provide some mea-
sures of big theories in time (elapsed) and space (sources). This is also available
for individual commands, but it is hard to relate to resulting formal entities: a
single command may produce multiple types, consts, and facts simultaneously.

Semi-formal Documents We use ulo:section for the six levels of headings in
Isabelle documents: chapter, section, . . . , subparagraph. These are turned
into dummy individuals (which are counted consecutively for each theory).

ulo:file, ulo:folder, ulo:library are presently unused. They could refer
to the overall project structure Isabelle document sources in the sense of [Wen18a],
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namely as theories (text files), sessions (managed collections of theories), and
project directories (repository with multiple session roots).

For document metadata, we use the Dublin Core ontology. The Isabelle com-
mand language has been changed to support a new variant of formal comment.
By writing “0〈marker 〉”, the presentation context of a command may be aug-
mented by arbitrary user-defined marker expressions. Isabelle/Pure already pro-
vides title, creator, contributor etc. from §2.3: they produce PIDE docu-
ment markup that Isabelle/MMT can access and output as corresponding RDF.

This approach allows to annotate theory content manually : a few theories of
HOL-Algebra already use 0〈contributor . . . 〉 sporadically. For automatic mark-
ing, metadata of AFP entries is re-used for their theories. One could also digest
comments in theory files about authors, but this is presently unimplemented.

3.2 Exporting from Coq

Coq is one of the major interactive theorem provers in use. Many large libraries
have been developed for Coq, covering both mathematics (e.g. the MathComp
library that includes the proof of Feit-Thompson theorem; the CoRN library
that covers many results in constructive analysis) and computer science (e.g. the
proof of soundness of the CompCert compiler; the Color library about rewriting
theory). We discuss some architectural choices for the extraction of RDF triples.

Libraries and URIs In contrast to Isabelle/AFP, there is no centralized main-
tenance of Coq libraries. There is even no index of publicly accessible libraries,
even if many are nowadays hosted on GitHub or at least have a downloadable
tarball. Moreover, Coq does not even has a proper notion of library: the Coq
compiler processes individual .v files and a library is usually a bunch of Coq files
together with a Makefile to compile them in the right order. However, Coq has
a notion of logical names: when a file is compiled, the compiler is invoked passing
a logical name like mathcomp.field and every object declared in the file will
be given a logical name whose prefix is mathcomp.field. For technical reasons
(e.g. to address sub-objects or things that are not Coq objects) the URIs we use
are not logical names, but we try to keep a correspondence where possible. For
example cic:/mathcomp/field/falgebra/SubFalgType/A.var is the URI of a
variable declared into the SubFalgType section of the file falgebra.v compiled
with logical name prefix mathcomp.field.

Opam packages There is a recent effort by the Coq team to push developers
of libraries to release opam packages for them. Opam is a package manager for
ocaml libraries that can be (ab)used to automatically download, compile and
install Coq libraries as well. Moreover, to release an opam package some Dublin-
core like metadata like author and synopsis must be provided. Other interesting
mandatory metadata are license and version. Finally, opam packages specify the
exact Coq version they depend on, granting that compilation will succeed.
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To make Coq libraries accessible to other tools, Sacerdoti Coen wrote a fork
of Coq 8.9.09 (the current stable release) that can be automatically invoked
by opam and that behaves exactly as the standard Coq, but for the fact that
it produces multiple XML files that describe the content of the Coq library.
The XML files encode the information present in Coq kernel augmented with
additional data coming from the sources or computed when the Coq sources
are elaborated. In the remainder of the paper we identify the notion of library
(that Coq lacks) with that of an opam package: all libraries without a package
will be ignored. The exported files are collected in Git repositories in one-to-one
correspondence with opam packages10.

Coqdoc output Coq comes with a standard tool, named coqdoc, to automat-
ically generate a Web site that documents a library. The Web pages contain
pretty-printed and syntax highlighted copies of the sources where additionally
hyperlinks are introduced for every identifier defined in the library. In particular,
each object in the library is given an HTML anchor in some HTML page. Finally,
the pages also include markup automatically generated from special comments
that the user adds to the source files.

After extracting opam packages to XML we run coqdoc over the union of all
the extracted libraries, obtaining the Web site that documents all the exported
libraries (available at https://coq.kwarc.info/).

RDF triples We generate RDF triples from three different sources. The first
source is the description of the opam packages. Each package is given a URI
that mangles its name and version. Triples map this URI to the available opam
metadata.

The second source are the (compressed) XML files exported by Sacerdoti
Coen’s fork [Sac19]. In particular we run Python scripts over the XML files to
collect all the ULO triples related to Coq objects (definitions, theorems, mod-
ules, sections, etc.). Each object is represented on disk either as a directory (if
it contains other objects) plus additional XML files (to attach additional data)
or to an XML file on disk (if it is atomic). The physical structure on the filesys-
tem is exactly the URI structure: the file A.var.xml.gz whose URI is cic:

/mathcomp/field/falgebra/SubFalgType/A.var is stored in the mathcomp/

field/falgebra/SubFalgType directory of the coq-mathcomp-field-1.7.0 Git
repository. The repository was generated exporting from the opam package
coq-mathcomp-field, version 1.7.0. The scripts themselves are therefore quite
straightforward: for each Git package, they just recursively traverse the filesys-
tem and the XML trees collecting the triples and adding them to the repository.

The third source is the coqdoc generated website: ulo:docref maps URIs
to relative URLs pointing to website. E.g. cic:/mathcomp/field/falgebra/

SubFalgType/A.var is mapped to mathcomp.field.falgebra.html#SubFalgType.A.

9 https://github.com/sacerdot/coq
10 https://gl.mathhub.info/Coqxml
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Precision The ULO ontology is useful as long as it is reused for different systems
and it is the result of a compromise. For instance, multiple structuring notions
like Coq modules, functors, module types and sections are all mapped to ulo:

theory. It is in principle possible to also export Coq-specific triples to run Coq-
specific queries, but we have not followed this direction.

Coverage There is a certain number of ULO relations that are currently not gen-
erated for Coq. We classify them into three classes. The first one is information
that is inferrable from the XML sources, but requires non-trivial computations
(e.g. computing the type of some lambda-term to decide if it encodes a proof
via Curry-Howard or otherwise is a proper term). The second class is informa-
tion that is not recorded in the XML files but that could be recorded mod-
ifying the XML exporter (e.g. ulo:external-size, ulo:check-time or ulo:

simplification-rule). The third class is information that must be user pro-
vided (e.g. ulo:similar-to, ulo:formalizes or ulo:aligned-with) and that
is completely absent from Coq sources.

Future work As future work we plan to improve the Coq XML exporter and the
RDF scripts to achieve full coverage of the first two classes. To cover the third
class, we would badly need an extension of the input language of Coq to let the
user add machine-understandable metadata to the sources, like Isabelle does.
The extension would need to be official accepted upstream and adopted by users
before information belonging to the third class can be exported automatically.

3.3 Statistics

Here are some statistics for both Isabelle11 and Coq, referring to various subsets
of the available libraries. This gives an idea about overall size and scalability of
the export facilities so far. The datasets are publicly available from https://gl.

mathhub.info/Isabelle and https://gl.mathhub.info/Coqxml/coq.8.9.0.

Library Individuals Relations Theories Locales Types Constants Statements RDF/XML elapsed
file size time

Distribution 103,873 2,310,704 535 496 235 8,973 88,960 188MB 0.5h
only group main

Distribution+AFP 1,619,889 36,976,562 6,185 4,599 10,592 215,878 1,359,297 3,154MB 16.5h
without very_slow

All 49 Libraries 383,527 11,516,180 1,979 - 6,061 - 161,736 452MB

4 Applications

In this section, we evaluate the ULO framework, i.e. the ULO ontology and the
generated RDF data by showing how they could be exploited using standard
tools of the Semantic Web tool stack.

We have set up an instance of Virtuoso Open-Source Edition12, which reads
the exports described in Sect. 3 and provides a web interface with a SPARQL

11 Versions: Isabelle/9c60fcfdf495, AFP/d50417d0ae64, MMT/e6fa4b852bf9.
12 https://github.com/openlink/virtuoso-opensource
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Fig. 2. Virtuoso Output for the Example Query using Alignments

endpoint to experiment with the ULO dataset. Then we have tried several queries
with promising results (just one shown below for lack of space). The queries are
not meant to be a scientific contribution per se: they just show how much can
be accomplished with the ULO dataset with standard tools in one afternoon.

Example query: all recursive functions on N For this, we use the ulo:inductive−on
relation to determine inductive definitions on a type ?y, which we restrict to one
that is aligned with the type nat lit of natural numbers from the interface theory
NatLiterals in the Math-in-the-Middle Ontology.

SELECT ?x ?y WHERE {
?x ulo:inductive−on ?y .
http://mathhub.info/MitM/Foundation?NatLiterals?nat lit ulo:aligned−with ?y . }

Note that we use alignments [Mül+17] with concepts from an interface theory as
a way of specifying “the natural numbers” across theorem prover libraries. The
result is a list of pairs: each pair combines a specific implementation of natural
numbers (Isabelle has several, depending on the object-logic), together with a
function defined by reduction on it. A subset of the results of this query are
shown in Figure 2.

Transitive Queries The result of the query above only depends on the explicitly
generated RDF triples. Semantic Web tools that understand OWL allow more
complex queries. For example, Virtuoso implements custom extensions that allow
for querying the transitive closure of a relation. The resulting query syntax is a
little convoluted, and we omit some details in the example below.

SELECT ?o ?dist WHERE { {
SELECT ?s ?o WHERE { ?s ulo:uses ?o }
}

13



OPTION ( TRANSITIVE, t distinct, t in(?s), t out(?o), t min (1),
t max (10), t step (’step no’) as ?dist ) .

FILTER ( ?s = <cic:/Bignums/BigN/BigN/BigNring.con> )
}

ORDER BY ?dist DESC 2

The above code queries for all symbols recursively used in the (effectively ran-
domly chosen) Lemma BigNring stating that the ring of arbitrary large natural
numbers in base 231 is a semiring; the output for that query is shown in Figure
3.

Fig. 3. Virtuoso Output for the Transitive Example Query

Interesting examples of library management queries which can be modeled
in SPARQL (and its various extensions, e.g. by rules) are found in [ADL12]. In-
stead [Asp+06; AS04] show examples of interesting queries (approximate search
of formulae up to instantiation or generalization) that can be implemented over
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RDF triples, but that requires an extension of SPARQL with subset and superset
predicates over sets.

5 Conclusion and Future Work

We have introduced an upper ontology for formal mathematical libraries (ULO),
which we propose as a community standard, and we exemplified its usefulness
at a large scale. Consequently, future work will be strongly community-based.

We envision ULO as an interface layer that enables a separation of con-
cerns between library maintainers and users/application developers. Regarding
the former, we have shown how ULO data can be extracted from the libraries
of Isabelle and Coq. We encourage other library maintainers to build similar
extractors. Regarding the latter, we have shown how powerful, scalable applica-
tions like querying can be built with relative ease on top of ULO datasets. We
encourage other users and library-near developers to build similar ULO applica-
tions, using our publicly available datasets for Isabelle and Coq, or using future
datasets provided for other libraries.

Finally, we expect our own and other researchers’ applications to generate
feedback on the specific design of ULO, most likely identifying various omissions
and ambiguities. We will collect these and make them available for a future
release of ULO 1.0, which should culminate in a standardization process.
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