
Integrating Semantic Mathematical Documents
and Dynamic Notebooks

Kai Amann, Michael Kohlhase, Florian Rabe, and Tom Wiesing

Computer Science, FAU Erlangen-Nürnberg

Abstract. Mathematical software systems offer two major paradigms
for interacting with mathematical knowledge. One is static files with
semantically annotated representations that define mathematical knowl-
edge and can be compiled into documents (PDF, html, etc.), and the
other dynamically build mathematical objects in interactive read-eval-
print loops (REPL) such as notebooks. Many author-facing interfaces
offer both features in some way. However, reader-facing interfaces usu-
ally show only one or the other.
In this paper we present an integration of the approaches in the context
of the MMT system. Firstly, we present a Jupyter kernel for MMT which
provides web-ready REPL functionality for MMT. Secondly, we integrate
the resulting Jupyter notebooks into MathHub, a web-based frontend for
mathematical documents. This allows users to context-sensitively open
a Jupyter notebook as a dynamic subdocument anywhere inside a static
MathHub document. Vice versa, any such highly interactive and often
ephemeral notebook can be saved persistently in the MathHub backend
at which point it becomes available as a static document. We also show
how Jupyter widgets can be deeply integrated with the MMT knowledge
management facilities to give semantics-aware interaction facilities.

1 Introduction

Mathematical software systems need to support two kinds of user interface
paradigms. Firstly, mathematical documents have been very successful for pre-
senting mathematical knowledge. While there have been efforts to make them
modular and interactive, they predominantly remain in the mode of archiving
and transporting knowledge in Mathematics. Secondly, notebook interfaces focus
on REPL (Read/Eval/Print Loop) interaction leading to documents consisting
of a sequence of computational cells within which the mathematical discourse is
interspersed in the form of rich comments. A “literate programming” version of
notebooks which gives mathematical discourse structural precedence is possible
in principle but has not been supported consistently at the system level.

A combination of both of these paradigms almost immediately leads to new
applications. One such application is the interaction with document-based sys-
tems, such as MMT, within a REPL. The MMT tool ecosystem only really
supported IDE-interaction with MMT libraries via Edit and (recently) IntelliJ
IDEA plugins. While the MMT system provides a simple shell for interaction,

this was only used for configuration and setup of the MMT process. We antici-
pate that the REPL-like interaction will feel more natural for users of interactive
theorem provers and computer algebra systems.

Goals and Challenges Static documents do not allow for interactivity, and note-
book approaches require significant programming knowledge to use. Our goal is
to overcome these restrictions to enable domain experts to created interactive
documents declaratively. This leads us to two challenges

i) How can we combine the notebook and document paradigms?
ii) How can we support flexible interactions without forcing authors to pro-

gram?
Traditionally, flexible interactions in (web) documents are handled by applets,
small, document-embedded programs providing specialized functionality. Mod-
ern notebook systems such as Jupyter, which we introduce in more detail below,
provide the concept of widgets which provide applet-like functionality, but their
combination into interactions still requires non-trivial programming.

Contribution We present an integration of Jupyter Notebooks into the MathHub
platform for hosting semantic, active documents. MathHub offers versioned per-
sistent storage for semantically enhanced mathematical documents and knowl-
edge representations. These are unified into the OMDoc/MMT format and loaded
into a cross-document-format mathematical knowledge space managed by the
MMT system (written in Scala). MathHub is a web frontend for showing OM-
Doc/MMT content as (largely static) mathematical documents. Jupyter offers
a uniform interface to various computation facilities in the form of a read-eval-
print loop (REPL), which can be seen as dynamic, ephemeral documents. The
system consists of a general, feature-rich browser-based REPL interface that
communicates to a system-specific backend, called a Jupyter kernel that supplies
the computational capabilities. Such a kernel either connects the native system
REPL via a generic Python kernel or uses language-specific network libraries.

Generally, the integration of MathHub and Jupyter consists of two challenges:
i) the integration of the document paradigms and user interfaces and

ii) the integration of the knowledge management and computation services.
The latter requires defining the semantics of the mathematical knowledge main-
tained in the user interfaces, and both Jupyter and MathHub are parametric in
this semantics. In Jupyter, a separate kernel must be provided for each concrete
language. In particular there are separate kernels for all computation systems
used in OpenDreamKit. In MathHub, the determination of the semantics is del-
egated to the MMT system. This paper describes progress in both integration
challenges.

Overview In Section 2, for the integration of services, we present an MMT
kernel for Jupyter. This not only makes the MMT functionality available at the
Jupyter level, but also deeply integrates Jupyter widgets with the MMT Scala
level. Widgets are a key Jupyter feature that reaches far beyond the standard
REPL interaction. For instance, the Jupyter community has developed a large

2

array of widgets for interactive 2D and 3D visualization of data in the form of
charts, maps, tables, etc.

In Section 3, for the integration of document paradigms, we first show how
to extend MathHub with a Jupyter server that allows viewing notebooks stored
in MathHub. Then we present a MathHub feature that allows using interactive,
ephemeral Jupyter Notebooks as subdocuments of static mathematical docu-
ments, e.g., HTML pages generated from scientific articles.

In Section 4, we present two case studies that evaluate our results: in-document
computing facilities in active documents and a knowledge-based specification di-
alog for modeling and simulation. Section 5 concludes the paper.

Acknowledgements We acknowledge financial support from the OpenDreamKit
Horizon 2020 European Research Infrastructures project (#676541). The au-
thors gratefully acknowledge the support of the Jupyter team and in particular
the advice of Benjamin Ragan-Kelly. The MoSIS system was developed in col-
laboration with Theresa Pollinger [PKK18].

2 Jupyter Notebooks for MMT

Jupyter notebooks consist of a sequence of cells; each of which contains either rich
text or code that can be evaluated. The Jupyter user interface is implemented
using TypeScript in the browser. The backend is implemented in Python and
delegates the programming-language specific features to so-called kernels via a
networking protocol. Each kernel works exactly like a REPL, that is to say they
receive the user input of the code cells and produce output to be presented
to the user. Additionally, kernels can implement custom interactions using wid-
gets, consisting of re-usable user interface components that communicate directly
with the kernel. Kernels for a specific programming language are typically im-
plemented in that programming language, to ease implementation and make use
of existing tool support. For details we refer the reader to [JD].

We designed and implemented a Jupyter kernel for MMT. The source code
is available at [MMTJup17]. We describe the requirements of an MMT REPL in
Section 2.1, its interface in Section 2.2, the implementation in Section 2.3 and
our conversion between MMT data structures and notebook in Section 2.4. In
Section 2.5, we describe and discuss our implementation of widgets within our
kernel.

2.1 A REPL for MMT

MMT differs from typical computational engines in Jupyter in that it does not
only (and not even primarily) perform computation but also handles symbolic
expressions with uninterpreted function symbols whose semantics is described by
logical axioms. Another important difference is how MMT handles context and
background knowledge. Kernels for (mathematics-oriented or general purpose)
programming languages, as typical in Jupyter, build and maintain a dynamic

3

context of declarations with imperative assignment and stack-oriented shadow-
ing and rely on a fixed — often object-oriented — background library of compu-
tational functionality. MMT, on the other hand, uses graphs of inter-connected
theories to represent a multitude of possible contexts and background libraries
to move knowledge between contexts. To adequately handle these subtleties, we
systematically specified a new interface for Jupyter-style interactions with MMT.

Monoid

U, op, e, unit

CGrp

i, inv, comm

Ring

dist add
mul

Fig. 1. Rings in MMT

Example MMT uses theory graphs to model math-
ematical knowledge (see Figure 1). This theory
graph shows two kinds of inheritance mechanisms in
MMT: commutative groups (theory CGrp) include
monoids (Monoid), inheriting all Monoid objects
(the universe U, the operationop, and the unit ele-
ment e) and the unit axiom unit. Rings are formed
by combining a (multiplicative) monoid with an
(additive) commutative group. Inclusion roughly corresponds to class inheritance
in object-oriented programming, while MMT structures duplicate material. Here
the operation op from Monoid forms both addition (+ = add/op) and multipli-
cation (∗ = mul/op) in a ring and the Monoid unit becomes both zero (add/e)
and the one elements (mul/e) of the ring.

The MMT system is usually used to answer queries such as computing partic-
ular, inherited ring axioms: x+ 0 = x and x∗1 = x or determining the theorems
and axioms of (i.e. inherited into) a theory.

2.2 Interface and Sessions

On top of the notebook abstraction, Jupyter interactions are managed in ses-
sions: every browser page opening a notebook creates a new session.

MMT already has an abstraction that can closely model a notebook, called
a document. In MMT terms, a document is a narrative construct that contains
a sequence of declarations. For details, see the MMT documentation at [MMT].
Each input within the Jupyter session can be represented as a single declaration
within the corresponding document; see Section 2.4 for further applications of
this mapping.

Thus it makes sense to represent each session as an ephemeral MMT docu-
ment. We call an MMT document ephemeral, iff it is (at least initially; it can
be serialized and saved) created only in memory in the MMT process; apart from
this, it behaves like any other MMT document. This gives each session a unique
MMT URI, which in turn allows full referencing of all document components.
All commands executed within a session manipulate the associated document,
most importantly by interactively creating new theories and then calling MMT
algorithms on them. The latter include but are not limited to computation.

Input The possible inputs accepted by the MMT kernel come in three groups.

4

1. Global management commands allow displaying and deleting all current
sessions. In practice, these commands are typically not available to common
users, which should only have access to their own session.

2. Local management commands allow starting, quitting, and restarting
the current session. These are the main commands issued by the frontend in
response to user action.

3. Content commands are the mathematically meaningful commands and
described below.

The content commands are again divided into three groups:

1. Write-commands send new content to the MMT backend to build the
current MMT document step by step. The backend maintains one implicit,
ephemeral MMT document for each session, and any write command changes
that document.

2. Read-commands retrieve information from the backend without changing
the session’s document. These include lookups (both in the session document
and in any other accessible document) or computations.

3. Interactive-commands that create a new user interface component allow-
ing the user to interactively read and write MMT content. In the Jupyter
system these are implemented as widgets which extend the REPL-paradigm;
see Section 2.5.

A write-command typically consists of a single MMT declaration roughly
corresponding to a line in a typical MMT source file. However, the nesting of
declarations is very important in MMT. This is in contrast to many programming
language kernels where nesting is often optional, e.g., to define new functions
or classes; for many current kernels, it makes sense to simplify the implementa-
tion by requiring that the entire top-level command, including any nesting, be
contained in a single cell.

In our MMT kernel, all declarations that may contain nested declarations
(most importantly all MMT documents and theories) are split into parts as fol-
lows: the header, the list of nested declarations, and a special end-of-nesting
marker. Each of these is communicated in a separate write-command. The se-
mantics of MMT is carefully designed in such a way that i) any local scope
arising from nesting has a unique URI, and ii) if a well-formed MMT document
is built incrementally by appending individual declarations to a currently open
local scope, any intermediate document is also well-formed. This is critical to
make our implementation feasible: the MMT kernel maintains the current doc-
ument as well as the URI of the current scope; any write-command affects the
current scope, possibly closing it or creating new subscopes. This ensures that
all nested declarations are parsed and interpreted in the right scope.

For example, the sequence of commands on the left of Figure 2 builds two
nested theories, where the inner one refers to the type a declared in the outer
one. The right-hand side of Figure 2 shows the equivalent MMT surface syntax
on the right. Semantically, there is no difference between entering the left-hand

5

Fig. 2. Content Commands for Building Theory Graphs

side interactively via our new kernel or processing the write commands on the
right with the standard MMT parser.

An additional special write-command is eval T. It interprets T in the cur-
rent scope, infers its type A, computes its value V, and then adds the declaration
resI:A=V to the current theory, where I is a running counter of unnamed dec-
larations. This corresponds most closely to the REPL functionality in typical
Jupyter kernels.

While write-commands correspond closely to the available types of MMT
declarations, the set of read-commands is extensible. For example, the commands
get U where U is any MMT URI returns the MMT declaration of that URI.

Output The kernel returns the following kinds of return messages:

1. Admin messages are strings returned in response to session management
commands.

2. New-element messages return the declaration that was added by a write-
command.

3. Existing-element messages return the declaration that was retrieved by
a get command.

Like read-commands, the set of output messages is extensible. The new-
element and existing-element messages initially return the declaration in MMT’s
abstract syntax. A post-processing layer specific to Jupyter renders them in
HTML5+MathML (presentation). That way, the core kernel functionality can
be reused easily in frontends other than Jupyter.

2.3 Implementation

Generally, Jupyter emphasizes protocols that specify the communication be-
tween frontend and backend.

Executing the user commands requires a strong integration with the MMT
system, which is implemented in Scala. Even though a Jupyter Scala kernel

6

exists, we implement the MMT kernel on top of the Jupyter Python kernel
infrastructure which is by far the best developed one. We implement all Jupyter-
specific functionality, especially the communication and management, in Python,
while all mathematically relevant logic is handled in Scala.

Our implementation consists of three layers. The top layer (depicted on the
left of Figure 3) is a Python module that implements the abstract class for
Jupyter kernels. The bottom layer is a Scala class adding a general-purpose
REPL to MMT that handles all the logic of MMT documents. This can be reused
easily in other frontends e.g., the IntelliJ IDE plugin for MMT. User commands
are entered in the front-end and sent to the top layer, which forwards all requests
to the bottom layer and all responses from the bottom layer to the client. The
communication between the top and bottom layer is handled by a middle layer
which bridges between Python and MMT, formats results in HTML5, and adds
interactive functionality via widgets.

This bridging of programming languages is a generally difficult problem. We
chose to make use of the Py4J library [P4J], a Python-JVM bridge that allows
seamless interaction between Python and any JVM-based language (such as
Scala). Thus, our Python kernel can call MMT code directly. Valuable Py4j
features include callbacks from MMT to Python, shared memory (by treating
pointers to JVM objects as Python values), and synchronized garbage collection.
That allows our kernel to directly and easily benefit from future improvements to
the MMT backend, without needing to duplicate these improvements in kernel-
specific code.

As Py4J works at the Java/JVM level, we provide a Python module that
performs the bureaucracy of matching up advanced Python and Scala features.
This is distributed along with the Jupyter Kernel.

2.4 Converting between Jupyter Notebooks and MMT Documents

Recall that we were to closely model each notebook as an MMT document. To
integrate Jupyter notebooks and MMT documents, we make use of two fortunate
design properties:

Firstly, the Jupyter notebook format is well-documented [JND]. We imple-
mented an OMDoc/NB API in MMT that can extract the MMT content of a
notebook and generate a notebook pre-filled with some MMT content.

Secondly, MMT abstracts from the file formats for MMT documents – e.g.
MMT’s native surface syntax, STEX, or prover libraries – and maintains a cross-
format document space of any document that can be converted into OMDoc.
The OMDoc/NB API to adds Jupyter notebooks into this. Thus, we can support
the following workflow:
1. MMT content is written in any format and available as OMDoc.
2. A new interactive notebook is written, using some of that content.
3. The notebook is stored as a file and MMT extracts the relevant content as

OMDoc.
4. Any other MMT document (including other notebooks) can now use this

content.

7

2.5 Graphical User Interfaces via Jupyter Widgets

Jupyter widgets are interactive GUI components (e.g., input fields, sliders, etc.)
that allow Jupyter kernels to provide graphical interfaces. While the concept is
general, it is most commonly used to refer to the Python-based widget library
developed for the Python kernel. A widget encapsulates state that is maintained
in an instance of a Python class on the server and displayed via a corresponding
Javascript/HTML component on the client. A major advantage of our kernel
design is that we can reuse these widgets directly in Scala using PY4J (in the
top layer)

As our kernel’s intelligence is maintained in MMT and thus Scala, we had to
write some middle layer code to allow our kernel to create widgets. This code
uses Py4J to expose the widget-management functionality of the top layer to
the lower layers. This is done via a class of callback functions C that are passed
along when the former calls the latter.

Fig. 3. Architecture diagram. Steps that simply forward data from one layer to the
next are not shown explicitly.

Figure 3 shows the details of the communication. The upper part shows
the simplest (widget-less) case: MMT content is entered in the frontend and
forwarded to the bottom layer, and the response is forwarded in the opposite
direction.

8

The lower part shows a more complex widget-based interaction. First of all,
we add special management commands that are not passed on to the GUI-
agnostic bottom layer. Instead, they are identified by the middle layer, which
responds by delegating to a GUI application. This application then builds its
graphical interface by calling the callbacks passed along by the top layer. This
results in a widget object in Python that is returned to the top layer and then
forwarded to the frontend.

As usual, GUI components may themselves carry callback functions for han-
dling events that are triggered by user interaction with the GUI in the frontend.
While conceptually straightforward, this leads to an unusually deep nesting of
cross-programming language callbacks. When creating a widget, the Scala-based
GUI application may pass Scala callbacks whose implementation makes use of
the callbacks provided by the top layer. Thus, a user interaction triggers an
MMT callback in the Python top layer, which is executed on the Scala side via
Py4J, which in turn may call the Python callbacks exposed via Py4J.

Example: In-Document Computation We present an example of a GUI applica-
tion inside of a notebook. We will later use this widget for active in-document
computation. Figure 4 presents a simple example.

Fig. 4. An Active Computation widget in a Notebook via
Jupyter/MMT Widgets

This notebook first
defines a new theory (in
In[1]), called Addi-
tionExample. This the-
ory makes use of the
MMT implementation
of real number arith-
metics.

Our widget is then
triggered in In[2] by
the special command
active computation. It
takes two parameters, a
list of variables (here a and b) and a term (here a + b).

These parameters are sent to the middle layer of our MMT kernel (see again
Figure 3). This Scala code then parses the parameters (using the bottom layer),
and instructs the middle layer to create a label and a text field for each vari-
able. Furthermore, it also instructs the python code to create a button labeled
Simplify and registers a callback inside the Scala code to be executed when the
button is pressed. The labels, input fields and the button being used here are
standard Jupyter widgets.

In our case the user has already entered some terms, 1.2 for a and 2.3 for b,
and already clicked the Simplify button. This triggered the previously registered
callback in the middle layer. The function first used the bottom layer to parse
the terms inside the input fields. It then substituted the results into the original
term a + b. The result of this substitution (in this case 1.2 + 2.3) was then

9

simplified (again using bottom layer code). This resulted in the final output of
3.5.

The important take-away here is not the difficulty of the computation1; it
is the seamless integration between the frontend, top, middle and bottom layer
code. This example demonstrates that our design makes it very easy to build
and deploy simple GUI applications for MMT — we still have the full power of
Jupyter widgets at our fingertips.

3 Jupyter Notebooks in MathHub

We now discuss the integration of Jupyter Notebooks into the MathHub system.

3.1 Overview

The Jupyter-extended MathHub system consists of four components:

1. A GitLab repository hosting server https://gl.mathhub.info that pro-
vides persistent storage of documents in any format, including their OMDoc
representation.

2. A Jupyter Notebook server https://jupyter.mathhub.info provides web-
based IDE for editing interactive documents

3. An MMT instance which uses the OMDoc representations to provides the
shared knowledge space and provides a high-level API for it2.

4. The MathHub frontend https://mathhub.info that serves as the main en-
try point and delegates some subtasks to the former. We have extended
MathHub front-end with a new document type presenter for notebooks that
gives access to the source, context, statistics, and metadata of notebooks,
and provides a “preview” and “interact inline” views.

The Jupyter server is an out of the box installation of Jupyter except for addi-
tionally supporting our new MMT kernel and a small plugin enabling smoother
opening of notebooks via a URL. Consequently, the integration between the
Jupyter and the MathHub frontends is shallow: MathHub opens Jupyter Note-
books in separate tabs or iframes using URLs served by Jupyter.

1 In our current implementation we compute using MMT, which models it of using
term simplification. However in principle it is possible to use any kind of computation
engine here. We want to integrate the active computation widget with our work on
the Math-In-The-Middle paradigm (such as in [D6.518]) which would be ideally
suited for further applications.

2 Technically, each kernel has a separate MMT instance in addition to the primary one.
Except for the ephemeral document representing each Notebook, these are identical
to the main instance. These exist only to isolate different users from one another,
and prevent scenarios where they could unintentionally break each others notebook
sessions.

10

https://gl.mathhub.info
https://jupyter.mathhub.info
https://mathhub.info

3.2 Notebooks as Parts of Semantic Documents

To interact dynamically with content in arbitrary MathHub documents, we can
make use of the active computation widget presented in Section 2.5. For this
purpose we implemented a new feature that creates a new ephemeral Jupyter
Notebook and allows accessing it from the current document. Importantly, the
new Notebook is pre-filled with an import of the current context.

<h2>Mass−energy equivalence</h2>
<div data−theory=”?MEC”>
<p>The energy
<math data−declares=”E”><mi>E</mi></math>
... The speed of light in vacuum ...
<math data−declares=”c”><mi>c</mi></math> ...
</p>
<p>We can now define Einsteins formula as
$E=mcˆ2$.</p>

</div>

Fig. 5. A semantic HTML document and an abbreviated version of the source code

Figure 5 shows a (simplified) scientific HTML document (on the left) and an
extract of its source code (on the right). The document contains the equation
E = mc2. The user can use the context menu to trigger the notebook generation
on this formula.

This scientific document is semantically annotated. Most notably, the for-
mula that the user can interact with defines the variables that the user might
want to interactively change using the data-declares attribute. Futhermore,
the document contains a reference to an MMT context (using the data-theory

attribute). This gives semantic meaning to the formula.

Fig. 6. The resulting Jupyter notebook/widget

The context menu is
generated using JavaScript
that picks up on these an-
notations. Currently the
author has to manually
create the formula and
context annotations, but
we are working on a
mechanism to automati-
cally create it from the
document context. The
data is then sent to our
Jupyter installation us-

ing appropriate URL parameters.

11

Figure 6 shows the notebook created by our tool. This notebook starts with
an include declaration of the document context. These are generated by our
tool to obtain a minimal standalone MMT theory in which the respective formula
is well-formed. The notebook then directly instantiates the active computation
widget we presented above using the parameters extracted from the document.

In this demonstration we directly show the Jupyter Notebook to the user
in a separate window. If desired, the notebooks can be easily uploaded to the
Jupyter server, stored persistently in the repository server, or evaluated in a
locally deployed version of the system per drag-and-drop.

4 Applications

The immediate application of the Jupyter/MMT integration presented in this
paper is interacting with MMT in a REPL. The MMT tool ecosystem only really
supported IDE-interaction with MMT libraries via JEdit and (recently) IntelliJ
IDEA plugins. While the MMT system provides a simple shell for interaction,
this was only used for configuration and setup of the MMT process. We anticipate
that the REPL-like interaction will feel more natural for users of interactive
theorem provers and computer algebra systems. Even for the new MathScheme-
style of specifying theory graph libraries via theory combinators [SR19] e.g.,

semigroup = extend magma by {assoc: ` ∀a, b, c : G.a ◦ (b ◦ c) = (a ◦ b) ◦ c}

is well-suited to development/experimentation in a REPL followed by generating
an OMDoc file from the recorded notebook.

4.1 Towards a Virtual Research Environment based on the
Math-in-the-Middle Paradigm

Another direct application is in the context of the OpenDreamKit project, which
integrates various independently developed computational engines into a math-
ematical virtual research environment following the Math-in-the-Middle (MitM)
approach [Deh+16]. This uses the MMT language for formalizing mathematical
background knowledge (which we store in MathHub documents of type MMT)
and the MMT system for integrating computation tools. Therefore, Jupyter-
MMT notebooks can serve as a unified user interface for MitM systems.

For example, consider the theory3 in Figure 7, which serves as our standard
example for the interaction between MMT and LMFDB (a large database of
mathematical objects that was integrated with MMT in previous deliverables of
OpenDreamKit). We can now rewrite it as a notebook.

A screenshot of the resulting notebook, as displayed by a Jupyter server
running our MMT kernel, is shown in Figure 8.

3 Available at https://gl.mathhub.info/ODK/lmfdb/blob/master/source/

schemas/tutorial_example.mmt

12

https://gl.mathhub.info/ODK/lmfdb/blob/master/source/schemas/tutorial_example.mmt
https://gl.mathhub.info/ODK/lmfdb/blob/master/source/schemas/tutorial_example.mmt

Fig. 7. A Theory for LMFDB/MMT Interaction

The selected dec-
laration of mycurve

accesses the elliptic
curve 11a1 that is
stored in LMFDB.
When the Jupyter
kernel for MMT pro-
cesses this command,
the bottom layer of
the kernel dynami-
cally retrieves this
curve from LMFDB
and builds from it
an object of type
elliptic curve in the
MitM ontology.

Fig. 8. The Beginning of the Notebook for the theory from Figure 7

4.2 Domain specific applications e.g., MoSIS

Our second case study addresses a knowledge gap that is commonly encoun-
tered in computational science and engineering: To set up a simulation, we need
to combine domain knowledge (usually in terms of physical principles), model
knowledge (e.g., about suitable partial differential equations) with simulation
(i.e., numerics/computing) knowledge. In current practice, this is resolved by
intense collaboration between experts, which incurs non-trivial translation and
communication overheads. With the infrastructure presented in this paper, we
can do better. In fact, the MoSIS application was developed in parallel to our
Jupyter/MathHub integration and MoSIS requirements helped inform the the

13

development. We have ported the original version [PKK18] to the new infras-
tructure, simplifying and extending it in the course. All in all, the interaction
part of the MoSIS project would now be a straightforward software development
exercise instead of a contribution of its own.

Layer 0

Simulation

Q: What is the domain?
A: . . .
...
Q: What are the PDEs?
. . .

The solution according to
ExaStencils looks like this:
...

interview application

MMT system

Flexiformal and
formal background

knowledge

Model
description

MMT system

user

configuration
files

Layer 1 : Continuous model

Layer 2 : Discretization

Layer 3: Solution algorithm

Layer 4: Application specification

ExaStencils application simulation
results

query

OK
omdoc

generate

helps design

produce

Fig. 9. MoSIS Information Architecture and Dialogue

Concretely, MoSIS uses a Jupyter notebook that has access to an MMT the-
ory graph on MathHub.info. Our Jupyter/MMT/MathHub integration enabled
building an interview application that hides these mathematical details from the
user.

Based on this theory graph, we built a targeted knowledge acquisition dialog
that supports the formalization of domain knowledge, combines it with simu-
lation knowledge and finally drives a simulation run — all integrated into a
Jupyter Notebook. Figure 9 shows the general architecture: The left side shows
the simulation engine ExaStencils [EXA] and the MMT system that acts as the
theory graph interface. The right hand side shows the interview — a Jupyter
notebook — as the active document and how it interacts with the MMT ker-
nel. The user only sees the notebook. She answers the knowledge acquisition
questions presented by MoSIS until MoSIS can generate a configuration file for
ExaStencils. The latter builds efficient code from it through the ExaSlang layers
and computes the results and visualizations, which MoSIS in turn incorporates
into the notebook.

5 Conclusion and Future Work

We have presented an integration of two interaction paradigms in mathemat-
ical software systems: document-based and computation-oriented interactions.
Concretely, we have implemented an integration of three systems: Jupyter for

14

computation/experimentation in notebooks and MathHub for interactive mathe-
matical documents as well as MMT for describing the semantics of the knowledge
contained in the former. We have evaluated the reach of the evaluation in several
case studies.

Even though the work presented in this paper lays the foundation towards
an integration of the static/dynamic paradigms for the interaction with mathe-
matical knowledge, at lot of practical enhancements remain for future work. We
sketch the most important ones here:

Deeper MathHub/Jupyter Integration e.g., using Jupyter simply as a JavaScript
library in MathHub. This would have been preferable to the current iFrame-
based integration, but is infeasible because Jupyter is primarily designed as a
monolithic system. Recent versions of Jupyter are working towards a Jupyter-
as-a-module design, so we leave deep integration to future work.

IDE Support for Documents with Active Computation Currently, the semantic
documents like the one in Figure 5 have to be manually extended by the pertinent
semantic annotations. An extension of the STEX framework would allow authors
e.g., of educational documents to directly manage the annotations in the LATEX
sources.

REPL Cells/Documents as first-class citizens in MMT We already use the
notebook-to-MMT-document isomorphism in our system. A first-class model
of REPL cells in MMT – this will need a considerable language design effort –
would allow to strengthen this isomorphism and refactor our system. We expect
that first-class REPL cells in MMT would allow enhanced IDE support for MMT
notebooks.

More Flexible Active Computation The current widget is relatively inflexible
in terms of the objects it allows to change for computation. In principle, all
variables and constants from the context could be used. We will need more user
experience to generalize our current design.

TGView/Notebook Integration The MMT Jupyter kernel is fundamentally co-
dependent on the background theory graph. Therefore we want to explore an
integration of the TGView graph viewers [MKR] into the Jupyter front-end.
Both Jupyter and TGView are based on REACT.JS, so this should be feasible

Mathematical Search on Notebooks Last, but not least, we want to extend math-
ematical search on MathHub to Jupyter notebooks by extending the MathWeb-
Search harvester accordingly.

15

References

[D6.518] John Cremona et al. Report on OpenDreamKit deliverable D6.5:
GAP/SAGE/LMFDB Interface Theories and alignment in OM-
Doc/MMT for System Interoperability. Deliverable D6.5. Open-
DreamKit, 2018. url: https://github.com/OpenDreamKit/
OpenDreamKit/raw/master/WP6/D6.5/report-final.pdf.

[Deh+16] Paul-Olivier Dehaye et al. “Interoperability in the OpenDreamKit
Project: The Math-in-the-Middle Approach”. In: Intelligent Com-
puter Mathematics 2016. Ed. by Michael Kohlhase et al. LNAI
9791. Springer, 2016. isbn: 978-3-319-08434-3. url: https://
github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/

CICM2016/published.pdf.
[EXA] Advanced Stencil-Code Engineering (ExaStencils). url: http:

//exastencils.org (visited on 04/25/2018).
[JD] What is Jupyter. url: http://jupyter-notebook-beginner-

guide.readthedocs.org/en/latest/what_is_jupyter.html

(visited on 08/22/2017).
[JND] The Jupyter Notebook Format. url: https://nbformat.readthedocs.

io/en/latest/ (visited on 03/13/2018).
[MKR] Richard Marcus, Michael Kohlhase, and Florian Rabe. “TGView3D

System Description: 3-Dimensional Visualization of Theory Graphs”.
url: https://kwarc.info/kohlhase/submit/tgview3D.pdf.

[MMT] Florian Rabe. The MMT System. url: https://uniformal.
github.io/doc/ (visited on 07/16/2014).

[MMTJup17] Tom Wiesing and Kai Amann. mmt jupyter kernel: A Jupyter
kernel for MMT. Oct. 16, 2017. url: https://github.com/
UniFormal/mmt_jupyter_kernel (visited on 11/08/2017).

[P4J] Py4J. url: https://www.py4j.org/ (visited on 07/16/2018).
[PKK18] Theresa Pollinger, Michael Kohlhase, and Harald Köstler. “Knowl-

edge Amalgamation for Computational Science and Engineer-
ing”. In: Intelligent Computer Mathematics (CICM) 2018. Ed.
by Florian Rabe et al. LNAI 11006. Springer, 2018. isbn: 978-3-
319-96811-7. doi: 10.1007/978-3-319-96812-4.

[SR19] Yasmine Sharoda and Florian Rabe. “Diagram Operators in MMT”.
In: Intelligent Computer Mathematics (CICM) 2019. Ed. by Cezary
Kaliszyck et al. in preparation. 2019.

16

https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.5/report-final.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.5/report-final.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
http://exastencils.org
http://exastencils.org
http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/what_is_jupyter.html
http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/what_is_jupyter.html
https://nbformat.readthedocs.io/en/latest/
https://nbformat.readthedocs.io/en/latest/
https://kwarc.info/kohlhase/submit/tgview3D.pdf
https://uniformal.github.io/doc/
https://uniformal.github.io/doc/
https://github.com/UniFormal/mmt_jupyter_kernel
https://github.com/UniFormal/mmt_jupyter_kernel
https://www.py4j.org/
https://doi.org/10.1007/978-3-319-96812-4

	Integrating Semantic Mathematical Documents and Dynamic Notebooks
	1 Introduction
	2 Jupyter Notebooks for MMT
	2.1 A REPL for MMT
	2.2 Interface and Sessions
	2.3 Implementation
	2.4 Converting between Jupyter Notebooks and MMT Documents
	2.5 Graphical User Interfaces via Jupyter Widgets

	3 Jupyter Notebooks in MathHub
	3.1 Overview
	3.2 Notebooks as Parts of Semantic Documents

	4 Applications
	4.1 Towards a Virtual Research Environment based on the Math-in-the-Middle Paradigm
	4.2 Domain specific applications e.g., MoSIS

	5 Conclusion and Future Work

