
Knowledge Amalgamation for Computational
Science and Engineering

Theresa Pollinger, Michael Kohlhase, and Harald Köstler

Computer Science, FAU Erlangen-Nürnberg

Abstract. This paper addresses a knowledge gap that is commonly en-
countered in computational science and engineering: To set up a simula-
tion, we need to combine domain knowledge (usually in terms of physi-
cal principles), model knowledge (e.g. about suitable partial differential
equations) with simulation (i.e. numerics/computing) knowledge. In cur-
rent practice, this is resolved by intense collaboration between experts,
which incurs non-trivial translation and communication overheads.
We propose an alternate solution, based onmathematical knowledge man-
agement (MKM) techniques, specifically theory graphs and active docu-
ments: Given a theory graph representation of the domain, model, and
background mathematics, we can derive a targeted knowledge acquisition
dialogue that supports the formalization of domain knowledge, combines
it with simulation knowledge and – in the end – drives a simulation run –
a process we call MoSIS (“Models-to-Simulations Interface System”). We
present the MoSIS prototype that implements this process based on a
custom Jupyter kernel for the user interface and the theory-graph-based
Mmt knowledge management system as an MKM backend.

1 Introduction and Motivation

Computational science and engineering (CSE) deals with the development and
application of computational models and simulations, often coupled with high-
performance computing, to solve complex physical problems arising in engineer-
ing analysis and design (computational engineering) as well as natural phenom-
ena (computational science). CSE has been described as the “third mode of
discovery” (next to theory and experimentation). Computer simulation provides
the capability to enter fields that are either inaccessible to traditional experi-
mentation or where carrying out traditional empirical inquiries is prohibitively
expensive.

However, CSE as an interdisciplinary field requires a mixture of three fields of
expertise, a skillset that is difficult to acquire and for which university programs
are only now being established [Rü+16]. Thus at the heart of CSE resides a
knowledge management problem where
1. domain knowledge – information and intuition about real-world processes

– has to be combined with
2. model knowledge – i.e. how to express and describe the underlying re-

lationships and processes in the domain with mathematical constructs, e.g.
partial differential equations and

3. simulations knowledge on how to get accurate and efficient numerical
approximations;

The disciplinary boundaries in CSE – see the clover leaf in Figure 1 for an illus-
tration – do not fully align with these knowledge categories. Indeed, for many
problems, CSE practicioners1 will act as interpreters for application domain ex-
perts who usually know the problem to be simulated well and are mathematically
literate. They coordinate with the domain experts on and via the models and
provide the simulations expertise needed for the particular application.

We address the mathematical knowledge management (MKM) problem in-
volved with “Mathematical Modeling and Simulation” (MMS) – a synonym for
CSE that puts more emphasis on the modeling part. Following the MaMoReD
(Math Models as Research Data) approach [KKMT17], we meta-model CSE/MMS
knowledge using logical constructions such as as theory graphs and CSE/MMS
practices like knowledge application as actions (e.g. pushout constructions).

Application
Domain

Simulations
Expertise

Numerics
Research

Simulations
Practice

MoSIS

Fig. 1. Disciplines in Simulations Practice

Contribution In this paper, we
show how existing MaMoReD the-
ory graphs (see Section 2.1) can
be utilized to solve the knowl-
edge amalgamation problem inher-
ent in the collaboration of do-
main experts and computational en-
gineers. We discuss how theory
graph structure can be exploited
to automate the application knowl-
edge acquisition processes (“Models-
to-Simulations Interface System”) to
drive simulation tools directly – which
is why MoSIS is situated at exactly
the intersection of Application and Simulations Expertise in Figure 1. We dis-
tinguish persistent background knowledge that can be collected and curated in
knowledge bases by the wider CSE community from ephemeral, application-
specific knowledge that does not transfer to other situations.

To show the feasibility of the MoSIS approach, we implemented MoSIS
1.0, a simple interactive interface to the domain-specific language ExaSlang for
the specification of PDEs and stencil-based algorithms. MoSIS 1.0 allows the
user to generate both a flexiformal representation of their PDE model as well
as its numerical solution. Furthermore, we explore other possible applications of
knowledge management tools in mathematical modeling.

Overview This paper is a refined and condensed version of [Pol17], to which we
refer for details and code. Section 2 sets up the running example, introduces the

1 For this paper we disregard numerics research, which is advancing the available meth-
ods, as this largely is an off-line process that is motivated by concrete applications,
but not invoked on a per-problem basis.

MaMoRed paradigm of “Mathematical Models as Research Data”, and discusses
the knowledge gap encountered with the solver ExaStencils. Section 3 presents
a theory graph for the knowledge of our running example discusses the MoSIS
prototype. Section 4 wraps up our findings and provides an outlook.

2 Meta-Modeling and Simulation

2.1 The MaMoReD Approach

We follow the MaMoReD approach – “Mathematical Models as Research Data”
[KKMT17; Kop+18] – of explicitly representing mathematical models to enable
computer support of CSE practices. Concretely, the model, all its assumptions,
and the mathematical background in whose terms the model is defined, are
represented as as a flexiformal theory graph (see Section 2.3). This can serve as
a flexiformal documentation of the ideas and maths used in a project and can also
be processed and compared computationally. However, it is fair to ask whether
the benefits really outweigh the costs of creating the theory graph representation
in practice. We work towards an affirmative answer by showing that MaMoReD
theory graphs support added-value services for CSE: bridging the gap between
problems and simulations.

To fortify our intuition, consider the following problem, which we will use as
a running example throughout the paper:

Running Example (One-Dimensional Heat Conduction Problem)

a b

k1 k2

x

Fig. 2. Wall Schematics

Jen, an engineer, would like to simulate the heat
conduction through the walls of her house. Jen
knows basic physics in particular that heat dis-
tribution throughout a heated wall with constant
surrounding temperatures is described by Poisson’s
equation when simplified to the static case. In the
illustration, Figure 2, we see heating pipes going
through the wall – which is made from materials
of varying thermal conductivity k1, k2 – as well as
the warm air on its side a, and cold on b. Jen has
not worked with (thermal) simulations so far, but
is aware of the pitfalls involved. Luckily she has a
friend James who is a computational engineer. They
discuss the model (see Section 2.2), James inquires about the specific parameters,
and eventually uses them to set up an ExaStencils script, runs the simulation,
and together they interpret the results.
The problem can be extended to include time or coupled systems later on, but
Jen restricts herself to the static problem for the moment.

2.2 Poisson’s Equation

Poisson’s equation occurs in nature e.g. in electrostatics or in static heat conduc-
tion problems. Usually defining an unknown scalar function u : Ω 7→ R and an

integrable source term f : Ω 7→ R on the domain Ω ⊂ Rn, it can be represented
as

−∆u = f in Ω, (1)

where the second-order differential operator ∆, the Laplace operator, is de-
fined as the sum of the second order partial derivatives

∆ = ∂x1x1
+ ∂x2x2

+ · · ·+ ∂xdxd
(2)

in d dimensions. As we will visualize in the next paragraph, u is the unknown
temperature in our running example, and f is given as the heat transported into
the wall divided by the thermal conductivity.

To allow the Poisson equation to be a (uniquely) solvable boundary value
problem, we need to add boundary conditions imposed on u. For example,
u may need to be equal to some other function b

u = b in ∂Ω, (3)

as a Dirichlet boundary condition on all of the boundary ∂Ω. We can then
uniquely determine u as an element of the Sobolev space H1

b (Ω).

2.3 Theory Graphs

Theory graphs [RK13] are a conceptual format for representing mathematical
knowledge in a structured, modular form. They consist of theories, small units
of knowledge, and morphisms – truth-preserving mappings – between them.

Spatial Domain
Ω : type, n : N
Ω in Rn : ` Ω ⊂ Rn

Ω sc : ` Ω is connected

Rn

. . .
Topology
. . .

Differential Operators
∆ : {m : N}(Ω→ Rm)
→ (Ω→ R)

...

Calculus
...

Unknown
unknown type =

Ω→ Rm

Source
f : Ω→ R

Poisson’s Equation
PE = λu : unknown type.∆u

.
= f

Cuboid
cuboid : Rn → Rn → type # [a; b]× . . .× [y; z]
. . .

Wall cross-section over time
W : type = [0; 1]× [0; 1]

e :ϕ

Differential operators
on wall cross-section
laplacian wall : . . .

f :ψ Temperature
t type = Ω→ R

Thermal
Conductivity
k = 2

Volumetric
heat flow
g = λx. sin(x · π)

Heat equation

HE = λT : t type.(∂
∂t − k ·∆)T

.
= g

Static heat equation

static : λT : t type. ` ∂
∂tT

.
= 0

g :χ

ϕ =

n 7→ 1
Ω 7→W
Ω in Rn 7→ . . .
Ω sc 7→ . . .

χ =

include f, e
unknown type 7→t type
f 7→ − g

k
PE 7→ HE

Fig. 3. A Theory Graph Example: The Static Heat Equation (for Poisson’s Equation)

The most important theory morphisms for this paper are the inclusion
() and view () relations. Inclusions are equivalent to unnamed im-
ports in many programming languages, allowing to re-use symbols exactly as
they were defined. Views, however, map symbols to apply different concepts of
reasoning to the given situation, which in programming would be equivalent to
Python-style duck typing, a common example being the concept of “example”
itself.

For instance, in Figure 3 the Wall cross-section over time can be viewed as a
Spatial Domain, as all necessary symbols are mapped in the view e, effectively
making Wall cross-section an example of a Spatial Domain. Subsequently, every
item of knowledge that can be generally formulated in terms of the one can
then be applied to the other in particular, for example the Differential Operator
∆. This mode of knowledge generation is called a pushout and is ubiquitous
in mathematical reasoning. In Figure 3, we see the pushout for Differential op-
erators on wall cross-section denoted as a right angle with dot. Pushouts are a
convenient construction whenever they occur, as they can be automatically gen-
erated [CMR17]. This allows us to walk up the graph further, such that finally a
view g can be applied to see the Static heat equation as an instance of Poisson’s
Equation, which includes the views established earlier on.

To make theory graphs computationally usable, we express them in the Mmt
language (Meta Meta Toolset) [MMTa]. Concretely we base our formalizations
on the Math-in-the-Middle (MitM) foundation, a feature-rich higher-order
logic with dependent function and record types as well as predicate subtypes
and general subtyping. This choice of primitives is geared towards ease of rep-
resentation of mathematical knowlege without losing structure.

2.4 MoSIS: Creating ExaSlang Layer 0

Active
Document

Theory Graph

Layer 1 : Continuous model

Layer 2 : Discretization

Layer 3: Solution algorithm

Layer 4: Application specification

Layer 0 flexiformal

Fig. 4. MoSIS as ExaSlang Layer 0

In the ExaStencils project [EXA], the
external, multi-layered domain-specific
language (DSL) ExaStencils [Len+14;
Kös+17] is developed in order to sup-
port automatic code generation of
scalable and efficient numerical PDE
solvers. The code generator is imple-
mented in Scala and outputs e.g. paral-
lel C++ or CUDA code [KK16]. Algo-
rithms that can be expressed as stencils
include most finite difference methods
(FDM), which can be used to numeri-
cally solve e.g. Poisson’s equation on a
structured grid – computational grids
are restricted to structured ones that lead to highly performant stencil codes.

ExaSlang is built from different layers, cf. Figure 4, which represent a trans-
formation starting from an abstract continuous mathematical model (in Layer

1) down to the specifics of the application to be generated (in Layer 4). Espe-
cially Layer 1 is aimed at providing an intuitive interface for the mathematically
versed user.

But there are two obstacles for ExaSlang to be an interface for MMS practi-
cioners. Firstly, there is no interactive feedback when entering the PDE model;
problems are only encountered once everything is set up and the user tries to
compile and run the configuration.

Secondly, there is no input checking to ensure that the model is consistent in
itself and neither under- nor over-specified as to allow for a unique solution of the
PDE in the weak sense – or whether the (non-)existence of a unique solution may
even be provable. This kind of consideration is part of the typical CSE/maths
knowledge and is not easily represented on a low level of abstraction, such as
C++ code.

The underlying problem in both cases is that the transformation process from
– explicit or tacit – knowledge in the experts to program code is not structure-
preserving and not easily reversible; a problem that the language hierarchy in
ExaSlang is designed to mitigate. But practical experience shows that (at least)
another stepping stone is needed.

3 MoSIS: Combining MaMoReD and ExaStencils

We propose a “Layer 0” for ExaSlang that uses an active document [Koh+11]
for user interaction. It can use the theory graph, containing background knowl-
edge to guide the user through the model description process. The resulting pro-
gram can then translate the abstract model to ExaSlang Layer 1 code, which is
still human-readable and can be translated to highly performant solver code via
the ExaStencils tool chain. As a “by-product”, a high-level representation of the
mathematical model under consideration is generated.

In the following, we will call this idea MoSIS, the “Models-to-Simulations
Interface System”. The implementation we report on in this paper uses a Mmt-
based theory graph and the Jupyter notebook [JN] as basic active document
format. Building on the MaMoReD approach, we meta-model the process of
establishing a mathematical model as an actual dialog carried out between a
domain expert and a simulations expert. The main prerequisites for this are as
follows.

3.1 A Theory Graph for PDE knowledge

To evaluate MoSIS in our running example we Mmt-formalized a simple meta-
model of PDEs into a theory graph, cf. Figure 5.

At the base we see the more general mathematical concepts, such as the
Euclidean space Rn, arithmetics, calculus, etc. The specifics of PDEs come above
that, answering questions like “What do we expect of a domain? ” and “What are
the types of unknowns and the PDE itself? ”. The lower right corner contains

C
on

n
ected

S
u

b
set

S
:
ty
p
e,S
⊂
V

`
V

is
fi
n
ite

d
im

en
sio

n
a
l

`
S

is
co

n
n
ected

T
op

ology
...

C
on

n
ected

S
u

b
set

B
ou

n
d

ary
`
∂
S

is
th

e
b

o
u
n
d
ary

to
S

in
th

e
to

p
o
lo

g
ical

sen
se

R
n

D
om

ain
S
⊂

R
n

R
n

L
eb

esg
u
e

m
ea

su
re:

S
(⊆

R
n
)→

R

B
ou

n
d

ary
in

R
n

`
∂
S

=
n
−

1
d
im

en
sion

al
m

a
n
ifo

ld
in

R
n

(U
n

ion
s

of)
C

u
b

oid
s

in
R

n

f
rom

,to
:R

n

p
red

ica
te
S

:R
n
→
bool

=
[x

]∀
[i

:
1
...n

]x
i ≥

f
rom

i

∧
x
i ≤

to
i

C
u

b
oid

B
ou

n
d

ary
p
red

ica
te
∂
S

=
[x

]...

In
terval

fro
m

,
to

:
R

co
n
stru

cto
r

:
R
→

R
→
ty
p
e

#
[

1
;

2
]

n
7→

1

In
terval

B
ou

n
d

ary
p
red

ica
te
∂
S

=
[x

]
x
.=
f
rom

∨
x
.=
to

C
o

d
om

ain
co

d
om

ain
:

ty
p

e
(u

su
ally

R
m

)

U
n

kn
ow

n
u
n
k
n
ow

n
ty

p
e

=
d
om

ain
→

co
d
om

ain

P
aram

eter
t

:
ty

p
e

p
aram

eter
:

t

P
D

E
p

d
e

:
u
n
k
n
ow

n
ty

p
e
→

p
rop

ord
er

in
u
n
k
n
ow

n
:

P
D

E
→

u
n
k
n
ow

n
ty

p
e
→

N

D
iff

eren
tial

O
p

erators
d
iv

:
...

...

C
alcu

lu
s

...

B
ou

n
d

ary
C

on
d

ition
s

D
irich

let
:

u
n
k
n
ow

n
ty

p
e
→

(su
b
set

of)
∂
S
→

co
d
om

ain
→

p
rop

N
eu

m
an

n
:

...
...

B
C

s
req

u
ired

for
P

D
E

m
easu

re
of

B
C

s
req

u
ired

:
P

D
E
→
∂
S
→

u
n
k
n
ow

n
ty

p
e
→

L
eb

esgu
e

m
easu

re

L
in

ear
P

D
E

isL
in

ear
:`

...
E

llip
tic

P
D

E
isE

llip
tic

:`
...

E
llip

tic
L

in
ear

D
irich

let
B

ou
n

d
ary

V
alu

e
P

rob
lem

h
asB

C
sR

eq
u
ired

:
`

m
easu

re
of

B
C

s
req

u
ired

.=
m

easu
re

of
D

irich
let

B
C

s
given

F
u

n
ction

al
A

n
alysis

...

U
n

iq
u

ely
S

olvab
le

P
D

E
u
n
iq

u
ely

S
ovab

le
:

`
∃
1u

.
p
d
e(u

)
.=
tru

e

L
ax

M
ilgram

L
em

m
a

.
..

...

W
all

cross-section
Ω

:
ty
p
e

=
[0

;1
]

x
:

Ω

fro
m

=
0
,

to
=

1

In
n

er
an

d
ou

ter
su

rface
p
red

ica
te
∂

Ω
=
x
.(x

.=
0
or
x
.=

1)

T
em

p
eratu

re
u

:
Ω
→

R

u
n
k
n
ow

n
ty

p
e
7→

Ω
→

R

T
h

erm
al

con
d

u
ctivity

α
:R

=
2.4

V
olu

m
etric

h
eat

fl
ow

f
:

Ω
→

R
=

[x
]sin

(x
·π

)
S

tatic
h

eat
eq

u
ation

−
α
·∆

u
=
f

(x
)

In
sid

e
an

d
ou

tsid
e

tem
p

eratu
re

u
(0)

=
2
0

u
(1)

=
−

4

m
yS

olvab
ility

`
m

y
P

D
E

is
u
n
iq

u
ely

S
olvab

le

B
u

ild
in

gs
/

b
u

ild
in

g
com

p
on

en
ts

...

w
id

th
=

1
m

H
eatin

g
...

M
aterials

...

m
aterial

=
san

d
ston

e

F
irst

law
of

th
erm

o
d

yn
am

ics
...

T
h

erm
ostatics

...
C

lim
atology

...

1
1’

2b 2a

2a

3
4

4’

Mathematical background knowledge:
PDE theory and its Placeholders Ephemeral theories

Application
domain theory:

Engineering and Physics

M
o
d
el

d
o
m

ain
th

eory
P

D
E

th
eory

B
ou

n
d
a
ry

con
d
ition

s
th

eory
S
olu

tion
th

eory

Fig. 5. Theory Graph for PDEs, Applied to 1-D Heat Conduction Problem:
The ephemeral (blue) subgraph is forged between the background and application
knowledge and provides an outline for the interview

theories about combinations of properties that make the PDE solvable2, here
only showing the parts needed to understand Poisson’s equation.

The knowledge enoded the lower part of the graph is background knowledge
that can be used to generally describe a PDE model and acts as an immutable
common ground for multiple modeling/simulation tasks. For one particular such
task (e.g. Jen’s Wall), we need to generate application-specific theories, which
we call ephemeral, since they can be discarded after the simulation. Ephemeral
theories are not universally true– and as such need not become part of the
persistent (non-ephemeral) knowledge base – but they are true for Jen’s model.

Shown as the uppermost layer in the theory graph, the ephemeral theories
are always connected to their background counterpart by way of views. The
concrete ephemeral subgraph in Figure 5 is chosen for our running example: the
static temperature distribution throughout the walls of a house, with fixed inside
and outside temperatures. This can be mapped to be an elliptic linear Dirichlet
boundary value problem, and is therefore provably uniquely solvable in the weak
sense.

Figure 5 only shows the part of the MitM Ontology [Mitb] that is relevant
to our – didactically chosen and thus relatively simple – running example. MitM
itself is under constant development and covers other modeling case studies as
well, e.g. the van Roosbroeck models discussed in [KKMT17; Kop+18]. It is our
experience that the general topology of the theory graph – which is the only
part that is actually used in MoSIS – does not fundamentally change for more
complex examples, e.g. in higher dimensions.

Finally, note that the possible notation “∂” to denote the boundary is the
same that is often used to describe the partial derivative. In practice, this only
rarely causes confusion; which one is meant usually becomes clear from both
the context and the type of object that the operator is applied to. The same is
true for the theory graph representation here. In addition, a production MoSIS
interface should allow for reformulation of notations – as long as no ambiguities
are introduced – in order to support various mathematical traditions (e.g. f ′x,
fx, ∂xf, Dxf, D1f,

∂
∂xf, or

∂f
∂x as notations for the partial derivative used in

different communities).

3.2 Automating Model Knowledge Amalgamation

The knowledge gap we discussed in the introduction is a tangible one: People –
that are competent in their own domain – set up numerical tool kits themselves
by diving into the technical documentation, just to end up with the wrong results
(possibly without noticing and understanding why).

Luckily, our engineer Jen knows about the pitfalls and decides to talk to her
friend James, a computational engineer. James asks her about the property she
wants to determine – the temperature curve in the wall – and the situation at
hand: concretely he needs the i) coordinates of the wall cross-section, ii) materials

2 a lot of mathematical insight about weak solutions is represented by the view labeled
“Lax-Milgram Lemma”

and their thermal properties, iii) the layout of heat sources in the wall, iv) physics
of the wall (here given by the static heat equation), v) boundary conditions
(inside and outside temperatures).

In the course of the discussion – we think of this as the knowledge ac-
quisition process to be solved by James – Jen writes down some assignments
and formulas. Only when everything is defined, and the meaning is perfectly
clear and plausible to both of them, James tells Jen that he thinks the PDE
problem is solvable – in this case even uniquely – and starts a suitable simu-
lation (which may further be influenced by Jen’s requirement on accuracy and
time) and proudly presents Jen with the results: a nice visualization of the tem-
perature distribution. But not every domain specialist has a friend or colleague
who is a computational engineer; so automation of knowledge acquisition – and
more generally of knowledge amalgamation, like the interaction between Jen and
James – is desirable.

Fortunately, the sequence of interactions necessary to be able to fully specify
the simulation can be read off the theory graph in Figure 5. Essentially, the shape
of the green part is a template to the (blue) subgraph of ephemeral theories that
forces the interview: We would require that at least one item is defined that
can be understood as a Domain. We can allow users to use all constants defined
in theories that can themselves be viewed as a Domain, such as the Interval
constructor. Establishing a (transitive) view between Domain and Wall cross-
section as a 1 st user input immediately returns knowledge about the domain
boundary, denoted by 1’ .

Next, we would like to know about (optional) Parameters and at least one
Unknown. Based on the dependencies given by the include structure, we notice
that the order between the inputs 2a and 2b is arbitrary. What is peculiar at
this point is that only the type but no concrete definition must be given for the
Unknown, as otherwise it would in fact be known!

The inputs 3 and 4 define the PDE and Boundary Conditions as the central
part of the model specification. If we now push out3 3 and 4 with theories PDE
and Elliptic Linear Dirichlet Boundary Value Problems, we get the output theory
mySolvability, which states that a solution u : Ω → R can be computed.

The theory graph in Figure 5 stops at “mathematical solvability theory”, but
could be extended to include numerical solvability by discretization on a grid
and even solvability in particular simulation methods. Such extensions would
greatly enhance practical coverage, but are beyond the scope of this paper.

Note that the ephemeral theories (in blue in Figure 5) necessarily combine
information about the background mathematical (in orange) with knowledge
of the physics of the problem (theories at the top in magenta). For specifics
of this combination we refer the reader to [KKMT17; Kop+18], where we have
elaborated on this in the case of the “van Roosbroeck Model” from quantum elec-
tronics. Here we focus on the application of such models to a specific situation,
which we had previously only touched upon.

3 The category of Mmt theories and morphisms has co-limits – and thus pushouts,
which can be calculated canonically [CMR17] in the Mmt system.

Note furthermore that we have abbreviated the ephemeral theories and their
provenance from physics; we give their constants concrete values by using full
Mmt declarations of the form by c : τ = δ, where c is the constant name, τ its
type, and δ its definition. Actually, in the pure MaMoReD approach we would
have divided them into a physical background theory with “undefined” constant
c : τ and only instantiating c to δ in the corresponding ephemeral theory. In
Figure 5 we have not elaborated the physics layer, because we have a different –
but related – way of automating, which we discuss now.

The green theories (thick border) in the persistent part of the graph in Fig-
ure 5, e.g. Boundary in Rn and PDE are exactly the ones we want to map ephemer-
ally in order to get the simulation information in the steps 1 to 4 . We call them
placeholder theories. The placeholder theories can be determined by looking
for those constants in the persistent graph that do not have a definition (yet).

The order in which the placeholders needs to be filled in can be obtained
by the persistent theory morphisms. Consequently, the ephemeral theories can
be generated as fill-ins to the placeholder “form”, carrying the same mirrored
theory morphisms, and the exact same outer dependencies. This instantiation is
the heart of the knowledge acquisition process.

Now one might say that it would be possible to just generate all ephemeral
theories in the beginning and have all the constants assigned by the user. This
is true if we generate the dialogue from a known model template as given in
the application domain theory. The notable difference here is that we do not
know how often Jen is going to fill certain parts into the generalized “model”.
For instance, she may define arbitrarily many parameters – Thermal conductivity
and Volumetric heat flow in our running example – several unknowns and exactly
as many determining equations, here one, but we still need only one solvability
theory for the whole problem.

A slightly modified approach to generate interviews is offering a keyword
for each placeholder. For instance, Jen might want to define a new constant by
typing parameter my_favourite_room_temperature = 25 at any given time. The
dependencies in the theory graph should then make sure that this happens only
when appropriate, i. e. after a domain for x was defined. This feature would
correspond to the user’s habit of introducing parameter functions e.g. to keep
equations more readable, or to extend the model to coupled physics, e.g. if Jen
wanted to find out how much the wall will expand when heated. To this end,
there is a lot that can be done with simplifications such as in-situ computa-
tions [ODK17] that simplify the model in real time, and the visualization of
these changes. Adding keywords to the sequential interview effectively mimics
mathematical model amalgamation as a mixed-initiative dialogue.

3.3 Implementation: Realizing MoSIS via Jupyter & Mmt

Building on the ideas introduced in the last section, we have implemented MoSIS
1.0 in Jupyter [Jup]. This is an open-source web application that plays Jupyter
notebooks: interactive documents that contain live code: equations, visualiza-
tions and narrative text. The code is executed in a backend kernel process, here

running the Mmt system. In contrast to normal Jupyter notebooks that use a
fixed sequence of (documented) instructions in a read-eval-print-loop (REPL),
MoSIS implements an ephemeral dialogue using a simple state machine with
states for each part (1 - 4) of the theory graph to be set up. MoSIS uses a Mmt
kernel and communicates through the HTTP API of the Mmt server. We have
extended the Mmt server to support the creation (and if needed the storage) of
ephemeral theories (see [MMTb]).

Layer 0

Simulation

Q: What is the domain?
A: . . .
...
Q: What are the PDEs?
. . .

The solution according to
ExaStencils looks like this:
...

interview application

MMT system

Flexiformal and
formal background

knowledge

Model
description

MMT system

user

configuration
files

Layer 1 : Continuous model

Layer 2 : Discretization

Layer 3: Solution algorithm

Layer 4: Application specification

ExaStencils application simulation
results

query

OK
omdoc

generate

helps design

produce

Fig. 6. MoSIS System Architecture

Figure 6 shows the MoSIS architecture. The left side is a concretization of
the “Layer-0-design” from Figure 4, where the Mmt system takes the place of
the theory graph interface. The right hand side shows the interview – a Jupyter
notebook – as the active document and how it interacts with the kernel level. In
particular, the user only sees the notebook; answers the knowledge acquisition
questions presented by MoSIS, until MoSIS can generate a ExaStencils config-
uration file to be shipped to ExaStencils, which transforms it into efficient code
through the ExaSlang layers, computes the results and visualizations, that Mo-
SIS in turn incorporates into the notebook. Note that the user (in our example
the domain expert Jen) can run simulations without having to interact with the
simulation system and learn its peculiarities (or consulting James).

On the front end, MoSIS 1.0 inherits the communication and representation
capabilities from the Jupyter web application and notebook format. Questions
and state information required by MoSIS are presented as Markdown cells. The

user’s replies can be written as “maths” encoded in Mmt surface syntax employ-
ing Mmt notations that were defined in the background knowledge theory graph
beforehand. Following scientific practice, LATEX representation can be used for
non-standard Unicode characters. A side benefit of passing user inputs through
Mmt is that these are type-checked by the system. Already in our simple example
this eliminates a considerable source of errors before they ever reach ExaStencils.

Fig. 7. Beginning of a Dialogue in MoSIS

For the translation into ExaSlang Layer 1 code, we use the views into the
ephemeral theories, e.g. from Domain to Wall cross-section – theory graph mor-
phisms can be composed and transform into Domain syntax via Mmt notation
definitions. This is also where a central benefit of the theory graph represen-
tation comes into play: The theory graph always contains the same or more
information than any specific programming language representation of the same
model, and can therefore be used to translate to different changing formats

once a translation is available. This is especially interesting in the context of
the Math-in-the-Middle approach [Deh+16] of aligning mathematical open
source tools through a common flexiformal mathematical reference point: the
MitM Ontology [Koh+17].

MoSIS uses ExaStencils to generate the solver code for this particular prob-
lem and runs it – and the user is presented with a Bokeh [BO12] visualization
of the solution. But what is more, they now also have a re-usable representation
of how they got to the result, both as a Jupyter notebook (for narration) and
an OMDoc file (for further computation). Figure 7 shows (the beginning of) an
actual MoSIS dialogue for our running example; see [MoS] for a live demo.

In addition to the dialogue turns, the user can orient herself using special
MoSIS actions: getting a recap of all the ephemeral information stored so far,
undoing the last step(s) and having a theory graph or Model Pathway Diagram
(MPD) [KKMT17] of the current working state displayed back through the the-
ory graph viewer TGView [RKM17], cf. Figure 8. Our user can discover, inspect
and “debug” the structure of the model captured. Given a Model/MPD graph
following [KKMT17; Kop+18], we can use the MPD view as a more intuitive
user interface for inspecting the PDE.

Fig. 8. The Theory Graph Viewer TGView Embedded into Jupyter

The code for MoSIS kernel can be found in [Pol]; see [Mita] for formaliza-
tions. In addition, the MoSIS 1.0 kernel is set up in a JupyterHub environment
under [MoS]. JupyterHub [JHub] is a Jupyter notebook server that is accessi-
ble to many users who can independently work in their own notebooks in the
browser and execute code on the server, such that no software needs to be in-
stalled locally.

4 Conclusion and Future Work

This paper addresses the knowledge gap in modeling and simulations practice:
People who want to derive or work with new application models know that at
the end, a PDE has to be solved, but usually no background or interest in the

required computation process. But an efficient solver depends on the PDE and
thus detailed system knowledge or intense discussions with simulation experts
are necessary, or else errors are bound to occur.

In the ExaStencils project, this problem has so far been approached with the
development of a dedicated domain-specific language, ExaSlang, cf. Section 2.4.
The knowledge gap discussed above corresponds to the problem of specifying
the model on ExaSlang’s most abstract layer, layer 1.

MoSIS fills the gap by providing an architecture and components for it by
combining represented knowledge with an active document that the user can
interact with. We established the feasibility of MoSIS by implementing MoSIS
1.0 based on existing components: Mmt for the representations of formal (and
flexiformal) knowledge as a theory graph (cf. Section 2.3) and an interactive
Jupyter kernel with a Mmt backend through which it can access PDE knowledge.

We currently have only developed the theory graph to the extent necessary
for our running example. For more realistic simulations we will need to extend it
to n-dimensional calculus and partial differential equations. For that we will need
to extend Mmt and the MitM foundation from a purely logical system to one
that can also “understand” equations as quotations. In our models, the names
of the unknowns and variables in the equation actually matter, such that e.g.
alpha-renaming these parts is not desirable (even though they are not formally
bound in the model). One possible approach of dealing with this could be the
internal enumeration of coordinates and variables.

To enhance the interactivity of the MoSIS front-end we are working on
integrating Jupyter widgets [IPyWid15] into MoSIS, e.g. for selection inputs.

The technical terms used in the Markdown content can come with hoverable
or clickable explanations as we already know them from the semantic glossary
SMGloM [Gin+16]. Co-highlighting the aforementioned terms together with all
the corresponding ephemeral and persistent mathematical symbols – in the best
case also in the theory graph viewer and other possible tools – would greatly
support the effect of visualizing what belongs together.

Acknowledgments The authors acknowledge financial support from the Open-
DreamKit Horizon 2020 European Research Infrastructures project (#676541);
Project ExaStencils received funding within the DFG priority programme 1648
SPPEXA.We gratefully acknowledge fruitful discussions with the KWARC group,
especially Dennis Müller and Florian Rabe for support with the Mmt imple-
mentation, to Thomas Koprucki and Karsten Tabelow at WIAS Berlin; and to
Sebastian Kuckuk (LSS chair, FAU). Last but not least, Kai Amman and Tom
Wiesing have helped with the Jupyter frontend and deployment of MoSIS on
JupyterHub.

References

[BO12] bokeh: Interactive Web Plotting for Python. Mar. 26, 2012. url: https:
//github.com/bokeh/bokeh (visited on 04/18/2018).

https://github.com/bokeh/bokeh
https://github.com/bokeh/bokeh

[CMR17] Mihai Codescu, Till Mossakowski, and Florian Rabe. “Canonical Se-
lection of Colimits”. In: Recent Trends in Algebraic Development Tech-
niques. Ed. by Phillip James and Markus Roggenbach. Springer, 2017,
pp. 170–188.

[Deh+16] Paul-Olivier Dehaye et al. “Interoperability in the OpenDreamKit Project:
The Math-in-the-Middle Approach”. In: Intelligent Computer Mathe-
matics 2016. Ed. by Michael Kohlhase et al. LNAI 9791. Springer, 2016.
isbn: 978-3-319-08434-3. url: https://github.com/OpenDreamKit/
OpenDreamKit/blob/master/WP6/CICM2016/published.pdf.

[EXA] Advanced Stencil-Code Engineering (ExaStencils). url: http://exastencils.
org (visited on 04/25/2018).

[Gin+16] Deyan Ginev et al. “The SMGloM Project and System. Towards a Ter-
minology and Ontology for Mathematics”. In: Mathematical Software -
ICMS 2016 - 5th International Congress. Ed. by Gert-Martin Greuel,
Thorsten Koch, Peter Paule, and Andrew Sommese. Vol. 9725. LNCS.
Springer, 2016. doi: 10.1007/978-3-319-42432-3.

[IPyWid15] ipywidgets: Interactive widgets for the Jupyter Notebook. Apr. 17, 2015.
url: https://github.com/jupyter-widgets/ipywidgets (visited on
04/18/2018).

[JHub] JupyterHub — JupyterHub documentation. url: https://jupyterhub.
readthedocs.io/en/latest/ (visited on 04/18/2018).

[JN] Jupyter Notebook. url: http : / / jupyter - notebook . readthedocs .
org / en / latest / notebook . html # notebook - documents (visited on
08/22/2017).

[Jup] Project Jupyter. url: http://www.jupyter.org (visited on 08/22/2017).
[KK16] Sebastian Kuckuk and Harald Köstler. “Automatic Generation of Mas-

sively Parallel Codes from ExaSlang”. In: Computation 4.3 (Aug. 4,
2016), p. 27. issn: 2079-3197. doi: 10.3390/computation4030027. (Vis-
ited on 10/09/2017).

[KKMT17] Michael Kohlhase, Thomas Koprucki, Dennis Müller, and Karsten Tabe-
low. “Mathematical models as research data via flexiformal theory graphs”.
In: Intelligent Computer Mathematics (CICM) 2017. Ed. by Herman
Geuvers et al. LNAI 10383. Springer, 2017. isbn: 978-3-319-62074-9.
doi: 10.1007/978-3-319-62075-6.

[Koh+11] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active Docu-
ments for STEM”. In: Procedia Computer Science 4 (2011): Special issue:
Proceedings of the International Conference on Computational Science
(ICCS). Ed. by Mitsuhisa Sato et al. Finalist at the Executable Paper
Grand Challenge, pp. 598–607. doi: 10.1016/j.procs.2011.04.063.

[Koh+17] Michael Kohlhase et al. “Knowledge-Based Interoperability for Mathe-
matical Software Systems”. In:MACIS 2017: Seventh International Con-
ference on Mathematical Aspects of Computer and Information Sciences.
Ed. by Johannes Blömer, Temur Kutsia, and Dimitris Simos. LNCS
10693. Springer Verlag, 2017, pp. 195–210. url: https://github.com/
OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17- interop/
crc.pdf.

[Kop+18] Thomas Koprucki et al. “Model pathway diagrams for the represen-
tation of mathematical models”. In: Journal of Optical and Quantum
Electronics 50.2 (2018), p. 70. doi: 10.1007/s11082-018-1321-7.

https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
http://exastencils.org
http://exastencils.org
https://doi.org/10.1007/978-3-319-42432-3
https://github.com/jupyter-widgets/ipywidgets
https://jupyterhub.readthedocs.io/en/latest/
https://jupyterhub.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.org/en/latest/notebook.html#notebook-documents
http://jupyter-notebook.readthedocs.org/en/latest/notebook.html#notebook-documents
http://www.jupyter.org
https://doi.org/10.3390/computation4030027
https://doi.org/10.1007/978-3-319-62075-6
https://doi.org/10.1016/j.procs.2011.04.063
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/crc.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/crc.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/crc.pdf
https://doi.org/10.1007/s11082-018-1321-7

[Kös+17] Harald Köstler et al. “A Scala prototype to generate multigrid solver im-
plementations for different problems and target multi-core platforms”.
In: International Journal of Computational Science and Engineering
14.2 (2017), pp. 150–163.

[Len+14] Christian Lengauer et al. “ExaStencils: advanced stencil-code engineer-
ing”. In: European Conference On Parallel Processing. Springer. 2014,
pp. 553–564.

[Mita] MitM / MoSIS. url: https://gl.mathhub.info/MitM/MoSIS (visited
on 04/18/2018).

[Mitb] MitM: The Math-in-the-Middle Ontology. url: https://mathhub.info/
MitM (visited on 02/05/2017).

[MMTa] MMT – Language and System for the Uniform Representation of Knowl-
edge. project web site. url: https://uniformal.github.io/ (visited
on 08/30/2016).

[MMTb] UniFormal/MMT – The MMT Language and System. url: https://
github.com/UniFormal/MMT (visited on 10/24/2017).

[MoS] JupyterHub - MoSIS Demo. url: http://mosis.mathhub.info (visited
on 04/15/2018).

[ODK17] Michael Kohlhase and Tom Wiesing. In-place computation in active doc-
uments (context/computation). Deliverable D4.9. OpenDreamKit, 2017.
url: https://github.com/OpenDreamKit/OpenDreamKit/raw/master/
WP4/D4.9/report-final.pdf.

[Pol] Theresa Pollinger. interview_kernel. url: https://gl.kwarc.info/
theresa_pollinger/MoSIS (visited on 04/11/2018).

[Pol17] Theresa Pollinger. “Knowledge Representation for Modeling and Simu-
lation – Bridging the Gap Between Informal PDE Theory and Simula-
tions Practice”. Master’s Thesis. Informatik, FAU Erlangen-Nürnberg,
2017. url: https://gl.kwarc.info/supervision/MSc-archive/blob/
master/2017/tpollinger/thesis.pdf.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In:
Information & Computation 0.230 (2013), pp. 1–54. url: http : / /
kwarc.info/frabe/Research/mmt.pdf.

[RKM17] Marcel Rupprecht, Michael Kohlhase, and Dennis Müller. “A Flexible,
Interactive Theory-Graph Viewer”. In: MathUI 2017: The 12th Work-
shop on Mathematical User Interfaces. Ed. by Andrea Kohlhase and
Marco Pollanen. 2017. url: http://kwarc.info/kohlhase/papers/
mathui17-tgview.pdf.

[Rü+16] Ulrich Rüde et al. “Research and Education in Computational Science
and Engineering”. In: arXiv:1610.02608 [cs, math, stat] (Oct. 8, 2016).
arXiv: 1610.02608. url: http://arxiv.org/abs/1610.02608 (visited
on 02/23/2018).

https://gl.mathhub.info/MitM/MoSIS
https://mathhub.info/MitM
https://mathhub.info/MitM
https://uniformal.github.io/
https://github.com/UniFormal/MMT
https://github.com/UniFormal/MMT
http://mosis.mathhub.info
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP4/D4.9/report-final.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP4/D4.9/report-final.pdf
https://gl.kwarc.info/theresa_pollinger/MoSIS
https://gl.kwarc.info/theresa_pollinger/MoSIS
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2017/tpollinger/thesis.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2017/tpollinger/thesis.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
https://arxiv.org/abs/1610.02608
http://arxiv.org/abs/1610.02608

	Knowledge Amalgamation for Computational Science and Engineering

