
Towards a Dynamic Type TheoryMichael Kohlhase and Susanna KuschertUniversit�at des SaarlandesOver the past few years, there have been a series of attempts [Zee89, GS90, EK95, Mus94,KKP95] to combine the Montagovian type theoretic framework [Mon74] with dynamic approaches,such as DRT [Kam81]. The motivation for these developments is to obtain a general logicalframework for discourse semantics that combines compositionality and dynamic binding.Let us look at an example of compositional semantics construction in �-DRT which is one ofthe above formalisms [KKP95]. By the use of �-reduction we arrive at a �rst-order DRT represen-tation of the sentence Every man sleeps.�Q: Xman(X) ! Q(X) (�U: sleeps(U))�!�� Xman(X) ! sleep(X)For the purposes of the logical analysis in this paper �-DRT employs a linearised variant of thisrepresentation,�fg:(�fXg:man(X)) ! �fg:sleep(X))where discourse referents are introduced by a dynamic binding operator �. Note that here �-reduction may lead to free variables to be captured, which in pure �-calculus is the thing impossible.For example, if we want to construct sleeps today, as is done below, the free event variable E inthe functor is captured by the discourse referent of the argument. In �-DRT,
 is the conjunctionoperator for DRSes that intuitively merges two DRSes by uniting the sets of discourse referentsand that of conditions.(�P:�U:(P (U)
 �fg:time(E) = today)(�Y:�fEg:sleep(E; Y)))�!�� �U:((�fEg:sleep(E;U))
 �fg:time(E) = today)Unfortunately, the above mentioned uni�ed formalisms have failed so far to duplicate a keyaspect of type theory that has lead to interesting linguistic analyses in computational linguistics.Type theory (or higher-order logic) is a two-layered formalism, where the algebraic content (thebehaviour of higher-order functions) is neatly packaged into a formalism of its own, namely simplytyped �-calculus; while the logical content (the speci�c semantics of connectives and quanti�ers)is built on top of it. Thus the use of type theory allows us to deal with the complexities of naturallanguage semantics on two distinct levels: the simply typed �-calculus provides the theory of �-reduction (which is the motor of compositionality) whereas the logical side of semantics is dealtwith by a system that is rather like predicate logic. By focussing on known mechanisms for dealingwith each of the two subsystems, it has proved possible to use type theoretic techniques for naturallanguage processing systems.� Higher-order uni�cation [Hue75] solves equations in the simply typed �-calculus and leadsto analyses of Ellipsis [DSP91], and Focus [GK96, Pul94]. Note that these accounts areinadequate for the treatment of the logical structure, so they make insu�cient predictionsabout quanti�ers and connectives.� First-order automated theorem proving [Fit90] is used to reason about the logical structureof natural language, presuppositions, and to integrate world knowledge into natural languagesemantics. Note that these approaches normally cannot capture higher-order aspects of thesemantics like compositionality or underspeci�ed (such as elliptic-) semantic elements.� Only recently, logic formalisms for higher-order theorem proving [Koh95] have appeared thatare generalizations of both higher-order uni�cation and automated theorem proving. Thesecan be used to integrate world knowledge into the uni�cation-based approaches [GKvL96].1

The goal of this paper is to lay the foundation for analyses like the above by providing analgebraic foundation of compositional formalisms for discourse semantics as an analogon to thesimply typed �-calculus. Just as that can be specialized to type theory by simply providing aspecial type o for truth values and postulating the quanti�ers and connectives as constants with�xed semantics, the proposed dynamic �-calculus DLC can be specialized to �-DRT [KKP95] byessentially the same measures, yielding a much more principled and modular treatment of �-DRTthan before.However, we expect the bene�ts from a clean separation of the structural and logic parts ofcompositional discourse semantics will not be restricted to this. In particular, DLC can serveas the formal basis for the development of higher-order uni�cation algorithms for compositionalformalisms for discourse semantics, which in turn can be expected to lead to dynamic analyses ofellipses, focus, corrections, . . . , corresponding to those discussed above. First experiments withthe formal system have shown that these will be more intuitive than those for the static case.The proposed formalism DLC focuses on the interaction of dynamic binding (declaration ofdiscourse referents), function abstraction and function application. Most of the burden of thisis carried by an elaborate type system that takes into account structural properties of dynamicsystems, such as the binding power and the accessibility relation.Development of �-DRT has shown that capturing of free variables by formulae containingdynamic binding constructs, i.e. the interaction between �s and �s, is a central theme. Thus thecentral idea for a type system for a dynamic �-calculus is that types have to incorporate informationabout variables. In DLC this is represented by the fact that variable contexts (local functions thatspecify type information for variables) are contained in the types. So, if � is a variable context, and� is a type (which we call the characteristic type), then �#� is also a type. In particular, types haveto represent information about the free variables of a formula (those that can be captured) andabout those that have dynamic binding power (that can capture free variables of other formulae).This distinction is made by annotating the variables with � for the former and + for the latter. If,for instance � = [X�:�]; [Y+: �] and � is the base type o (for truth values) then �#o describes theset of propositions that contain a free variable X� and dynamically binds a variable (introducesa discourse referent) Y� . Types where the context � is empty are called simple. For non-emptycontexts types are called dynamic, if � contains positive variables else static. Naturally, since DLCis a �-calculus, the set of types is also closed under function types (i.e. �! � is a type whenever� and � are).DLC-formulae are built up from a signature � by the set of inference rules (which we haveslightly simpli�ed for presentation) below, i.e. a formula A is a well-formed DLC formula of type�, i� the judgment A:� is provable by these rules.c 2 ��c: �#� X =2Dom(�)X: �; [X�:�]#� A: �#�! � B:�#� ������AB: �;�#�A: �; [X�:�]#�(�X�A): �#(�! �) A: �#�(�X�A): �; [X+:�]#�In these rules we employ the convention that at the merging of contexts, positively signedvariables overwrite negatively signed of the same type and name. Note that this overwriting isimportant for the last rule for dynamic abstraction, where [X�:�] may have been present in �,indicating the presence of a free variable X of type � in A. Also, by this overwriting e�ect wemodel variable capturing at function application, as shown in the example above. In the aboverule for function application ������ means that the two are equal on the common negatively signedvariables and have no positive variables in common. The rule for functional abstractions dischargesthe free variable X� from the context, since it is no longer free. The other rules do not change thecontext; that for variables only insists that the variable in question be declared in it.In DLC, the de�nitions of bound and free variables is straightforward; we distinguish function-ally bound (by a �) and dynamically bound (by a �) variables. In the same way, we can reuse thestandard �-calculus reduction rules for � and �-conversion,2

(�X A)B �!� [B=X]A X =2 Free(A)(�X AX) �!� Aand rephrase the �-conversion rule of the �-calculus to de�ne renaming of both functionallyand dynamically bound variables thusA:� X 62 C(�) Y newA �!� CXY (A)This new extended �-rule exploits the richer type system of DLC by using the following obser-vation. A functionally bound variable is not free in A:�, if it does not occur in the type �. If adynamic variable X does not occur on any level in A's type, this means that X occurs in a staticsubterm of A (i.e. one that has a static type) which does not contain a variable �-abstracted in Athrough which X may still bind variables by variable capture | in other words, X cannot bind afree variable of the same name, neither through merging with another expression nor through �-conversion. Thus, in the above de�nition, X 62 C(�) checks that X does not occur in the type of Aand CXY changes the bound variable X to Y . Note that for the existing systems for compositionaldiscourse semantics mentioned above, �-renaming of dynamically bound variables constitutes aproblem | in fact, it was from an attempt to understand full �-conversion that DLC evolved.Finally, we introduce a logical constant @ which is a dynami�cation operator for binary relationsR. It is speci�ed by the following reduction rules@R(�X A)B �!� �X (@RAB) A:� B: � �; � static@RAB �!� RABWe have chosen @ as a primitive for DLC instead of the
-operator, which can be derived fromit, (see the discussion of �-DRT below), since we hope that it will be possible to characterize thedynamic operators of other approaches with it in relation to known binary relations.Given this, we arrive at �-DRT by �xing the set of base types to BT = fe; og (individualsand truth values) and de�ning a set of connectives such as conjunction, disjunction, negation andimplication. In standard DRT, the binding properties of the discourse referents in the context mustbe de�ned in an accessibility relation. With the extended type system we are now able to expressthis relation directly within the syntax. For example, we de�ne the negation operator to be of type:: �#o ! �� where �� is the set of negatively signed variables in �. Thus only those variableswhich are not bound dynamically in the argument of the negation | i.e. the free variables | areavailable outside the negated expression. In the same way we de�ne a collection of implicationoperators of type)��: (�#o)! (�#o)! ((��; (��n�+))#o). Note that (��=�+) captures theaccessibility relation between the two arguments: only those free variables of the second argumentare available to the outside which are not bound by the discourse referents of the �rst argument.The dynamic conjunction operator
 can be de�ned as @^, and is thus generalized to merge both,DRSes and conditions.Just as in standard �-calculus, the type does not change through any of these reductions,under the type instantiations necessary for the well-formedness of the application which is to be�-reduced. In the above example, if Q gets the type Q: (�#�)! o, we can derive the type of thefunctor �fg:(�fXg:man(X)) ! Q(X) to be (�� n [X+:�])#((�#�)! o) ! o, meaning that thefree variables of the expressions are those that come in by the argument Q less X. The argumenthas type �X:�fg:sleep(X): ;#�! o. We need to instantiate � by ; to allow the application andget the correct type ;#o for the result, meaning that in the representation of Every man sleepsthere are no free variables and no dynamic binding power to the outside.The semantics of DLC draws upon ideas and insights behind �-DRT in [KKP95] and [Kus96].There, intensionalization and dynamic denotations were found to complement each other in mod-elling the interaction of �s and �s which, recall, we want to understand. In �-DRT intensionalisation3

was used to guard variables by delaying evaluation of the current state wherever the current statewas not available through a proper �-abstraction. In generalization of this, dynamicity in DLC'ssemantics is achieved by an implicit intensionalization of all linguistic variables (i.e. not bound by�-abstraction). Note that because of this we can do away with the ^ and _ of �-DRT.Given this, the domains D� of simple types � are just those known from simple type theory.Denotations of complex objects are functions from states (variable assignments) to values of simpletypes (D�#� = F(B�;D�)), where B� = S� � �F(Dom(�);D) is the set of �-states. The coreof DLC's semantics is the interpretation1 of variables. I'(X) of a variable X is either '(X) inthe case of �-bound variables (X 2 Dom(')) or the function ft 7! t(X) �� t 2 B[X:�] for linguisticvariables, which represents the implicit intensionalization for a value of X. Furthermore, we haveI'(�X:D) = I'�X(D)I'(�X:D)@A = I';[A=X](D)I'(AB) = I'(A)@I'(B)Here, the interpretation of a dynamic abstraction needs no more than making sure that thevariable X is not interpreted by ' due to the implicit intensionalization. With this, the interpre-tation of the functional parts is just as standard in the simple �-calculus. The @-operator is thedynamic application operator which can be de�ned by means of the @-operator from the staticapplication operator appo by @ = @appo. In this setup the dynami�cation operator @ raises tocentral importance; it is here that contexts are coordinated, as follows from the de�nition of itssemantics below.I(@)@R@A@B = fa1 [b1 7! R(a2; b2) �� a1����b1; a1 7! a2 2 A; b1 7! b2 2 BgWe are convinced that DLC with its new typing system constitutes a powerful algebraic basisfor systems combining functional and dynamic logics and that its further study may reveal moreof the properties of the interplay of their features. In particular, we hope that in the same way asthe types guide the higher order uni�cation of standard �-calculus, this type system may be usefulfor dynamic higher order uni�cation.References[DSP91] M. Dalrymple, S. Shieber, and F. Pereira. Ellipsis and higher-order uni�cation. Linguistics andPhilosophy, 14:399 { 452, 1991.[EK95] Jan van Eijck and Hans Kamp. Representing discourse in context. In J.F.A.K. van Benthemand A. ter Meulen, editors, Handbook of Logic and Language. Elsevier Science B.V., 1995.[Fit90] M. Fitting. First-order Logic and Automated Theorem Proving. Springer Verlag, Berlin, 1990.[GK96] Claire Gardent and Michael Kohlhase. Focus and higher{order uni�cation. In The 16th Inter-national Conference on Computational Linguistics, Copenhagen, Denmark, 1996. forthcoming.[GKvL96] Claire Gardent, Michael Kohlhase, and Noor van Leusen. Corrections and higher{order uni-�cation. In 3. Konferenz zur Verarbeitung natuerlicher Sprache, Bielefeld, Germany, 1996.forthcoming.[GS90] J. Groenendijk and M. Stockhof. Dynamic Montague Grammar. In L. Kalman and L. Polos,editors, Papers from the Second Symposium on Logic and Language, pages 3 { 48. Budapest,Akademiai Kiadoo, 1990.[Hue75] G�erard P. Huet. A uni�cation algorithm for the typed �-calculus. Theoretical Computer Science,1:27{57, 1975.[Kam81] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk, Th. Janssen, andM. Stockhof, editors, Formal Methods in the Study of Language, pages 277 { 322. MathematischCentrum Tracts, Amsterdam, 1981.[KKP95] M. Kohlhase, S. Kuschert, and M. Pinkal. A type-theoretic semantics for �-DRT. Proceedingsof the Tenth Amsterdam Colloquium, 1995.1As usual, denotations of expressions are computed with respect to an assignment ' for �-bound variables.4

[Koh95] Michael Kohlhase. Higher-Order Tableaux. In R. H�ahnle P. Baumgartner and J. Posegga,editors, Theorem Proving with Analytic Tableaux and Related Methods, volume 918 of LectureNotes in Arti�cial Intelligence, pages 294{309, 1995.[Kus96] S. Kuschert. Higher Order Dynamics: Relating operational and denotational semantics for�-DRT. CLAUS-Report 72, Universit�at des Saarlandes, 1996.[Mon74] Richard Montague. The proper treatment of quanti�cation in ordinary English. In R.H. Thoma-son, editor, Formal Philosophy, Selected Papers of Richard Montague, pages 247{270. NewHaven and London, 1974.[Mus94] R. Muskens. A compositional discourse representation theory. In P. Dekker and M. Stockhof,editors, Proceedings of the 9th Amsterdam Colloquium, pages 467 { 486. ILLC, Amsterdam,1994.[Pul94] S.G. Pulman. Higher order uni�cation and the interpretation of focus. Technical Report CRC-049, SRI Cambridge, UK, 1994.[Zee89] H. Zeevat. A compositional approach to DRT. Linguistics and Philosophy, 12:95{131, 1989.

5

