
A Search Engine for Mathematical

Formulae

Michael Kohlhase and Ioan A. Şucan

Computer Science, International University Bremen
m.kohlhase@iu-bremen.de i.sucan@iu-bremen.de

Abstract. We present a search engine for mathematical formulae. The
MathWebSearch system harvests the web for content representations
(currently MathML and OpenMath) of formulae and indexes them with
substitution tree indexing, a technique originally developed for access-
ing intermediate results in automated theorem provers. For querying, we
present a generic language extension approach that allows constructing
queries by minimally annotating existing representations. First experi-
ments show that this architecture results in a scalable application.

1 Introduction

As the world of information technology grows, being able to quickly
search data of interest becomes one of the most important tasks in
any kind of environment, be it academic or not. This paper addresses
the problem of searching mathematical formulae from a semantic
point of view, i.e. to search for mathematical formulae not via their
presentation but their structure and meaning.

1.1 Semantic Search for Mathematical Formulae

Generally, searching for mathematical formulae is a non-trivial prob-
lem — especially if we want to be able to search occurrences of the
query term as sub-formulae:

1. Mathematical notation is context-dependent . For instance, bino-
mial coefficients can come in a variety of notations depending on
the context:

(
n
k

)
, nC

k, Cn
k , and Ck

n all mean the same thing:1

1 The third notation is the French standard, whereas the last one is the Russian one
(see [KK06] for a discussion of social context in mathematics). This poses a very
difficult problem for searching, since these two look the same, but mean different
things.

n!
k!(n−k)!

. In a formula search we would like to retrieve all forms
irrespective of the notations.

2. Identical presentations can stand for multiple distinct mathemat-
ical objects , e.g. an integral expression of the form

∫
f(x)dx can

mean a Riemann Integral, a Lebesgue Integral, or any other of
the 10 to 15 known anti-derivative operators. We would like to
be able to restrict the search to the particular integral type we
are interested in at the moment.

3. Certain variations of notations are widely considered irrelevant ,
for instance

∫
f(x)dx means the same as

∫
f(y)dy (modulo α-

equivalence), so we would like to find both, even if we only query
for one of them.

To solve this formula search problem, we concentrate on content
representations of mathematical formulae (which solves the first two
problems; see Section 1.3), since they are presentation-independent
and disambiguate mathematical notions. Furthermore, we adapt term
indexing techniques known from automatic theorem provers to ob-
tain the necessary efficiency and expressivity in query processing (see
Section 1.2) and to build in common equalities like α-equivalence.

Concretely, we present the web application MathWebSearch
that is similar to a standard search engine like Google, except that
it can retrieve content representations of mathematical formulae not
just raw text. The system is released under the Gnu General Public
License [FSF91] (see [Mat06] for details). A running prototype is
available for testing at http://search.mathweb.org.

1.2 State of the Art in Math Search

There seem to be two general approaches to searching mathematical
formulae. One generates string representations of mathematical for-
mulae and uses conventional information retrieval methods, and the
other leverages the structure inherent in content representations.

The first approach is utilized for the Digital Library of Mathe-
matical Functions [MY03] and ActiveMath system [LM06]: math-
ematical formulae are converted to text and indexed. The search
string is similar to LATEX commands and is converted to string be-
fore performing the search. This allows searching for normal text as
well as mathematical content simultaneously but it cannot provide

powerful mathematical search — for example searching for some-
thing like a2 + c = 2a, where a must be the same expression both
times, cannot be performed. An analogous idea to this would be
to rely on an Xml-based XQuery search engine. Both these meth-
ods have the important advantage that they rely on already existing
technologies but they do not fully provide a mathematical formulae
oriented search method.

The second approach is taken by the MBase system [KF01],
which applies the pattern matching of the underlying programming
language to search for OMDoc-encoded [Koh06] mathematical doc-
uments in the knowledge base. The search engine for the Helm
project indexes structural meta-data gleaned from Content MathML
representations for efficient retrieval [AS04]. The idea is that this
metadata approximates the formula structure and can serve as a fil-
ter for very large term data bases. However, since the full structure of
the formulae is lost, semantic equivalences like α-equivalence cannot
be taken into account.

Another system that takes this second approach is described
in [TSP06]. It uses term indexing for interfacing with Computer
Algebra Systems while determining applicable algorithms in an au-
tomatically carried proof. This is closely related to what we present
in this paper, the main difference being that we provide search for
any formula in a predefined index, while in [TSP06] a predefined set
of formulae characterizing an algorithm is automatically searched for
in a changing index.

1.3 Content Representation for Mathematical Formulae

The two best-known open markup formats for representing mathe-
matical formulae for the Web are MathML [ABC+03] and Open-
Math [BCC+04]2 MathML offers two sub-languages: Presentation
MathML for marking up the two-dimensional, visual appearance
of mathematical formulae, and Content MathML as a markup in-
frastructure for the functional structure of mathematical formulae.

2 There are various other formats that are proprietary or based on specific mathemati-
cal software packages like Wolfram Research’s Mathematica [Wol02]. We currently
support them if there is a converter to OpenMath or MathML.

In Content MathML, the formula
∫ a
0 sin(x)dx would be represented

as the following expression:

Listing 1.1. Content Representation of an Integral

<apply><int/><bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit><uplimit><cn>a</cn></uplimit>
<apply><sin/><ci>x</ci></apply>

</apply>

The outer apply tags characterize this as as an application of an
integral to the sin function, where x is the bound variable. The for-
mat differentiates numbers (cn) from identifiers (ci) and objects
with a meaning fixed by the specification (represented by about 80
MathML token elements like int, or plus). The OpenMath for-
mat follows a similar approach, but replaces the fixed set of token
elements for known concepts by an open-ended set of concepts that
are defined in “content dictionaries”: Xml documents that specify
their meaning in machine-readable form (see [BCC+04,Koh06] for
details).

As content markup for mathematical formulae is rather tedious
to read for humans, it is mainly used as a source to generate Presen-
tation MathML representations. Therefore content representations
are often hidden in repositories, only their presentations are avail-
able on the web. In these cases, the content representations have
to be harvested from the repositories themselves. For instance, we
harvest the Connexions corpus, which is available under a Cre-
ative Commons License [Cre] for MathWebSearch. As we will
see, this poses some problems in associating presentation (for the
human reader) with the content representation. Other repositories
include the ActiveMath repository [MBG+03], or the MBase sys-
tem [KF01].

Fortunately, MathML provides the possibility of “parallel mark-
up”, i.e. representations where content and presentation are com-
bined in one tree3 (see http://functions.wolfram.com for a widely
known web-site that uses parallel markup).

3 Modern presentation mechanisms will generate parallel markup, since that e.g. al-
lows copy-and-paste into mathematical software systems [HRW02].

1.4 A Running Example: The Power of a Signal

A standard use case4 for MathWebSearch is that of an engi-
neer trying to solve a mathematical problem such as finding the
power of a given signal s(t). Of course our engineer is well-versed
in signal processing and remembers that a signal’s power has some-
thing to do with integrating its square, but has forgotten the de-
tails of how to compute the necessary integrals. He will therefore
call up MathWebSearch to search for something that looks like∫ ?
? s

2(t)dt (for the concrete syntax of the query see Listing 1.3 in
Section 3). MathWebSearch finds a document about Parseval’s
Theorem, more specifically 1

T

∫ T
0 s2(t)dt = Σ∞k=−∞|ck|2 where ck are

the Fourier coefficients of the signal. In short, our engineer found the
exact formula he was looking for (he had missed the factor in front
and the integration limits) and a theorem he may be able to use. So
he would use MathWebSearch again to find out how to compute
the Fourier transform of the concrete signal s(t), eventually solving
the problem completely.

2 Indexing Mathematical Formulae

For indexing mathematical formulae on the web, we will interpret
them as first-order terms (see Subsection 4.1 for details). This allows
us to use a technique from automated reasoning called term index-
ing [Gra96]. This is the process by which a set of terms is stored
in a special purpose data structure (the index, normally stored in
memory) where common parts of the terms are potentially shared,
so as to minimize access time and storage. The indexing technique
we work with is a form of tree-based indexing called substitution-tree
indexing . A substitution tree, as the name suggests, is simply a tree
where substitutions are the nodes. A term is constructed by suc-
cessively applying substitutions along a path in the tree, the leaves
represent the terms stored in the index. Internal nodes of the tree
are generic terms and represent similarities between terms.

4 We use this simple example mainly for expository purposes here. Other applications
include the retrieval of equations that allow to transform a formula, of Lemmata
to simplify a proof goal, or to find mathematical theories that can be re-used in a
given context (see [Nor06a] for a discussion of the latter).

The main advantage of substitution tree indexing is that we only
store substitutions, not the actual terms, and this leads to a small
memory footprint. Figure 1 shows a typical index for the terms
h(f(z, a, z)), x, g(f(z, y, a)), g(f(7, z, a)), and g(f(7, z, f)). For clar-
ity we present not only the substitutions in the node, but the term
produced up to that node as well (between square brackets). The
variables @integer are used to denote placeholder variables for parts
that differ between terms. All placeholder variables are substituted
before a leaf is reached.

Fig. 1. An Index with Five Terms

Adding data to an
existing index is sim-
ple and fast, query-
ing the data struc-
ture is reduced to
performing a walk
down the tree. In con-
trast to automated
reasoning our appli-
cation does not need
tree merging. There-
fore we use substi-
tutions only when build-
ing the index. In-
dex building is done
based on Algorithm 1.
Once the index is built, we keep the actual term instead of the sub-
stitution at each node, so we do not have to recompute it with every
search. Structure sharing methods conserve memory and make this
tractable. To each of the indexed terms, some data is attached — an
identifier that relates the term to its exact location. The identifier,
location and other relevant data are stored in a database external to
the search engine. We use XPointer [GMMW03] references to specify
term locations (see Subsection 4.3 for more details).

Unfortunately, substitution tree indexing does not support sub-
term search in an elegant fashion, so when adding a term to the
index, we add all its subterms as well. This simple trick works well:
the increase in index size remains manageable (see Section 4.4) and
it greatly simplifies the implementation. The rather small increase

is caused by the fact that many of the subterms are shared among
larger terms and they are only added once.

3 A Query Language for Content Mathematics

When designing a query language for mathematical formulae, we
have to satisfy a couple of conflicting constraints. The language
should be content-oriented and familiar, but it should not be special-
ized to a given content representation format. Our approach to this
problem is to use a simple, generic extension mechanism for Xml-
based representation formats (referred to as base format) rather than
a genuine query language itself.

The extension mechanism is represented by 4 tags and 4 at-
tributes. The extension tags are mq:query, mq:and, mq:or, mq:not.
The mq:query tag is used if one or more of the other extension tags
are to be used and encloses the whole search expression. The tags
mq:and, mq:or, mq:not may be nested and can contain tags from
the base XML format, which may carry extension attributes (will be
explained later). The mq:and, mq:or, mq:not tags are logical oper-
ators and may carry the mq:target attribute (the default value is
term; only one other value allowed: document) which specifies the
scope of the logical operator. Scope term is used to find formulae
that contain the query terms as subformulae, while scope document

does not restrict the occurrences of query terms.

There are 3 other attributes that may be used for any of the
base format tags: mq:generic, mq:anyorder and mq:anycount. The
first is used to specify that a term matches any subterm in the in-
dex; we call it a generic term. Note that generic terms with the
same mq:generic value must be matched against identical target
subterms. The mq:anyorder is used to specify that the order of the
children can be disregarded. The mq:anycount attribute defines any
number of occurrences of a certain base tag (if that base tag is known
to be allowed multiple times). This is useful e.g. to define a variable
number of bound variables (bvar MathML).

Listing 1.2 shows a (somewhat contrived but illustrative) example
query that searches for documents that contain at least one math-
ematical formula matching each of the math tags in the query. The

first math tag will match any application of function f to three argu-
ments, where at least two of the arguments are the same. The second
math tag will match any formula containing at least two consecutive
applications of the same function to some argument.

Listing 1.2. Example MathMLQ Query
<mq:query xmlns:mq=”http://mathweb.org/MathQuery”>

<mq:and mq:target=”document”>
<math xmlns=”http://www.w3.org/1998/Math/MathML”>

<apply><ci mq:anyorder=”yes”>f</ci>
<ci mq:generic=”same”/>
<ci mq:generic=”same”/>
<ci mq:generic=”other”/>

</apply>
</math>
<math xmlns=”http://www.w3.org/1998/Math/MathML”>

<apply><ci mq:generic=”fun”/>
<apply><ci mq:generic=”fun”/><ci mq:generic=”rest”/></apply>

</apply>
</math>

</mq:and>
</mq:query>

Given the above, the MathMLQ query of our running example
has the form presented in Listing 1.3. Note that we do not know
the integration limits or whether the formula is complete or not.
Expressing this in MathMLQ5

Listing 1.3. Query for Signal Power
<math xmlns=”http://www.w3.org/1998/Math/MathML”

xmlns:mq=”http://mathweb.org/MathQuery”>
<apply><int/>

<domainofapplication mq:generic=”domain”/>
<bvar> <ci mq:generic=”time”/> </bvar>
<apply><power/>

<apply><ci mq:generic=”fun”></ci><ci mq:generic=”time”/></apply>
<cn>2</cn>

</apply>
</apply>

</math>

4 The MathWebSearch Application

We have built a web search engine around the indexing technique
explained above. Like commercial systems, MathWebSearch con-

5 This is equivalent to the string representation #int(bvarset(bvar(@time)),

@domain,power(@fun(@time),nr(2))).

sists of three system components: a set of web crawlers6 that peri-
odically scan the Web, identify, and download suitable web content,
a search server encapsulates the index, and a web server that com-
municates the results to the user. To ensure scalability, we have the
system architecture in Figure 2, where individual search servers are
replicated via a search meta-server that acts as a front-end.

Fig. 2. The Architecture of the MathWebSearch Application

4.1 Input Processing

MathWebSearch can process any Xml-based content mathemat-
ics. Currently, the system supports MathML and OpenMath (and
Mathematica notebooks via the system’s MathML converter).
We will discuss input processing for the first here.

1) Mathematical
expression:
f(x) = y

3) Term repre-
sentation:
eq(f(x), y)

2) Content MathML:
<apply><eq/>

<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
<ci>y</ci>

</apply>

Given an Xml document,
we create an index term for
each of its math (this is the
case for MathML) elements.
Consider the example on the
right: We have the standard
mathematical notation of an
equation (1), its Content MathML representation (2), and the term
we extract for indexing (3). As previously stated, any mathematical
construct can be represented in a similar fashion.

6 At the moment, we are employing an OAI-based [OAI02] crawler for repositories like
Connexions and a standard web-crawler for finding other MathML repositories.

When we process the Content MathML formulae, we roughly
create a term for every apply element tag, taking the first child of
apply as the function and the rest of the children as arguments. Of
course, cases like vectors or matrices have to be treated specially. In
some cases — e.g. for integrals — the same content can be encoded
in multiple ways. Here, a simple standardization of both the indexed
formulae and the queries leads to an improved recall of the search:
for instance we can find an integral specified with lowlimit and
uplimit tags (see Listing 1.1) using a query integral specified with
the interval element7, since we standardize argument order and
integration domain representation for integrals.

Fig. 3. Searching for Signal Power

Search modulo α-
renaming becomes avail-
able via a very simple
input processing trick:
during input processing,
we add a mq:generic

attribute to every bound
variable (but with dis-
tinct strings for differ-
ent variables). Therefore
in our running exam-
ple the query variable t
(@time in Listing 1.3)
in the query

∫ ?
? s

2(t)dt
is made generic, there-
fore the query would
also find the variant
1
T

∫ T
0 s2(x)dx = Σ∞k=−∞|ck|2: as t is generic it could principally match

any term in the index, but given the MathML constraints on the
occurrences of bound variables, it will in reality only match variables
(thus directly implementing α-equivalence).

Presentation MathML in itself does not offer much semantic
information, so it is not particularly well suited for our purposes.
However, most of the available MathML on the World Wide Web is

7 string representation: #int(bvarset(bvar(id(x))), intervalclosed(lowlimit

(nr(0)), uplimit(nr(a))),sin(id(x))).

Presentation MathML. For this reason, we index it as well. The lit-
tle semantic information we are offered, like when a number (mn), op-
erator (mo) or identifier (mi) are defined, we use for recovering simple
mathematical expressions which we then index as if the equivalent
Content MathML were found. This offers the advantage that when
using a mixed index (both Presentation and Content MathML) we
have increased chances of finding a result.

4.2 Term Indexing

As the term retrieval algorithm for substitution trees is standard, we
will concentrate on term insertion and memory management here.
In a nutshell: we insert a term in the first suitable place found.
This will not yield minimal tree sizes, but (based on the experi-
ments carried out in [Gra96]) the reduction in number of internal
nodes is not significant and the extra computation time is large.

Algorithm 1 INSERT TERM(node, term)
found = true

2: while found do
found = false

4: for all sons of node do
if COMPLETE MATCH(son.term, term) then

6: node = son, found = true
break

8: end if
end for

10: end while
match = PARTIAL MATCH(node.term, term)

12: for all sons of node do
if PARTIAL MATCH(son.term, term) > match then

14: return INSERT WITH SEPARATION(node, son, term)
end if

16: end for
return INSERT AT(node, term)

Concretely, an initial empty index contains a single node with the
empty substitution. The term produced by that node is always the
generic term @0. When a new term is to be inserted, we always try
to insert from the root, using the algorithm Insert Term, where

1. COMPLETE MATCH checks if the second argument is an in-
stance of the first argument. It uses a simple rule: a term is only
an instance of itself and of any placeholder variable.

2. PARTIAL MATCH returns an integer that represents the num-
ber of equal subterms.

3. INSERT AT adds a new leaf to node with a substitution from
node.term to term unless that substitution is empty.

4. INSERT WITH SEPARATION creates a son of node named
n with a substitution to the shared parts of son.term and term;
it then adds proper substitutions to son.term and term from
n.term as sons of n.

4.3 Result reporting

Fig. 4. Results for the Search in Fig. 3

For a search engine
for mathematical for-
mulae we need to
augment the set of
result items (usually
page title, descrip-
tion, and page link)
reported to the user
for each hit. As typ-
ical pages contain mul-
tiple formulae, we need
to report the exact
occurrence of the hit
in the page. We do
this by supplying an
XPointer reference
where possible. Con-
cretely, we group all
occurrences into one page item that can be expanded on demand
and within this we order the groups by number of contained refer-
ences. See Figure 4 for an example.

For any given result, a detailed view is available. This view shows
the exact term that was matched and the used substitution (a map-
ping from the query variables specified by the mq:generic attributes
to certain subterms) to match that specific term. A more serious
problem comes from the fact that — as mentioned above — content
representations are often the source from which presentations are

Fig. 5. Detailed Search Results

generated. If MathWeb-
Search can find out
the correspondence be-
tween content and pre-
sentation documents, it
will report both to the
user. For instance for
Connexions we present
two links as results: one
is the source link , a
link to the document
we actually index, and
the default link , a link
to the more aestheti-
cally pleasing presenta-
tion document.

4.4 Case Studies and Results

We have tested our implementation on the content repository of the
Connexions Project, available via the OAI protocol [OAI02]. This
gives us a set of over 3,400 articles with mathematical expressions
to work on. The number of terms represented in these documents
is approximately 53,000 (77,000 including subterms). The average
term depth is 3.6 and the maximal one is 14. Typical query ex-
ecution times on this index are in the range of milliseconds. The
search in our running example takes 23 ms for instance. There are,
however, complex searches (e.g. using the mq:anyorder attribute)
that internally call the searching routine multiple times and take
up to 200 ms but for realistic examples execution time is below 50
ms. We also built an index of the 87,000 Content MathML formu-
lae from http://functions.wolfram.com. Here, term depths are
much larger (average term depth 8.9, maximally 53) resulting in a
much larger index: 1.6 million formulae; total number of nodes in
the index is 2.9 million, resulting in a memory footprint of 770MB.
First experiments indicate that search times are largely unchanged
by the increase in index size (for reasonably simple searches).

5 Conclusions and Future Work

We have presented a search engine for mathematical formulae on
the Internet. In contrast to other approaches, MathWebSearch
uses the full content structure of formulae, and is easily extensible
to other content formats. A first prototype is available for testing at
http://search.mathweb.org. We will continue developing Math-
WebSearch into a production system.

A current weakness of the system is that it can only search for
formulae that match the query terms up to α-equivalence. Many
applications would benefit from similarity-based searches or stronger
equalities. For instance, our search in Listing 1.3 might be used to
find a useful identity for

∫ 0
∞ f(x) · g(x)dx, if we know that s(x) ·

s(x) = s2(x). MathWebSearch can be extended to a E-Retrieval
engine (see [Nor06b]) without compromising efficiency by simply E-
standardizing index and query terms.

We plan to index more content, particularly more OpenMath.
In the long run, it would be interesting to interface MathWeb-
Search with a regular web search engine and create a powerful,
specialized, full-feature application. This would resolve the main dis-
advantage our implementation has – it cannot search for simple text.
Finally we would like to allow specification of content queries using
more largely known formats, like LATEX: strings like \frac{1}{x^2}

or 1/x^2 could be processed as well. This would make MathWeb-
Search accessible for a larger group of users.

References

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, et al. Mathemati-
cal Markup Language (MathML) version 2.0 (second edition). W3C
recommendation, World Wide Web Consortium, 2003. Available at
http://www.w3.org/TR/MathML2.

[AS04] Andrea Asperti and Matteo Selmi. Efficient retrieval of mathematical
statements. In Andrea Asperti, Grzegorz Bancerek, and Andrej Trybulec,
editors, Mathematical Knowledge Management, MKM’04, number 3119 in
LNCS, pages 1–4. Springer Verlag, 2004.

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar,
Marc Gaetano, and Michael Kohlhase. The Open Math standard, ver-
sion 2.0. Technical report, The Open Math Society, 2004. http://www.

openmath.org/standard/om20.
[Cre] Creative Commons. Web page at http://creativecommons.org.

[FSF91] Free Software Foundation FSF. Gnu general public license. Software
License available at http://www.gnu.org/copyleft/gpl.html, 1991.

[GMMW03] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. Xpointer
framework. W3c recommendation, World Wide Web Constortium W3C,
25 March 2003.

[Gra96] Peter Graf. Term Indexing. Number 1053 in LNCS. Springer Verlag, 1996.
[HRW02] Sandy Huerter, Igor Rodionov, and Stephen Watt. Content-faithful trans-

formations for mathml. In Second International Conference on MathML
and Technologies for Math on the Web, Chicago, USA, 2002. http:

//www.mathmlconference.org/2002/presentations/huerter/.
[ICW06] Tetsuo Ida, Jacques Calmet, and Dongming Wang, editors. Proceedings

of Artificial Intelligence and Symbolic Computation, AISC’2006, number
4120 in LNAI. Springer Verlag, 2006.

[KF01] Michael Kohlhase and Andreas Franke. MBase: Representing knowledge
and context for the integration of mathematical software systems. Journal
of Symbolic Computation; Special Issue on the Integration of Computer
algebra and Deduction Systems, 32(4):365–402, September 2001.

[KK06] Andrea Kohlhase and Michael Kohlhase. Communities of practice in
MKM: An extensional model. In Jon Borwein and William M. Farmer,
editors, Mathematical Knowledge Management, MKM’06, number 4108 in
LNAI. Springer Verlag, 2006.

[Koh06] Michael Kohlhase. OMDoc An open markup format for mathematical
documents (Version 1.2). Number 4180 in LNAI. Springer Verlag, 2006.
in press http://www.mathweb.org/omdoc/pubs/omdoc1.2.pdf.

[LM06] Paul Libbrecht and Erica Melis. Methods for access and retrieval of mathe-
matical content in ActiveMath. In N. Takayama and A. Iglesias, editors,
Proceedings of ICMS-2006, number 4151 in LNAI. Springer Verlag, 2006.
forthcoming.

[Mat06] Math web search. Web page at http://kwarc.eecs.iu-bremen.de/

projects/mws/, seen July 2006.
[MBG+03] Erica Melis, Jochen Büdenbender, George Goguadze, Paul Libbrecht, and

Carsten Ullrich. Knowledge representation and management in Active-
Math. Annals of Mathematics and Artificial Intelligence, 38:47–64, 2003.
see http://www.activemath.org.

[MY03] B. Miller and A. Youssef. Technical aspects of the digital library of math-
ematical functions. Annals of Mathematics and Artificial Intelligence,
38(1-3):121–136, 2003.

[Nor06a] Immanuel Normann. Enhanced theorem reuse by partial theory inclu-
sionss. In Ida et al. [ICW06].

[Nor06b] Immanuel Normann. Extended normalization for e-retrieval of formulae.
to appear in the proceedings of Communicating Mathematics in the Dig-
ital Era, 2006.

[OAI02] The open archives initiative protocol for metadata harvesting,
June 2002. Available at http://www.openarchives.org/OAI/

openarchivesprotocol.html.
[TSP06] Frank Theiß, Volker Sorge, and Martin Pollet. Interfacing to computer al-

gebra via term indexing. In Silvio Ranise and Roberto Sebastiani, editors,
Calculemus-2006, 2006.

[Wol02] Stephen Wolfram. The Mathematica Book. Cambridge University Press,
2002.

