
Higher{Order Coloured Uni�cation and Natural LanguageSemanticsClaire GardentComputational LinguisticsUniversit�at des SaarlandesD{Saarbr�uckenclaire@coli.uni-sb.de Michael KohlhaseComputer ScienceUniversit�at des SaarlandesD{Saarbr�uckenkohlhase@cs.uni-sb.deAbstractIn this paper, we show that Higher{OrderColoured Uni�cation { a form of uni�cationdeveloped for automated theorem proving{ provides a general theory for modelingthe interface between the interpretationprocess and other sources of linguistic, nonsemantic information. In particular, it pro-vides the general theory for the PrimaryOccurrence Restriction which (Dalrympleet al., 1991)'s analysis called for.1 IntroductionIt is well known that Higher{Order Uni�cation(HOU) can be used to construct the semantics ofNatural Language: (Dalrymple et al., 1991) { hence-forth, DSP { show that it allows a treatment of VP{Ellipsis which successfully captures the interactionof VPE with quanti�cation and nominal anaphora;(Pulman, 1995; Gardent and Kohlhase, 1996) useHOU to model the interpretation of focus and itsinteraction with focus sensitive operators, adverbialquanti�ers and second occurrence expressions; (Gar-dent et al., 1996) shows that HOU yields a sim-ple but precise treatment of corrections; Finally,(Pinkal, 1995) uses linear HOU to reconstruct under-speci�ed semantic representations.However, it is also well known that the HOUapproach to NL semantics systematically over{generates and that some general theory of the in-terface between the interpretation process and othersources of linguistic information is needed in orderto avoid this.In their treatment of VP{ellipsis, DSP introducean informal restriction to avoid over{generation: thePrimary Occurrence Restriction (POR). Althoughthis restriction is intuitive and linguistically well{motivated, it does not provide a general theoreticalframework for extra{semantic constraints.

In this paper, we argue that Higher{OrderColoured Uni�cation (HOCU, (cf. sections 3,6), arestricted form of HOU developed independently fortheorem proving, provides the needed general frame-work. We start out by showing that the HOCUapproach allows for a precise and intuitive model-ing of DSP's Primary Occurrence Restriction (cf.section 3.1). We then show that the POR can beextended to capture linguistic restrictions on otherphenomena (focus, second occurrence expressionsand adverbial quanti�cation) provided that the no-tion of primary occurrence is suitably adjusted (cf.section 4). Obviously a treatment of the interplay ofthese phenomena and their related notion of primaryoccurrence is only feasible given a precise and well{understood theoretical framework. We illustrate thisby an example in section 4.4. Finally, we illustratethe generality of the HOCU framework by using itto encode a completely di�erent constraint, namelyKratzer's binding principle (cf. section 5).2 Higher{Order Uni�cation and NLsemanticsThe basic idea underlying the use of HOU for NLsemantics is very simple: the typed �{calculus isused as a semantic representation language while se-mantically under{speci�ed elements (e.g. anaphorsand ellipses) are represented by free variables whosevalue is determined by solving higher{order equa-tions. For instance, the discourse (1a) has (1b) asa semantic representation where the value of R isgiven by equation (1c) with solutions (1d) and (1e).(1) a. Dan likes golf. Peter does too.b. like(dan,golf)^R(peter)c. like(dan,golf) = R(dan)d. R = �x: like(x,golf)e. R = �x: like(dan,golf)The process of solving such equations is tradition-ally called uni�cation and can be stated as follows:



given two terms M and N , �nd a substitution ofterms for free variables that will make M and Nequal. For �rst order logic, this problem is decidableand the set of solutions can be represented by a sin-gle most general uni�er. For the typed �{calculus,the problem is undecidable, but there is an algorithmwhich { given a solvable equation { will enumeratea complete set of solutions for this equation (Huet,1975).Note that in (1), uni�cation yields a linguisticallyvalid solution (1d) but also an invalid one: (1e).To remedy this shortcoming, DSP propose an in-formal restriction, the Primary Occurrence Re-striction:Given a labeling of occurrences as eitherprimary or secondary, the POR excludesof the set of linguistically valid solutions,any solution which contains a primary oc-currence.Here, a primary occurrence is an occurrence thatis directly associated with a source parallel element.Neither the notion of direct association, nor that ofparallelism is given a formal de�nition; but given anintuitive understanding of these notions, a sourceparallel element is an element of the source (i.e.antecedent) clause which has a parallel counterpartin the target (i.e. elliptic or anaphoric) clause.To see how this works, consider example (1) again.In this case, dan is taken to be a primary occur-rence because it represents a source parallel elementwhich is neither anaphoric nor controlled i.e. it isdirectly associated with a source parallel element.Given this, equation (1c) becomes (2a) with solu-tions (2b) and (2c) (primary occurrences are under-lined). Since (2c) contains a primary occurrence, itis ruled out by the POR and is thus excluded fromthe set of linguistically valid solutions.(2) a. like(dan; golf) = R(dan)b. R = �x:like(x; golf)c. R = �x:like(dan; golf)Although the intuitions underlying the POR areclear, two main objections can be raised. First, therestriction is informal and as such provides no goodbasis for a mathematical and computational evalua-tion. As DSP themselves note, a general theory forthe POR is called for. Second, their method is agenerate{and{test method: all logically valid solu-tions are generated before those solutions that vio-late the POR and are linguistically invalid are elimi-nated. While this is su�cient for a theoretical anal-ysis, for actual computation it would be preferablenever to produce these solutions in the �rst place.

In what follows, we present a uni�cation frameworkwhich solves both of these problems.3 Higher{Order ColouredUni�cation (HOCU)There is a restricted form of HOU which allows fora natural modeling of DSP's Primary OccurrenceRestriction: Higher{Order Coloured Uni�cation de-veloped independently for theorem proving (Hutterand Kohlhase, 1995). This framework uses a variantof the simply typed �-calculus where symbol occur-rences can be annotated with so-called colours andsubstitutions must obey the following constraint:For any colour constant c and anyc{coloured variable Vc, a well{formedcoloured substitution must assign to Vc a c{monochrome term i.e., a term whose sym-bols are c{coloured.3.1 Modeling the Primary OccurrenceRestrictionGiven this coloured framework, the POR is directlymodelled as follows: Primary occurrences are pe-coloured whilst free variables are :pe-coloured. Forthe moment we will just consider the colours pe (pri-mary for ellipsis) and :pe (secondary for ellipsis) asdistinct basic colours to keep the presentation sim-ple. Only for the analysis of the interaction of e.g.ellipsis with focus phenomena (cf. section 4.4) do weneed a more elaborate formalization, which we willdiscuss there.Given the above restriction for well{formedcoloured substitutions, such a colouring ensures thatany solution containing a primary occurrence isruled out: free variables are :pe-coloured and mustbe assigned a :pe-monochrome term. Hence no sub-stitution will ever contain a primary occurrence (i.e.a pe-coloured symbol). For instance, discourse (1a)above is assigned the semantic representation (3a)and the equation (3b) with unique solution (3c). Incontrast, (3d) is not a possible solution since it as-signs to an :pe-coloured variable, a term containinga pe-coloured symbol i.e. a term that is not :pe-monochrome.(3) a. like(danpe; golf) ^R:pe(peter)b. like(danpe; golf) = R:pe(danpe)c. R:pe = �x:like(x; golf)d. R:pe = �x:like(danpe; golf)3.2 HOCU theoryTo be more formal, we presuppose a �nite setC = fa; b; c; pe;:pe; : : :g of colour constants and a



countably in�nite supply CV = fA;B; : : :g of colourvariables.As usual in �-calculus, the set w� of well-formed formulae consists of (coloured1) con-stants ca; runsb; runsA; : : :, (possibly uncoloured)variables x; xa; yb; : : : (function) applications ofthe form MN and �-abstractions of the form�x:M . Note that only variables without colourscan be abstracted over. We call a formula M c-monochrome, if all symbols in M are bound ortagged with c.We will need the so-called colour erasure jM j ofM , i.e. the formula obtained from M by erasing allcolour annotations in M . We will also use variouselementary concepts of the �-calculus, such as freeand bound occurrences of variables or substitutionswithout de�ning them explicitly here. In particularwe assume that free variables are coloured in all for-mulae occuring. We will denote the substitution ofa term N for all free occurrences of x in M with[N=x]M .It is crucial for our system that colours annotatesymbol occurrences (i.e. colours are not sorts!), inparticular, it is intended that di�erent occurrencesof symbols carry di�erent colours (e.g. f(xb; xa))and that symbols that carry di�erent colours aretreated di�erently. This observation leads to the no-tion of coloured substitutions, that takes the colourinformation of formulae into account. In contrastto traditional (uncoloured) substitutions, a colouredsubstitution � is a pair h�t; �ci, where the termsubstitution �t maps coloured variables (i.e. thepair xc of a variable x and the colour c) to formulaeof the appropriate type and the colour substitu-tion �c maps colour variables to colours. In order tobe legal (a C-substitution) such a mapping � mustobey the following constraints:� If a and b are di�erent colours, then j�(xa)j =j�(xb)j, i.e. the colour erasures have to be equal.� If c 2 C is a colour constant, then �(xc) is c-monochrome.The �rst condition ensures that the colour erasureof a C-substitution is a well-de�ned classical substi-tution of the simply typed �-calculus. The secondcondition formalizes the fact that free variables withconstant colours stand for monochrome subformu-lae, whereas colour variables do not constrain thesubstitutions. This is exactly the trait, that we willexploit in our analysis.1Colours are indicated by subscripts labeling termoccurrences; whenever colours are irrelevant, we simplyomit them.

Note that ��-reduction in the coloured �-calculusis just the classical notion, since the bound vari-ables do not carry colour information. Thus wehave all the known theoretical results, such as thefact that ��-reduction always terminates producingunique normal forms and that ��-equality can betested by reducing to normal form and comparingfor syntactic equality. This gives us a decidable testfor validity of an equation.In contrast to this, higher-order uni�cation testsfor satis�ability by �nding a substitution � thatmakes a given equation M = N valid (�(M ) =���(N )), even if the original equation is not (M 6=��N ). In the coloured �-calculus the space of (se-mantic) solutions is further constrained by requiringthe solutions to be C-substitutions. Such a substi-tution is called a C-uni�er of M and N . In par-ticular, C-uni�cation will only succeed if compara-ble formulae have uni�able colours. For instance,introa(pa; jb; xa) uni�es with introa(ya; jA; sa) butnot with introa(pa; ja; sa) because of the colour clashon j.It is well-known, that in �rst-order logic (and incertain related forms of feature structures) thereis always a most general uni�er for any equationthat is solvable at all. This is not the case forhigher-order (coloured) uni�cation, where variablescan range over functions, instead of only individu-als. Fortunately, in our case we are not interestedin general uni�cation, but we can use the fact thatour formulae belong to very restricted syntactic sub-classes, for which much better results are known. Inparticular, the fact that free variables only occur onthe left hand side of our equations reduces the prob-lem of �nding solutions to higher-order matching,of which decidability has been proven for the sub-class of third-order formulae (Dowek, 1992) and isconjectured for the general case. This class, (intu-itively allowing only nesting functions as argumentsup to depth two) covers all of our examples in thispaper. For a discussion of other subclasses of formu-lae, where higher-order uni�cation is computation-ally feasible see (Prehofer, 1994).Some of the equations in the examples have multi-ple most general solutions, and indeed this multiplic-ity corresponds to the possibility of multiple di�er-ent interpretations of the focus constructions. Therole of colours in this is to restrict the logically pos-sible solutions to those that are linguistically sound.



4 Linguistic Applications of thePORIn section 3.1, we have seen that HOCU allowed fora simple theoretical rendering of DSP's Primary Oc-currence Restriction. But isn't this restriction fairlyidiosyncratic? In this section, we show that the re-striction which was originally proposed by DSP tomodel VP{ellipsis, is in fact a very general constraintwhich far from being idiosyncratic, applies to manydi�erent phenomena. In particular, we show that itis necessary for an adequate analysis of focus, secondoccurrence expressions and adverbial quanti�cation.Furthermore, we will see that what counts as aprimary occurrence di�ers from one phenomenon tothe other (for instance, an occurrence directly asso-ciated with focus counts as primary w.r.t focus se-mantics but not w.r.t to VP{ellipsis interpretation).To account for these di�erences, some machinery isneeded which turns DSP's intuitive idea into a fully{blown theory. Fortunately, the HOCU framework isjust this: di�erent colours can be used for di�erenttypes of primary occurrences and likewise for di�er-ent types of free variables. In what follows, we showhow each phenomenon is dealt with. We then illus-trate by an example how their interaction can beaccounted for.4.1 FocusSince (Jackendo�, 1972), it is commonly agreed thatfocus a�ects the semantics and pragmatics of utter-ances. Under this perspective, focus is taken to bethe semantic value of a prosodically prominent ele-ment. Furthermore, focus is assumed to trigger theformation of an additional semantic value (hence-forth, the Focus Semantic Value or FSV) which isin essence the set of propositions obtained by makinga substitution in the focus position (cf. e.g. (Kratzer,1991)). For instance, the FSV of (4a)2 is (4b), theset of formulae of the form l(j,x) where x is of typee, and the pragmatic e�ect of focus is to presupposethat the denotation of this set is under considera-tion.(4) a. Jon likes SARAHb. fl(j; x) j x 2 w�egIn (Gardent and Kohlhase, 1996), we show thatHOU can successfully be used to compute the FSVof an utterance. More speci�cally, given (part of) anutterance U with semantic representation Sem andfoci F 1 : : :Fn, we require that the following equa-2Focus is indicated using upper{case.

tion, the FSV equation, be solved:Sem = Gd(F 1) : : : (Fn)On the basis of the Gd value, we then de�ne theFSV, written Gd, as follows:De�nition 4.1 (Focus Semantic Value)Let Gd be of type � = ~�k ! t and n be the number offoci (n � k), then the Focus Semantic Value deriv-able from Gd, written Gd, is fGd(t1 : : : tn) j ti 2w��ig:This yields a focus semantic value which is inessence Kratzer's presupposition skeleton. For in-stance, given (4a) above, the required equation willbe l(j; s) = Gd(s) with two possible values for Gd:�x:l(j; x) and �x:l(j; s). Given de�nition (4.1), (4a)is then assigned two FSVs namely(5) a. Gd = fl(j; x) j x 2 w�egb. Gd = fl(j; s) j x 2 w�egThat is, the HOU treatment of focus over{generates: (5a) is an appropriate FSV, but not (5b).Clearly though, the POR can be used to rule out(5b) if we assume that occurrences that are directlyassociated with a focus are primary occurrences. Tocapture the fact that those primary occurrences aredi�erent fromDSP's primary occurrences when deal-ing with ellipsis, we colour occurrences that are di-rectly associated with focus (rather than a sourceparallel element in the case of ellipsis) pf. Conse-quently, we require that the variable representingthe FSV be :pf coloured, that is, its value may notcontain any pf term. Under these assumptions, theequation for (4a) will be (6a) which has for uniquesolution (6b).(6) a. l(j,spf) = FSV:pf (spf )b. FSV:pf = �x:l(j; x)4.2 Second Occurrence ExpressionsA second occurrence expression (SOE) is a partial orcomplete repetition of the preceding utterance andis characterised by a de-accenting of the repeatingpart (Bartels, 1995). For instance, (7b) is an SOEwhose repeating part only likes Mary is deaccented.(7) a. Jon only likes MARY.b. No, PETER only likes Mary.In (Gardent, 1996; Gardent et al., 1996) we showthat SOEs are advantageously viewed as involving adeaccented anaphor whose semantic representationmust unify with that of its antecedent. Formally,this is captured as follows. Let SSem and TSem bethe semantic representation of the source and targetclause respectively, and TP 1 : : : TPn; SP 1 : : :SPn



be the target and source parallel elements3, then theinterpretation of an SOE must respect the followingequations:An(SP 1; : : : ; SPn) = SSemAn(TP 1; : : : ; TPn) = TSemGiven this proposal and some further assumptionsabout the semantics of only, the analysis of (7b) in-volves the following equations:(8) An(j) = 8P [P 2 f�x:like(x; y) j y 2 w�eg^ P (j)! P = �x:like(x;m)]An(p) = 8P [P 2 FSV ^ P (p)! P = �x:like(x;m)]Resolution of the �rst equation then yields twosolutions:An = �z8P [P 2 f�x:like(x; y) j y 2 w�eg^ P (z)! P = �x:like(x;m)]An = �z8P [P 2 f�x:like(x; y) j y 2 w�eg^ P (j)! P = �x:like(x;m)]Since An represents the semantic informationshared by target and source clause, the second so-lution is clearly incorrect given that it contains in-formation (j) that is speci�c to the source clause.Again, the POR will rule out the incorrect solutions,whereby contrary to the VP{ellipsis case, all occur-rences that are directly associated with parallel el-ements (i.e. not just source parallel elements) aretaken to be primary occurrences. The distinction isimplemented by colouring all occurrences that aredirectly associated with parallel element ps, whereasthe corresponding free variable (An) is coloured as:ps. Given these constraints, the �rst equation in(8) is reformulated as:An:ps(jps) = 8P [P 2 f�x:like(x; y) j y 2 w�eg^ P (jps) ! P = �x:like(x;m)]with the unique well{coloured solutionAn:ps = �z:8P [P 2 f�x:like(x; y) j y 2 w�eg^ P (z) ! P = �x:like(x;m)]4.3 Adverbial quanti�cationFinally, let us brie
y examine some cases of adver-bial quanti�cation. Consider the following examplefrom (von Fintel, 1995):Tom always takes SUE to Al's mother.Yes, and he always takes Sue to JO's mother.In (Gardent and Kohlhase, 1996), we suggest thatsuch cases are SOEs, and thus can be treated asinvolving a deaccented anaphor (in this case, theanaphor he always takes Sue to 's mother). Givensome standard assumptions about the semantics of3As in DSP, the identi�cation of parallel elements istaken as given.

always, the equations constraining the interpretationAn of this anaphor are:An(al) = always (Tom take x to al's mother)(Tom take Sue to al's mother)An(jo) = always FSV(Tom take Sue to Jo's mother)Consider the �rst equation. If An is the semanticsshared by target and source clause, then the onlypossible value for An is�z:always (Tom take x to z's mother)(Tom take Sue to z's mother)where both occurrences of the parallel element mhave been abstracted over. In contrast, the followingsolutions for An are incorrect.�z:always (Tom take x to al's mother)(Tom take Sue to z's mother)�z:always (Tom take x to al's mother)(Tom take Sue to al's mother)�z:always (Tom take x to z's mother)(Tom take Sue to al's mother)Once again, we see that the POR is a necessaryrestriction: by labeling as primary, all occurrencesrepresenting a parallel element, it can be ensuredthat only the �rst solution is generated.4.4 Interaction of constraintsPerhaps the most convincing way of showing theneed for a theory of colours (rather than just an in-formal constraint) is by looking at the interaction ofconstraints between various phenomena. Considerthe following discourse(9) a. Jon likes SARAHb. Peter does tooSuch a discourse presents us with a case of inter-action between ellipsis and focus thereby raising thequestion of how DSP' POR for ellipsis should inter-act with our POR for focus.As remarked in section 3.1, we have to interpretthe colour :pe as the concept of being not primaryfor ellipsis, which includes pf (primary for focus). Inorder to make this approach work formally, we haveto extend the supply of colours by allowing booleancombinations of colour constants. The semantics ofthese ground colour formula is that of propositionallogic, where :d is taken to be equivalent to the dis-junction of all other colour constants.Consequently we have to generalize the secondcondition on C-substitutions� For all colour annotations d of symbols in �(xc)d j= c in propositional logic.Thus X:d can be instantiated with any colouredformula that does not contain the colour d. The



HOCU algorithm is augmented with suitable rulesfor boolean constraint satisfaction for colour equa-tions.The equations resulting from the interpretation of(9b) are:l(jpe; spf) = R:pe(jpe)R:pe(p) = FSV:pf (F )where the �rst equation determines the interpre-tation of the ellipsis whereas the second �xes thevalue of the FSV. Resolution of the �rst equationyields the value �x:l(x; spf ) for R:pe. As required,no other solution is possible given the colour con-straints; in particular �x:l(jpe; spf ) is not a valid so-lution. The value of R:pe(jpe) is now l(ppe; spf) sothat the second equation is4:l(p; spf) = FSV:pf (F )Under the indicated colour constraints, three so-lutions are possible:FSV:pf = �x:l(p; x); F = spfFSV:pf = �O:O(p); F = �x:l(x; spf)FSV:pf = �X:X; F = l(p; spf )The �rst solution yields a narrow focus read-ing (only SARAH is in focus) whereas the secondand the third yield wide focus interpretations corre-sponding to a VP and an S focus respectively. Thatis, not only do colours allow us to correctly capturethe interaction of the two PORs restricting the in-terpretation of ellipsis of focus, they also permit anatural modeling of focus projection (cf. (Jackend-o�, 1972)).5 Another constraintAn additional argument in favour of a general the-ory of colours lies in the fact that constraints thatare distinct from the POR need to be encoded toprevent HOU analyses from over{generating. In thissection, we present one such constraint (the so-calledweak{crossover constraint) and show how it can beimplemented within the HOCU framework.In essence, the main function of the POR is to en-sure that some occurrence occuring in an equationappears as a bound variable in the term assignedby substitution to the free variable occurring in thisequation. However, there are cases where the dual4Note that this equation falls out of our formal sys-tem in that it is untyped and thus cannot be solved bythe algorithm described in section 6 (as the solutions willshow, we have to allow for FSV and F to have di�erenttypes). However, it seems to be a routine exercise to aug-ment HOU algorithms that can cope with type variableslike (Hustadt, 1991; Dougherty, 1993) with the colourmethods from (Hutter and Kohlhase, 1995).

constraint must be enforced: a term occurrence ap-pearing in an equation must appear unchanged inthe term assigned by substitution to the free vari-able occurring in this equation. The following ex-ample illustrates this.(Chomsky, 1976) observes that focused NPspattern with quanti�ed and wh{NPs with re-spect to pronominal anaphora: when the quanti-�ed/wh/focused NP precedes and c{commands thepronoun, this pronoun yields an ambiguity betweena co-referential and a bound{variable reading. Thisis illustrated in example(10) We only expected HIMi to claimthat hei was brilliantwhere the presence of the pronoun hei gives riseto two possible FSVs5FSV = f�x:ex(x; y; i) j y 2 w�egFSV = f�x:ex(x; y; y) j y 2 w�egthus allowing two di�erent readings: the corefen-tial or strict reading8P [P 2 f�x:ex(x; y; i) j y 2 w�eg^ P (we) ! P = �x:ex(x; i; i)]and the bound-variable or sloppy reading.8P [P 2 f�x:ex(x; y; y)) j y 2 w�eg^ P (we) ! P = �x:ex(x; i; i))]In contrast, if the quanti�ed/wh/focused NP doesnot precede and c{command the pronoun, as in(11) We only expected himi to claimthat HEi was brilliantthere is no ambiguity and the pronoun can onlygive rise to a co-referential interpretation. For in-stance, given (11) only one reading arises8P [P 2 f�x:ex(x; i; y) j y 2 w�eg^ P (we) ! P = �x:ex(x; i; i)]where the FSV is f�x:ex(x; i; y) j y 2 w�eg.To capture this data, Government and Bindinganalyses postulate �rst, that the antecedent is raisedby quanti�er raising and second, that pronouns thatare c{commanded and preceded by their antecedentare represented either as a �{bound variable or asa constant whereas other pronouns can only be rep-resented by a constant (cf. e.g. (Kratzer, 1991)'sbinding principle). Using HOCU, we can model thisrestriction directly. As before, the focus term is pf-and the FSV variable :pf-coloured. Furthermore,we assume that pronouns that are preceded and c{commanded by a quanti�ed/wh/focused antecedentare variable coloured whereas other pronouns are:pf-coloured. Finally, all other terms are taken to5We abbreviate exp(x; cl(y; blt(i))) to ex(x;y; i) to in-crease legibility.



be :pf-coloured. Given these assumptions, the rep-resentation for (10) is ex:pf (we:pf ; ipf ; iA) and thecorresponding FSV equationR:pf(ipf ) = �x:ex:pf(x; ipf ; iA)has two possible solutionsR:pf = �y:�x:ex:pf (x; y; i:pf )R:pf = �y:�x:ex:pf (x; y; x)In contrast, the representation for (11) isex:pf (we:pf ; i:pf ; ipf) and the equation isR:pf(ipf ) = �x:ex:pf(x; i:pf ; ipf)with only one well{coloured solutionR:pf = �y:�x:ex:pf (x; i:pf ; y)Importantly, given the indicated colour con-straints, no other solutions are admissible. Intu-itively, there are two reasons for this. First, thede�nition of coloured substitutions ensures that theterm assigned to R:pf is :pf-monochrome. In par-ticular, this forces any occurrences of ipf to appearas a bound variable in the value assigned to R:pfwhereas iA can appear either as i:pf (a colour vari-able uni�es with any colour constant) or as a boundvariable { this in e�ect models the sloppy/strict am-biguity. Second, a colour constant only uni�es withitself. This in e�ect rules out the bound variablereading in (11): if the i:pf occurrence were to be-come a bound variable, the value of R:pf wouldthen �y:�x:ex:pf (x; y; y) . But then by �{reduction,R:pf(ipf ) would be �x:ex:pf (x; ipf ; ipf) which doesnot unify with the right hand side of the originalequation i.e �x:ex:pf(x; i:pf ; ipf).For a more formal account of how the uni�ers arecalculated see section 6.1.6 Calculating Coloured Uni�ersSince the HOCU is the principal computational de-vice of the analysis in this paper, we will now tryto give an intuition for the functioning of the algo-rithm. For a formal account including all details andproofs see (Hutter and Kohlhase, 1995).Just as in the case of uni�cation for �rst-orderterms, the algorithm is a process of recursive decom-position and variable elimination that transform setsof equations into solved forms. Since C-substitutionshave two parts, a term{ and a colour part, we needtwo kinds (M =t N for term equations and c =c dfor colour equations). Sets E of equations in solvedform (i.e. where all equations are of the form x = Msuch that the variable x does not occur anywhere elsein M or E) have a unique most general C-uni�er �Ethat also C-uni�es the initial equation.There are several rules that decompose the syntac-tic structure of formulae, we will only present two of

them. The rule for abstractions transforms equa-tions of the form �x:A =t �y:B to [c=x]A =t [c=y]B,and �x:A =t B to [c=x]A =t Bc where c is a newconstant, which may not appear in any solution. Therule for applications decomposes ha(s1; : : : ; sn) =thb(t1; : : : ; tn) to the set fa =c b; s1 =t t1; : : : ; sn =ttng, provided that h is a constant. Furthermoreequations are kept in ��-normal form.The variable elimination process for colour vari-ables is very simple, it allows to transform a setE [ fA =c dg of equations to [d=A]E [ fA =c dg,making the equation fA =c dg solved in the result.For the formula case, elimination is not that simple,since we have to ensure that j�(xA)j = j�(xB)j toobtain a C-substitution �. Thus we cannot simplytransform a set E[fxd =t Mg into [M=xd]E[fxd =tMg, since this would (incorrectly) solve the equa-tions fxc = fc; xd = gdg. The correct variableelimination rule transforms E [ fxd =t Mg into�(E)[ fxd =t M;xc1 = M1; : : : ; xcn =t Mng, whereci are all colours of the variable x occurring inM andE , the M i are appropriately coloured variants (samecolour erasure) of M , and � is the C-substitutionthat eliminates all occurrences of x from E .Due to the presence of function variables, sys-tematic application of these rules can terminatewith equations of the form xc(s1; : : : ; sn) =thd(t1; : : : ; tm). Such equations can neither be fur-ther decomposed, since this would loose uni�ers (ifG and F are variables, then Ga = Fb as a solution�x:c for F and G, but fF = G; a = bg is unsolv-able), nor can the right hand side be substituted forx as in a variable elimination rule, since the typeswould clash. Let us consider the uncoloured equa-tion x(a) =t a which has the solutions (�z:a) and(�z:z) for x.The standard solution for �nding a complete setof solutions in this so-called 
ex/rigid situation isto substitute a term for x that will enable decompo-sition to be applicable afterwards. It turns out thatfor �nding all C-uni�ers it is su�cient to bind x toterms of the same type as x (otherwise the uni�erwould be ill-typed) and compatible colour (other-wise the uni�er would not be a C-substitution) thateither� have the same head as the right hand side; theso-called imitation solution (�z:a in our exam-ple) or� where the head is a bound variable that enablesthe head of one of the arguments of x to becomehead; the so-called projection binding (�z:z).In order to get a better understanding of the situ-ation let us reconsider our example using colours.



x(ac) = ad. For the imitation solution (�z:ad) we\imitate" the right hand side, so the colour on amust be d. For the projection solution we instantiate(�z:z) for x and obtain (�z:z)ac, which �-reduces toac. We see that this \lifts" the constant ac from theargument position to the top. Incidentally, the pro-jection is only a C-uni�er of our coloured example,if c and d are identical.Fortunately, the choice of instantiations can befurther restricted to the most general terms in thecategories above. If xc has type �n ! � and hd hastype 
m ! �, then these so-called general bind-ings have the following form:Ghd = �z�1 : : : z�n :hd(H1e1(z); : : : ;Hmem(z))where the Hi are new variables of type �n ! 
i andthe ei are either distinct colour variables (if c 2 CV)or ei = d = c (if c 2 C). If h is one of the boundvariables z�i , then Ghd is called an imitation bind-ing, and else, (h is a constant or a free variable), aprojection binding.The general rule for 
ex/rigid equations trans-forms fxc(s1; : : : ; sn) =t hd(t1; : : : ; tm)g intofxc(s1; : : : ; sn) =t hd(t1; : : : ; tm); xc =t Ghc g, whichin essence only �xes a particular binding for thehead variable xc. It turns out (for details and proofssee (Hutter and Kohlhase, 1995)) that these generalbindings su�ce to solve all 
ex/rigid situations, pos-sibly at the cost of creating new 
ex/rigid situationsafter elimination of the variable xc and decompo-sition of the changed equations (the elimination ofx changes xc(s1; : : : ; sn) to Ghc (s1; : : : ; sn) which hashead h).6.1 ExampleTo fortify our intuition on calculating higher-ordercoloured uni�ers let us reconsider examples (10) and(11) with the equationsR:pf(ipf ) =t �x:ex:pf (x; ipf ; iA)R:pf(ipf ) =t �x:ex:pf (x; i:pf ; ipf )We will develop the derivation of the solutions forthe �rst equations (10) and point out the di�erencesfor the second (11). As a �rst step, the �rst equationis decomposed toR:pf(ipf ; c) =t ex:pf (c; ipf ; iA)where c is a new constant. Since R:pf is a vari-able, we are in a 
ex/rigid situation and have thepossibilities of projection and imitation. The pro-jection bindings �xy:x and �xy:y for R:pf wouldlead us to the equations ipf =t ex:pf (c; ipf ; iA) andc =t ex:pf (c; ipf ; iA), which are obviously unsolvable,since the head constants ipf (and c resp.) and ex:pf

clash6. So we can only bind R:pf to the imitationbinding �yx:ex:pf (H1:pf (y; x);H2:pf(y; x);H3(y; x)).Now, we can directly eliminate the variable R:pf ,since there are no other variants. The resulting equa-tion ex:pf (H1:pf(ipf ; c);H2:pf(ipf ; c);H3(ipf ; c))=t ex:pf (c; ipf ; iA)can be decomposed to the equations(17) H1:pf(ipf ; c) =t cH2:pf(ipf ; c) =t ipfH3:pf(ipf ; c) =t iALet us �rst look at the �rst equation; in this
ex/rigid situation, only the projection binding�zw:w can be applied, since the imitation binding�zw:c contains the forbidden constant c and theother projection leads to a clash. This solves theequation, since (�zw:w)(ipf ; c) �-reduces to c, giv-ing the trivial equation c =t c which can be deletedby the decomposition rules.Similarly, in the second equation, the projectionbinding �zw:z for H2 solves the equation, while thesecond projection clashes and the imitation binding�zw:ipf is not :pf-monochrome. Thus we are leftwith the third equation, where both imitation andprojection bindings yield legal solutions:� The imitation binding for H3:pf is �zw:i:pf , andnot �zw:iA, as one is tempted to believe, sinceit has to be :pf-monochrome. Thus we are leftwith i:pf =t iA, which can (uniquely) be solvedby the colour substitution [:pf=A].� If we bind H3:pf to �zw:z, then we are left withipf =t iA, which can (uniquely) be solved by thecolour substitution [pf=A].If we collect all instantiations, we arrive at exactlythe two possible solutions for R:pf in the originalequations, which we had claimed in section 5:R:pf = �yx:ex:pf (x; y; i:pf )R:pf = �yx:ex:pf (x; y; x)Obviously both of them solve the equation andfurthermore, none is more general than the other,since i:pf cannot be inserted for the variable x inthe second uni�er (which would make it more generalthan the �rst), since x is bound.In the case of (11) the equations correspondingto (17) are H1:pf(c; ipf) =t c, H2:pf (c; ipf) =t i:pf andH3:pf(ipf ) =t ipf . Given the discussion above, it is im-mediate to see that H1:pf has to be instantiated withthe projection binding �zw:w,H2 with the imitation6For (11) we have the same situation. Here the cor-responding equation is ipf =t ex:pf(c; i:pf ; ipf).



binding �zw:i:pf , since the projection binding leadsto a colour clash (i:pf =t ipf ) and �nally H3:pf has tobe bound to the projection binding �zw:z, since theimitation binding �zw:ipf is not :pf-monochrome.Collecting the bindings, we arrive at the unique so-lution R:pf = �yx:ex:pf (x; i:pf ; x).7 ConclusionHigher{Order Uni�cation has been shown to be apowerful tool for constructing the interpretation ofNL. In this paper, we have argued that Higher{Order Coloured Uni�cation allows a precise speci-�cation of the interface between semantic interpre-tation and other sources of linguistic information,thus preventing over{generation. We have substan-tiated this claim by specifying the linguistic, extra{semantic constraints regulating the interpretation ofVP{ellipsis, focus, SOEs, adverbial quanti�cationand pronouns whose antecedent is a focused NP.Other phenomena for which the HOCU approachseems particularly promising are phenomena inwhich the semantic interpretation process is obvi-ously constrained by the other sources of linguisticinformation. In particular, it would be interesting tosee whether coloured uni�cation can appropriatelymodel the complex interaction of constraints govern-ing the interpretation and acceptability of gappingon the one hand, and sloppy/strict ambiguity on theother.Another interesting research direction would bethe development and implementation of a monos-tratal grammar for anaphors whose interpretationare determined by coloured uni�cation. Coloursare tags which decorate a semantic representationthereby constraining the uni�cation process; on theother hand, there are also the re
ex of linguistic,non-semantic (e.g. syntactic or prosodic) informa-tion. A full grammar implementation would makethis connection more precise.8 AcknowledgementsThe work reported in this paper was funded by theDeutsche Forschungsgemeinschaft (DFG) in Sonder-forschungsbereich SFB{378, Project C2 (LISA).ReferencesChristine Bartels. 1995. Second occurrence test.Ms.Noam Chomsky. 1976. Conditions on rules in gram-mar. Linguistic Analysis, 2(4):303{351.
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