
paper.tex 2954 2011-03-13 13:55:44Z ako

Versioned Links

Andrea Kohlhase1 and Michael Kohlhase2

1 German Research Center for Artificial Intelligence (DFKI)
Andrea.Kohlhase@dfki.de

2 Computer Science, Jacobs University Bremen
m.kohlhase@jacobs-university.de

Abstract. Recently consistency in mutable knowledge collections can
be supported by change management systems that draw on the specified
semantics for knowledge objects and their relations. But even with ma-
chine support a seemingly minor change can easily cascade into a major
adaptation task. In this paper we argue that mutable knowledge collec-
tions can be supported by versioned links: Links as first-class elements
defined by a triple of versioned elements (subject/predicate/object).
The main idea explored here is that changes need not be propagated to
linked elements if those still reference the originally linked object. We
give a model for versioned links that is easy to embed in existing MKM
systems.

1 Introduction

MKM formats explicitly represent relations between objects to compute related
objects and predict the way changes affect them; see [Hut09,Mül10,AM10] for
recent progress in this field. Nevertheless, this process can cascade a seemingly
minor change into a major adaptation task if aiming at overall consistency as it
is e.g. suggested in [GS07].

In contrast, we suggest to aim for local consistency. The purpose of local
consistency is to avoid situations, where the meaning or functionality of an
object changes unintentionally due to a change in an object it references; e.g. a
mathematical theorem may be invalidated, if the definition of a concept it uses
is changed. The main idea explored in this paper is that changes need not be
propagated to linked objects but can continue to reference the originally linked
object. Intuitively, the original reference to the definition insulates the theorem
against the change. Thus, we like to introduce a solution to the “late binding
problem”3 (see Section 2). To enable the conservation of local consistency,
we explore in this paper the new concept of ‘versioned links’ (introduced in
Section 3). We assume that document collections in MKM are stored in version
control systems as a concession to change in knowledge management processes,
that induce a notion of ‘versioned objects’. Next we elevate the relations between

3 This is called in analogy to the technique of “late binding” (also called dynamic/name
binding) in programming languages, where the method being called upon an object
is looked up by its name at runtime.

paper.tex 2954 2011-03-13 13:55:44Z ako

versioned objects to first-class citizens and obtain versioned links as triples (sub-
ject/predicate/object). Naturally, they are versioned as well, so that links
and their components carry an independent revision number. Section 4 concludes
the paper.

2 Versioning and Late Binding Problems

Late binding problems are well-known in systems that reuse objects, ranging
from i) library incompatibilities in software systems (also known as “DLL hell”)
over ii) version conflicts of shared macro packages in LATEX document collections
and iii) hyperlinks in Wikipedia to iv) the regressions in theorem prover libraries
as tactics and lemmata evolve.

In Software Engineering the late binding problems in i) are treated by links
to versioned packages. Packages are collections of inter-related files intended for
re-use in other packages, their internal references are kept in sync. When a new
version of a package is released, dependent packages may be ported to it. In
the packages approach links are treated as package metadata and deployment
problems are mitigated by specialized package management systems building on
this metadata.

With respect to ii) in LATEX the situation is somewhat different: Macros
are commonly organized as packages, but used inside individual documents,
so that a metadata-driven approach of package management systems is less
useful. Therefore LATEX supports in-document version metadata and links to
them: The \usepackage macro allows an optional date argument: \usepackage-
{foo}[2001/06/13] loads the package foo, if the package date provided by the
\ProvidesPackage statement in foo.sty is younger than June 13th, 2001, and
raises an error otherwise. We can see this behavior as a weak operationaliza-
tion of versioned links in the absence of versioned package retrieval. Stronger
operationalizations are available in some systems like MikTeX, which will up-
date the installed packages. Note that the adequacy of this is ensured by the
soft constraint that LATEX packages are only supposed to grow monotonically in
functionality. Note as well that these versioned links only cover the ‘function-
ality aspect’ of LATEX seen as a software system with reusable macros. There
is no provision for references to text fragments in or between documents, that
is, inter-document references on the ‘meaning aspect’ are not available.4 As a
consequence change management in LATEX document collections is virtually non-
existent. In other document formats the situation is similar.

In Wikipedia, which does have inter-document links and even an underlying
versioning system, the situation with respect to iii) is uneven. On the one hand,
Wikipedia strongly advises using versioned references for citing articles [Wik11],
on the other hand all links between articles are unversioned (head links).

4 Though it should be possible to build them into the LATEX \label/\ref mecha-
nism using similar ideas, e.g. in a framework like STEX, which already extends the
\label/\ref mechanism by inter-document links [Koh10], possibly aided by the
svninfo package to allow revisions instead of dates.

2

paper.tex 2954 2011-03-13 13:55:44Z ako

The situation of theorem prover libraries in iv) is more fine-granular, refer-
ences occur deeply embedded in the mathematical structures — e.g. in proofs
— and point to fine-grained objects — e.g., definitions or lemmata. To the best
of our knowledge, none of the theorem prover libraries support versioned links
or have package management systems, but rely on manual resolution of con-
flicts during regression testing, e.g. through institutions like the Mizar Library
committee.

“Moreover, we need to make sure that dependencies are always consistent.

Files in the database can depend on each other, sometimes in an indirect

(transitive) way. First of all, we want to require all saved files to be valid

(compilable); they can still contain incomplete proofs terminated with the Coq

Admitted keyword or its equivalents for other provers. For a valid saved file

we want to ensure that the current version remains valid after changes to

the files it relies on. Some provers already include compatibility verification

mechanisms. Coq stores the checksums of files to ensure binary compatibility

between compiled proofs. To solve the problem, we have to consider the static

and the dynamic approach. The dynamic approach is the convention that a

file always refers to the latest versions of other files. It means that saving any

change to a file will induce a costly recompilation of all files it depends on.

Another problem is that changing definitions deep inside a library will make

many developments incompatible and thus correct files will stop working. Sav-

ing only valid files does not solve this problem since the objects they contain

(their interface) might be modified too. This approach also makes older ver-

sions of existing files immediately obsolete. The opposite approach is static

linking, where a saved file always refers to the same version of other files. In

other words, we never change a file, but rather add a new version of that file,

with a fresh name. This means that the user will have to manually update the

version number of files that are referred to if newer versions of those become

available. The main advantage of this approach is that of integrity: provided

you can safely assign new version numbers, you can enable concurrent ac-

cess. Moreover, changing a file will never break another file. However, when

changing a file deep in the library, one has to manually modify all the files

in the dependency chain between that file and the files in which the changes

should be reflected, which can sometimes be quite heavy. [CK07, p. 228]” “
[...]We believe that the static approach is a more adequate way to store older

(historical) versions of a given file, whereas up-to-date files should use the

dynamic approach towards dependency. This way, older versions of files still

make sense by statically referring to older versions of files they depend on. The

latest versions can remain up-to-date with their immediate dependencies by be-

ing dynamically linked to them, i.e. recompiled when new versions of those files

are saved. It might happen that such a file might not be valid anymore because

of changes made to its dependencies: to keep validity we have to make it link

statically to the suitable previous version. To help with this version compat-

ibility issue, we propose a three-colour scheme: A file is labelled as red (i.e

outdated) if it depends statically on an olderthan- latest version of another file.

A file is labelled as yellow (i.e tainted) if it depends only on the latest versions

3

paper.tex 2954 2011-03-13 13:55:44Z ako

of other files, and one or more of those files have a yellow or red status. Yel-

low status thus tracks the files which are indirectly lagging behind. A file is

labelled as green (i.e. up-to-date) if it depends only on the latest versions of

other files, and all those files are also labelled as up-to-date (green status). The

separation between the yellow and red files comes from the fact that red files

have to be manually updated to become green again (i.e. by creating a new ver-

sion of them), whereas yellow files might be fixed by updating the red files that

taint them. The switching to red status can be automated by rewriting Require

statements on-the-fly to make them refer statically to the last suitable version

of the file depended on. This means that fixing a red file can give red status to

yellow files that it was tainting, thus pushing the problem upwards in the de-

pendency tree. If the user wants to export a file together with its dependencies

from the repository, a mechanism can be used to convert long file names (with

version number) to short ones. The case might arise where a file would refer,

directly or by transitivity, to an old version of itself. We can either forbid this

or generate fresh file names using standard suffixing techniques.”[ibd.]

To conclude this little survey of the use of versioned links in Software Engi-
neering and MKM, we note that even though various versioning extensions of
links are in use to solve late binding problems, (versioned) links are not treated
as first-class objects.

3 MKM with Versioned Links

In this paper, we suggest to make use of two facts: i) Revision control systems
(RCS) give access to old revisions, in particular, access to objects in old revisions
to which other objects are consistently linked.5 ii) The advent of versioned query
interfaces like [ZK09,FFK11] enable access to versioned objects. In particular,
the (platonic) concept of “the” object with identifier O is refined to the set of
(concrete) objects O with distinct revision numbers, therefore links can point to
such versioned objects.

To make the discussion more precise, we will now define the concepts involved
more formally, starting out with a simplified version of the notion of fs-trees and
version control systems developed in [Mül10], which we will review now.

3.1 fs-Trees and RCS Repositories

We will use fs-trees as a unifying notion of file system trees and semi-structured
(XML) documents that abstracts from particular file system implementations
and encodings.

In a nutshell, an fs-tree is an ordered, typed, labeled tree, whose edges are
labeled with (directory/element) names and its leaves with strings (which either

5 In this paper we assume a concept of global revisions as employed e.g. in the Subver-
sion system [PCSF08]. There, any commit to the repository increments the revision
number.

4

paper.tex 2954 2011-03-13 13:55:44Z ako

correspond to text files or text nodes in XML)footnoteThe original fs-trees had
the notion of symbolic links and repository externals which we do not need here..
The node types distinguish nodes into directories, files, XML elements, and XML
attributes, and carry constraints that make them faithful models of file systems
and XML files.

The main property we will use in this paper is that any node/subtree in an fs-
tree T can be addressed by a unique name path, i.e., a sequence π = a1/ · · · /ak
of names ai. We write T /π for the fs-subtree of T rooted at π. Note that
for a given fs-tree T , a subtree T /π is either a directory, a file, or an XML
fragment/subtree. Note furthermore, that name paths in fs-trees directly map
to (file) URIs with XPath fragment identifiers. Thus any name path π is of the
form δ/ρ, where δ is a directory path (i.e., a name path where all names are
directory names) and ρ is an fragment identifier (i.e., a name path, where all
names are XML element names); we call δ the directory path of π and ρ the
fragment identifier of π.

If we denote the set of all fs-trees by FS, we can represent a version control
repository as a partial function R:N ⇀ FS that maps revision identifiers
(without loss of generality an initial segment of N) to fs-trees. For a repository
R and n ∈ dom(R), where dom(R) is the domain of R, we call the fs-tree
R(n) the revision n of R; this notion extends to fs-subtrees: We say that a
subtree of R(n) is at revision n. Finally, we say that D is a document in R,
if D = R(n)/δ for some directory path δ and revision n.

Given this vocabulary, the correspondence to mathematical knowledge man-
agement in the large can be seen as in Figure 1. We employ repositories to model
the development of document collections over time, where the collection C at a
concrete time point corresponds to a revision R(n) of the repository R, and
document collections, documents, and objects are realized as fs-tree fragments
(subtrees of the revision) R(n)/π. From now on we will use the concepts in Fig. 1
modulo the correspondence relation given by the dotted lines.

Document Collection over time

Document Collection C

Document D

Object O

Repository

Revision

Fragment

R

R(n)

R(n)/π

Fig. 1. A Realization of Document Collections over Time

3.2 Links in MKM Formats

Before we can define the concept “versioned link”, we need to think about the
status of links in MKM representation formats.

Definition 1. Let T be an fs-tree, then we define an (unversioned) link in T
to be an RDF triple (see [MM04]) where subject, predicate, and object are

5

paper.tex 2954 2011-03-13 13:55:44Z ako

name paths in T . We speak of a file system link if the object is a document or
directory node, otherwise of a fragment link. In the latter case we distinguish
intra-document links, where subject and object are in the same document,
from inter-document links where they are not.

For the time being we will disregard links outside of a document collection C =
R(n) for some n; as all practical revision control systems encode file paths as
URIs, our notion of links is a special case of RDF triples, if we assume that
the predicates are documented in the collection, which we can without loss of
generality.

The set of links induced by a document collection C is determined by the
representation format of the documents in C. Instead of making this formal, we
will appeal to the intuition of the reader by giving some examples:

i) \input statements in TEX/LATEX induce document links for the predicate

“input”, which tells the formatting engine to replace \input{〈〈fileURI〉〉}
with a file referenced by 〈〈fileURI〉〉.

ii) 〈〈link text〉〉 in HTML induces a link for
the predicate “display”, which tells the browser to display the fragment
referenced by 〈〈URI〉〉 in the browser when the user left-clicks 〈〈link text〉〉
(details specified by 〈〈attribs〉〉).

iii) <proof for="〈〈URI〉〉">...</proof> in OMDoc induces a link for the pre-

dicate “proves” whose subject is the proof object itself and whose object
is the assertion element referenced by 〈〈URI〉〉. Note that the meaning of
“proves” is not operational but given by the OMDoc ontology (cf. [Koh06]
for the specification and [Lan11] for a formalization). In this case we even
have a system that extracts all links from a document.

Note that all of these links rely on name paths in C (realized as URIs) for iden-
tification of resources (nodes in C). Note furthermore, that all of these induce
links whose predicate is pre-determined by the document format, i.e., given
by the special syntax and induces a URI referencing a relation from the doc-
ument ontology and whose subject is the resource containing the syntax that
induces the link. We will call such link-inducing syntax in an MKM format
F an F-reference. Even though F-references dominate in MKM formats, we
will also cover proper links represented in any RDF representation format; they
sometimes exist as standoff markup in MKM systems.

3.3 Versioned Links

In fs-trees it is straightforward to define versioned links.

Definition 2. Let R be a repository, n ∈ dom(R) a revision identifier, and
π ∈ R(n) a name path, then we call a pair 〈π, n〉 a versioned name path in
R.

Versioning systems usually reserve a special, intensional “revision identifier”
for the respective youngest revision, which is called the head revision and
denoted with ↑.

6

paper.tex 2954 2011-03-13 13:55:44Z ako

Definition 3. We call a versioned name path a head path, iff it is of the form
〈π, ↑〉 for some name path π.

Note that 〈π, n〉 identifies a resource in a repository R. Building on this, we
can finally define the concept of a versioned link.

Definition 4. For a given repository R we call an RDF triple a versioned link
in R, iff its subject, predicate, and object are versioned name paths in R.
Versioned F-references are defined accordingly.

Note that versioned links generally involve four revisions: The revisions of
the subject, predicate, and object as well as the revision of the link itself
(e.g. given by the revision of the file that contains the representation of the RDF
triple). For versioned F-references this revision variety is restricted by their
special syntactic structure. In particular, the revisions of subject and link are
necessarily identical, and the revision of the predicate is given by the format
F , it is therefore uniform over the document. Note that this observation has an
implication on the design of document formats: If we want to escape the version
identifications of links, we need to use standoff links.

Definition 5. We call a versioned link a head link, iff all of its three versioned
name paths are head paths. We call a versioned F-reference a head reference,
iff its object is a head path.

Definition 6. We call a versioned link an inter-revision link/reference, iff it
involves at least two different revisions and an intra-revision link otherwise.

4 Conclusion

We have presented the concept of versioned links as a tool for managing change
in mathematical document collections and knowledge repositories. Essentially
the introduction of versioned links allows to move parts of the problem of con-
sistency management in the exploration phase of MKM into one of coherence
management in the codification phase. However, we contend that this allows for
much more flexible and natural workflows.

We loosely built our discussion on the model of a centralized RCS like Subver-
sion. At first glance, one may be tempted to think that distributed RCS (DRCS)
like Git or Mercurial already support the practices versioned links are designed
for (to get an overview of their differences see e.g. [O’S09]). Indeed, one can
see and use each local repository in a distributed network as such an “island
of consistency”, and the practice of pulling changes from local repositories as
a coherence management process. But note that this approach only supports
the equivalent of file-level versioned links and is therefore too coarse-granular
for mathematical knowledge which requires object-level links. Incidentally, pro-
gramming languages mainly support file-level links, so DRCS fit the versioned
packages development model in Software Engineering. We conjecture that in this
case, a repository network is essentially isomorphic to a flattened repository with

7

paper.tex 2954 2011-03-13 13:55:44Z ako

versioned links. It seems possible to mimic versioned links in DRCS, if we are
willing to break apart MKM documents into object-size files using an inclusion
technique like XInclude, but this seems a larger intervention than the introduc-
tion of versioned links we propose. We used the centralized model in this paper,
since we have the TNTBase system that offers efficient access to versioned XML
objects, given a similar XML-fragment-access-enabled DRCS, studying the in-
teraction of versioned links with distribution will probably lead to even more
natural workflows.

References

[AM10] Serge Autexier and Normen Müller. Semantics-based change impact anal-
ysis for heterogeneous collections of documents. In Michael Gormish and
Rolf Ingold, editors, Proceedings of the 10th ACM symposium on Document
engineering, DocEng ’10, pages 97–106, New York, NY, USA, 2010. ACM.

[CK07] Pierre Corbineau and Cezary Kaliszyk. Cooperative repositories for for-
mal proofs. In Manuel Kauers, Manfred Kerber, Robert Miner, and Wolf-
gang Windsteiger, editors, Towards Mechanized Mathematical Assistants.
MKM/Calculemus, number 4573 in LNAI, pages 221–234. Springer Verlag,
2007.

[FFK11] Ghislain Fourny, Daniela Florescu, and Donald Kossmann. A time machine
for XML. Technical report, ETH Zürich, Switzerland, 2011. available at
http://www.dbis.ethz.ch/research/publications/timemachinexml.pdf.

[GS07] Adam Grabowski and Christoph Schwarzweller. Revisions as an essential
tool to maintain mathematical repositories. In Manuel Kauers, Manfred
Kerber, Robert Miner, and Wolfgang Windsteiger, editors, Towards Mech-
anized Mathematical Assistants, volume 4573 of Lecture Notes in Computer
Science, pages 235–249. Springer Berlin / Heidelberg, 2007.

[Hut09] Dieter Hutter. Semantic management of heterogeneous documents (invited
talk). In Proceedings of the Mexican International Conference on Artificial
Intelligence (MICAI-2009), number 5845 in LNAI, pages 1–14. Springer,
2009.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical
documents [Version 1.2]. Number 4180 in LNAI. Springer Verlag, August
2006.

[Koh10] Michael Kohlhase. sref.sty: Semantic crossreferencing in LATEX. Self-
documenting LATEX package, Comprehensive TEX Archive Network (CTAN),
2010.

[Lan11] Christoph Lange. Enabling Collaboration on Semiformal Mathematical
Knowledge by Semantic Web Integration. PhD thesis, Jacobs University
Bremen, 2011. submitted January 31, defended March 11.

[MM04] Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, World
Wide Web Consortium (W3C), February 2004.

[Mül10] Normen Müller. Change Management on Semi-Structured Documents. PhD
thesis, Jacobs University Bremen, 2010.

[O’S09] Bryan O’Sullivan. Making sense of revision-control systems. Communica-
tions of the Association for Computing Machinery (CACM), 52(9):57–62,
2009.

8

paper.tex 2954 2011-03-13 13:55:44Z ako

[PCSF08] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version
Control With Subversion. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2 edition, 2008.

[Wik11] Wikipedia. Citing wikipedia — Wikipedia, the free encyclopedia, 2011. [On-
line; accessed 05-Jan-2011].

[ZK09] Vyacheslav Zholudev and Michael Kohlhase. TNTBase: a versioned storage
for XML. In Proceedings of Balisage: The Markup Conference 2009, Balisage
Series on Markup Technologies. Mulberry Technologies, Inc., 2009. available
at http://kwarc.info/vzholudev/pubs/balisage.pdf.

9

