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1 Introduction

The history of building automated theorem provers for higher-order logic is
almost as old as the field of deduction systems itself. The first successful at-
tempts to mechanize and implement higher-order logic were those of Huet [13]
and Jensen and Pietrzykowski [17]. They combine the resolution principle for
higher-order logic (first studied in [1]) with higher-order unification. The unifi-
cation problem in typed λ-calculi is much more complex than that for first-order
terms, since it has to take the theory of αβη-equality into account. As a conse-
quence, the higher-order unification problem is undecidable and sets of solutions
need not even always have most general elements that represent them. Thus the
mentioned calculi for higher-order logic have take special measures to circumvent
the problems posed by the theoretical complexity of higher-order unification.

In this paper, we will exemplify the methods and proof- and model-theoretic
tools needed for extending first-order automated theorem proving to higher-
order logic. For the sake of simplicity take the tableau method as a basis (for a
general introduction to first-order tableaux see part I.1) and discuss the higher-
order tableau calculi HT and HTE first presented in [19]. The methods in this
paper also apply to higher-order resolution calculi [1, 13, 6] or the higher-order
matings method of Peter [3], which extend their first-order counterparts in much
the same way.

Since higher-order calculi cannot be complete for the standard semantics by
Gödel’s incompleteness theorem [11], only the weaker notion of Henkin mod-
els [12] leads to a meaningful notion of completeness in higher-order logic. It
turns out that the calculi in [1, 13, 3, 19] are not Henkin-complete, since they
fail to capture the extensionality principles of higher-order logic. We will char-
acterize the deductive power of our calculus HT (which is roughly equivalent to
these calculi) by the semantics of functional Σ-models.

To arrive at a calculus that is complete with respect to Henkin models, we
build on ideas from [6] and augment HT with tableau construction rules that
use the extensionality principles in a goal-oriented way.
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2 Higher-Order Logic

We will use a formulation HOL of higher-order logic which is essentially the
Andrews/Henkin version [12, 1, 2] of simple type theory.

2.1 The System HOL

For the logical system HOL, we specialize the simply typed λ-calculus (see Chap-
ter I.2.12 Section 2) by assuming special types and constants. In particular, we
assume that the set B of base types is {o, ι} where the base type ι stands for the
set of individuals , and the type o for the truth values . These types alleviate the
need for the syntactic categories of “terms” and “formulae” that are necessary
for first order logic, since in HOL, the equivalent of first-order “terms” are just
the formulae of type ι and that of first-order “formulae”, those of type o. Corre-
spondingly, we call a well-formed formula of type o a proposition, and a closed
proposition a sentence. In contrast to the exposition in I.2.12, we will denote
the types of formulae in the index unless they are clear from the context.

Furthermore, we will assume the existence of the usual connectives and quan-
tifiers. In particular, we assume all signatures to contain the declarations

ΣHOL: = {[¬: o→ o], [∨: o→ o→ o]} ∪ {[Πα: (α→ o) → o]
∣∣α ∈ T }

We call the constants ¬,∨,Πα logical constants , since they will have a fixed
interpretation in the respective semantics. More specifically ¬,∨ are called con-
nectives and the Πα a quantifier . We can obtain the connectives ∨,⇒,⇔ from
the connectives defined so far, for instance, we take A ⇒ B as an abbreviation
for ¬(A ∧ ¬B). Finally, we use the infix notation for connectives, and write
∀Xα.A as an abbreviation for Πα(λXα.A).

Non-logical constants are called parameters , since the choice of parameters
determines the particular formulation of the logical system HOL. To simplify
the model constructions, we assume the existence of infinitely many parameters
wiα ∈ Wα which we will call witness parameters per type α. We will denote
the set of witness parameters occurring in a formula A with W(A) and call all
other parameters proper .

In order to get a feeling for the expressivity of higher-order logic, let us look
at a few mathematical examples.

Example 2.1 (Peano Axioms) The natural numbers are formalized using
the constant 0ι for the number zero, and the constant sι→ι for the successor
function. The set of natural numbers is represented by the predicate constant
INι→o and the following set of axioms.

1. IN0 (zero is a natural number)

2. ∀Xι.(INX) ⇒ IN(sX) (the successor of a natural number is a natural
number)

3. ¬∃Xι.(INX) ∧ sX = 0 (zero has no predecessor)
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4. ∀Xι, Yι.(sX = sY ) ⇒ (X = Y ) (the successor function is one-one)

5. ∀Pι→o.(P0 ∧ ∀Yι.PX ⇒ P (sX)) ⇒ (∀Zι.INZ ⇒ PZ)
(Induction Axiom: all properties P that hold on zero and with every
natural number hold on its successor must hold on all natural numbers.)

Even complex assertions, such as Cantor’s theorem have a simple represen-
tation in HOL.

Example 2.2 (Cantor’s Theorem) The following formula is a variant of
Cantor’s theorem of the uncountability of IR.

¬∃Fι→ι→ι.(∀Zι,Wι.INZ ∧ INW ⇒ IN(FZW )∧
∀Gι→ι.∀Zι.(INZ ⇒ IN(GZ)) ⇒ ∃Jι.INJ ∧ FJ = G)

The mapping F – that is claimed not to exist – maps natural numbers (type ι)
to functions (type ι→ ι), thus it has type ι→ ι→ ι. The subformula beginning
with the first universal quantifier says that F is onto (surjective: every function
G has a pre-image Jι).

2.2 Semantics

When evaluating calculi for higher-order logic, the classical notion of complete-
ness becomes problematic, since higher-order logic cannot admit complete cal-
culi according to Gödel’s first incompleteness theorem [11]. At closer view,
Gödel’s theorem only applies to the so-called standard semantics, where a model
consists of a given universe Dι of individuals, the set Do of truth values, and
universes Dα→β for the function types that are just the sets of all functions
with domain Dα and codomain Dβ . While this semantics is indeed the intu-
itive semantics for mathematics, it does not yield a reasonable measure for the
completeness of a calculus. If we consider a generalized notion of model the-
ory, the so-called Henkin models , where the universes of functional type are
only required to be subsets of the set of all functions such that there exists
a denotation for any well-formed formula, then appropriate generalizations of
first-order calculi are complete [12]. Clearly each standard model is a Henkin
model. Moreover, there are now so many new models, that all propositions that
are valid (in the standard sense) but not provable, now have a counterexample.
Thus this semantics yields an appropriate measure of completeness for higher-
order calculi. Fortunately, the corresponding notion of soundness entails that
of standard soundness, since each standard model is a Henkin model by defini-
tion. Furthermore, by Gödel’s second incompleteness theorem, formal methods
cannot characterize the standard models in the class of Henkin models.

We will now formally develop the semantics of HOL. For this, we first give
a set-theoretic semantics (Σ-algebras) for the simply typed λ-calculus and use
that as a basis for the definition of Σ-models, which we further specialize to
Henkin- and standard models. For details see [5].
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Definition 2.3 (Σ-Algebra) Let D = {Dα
∣∣α ∈ T } be a collection of sets,

such that Dα→β ⊆ F(Dα;Dβ) = {f
∣∣f:Dα → Dβ} and let I: Σ → D be a

type-preserving mapping (I(Σα) ⊆ Dα)), then we call the pair A: = (D, I) a
pre-Σ-algebra. The collection D is called the frame, the set Dα the universe of
type α, and the function I the interpretation of constants.

We call a type-preserving function ϕ from the set V of variables into D
a variable assignment . We will denote the assignment ψ with ψ(X) = a that
coincides with ϕ everywhere else with ϕ, {X 7→ a}. The homomorphic extension
Iϕ of ϕ is inductively defined to be a type-preserving partial function from well-
formed formulae to D, such that

1. Iϕ(X) = ϕ(X), if X is a variable,

2. Iϕ(c) = I(c), if c is a constant,

3. Iϕ(AB) = Iϕ(A)(Iϕ(B)),

4. If there is a function f in Dα→β such that f(a): = Iϕ,{X 7→a}(B), then
Iϕ(λXα.Bβ) = f else it is undefined.

We call Iϕ(Aα) ∈ Dα the value or denotation of Aα in A for ϕ.
A pre-Σ-algebra A = (D, I) is called Σ-algebra, iff for each assignment ϕ into

A the homomorphic extension Iϕ is defined for any well-formed formula. These
closure conditions for the carrier set D of A assures that the universes of func-
tions Dα→β are rich enough to contain a value for all well-formed formulae A.
Note that this requirement directly corresponds to the so-called comprehension
axioms of higher-order logic and set-theory.

Example 2.4 (Term Algebra) Let D be the collection sets of of well-formed
formulae in βη-normal form, let function application be defined such that A(B)
is the βη-normal form of AB, and I: = IdΣ, then we call TS(Σ): = (D, I) the
term algebra for Σ. Note that assignments into TS(Σ) are just substitutions,
and Iσ(A) is the βη-normal form of σ(A).

Definition 2.5 (Valuation) Let A = (D, I) be a Σ-algebra, then a surjective
total function υ:Do → {T,F} is called a valuation for A, iff

1. υ(I(¬)(a)) = T, iff υ(a) = F,

2. υ(I(∨)(a, b)) = T, iff υ(a) = T or υ(b) = T,

3. υ(I(Πα)(f)) = T, iff υ(f(a)) = T for each a ∈ Dα

The notion of valuation intuitively gives a truth-value interpretation to the
domain Do of a Σ-algebra, which is consistent with the intuitive interpretations
of the logical constants. Since models are semantic entities that are constructed
to make statements about truth and falsity of formulae, the requirement that
there exists a valuation is perhaps the most general condition under which one
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wants to speak of a model.1 Thus we will define our most general notion of
semantics as Σ-algebras that have valuations.

Definition 2.6 (Σ-model) Let A = (D, I) be a Σ-algebra and υ be a valuation
for (D, I), then we call the triple M: = (D, I, υ) a Σ-model .

If for every type α, the universe Dα→α→o contains a relation r, such that for
all a, b ∈ Dα, υ(r(a, b)) = T, iff a = b, then we call M a Σ-model with equality.
Σ-models without equality can have counterintuitive properties (see [2] for a
discussion in the context of Henkin models and [5] for a full development of the
theory), so we will always consider Σ-models with equality in this paper.

It is a matter of folklore that in HOL, equality can be defined from the
connectives and quantifiers.

Definition 2.7 (Leibniz’ Formulation for Equality) We define the Leib-
niz formula for equality by

Qα: = (λXαYα.∀Pα→o.PX ⇒ PY )

With this definition, QαAB β-reduces to ∀Pα→o.(PA) ⇒ (PB), which can be
interpreted as: formulae A and B are not equal, iff there exists a discerning
property P . In other words, A and B are equal, if they are indiscernible. Note
that we do not need equivalence in the definition, since P can be instantiated
with λZα.¬Rα→oZ for some new variable R, which gives the converse direction
of the implication.

Since the formula Qα is intended to denote the equality relation, we use
A =α B or even A = B as an abbreviation for (QαAB). Note that we have
not included a constant for primitive equality in ΣHOL, so that all equalities
occurring in formulae in this paper are abbreviations for Qα.

If M = (D, I, υ) is a Σ-model with equality, then υ(Iϕ(QαAB)) = T, iff
Iϕ(A) = Iϕ(B). Note, that the proof of this crucially hinges on the availability
of the identity relation in Dα→α→o, which ensures the singleton sets in Dα→o

which are needed as discerning properties. Thus in Σ-models without equality,
Qα is not a faithful representation of equality (for details see [5]).

We now present two special classes of Σ-models, which model the intended
understanding of HOL. The class of standard models is in some way the most
natural notion of semantics for HOL, however, with the notion of completeness
induced with this semantics there cannot be complete calculi, a fact that makes
it virtually useless for our purposes. The class of Henkin models allows complete
calculi and, in fact, we will exhibit one (cf. Section 4).

Definition 2.8 (Henkin model) Let M = (D, I, υ) be a Σ-model with equal-
ity, such that A = (D, I) is a Σ-algebra, then M is called a Henkin model , iff

1There are more general notions, for instance, Peter Andrews uses models, where function-
ality can break down in [1] (see [5] for a discussion) to establish his “unifying principle”, but
we will not pursue this in this paper.
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Do is the set {T,F} of truth values and υ is the identity function on D. Thus υ
is fixed in Henkin models, and we can fully describe M by its carrier set D and
its interpretation I. We are striving for a general notion of algebraic model, so
we only require M to be comprehension-closeds (A is a Σ-algebra) and do not
require M to be full (Dα→β = F(Dα;Dβ)). A full Henkin model is called a
standard model .

Remark 2.9 If we were only interested in analyzing HOL with respect to
Henkin semantics, we could have simplified the presentation of the theory by
only assuming the equality constants qα for all types α ∈ T , defining the other
logical constants by the following definitions (due to Peter Andrews), and treat-
ing them as defined formulae:

To: = qα→α→oqαqα Fo: = qo→o(λXo.X)(λXo.To)
¬: = (qoFo) Πα: = (qα→o(λXα.To))

∧: = (λXoYo.q
(o→o→o)→o(λGo→o→o.GToTo)(λG.GXY ))

Furthermore, we could have weakened the conditions for υ to be a valuation by
only requiring that υ ◦ I(qα) is the identity relation on Dα, since the definitions
above entail that υ: = IdDo

is a valuation. Note that a construction like the one
above is not possible in the case of Σ-models, since the proof of the condition
for ¬ requires that Do has exactly the elements T and F, as the definition takes
all elements that are not T to be false.

Definition 2.10 (Extensionality) We call the following formula schemata

Extα→β = ∀Fα→β .∀Gα→β(∀Xα.FX = GX) ⇒ F = G
Exto = ∀Fo.∀Go.(F ⇔ G) ⇔ F = G

the extensionality axioms . Extα→β is called the axiom of functional extension-
ality and specifies that two (mathematical) functions are equal, iff they give the
same values on all arguments. This principle is universally assumed in math-
ematics, but not for instance in the theory of computation, since it would for
instance make any two correct sorting algorithms indiscernible.

The second axiom is called the axiom of propositional extensionality or sub-
stitutivity of equivalence and entails that logically equivalent propositions can
be substituted for each other in any context. This principle is also usually as-
sumed in higher-order logic, but not for instance in natural language semantics,
where the facts that the queen is always the head of the Commonwealth and
that Elisabeth is the queen do not entail that Elisabeth is always the head of
the Commonwealth.

Note that the equalities in these formulae are abbreviations for the Leibniz
formula.

It is easy to check that Extα→β is valid in all Σ-models, while Exto is only
valid in Henkin Models. In fact we have specifically constructed the Σ-models
in order to allow Exto to break down: The first version of our higher-order
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tableau calculus will not be able to handle full extensionality. This is not a
problem special to our system, since this is also a problem for the calculi of
higher-order resolution [13] and for higher-order mating-search [3].

2.3 Model Existence Theorems

Now we introduce model existence theorems for Σ-models and Henkin models as
an important tool for proving completeness results in higher-order logic. A more
detailed discussion together with further model existence theorems in connection
with additional notions of models can be found in [5]. Such theorems were
first introduced by Smullyan (who calls them unifying principles) in [24] based
on work by Hintikka and Beth and later generalized to higher-order logic by
Andrews in [1]. Since there is no simple Herbrand theorem in higher-order
logic, Andrews “unifying principle for type theory” from [1] has become the
standard method for completeness proofs in higher-order logic, even though it
only yields completeness relative to a certain Hilbert-style calculus (that is not
complete with respect to Henkin models, since it lacks extensionality). For this
paper, we will use a stronger version.

Definition 2.11 (Abstract Consistency Class) Let ∇Σ be a family of sets
of propositions, then ∇Σ is called an abstract consistency class , iff each ∇Σ is
closed under subsets, and satisfies conditions (1) to (8) for all sets Φ ∈ ∇Σ. If
it also satisfies (9), then we call it extensional .

1. If A is atomic, then A /∈ Φ or ¬A /∈ Φ.

2. If A ∈ Φ and if B is the βη-normal form of A, then B ∗ Φ ∈ ∇Σ
2.

3. If ¬¬A ∈ Φ, then A ∗ Φ ∈ ∇Σ.

4. If A ∨ B ∈ Φ, then Φ ∗ A ∈ ∇Σ or Φ ∗ B ∈ ∇Σ.

5. If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ∇Σ.

6. If ΠαA ∈ Φ, then Φ ∗ AB ∈ ∇Σ for each closed formula B ∈ wffα(Σ).

7. If ¬ΠαA ∈ Φ, then Φ ∗ ¬(Awα) ∈ ∇Σ for any witness constant wα ∈ W
that does not occur in Φ.

8. If ¬(A =α→β B) ∈ Φ, then Φ ∗ ¬(Awα = Bw) ∈ ∇Σ for any witness
constant wα ∈ W that does not occur in Φ.

9. If ¬(A =o B) ∈ Φ, then Φ ∪ {A,¬B} ∈ ∇Σ or Φ ∪ {¬A,B} ∈ ∇Σ.

Here, we treat equality as an abbreviation for Leibniz definition. We call an
abstract consistency class saturated , iff for all Φ ∈ ∇Σ and all propositions
A ∈ wffo(Σ) we have Φ ∗ A ∈ ∇Σ or Φ ∗ ¬A ∈ ∇Σ.

2We use A ∗ a as an abbreviation for A ∪ {a}.
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Theorem 2.12 (Model Existence Theorem) Let H ∈ ∇Σ and ∇Σ be a sat-
urated abstract consistency class, then there is a Σ-model M (with equality),
such that M |= H. If ∇Σ is extensional, then there is even a Henkin model for
H.

Proof sketch: For details see [5]. The proof of the first assertion has two stages:
First the set H is extended to a Hintikka set , i.e. a maximal element H ∈ ∇Σ,
where for each sentence D ∈ ∇Σ with H ∗ D ∈ ∇Σ, we already have D ∈ H.
This limit construction, that iteratively adds consistent sentences and witness
formulae, is a generalized version of Henkin’s in [12]. In the second stage, the
special properties of Hintikka sets are exploited to construct a valuation υ for
the term algebra TS(Σ) (υ(C) = T, if C ∈ H and υ(C) = F, if ¬C ∈ H).
For instance, in any Hintikka set H we have A ∈ H iff ¬A /∈ H, so υ is a
total function. Here we have used the assumption that ∇Σ is saturated, since
the result is false otherwise. Similarly, for Hintikka sets we have A ∧ B ∈ H,
iff A,B ∈ H, and similar properties for the other connectives and quantifiers,
which entails that υ is a valuation TS(Σ). Thus M: = (TS(Σ), υ) is a Σ-model
with M |= H and thus M |= H , since H ⊆ H.

Note that this proof does not give us a Henkin model, since the set Do
is the set of all βη-normal sentences and not {T,F}. For a Henkin model,
we extract a congruence ∼H from the Hintikka set H and take the quotient
algebra of TS(Σ) with respect to ∼H. For an extensional Hintikka set H we
have ∀X.(AX = BX) ∈ H, implies (A = B) ∈ H and (A ⇔ B) ∈ H implies
(A = B) ∈ H, which in turn entails that for any propositions A, and B either
A = B ∈ H or A = ¬B ∈ H. So, if we say that formulae A and B are
H-congruent (A ∼H B), iff the universal closure of A = B is a member of
H, then ∼H is a congruence relation on wff(Σ). Thus the desired model is
the the quotient algebra MH = TS(Σ)/∼H

= (DH, IH) with respect to the
H-congruence ∼H. We have Do = {T,F}, if we define T: = [[A ∨ ¬A]] and
F: = [[A ∧ ¬A]] for some atomic sentence. Then we verify that I(Qα) is indeed
the identity relation on Dα, and MH is a Henkin model.

We have Iϕ(H) = {T} for each assignment ϕ into D, since A ∨ ¬A ∈ H.
Furthermore, we have H ⊆ H, hence we get Iϕ(H) = {T}, and therefore M |=
H .

3 Higher-Order Tableaux

Now that we have specified the semantics we can turn to the exposition of
our tableau calculi HT and HTE . Weaker variants of these calculi have been
first considered in [19], they differ from the present version in the treatment of
functional extensionality. In this respect, the calculi from [19] were not complete
with respect to Σ-models Christoph Benzmüller has noted this shortcoming and
proposed the rule HT (leib) in [4].

The case of standard tableaux for higher-order logic is a simple extension of
first-order tableau methods to the higher-order language. The only significant
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difference is that αβη-equality has to be built in by keeping formulae in normal
form. Therefore we will only concern ourselves with free variable tableaux. Here
there are two main differences to the first-order case.

Higher-order unification is undecidable, therefore we cannot simply use it as
a sub-procedure that is invoked for closing branches in tableaux. The solution
for this problem is to treat the unification problem as a constraint and residuate
it using an explicit HT (cut) tableau rule.

The second difference is that naive Skolemization is not sound for higher-
order logic. It is possible to prove an instance of the axiom of choice that is
known to be independent of HOL using naive Skolemization. Dale Miller has
investigated this problem in depth in [22].

For HT , we use a direct encoding of dependencies induced by the sequencing
of quantifiers (witnesses for existential quantifications in the scope of a universal
quantifier ∀X may not occur in any formula instantiated for X) in form of an
explicit relation R which is similar, but not identical to the approaches in [22, 8]..

Definition 3.1 (Variable Condition, R-Substitution) We will call a par-
tial function R that maps witness constants to sets of variables a variable con-
dition. We will call a witness constant w ∈ W R-illegal for a variable X ∈ V ,
iff X ∈ R(w) and a formula A R-legal for X , if A does not contain witness
constants that are R-illegal for X . Finally, a substitution σ is called an R-
substitution, if σ(X) is R-legal for X ∈ Dom(σ).

For a given variable condition R and an R-substitution {X 7→ A} we will
often need the following variable condition

R(X 7→ A)(w): =

{
R(w) if X /∈ R(w)
(R(w) \ {X}) ∪ Free(A) ∪R(W(A)) if X ∈ R(w)

For the tableau calculus HT , we will need the notion of general bindings,
which we will recapitulate in order to be self-contained.

Definition 3.2 (General Binding) A general binding Gh
α of type α = βn →

γ with head h is a formula of the following form

Gh
α = λXn

β .h(H
1X) . . . (HmX)

where h has the type δm → γ and the Hi are new variables of types βn → δi.
If the head h is the bound variable Xj , then we call G the j-projection binding
and we will denote it with Gj

α, else an imitation binding. Note that for a given
type α = βn → γ there are at most n projection bindings. Thus the set

Ah
α(Σ): = {Gj

α

∣∣j ≤ n} ∗Gh
α

of approximating bindings is finite for all heads h ∈ Σ ∪ V and types α.

The name of general bindings is justified by the following theorem.
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Theorem 3.3 (General Binding Theorem) Let A ∈ wffα(Σ) be a formula
with head h, then there exists a substitution ρ, such that ρ(Gh

α)=βηA where Gh
α

is the general binding for h and α. Moreover, if A is a head normal form, then
the depth of ρ (i.e. the maximum depth of ρ(X) for X ∈ Dom(ρ)) is strictly
less than that of A.

Definition 3.4 (Higher-Order Tableau) We will call a proposition Av, where
v ∈ {T,F} a labelled proposition and a literal if A is atomic, i.e. if the head
of A is a parameter or a variable. We will call a pair Aα 6=? Bα of formulae a
unification constraint .

Let R be a variable condition. We will call a pair R.T , where T is a tree
whose nodes are labeled with labeled propositions or unification constraints a
higher-order tableau, iff it can be constructed by the tableau construction rules
in figures 1 – 3. See 3.5 for an example.

The structural rules in figure 1 recursively build up the tableau tree by
decomposing the logical structure of proper labeled formulae and adding new
nodes and branches, managing the variable condition along the way.

(A ∨ B)T

HT (∧)

AT

∣∣∣ BT

(¬A)T

HT (¬F)
AF

(ΠαA)T

HT (all)
(AXα)T

(A ∨ B)F

HT (∨)
AF

BF

(¬A)F

HT (¬T)
AT

(ΠαA)F

HT (ex )
1

(Awα)F

1 wα new and R1 = R ∗ {wα 7→ Free(A)}

Figure 1: Structural Rules of HT

Since higher-order unification is undecidable, we need an explicit rule HT (cut)
(see figure 2) for cutting complementary formulae: If Av and Bw occur in a
branch B of R.T where v 6= w, then the rule HT (cut) introduces the constraint
A 6=? B, which has to be processed before B can be closed in order to con-
serve soundness. Tableau instantiation is only permitted for R-solved pairs,
where the most general unifier is obvious (HT (subst) in figure 2). We will call
a pair X 6=? C R-solved , iff X /∈ Free(C) and C is R-legal for X . For a given
tableau R.T , we will call the combined substitution θT generated by all appli-
cations of HT (subst) in T the substitution induced by R.T . Note that σ is a
R-substitution.

The HT (leib) rule allows to interpret unification constraints as Leibniz equal-
ities. This rule has been introduced by Christoph Benzmüller in [4] and can be
seen as a restricted form of primitive substitution introducing the necessary
structure for Leibniz equality. Note that the inverse of this rule is admissible in
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HT , as we can see in figure 7. Since it is not clear, whether all instantiations that
are necessary for a proof can be found by the unification rules in figure 3, HT
utilizes a primitive substitution rule that allows to instantiate flexible literals
with general bindings for arbitrary connectives and quantifiers.

Unification constraints can be structurally simplified by decomposition of ap-
plications (rule SIM (dec)) and functional extensionality (rule SIM (fun)). The
latter rule is licensed by functional extensionality (EXTα→β) and supplies new
arguments that witness the difference of functions Aα→β and Bα→β . Note that
this rule eliminates λ-binders from unification problems, so that it is sufficient
to restrict the rule SIM (dec) to applications. All other substitution pairs have

Av

Bw

HT (cut)
A 6=? B

X 6=? C R−solved
HT (subst)1

C 6=? C

A 6=? B
HT (leib)

A = BF

XαUn
v

K ∈ Ak(Σ) k ∈ ΣHOL

HT (prim)

XUn
v

∣∣∣ X 6=? K

1 the resulting tableau is of the form R(X 7→ C).{X 7→ C}T

Figure 2: Constraint and instantiation rules in HT

to be treated by the unification rule from . Note that the rules from figure 3
together with HT (subst) directly correspond to the rules of higher-order pre-
unification [14]. With these rules we use the tableau mechanism to construct
unification trees (see Theorem 3.10 or Chapter I.2.12, Section 9). All of these
rules are used with the understanding that all formulae are reduced βη-normal
form after each rule application.

FαU 6=? hV G ∈ Ah
α(Σ)

HT (flex − rigid)

F 6=? Gα

∣∣∣ λX.FU 6=? λX.hV

hUn 6=? hVn h ∈ Σ
SIM (dec)

U1 6=? V1
∣∣∣ . . .

∣∣∣ Un 6=? Vn

Aα→β 6=? Bα→β

SIM (fun)
1

Aw 6=? Bw

1 wα ∈ W new and R1 = R ∗ {w 7→ Free(A) ∪ Free(B)}

Figure 3: Unification rules of HT

We call a branch B in a higher-order tableau T closed , iff B ends in a flex-flex
pair or a trivial pair A 6=? A. Note that closed branches need not stay closed,
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since the heads of flex-flex pairs3 can be instantiated making them rigid. In this
case unification has to be resumed on the particular branch. The HT (subst)
rule immediately closes the branch B that ends in a R-solved pair.

A tableau R.T is called closed , iff each branch of R.T is closed. For a
proposition A ∈ wffo(Σ) we write ⊢HT A, if there is a closed higher-order
tableau R.T with AF at the root. In this case we call R.T a HT refutation for
AF and a HT -proof for A.

Example 3.5 (A HT -Proof of Cantor’s Theorem) We show that there can-
not be a surjective mapping from the natural numbers to infinite sequences of
natural numbers (see example 2.2). In order to simplify the problem we take the
type ι to be the set of natural numbers (IN = λXα.To), thus Cantor’s theorem
has the form

¬∃Fι→ι→ι.∀Gι→ι.∃Jι.FJ = G

To be able to prove the theorem we need a property of the natural numbers
(instead of the Peano Axioms we add the fact that ∀Xι.¬X = sX that the
successor function has no fixed point). To keep the presentation short, we will
add an extensionality axiom, which is not strictly needed (the Hot system
discussed in Section 5 finds a proof without it).

1 (¬∃Fι→ι→ι.∀Gι→ι.(∃Jι.FJ = G))F initial
2 (∀Hι→ι.∀Kι→ι.H = K ⇒ .∀Nι.HN = KN)T initial
3 (∀Xι.¬X = sX)T initial
4 ∀Gι→ι.(∃Jι.fJ = G)T [HT (ex )1]
5 (∃Jι.fJ = G)T [HT (all)4]
6 (fj = G)T [HT (ex )5]
7 (H = K ⇒ .∀Nι.HN = KN)T [HT (all)2]

At this stage R = {f 7→ ∅, j 7→ {G}. Figure 4 completes the tableau proof of
cantor’s theorem. Note that if we collect the bindings for G, then we obtain the
instance λZι.s(fZZ), which corresponds to the incremented diagonal sequence
that serves as a counterexample to countability in Cantor’s original proof.

3.1 Soundness

We now proceed to give a definition of validity for labeled formulae that is the
basis of the soundness considerations. This notion of validity takes positive vari-
ables implicitly, universally quantified, and uses the notion of R-correspondences
as a semantic counterpart of variable conditions that specify the dependencies
of variables recorded during the clause normal form transformation.

Definition 3.6 (R-Correspondence) Let M = (D, I, υ) be a Σ-model and
R a variable condition. If R(wβ) = {Xα1 , . . . , Xαn

}, then a total function

fw:Dα1 × · · · × Dαn
→ Dβ

3Recall that a formula is called flexible, if the head is a free (positive) variable and rigid

otherwise.
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(H = K ⇒ .∀Nι.HN = KN)T

(H = K)F (fjN = GN)T
HT (∨)

HT (∨),inst

H = K 6=? fj = G

HT (cut)

H 6=? fj K 6=? G (X = sX)F

HT (all), HT (¬T)3

SIM(dec)

{H 7→ fj} {K 7→ G} (X = sX) 6=? (fjN = GN)

HT (subst) HT (subst) HT (cut)

GN 6=? s(fjN){X 7→ fjN}

SIM(dec)
HT (flex − rigid)

{G 7→ (λYι.s(H1Y ))} s(H1N) 6=? s(fjN)

HT (flex − rigid)
SIM(dec)

{H1 6=? (λYι.f(H2Y )(H3Y ))} f(H2N)(H3N) 6=? fjN

HT (flex − rigid)
SIM(dec)

H2N 6=? jH3N 6=? N

SIM(dec)

SIM(dec)

{H2 7→ (λYι.Y )}{N 7→ j}{H3 7→ (λYι.Y )}N 6=? N

HT (flex − rigid)HT (flex − rigid)

Figure 4: Unification for Cantor’s Theorem

is called an R-function for wβ in M. We call a complete set F : = {fw
∣∣wβ ∈

Dom(R)} of R-functions an R-correspondence for M. Note that we need a
value fw ∈ Dβ in F , even if n = 0.

If F is an R-correspondence for M and ϕ is an assignment into M, then we
define the alternative value function IF

ϕ by the new base case in the definition
of homomorphic extension (cf. 2.3) for witness constants wβ ∈ W

IF
ϕ (wβ): =

{
I(wβ), if wβ /∈ Dom(R)

fw(ϕ(Xn)), if R(wβ) = {X1, . . . , Xn}

Note that IF
ϕ (A) = Iϕ(A), if A does not contain witness constants in Dom(R).

Let A be a formula with Free(A) = {Y 1, . . . , Ym} and W(A) = {w1, . . . , wk},
and R(wi) = {Zi1, . . . , Zini}, then we define the R(X 7→ A)-correspondence

F(X 7→ A): = {f ′
w

∣∣fw ∈ F}
f ′
w(a1, . . . , an, b1, . . . , bm, c11, . . . , cknk): = fw(a1, . . . , an, IF

ϕ (A))
ϕ: = [b1/Y 1], . . . , [bm/Y m], [c11/Z11], . . . , [cknk/Zknk ]

13



Clearly, F(X 7→ A) is an R(X 7→ A)-correspondence by construction, since
R(X 7→ A)(w) = R(w) ∪ {Y 1, . . . , Y m, Z11, . . . , Zknk}

For this variant notion of evaluation, we have a substitution-value theorem
that is similar to that for the original value function Iϕ.

Theorem 3.7 (Substitution-Value Theorem for IF
ϕ ) Let M = (D, I) be

a Σ-algebra, R a variable condition for M and A is R-legal for X, then

IF(X 7→A)
ϕ ({X 7→ A}B) = IF

ϕ,{X 7→IF
ϕ (A)}(B)

Proof: We prove the assertion by an induction over the structure of B. Since
the inductive cases are standard, we will only present the base cases of the
induction. If B is a proper constant c, then

IF(X 7→A)
ϕ ({X 7→ A}B) = IF(X 7→A)

ϕ (c) = I(c) = IF
ϕ,{X 7→IF

ϕ (A)}(c)

and analogously if B 6= X is a variable. If B = X , then

IF(X 7→A)
ϕ ({X 7→ A}B) = IF(X 7→A)

ϕ (A)

= ϕ, {X 7→ IF(X 7→A)
ϕ (A)}X

= IF

ϕ,{X 7→I
F(X 7→A)
ϕ (A)}

(X)

= IF
ϕ,{X 7→IF

ϕ (A)}(X)

The last step is correct, since {X 7→ A} is a R-substitution: We have X /∈ R(w)
for any w ∈ W(A), therefore fw ∈ F and f ′

w ∈ F(X 7→ A) coincide for

w ∈ W(A). Thus we have I
F(X 7→A)
ϕ (A) = IF

ϕ (A), which concludes the proof
for the B = X case.

Now let B = w ∈ W and R(w) = {X1, . . . , Xn}, then we have

R(X 7→ A)(w) = {X1, . . . , Xn, Y 1, . . . , Ym, Z11, . . . , Zknk

and (by construction of F(X 7→ A))

I
F(X 7→A)
ϕ ({X 7→ A}B)

= I
F(X 7→A)
ϕ (w)

= f ′
w(ϕ(X1), . . . , ϕ(Xn), ϕ(Y 1), . . . , ϕ(Y m), ϕ(Z11), . . . , ϕ(Zknk ))

= fw(ϕ(X1), . . . , ϕ(Xn), IF
ϕ (A))

= IF
ϕ,{X 7→IF

ϕ (A)}(w)

= IF
ϕ,{X 7→IF

ϕ (A)}(B)

14



Definition 3.8 (Tableau Satisfiability) We say that a labeled formula Av

is R-satisfiable in a Σ-model M = (D, I, υ), iff there is an R-correspondence
F for M, such that υ(IF

ϕ (A)) = v for all assignments ϕ; analogously for a pair

A 6=? B, iff IF
ϕ (A) 6= IF

ϕ (B). We call a tableau R.T satisfiable, iff all of its
formulae R-satisfiable.

Theorem 3.9 (Soundness of HT ) HT -theorems are valid in the class of Σ-
models.

Proof: Let R′.T ′ be a tableau obtained from R.T by a tableau construction
rule and M be a Σ-model, then we show that M |= R.T , iff M |= R′.T ′. We
only present the proof for the rules HT (ex ) and HT (subst), since SIM (fun)
is analogous to HT (ex ) and all others are unproblematic, because the variable
condition is not altered by the transformation.

In the the case of HT (ex ) we have R′ = R ∗ {w 7→ Free(A)}. If M =
(D, I, υ) |= R.T , then there is an R-correspondence F for M such that for all
assignments ϕ there is a labeled proposition or unification constraint in R.T
that is satisfied by ϕ in M. Let ΠαAF be the formula in R.T that the rule
HT (ex ) acts on. Since M |= (ΠαA)F we have υ(IF

ϕ (ΠαA)) = F, thus there

is an a ∈ Dα such that IF
ϕ (A)(a) = Iψ(AY ) = F, where Y is a new variable

and ψ: = ϕ, {Y 7→ a}. Since IF
ψ (A) = IF

ψ′(A) for any assignment ψ′ that
agrees with ψ on Free(A) = {X1, . . . , Xn}, this a only depends on ψ|

Free(A) =

ϕ|
Free(A). Since we have made no assumptions on ϕ, we can construct an n-ary

function Fw that maps each tuple (ψ(X1), . . . , ψ(Xn)), such that υ(IF
ϕ (A)(a)) =

F. These sets are always nonempty, so by the axiom of choice (not the one on
the object level, which we have not included into HOL but the one on the
meta level we are reasoning on) there is a total function fw mapping each tuple
(ψ(X1), . . . , ψ(Xn)) to some element of Fw(ψ(X1), . . . , ψ(Xn)). Thus F ′: = F ∗
fw is an R′-correspondence. Furthermore, we have

IF ′

ϕ (Aw) = IF
ϕ (A)(fw(ϕ(X1), . . . , ϕ(Xn))) = F

for all assignments ϕ into M and thus M |= D by definition.
For the converse direction let M |= D. We assume the existence of an

R′-correspondence F ′ for M such that υ(IF ′

ϕ (Aw)) = F for all assignments
ϕ. Since w ∈ Dom(R′) there must be a function fw:Dα1 × · · · × Dαn

→ Dβ
in F ′. Let F : = F ′ \ {fw}, then F is an R-correspondence and IF

ϕ (Aw) =

IF
ϕ (A)(fw(ϕ(X1), . . . , ϕ(Xn))), and therefore υ(IF

ϕ (ΠαA)) = F, since υ is a
valuation. Since we have taken ϕ to be an arbitrary valuation, we have M |=
R.T .

For the HT (subst) case we have IF
ϕ (A) = I

F(X 7→A)
ϕ ({X 7→ B}A) by the

substitution value theorem 3.7. Note that in particular, the truth values of
the formulae labelling the tableau are not changed by the instantiation with
HT (subst), so tableau satisfiability is conserved, which entails the assertion.
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3.2 Higher-Order Unification with HT

We will now use higher-order unification theory to establish a partial complete-
ness result for HT : The HT rules for the unification constraints constitute a
complete higher-order pre-unification algorithm, or in other words, HT is com-
plete on the fragment of formulae of the form U : = Q.A1 = B1∧ . . .∧An = Bn,
where Q is an arbitrary quantifier prefix.

The quantifier rules transform UF into a tableau, R.T that has the unifica-
tion constraints4 Ai 6=? Bi at the leaves, and where the variable condition R
encodes the information from the quantifier prefix Q. Clearly any unifier of this
set of constraints corresponds to a tableau proof of U .

For a given tableau R.T , let us call the pair E : = R.ET = R.{A1 6=?

B1, . . . ,An 6=? Bn} – where the Ai 6=? Bi are the unification constraints at
the leaves of T – the unification problem associated with R.T . We will say that
θ is a higher-order unifier for R.T , iff it is for R.ET , i.e. a R-substitution, such
that θ(Ai)=βηθ(B

i). So the completeness result says that HT can find some
higher-order unifier of a tableau R.T , if there is one.

In unification theory, one is generally interested in a even stronger com-
pleteness result: For any unifier θ of E , find a unifier (called most general
unifier), from which other unifiers can be generated by further instantiation.
However, for higher-order logic, such most general unifiers need not exist in
general. Even though complete sets of unifiers can be calculated, they are in
general very redundant, and the search spaces involved are enormous [14]. Es-
pecially, in the case of unification constraints, where the heads of both sides
are variables (so-called flex-flex pairs). Fortunately, for theorem proving pur-
poses (especially in a refutation calculus) it is more important to know about
the existence of a unifier, than to have it itself. Therefore, it is sufficient to for
our application consider flex-flex pairs as solved, since they are guaranteed to
have unifiers. A flex-flex pair FUn =? GVm, can be solved by the substitution
σ = {F 7→ (λZn.W ), G 7→ (λZm.W )} which binds the head variables F and
G to constant functions that absorb their arguments. The corresponding uni-
fication problem is called the pre-unification problem (i.e. find a substitution
σ, such that σ(Ai)=βησ(Bi) or σ(Ai) =? σ(Bi) is a flex-flex pair). We will
denote the set of pre-unifiers for a unification problem E with PU(E). Now the
completeness result for pre-unification

Theorem 3.10 (HT is a complete for pre-unification) If θ is a pre-unifier
of a tableau R.T , then there is an extension R′.T ′ of R.T , such that its induced
substitution σ is also a pre-unifier of R.T , and furthermore, σ is more general
than θ.

Proof sketch: The proof of the assertion is carried out in two parts: We
first convince ourselves that the rules SIM (dec), SIM (fun), and HT (subst) are
terminating and confluent, and furthermore conserve sets of pre-unifiers.

4Recall the inverse of HT (leib), which is admissible in HT .
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This only leaves the rule HT (flex − rigid), which need not be terminating in
general5. So the completeness result hinges on a semi-termination lemma, which
states that given a unification problem E that is not solved but SIM -normal,
there is a transformation with HT (flex − rigid) (which approximates θ) that is
measure-decreasing. So any unifier θ of R.T determines a terminating sequence
of HT -transformations that ends in a closed tableau. Since all instantiations
generated by HT (subst) along the way approximate θ, the resulting unifier also
approximates θ, i.e. is more general than it.

3.3 Completeness of HT

A central part of the completeness proofs for unification-based refutation calculi
are the lifting properties. The central lifting theorem for HT states that any
given tableau refutation for θ(A), can be lifted to a tableau refutation for A. For
the construction of a lifted HT -tableau R.T for a proposition A from a tableau
Rθ.Tθ for θ(A) it is crucial to maintain a tight correspondence ω: Tθ → T
between R.Tθ and Rθ.T that respects labels and is compatible with θ, i.e. for
any node N in T with labeled formula Av we have ωN (θ(A)) = A. The main
difficulty with lifting properties in higher-order logic is the fact that due to
the existence of predicate variables at the head of formulae, the propositional
structure of formulae can change during instantiation. For instance if θ(Fα→o) =
λXα.GX∨po, and AT = FaT is the formula of N , then HT (∨) is applicable in Tθ
but not in the fragment of T already constructed. The solution of this problem
is to apply HT (prim) with a suitable imitation binding G∨

α→o = λXα.(H
1X) ∨

(H2X) and to obtain a node N ′ with formula (H1a ∨H2a)T, to which HT (∨)
can be applied. Since G∨

α→o is more general than θ(F ) there is a substitution
ρ, such that θ(F ) = ρ(G∨

α→o), therefore ωN ′(θ′(H1a ∨H2a)T) = (H1a ∨H2a)T

where θ′ = θ ∪ ρ.

Definition 3.11 (Tableau Embedding) Let R.T and R′.T ′ be higher-order
tableaux such that Φ and Φ′ are the respective sets of nodes in R.T and R′.T ′,
then we call an injection ω: Φ → Φ′ a tableau embedding, iff

• it preserves dominance in trees (i.e. if node M dominates node N in T ,
then ω(M) dominates ω(N ) in T ′) and furthermore

• it preserves truth values, i.e. ω(Mα) is of the form Nα. Here (and in the
following) we also use ω for the mapping on formulae induced by ω (M
and N are the formulae at nodes M and N = ω(M)).

For the lifting argument it will also be important to monitor the solvability
of the unification constraints represented by the collection of leaves of a tableau.
In particular, we will have to relate the sets of constraints of the basic and the
lifted tableau modulo the connecting substitution θ. The condition we want to

5Pre-unifiers can be extended to unifiers, therefore pre-unification problem cannot be de-
cidable, since otherwise the higher-order unification problem would also be.
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maintain is that the set of solutions of the lifted constraints, together with those
induced by θ should always be the set of solutions of the ground constraints.

Definition 3.12 (Equivalent mod θ) Let Φ and Φ′ be sets of substitutions
and τ(ρ): = ρ ◦ θ for ρ ∈ Φ, then we say that the sets Φ and Φ′ are equivalent
mod θ, iff τ is a bijection between Φ′ and Φ. In this case we write Φ ⇔θ Φ′.

Clearly τ is injective by construction, so it is only necessary to check that
τ(Φ′) = Φ in order to verify that Φ and Φ′ are equivalent mod θ.

Lemma 3.13 For a substitution σ let Eσ: = {X 6=? σ(X)
∣∣X ∈ Dom(σ)}, then

we have PU(R.E ∨ Eθ) ⇔θ PU(R(θ).θ(E)) for any R-substitution θ.

Proof: We have τ(PU(R(θ).θ(E)) ⊆ PU(R.E ∨ Eθ), since for any substitution
σ ∈ PU(R(θ).θ(E)) we have τ(σ) = σ ◦ θ is a pre-unifier of Eθ. On the other
hand, any pre-unifier ρ of R.E ∨ Eθ is also one of R.Eθ, so we have ρ = ρ ◦ θ,
since θ is the most general unifier of R.Eθ. Thus we have PU(R.E ∨ Eθ) ⊆
τ(PU(R(θ).θ(E)), which completes the proof.

Definition 3.14 (θ-Compatible) Let R.T and R′.T ′ be higher-order tableaux
with unification constraints R.E and R′.E ′, and let θ be an R-substitution. We
say that a tableau embedding ω: T → T ′ is θ-compatible, iff ω(θ(M)) = M and
moreover PU(R′.E ′ ∨ Eθ) ⇔θ PU(R.E)

Lemma 3.15 For any A ∈ wffo(Σ) and any substitution θ, such that the head
of θ(A) is ∨, there is a tableau T∨, such that

• T∨ has substitution θ∨, root AT and the two open leaves BT and CT

• a substitution ρ∨, such that θ = ρ∨◦θ∨[Dom(θ∨)] and θ∪ρ∨(A) = B′∨C′,
where B′ = θ ∪ ρ∨(B) and C′ = θ ∪ ρ∨(C)

Proof: Let µ(θ,A) be the multiset of term depths in θ(Free(A)). We prove
the assertion by well-founded induction over the multi-set ordering for natural
numbers. If A = B ∨ C, then T consists of a single application of HT (∨) and
θ∨ = ρHT (∨) = ∅.

If head(A) 6= ∨, then A must be flexible, i.e. A = PαUn for some variable
Pα ∈ Dom(θ). The head h of θ(P ) is either ∨ or θ(P ) is a j-projection.
Therefore, by the general binding theorem 3.3 there is a partial binding Gh

α, a
substitution ρ′ such that ρ′(Gh

α)=βηθ(Pα). Now let θ′: = θ ∪ ρ′, then θ′({P 7→
Gh
α}A) = θ(A) and θ = ρ′ ◦ {P 7→ Gh

α}. Furthermore µ(θ, {P 7→ G}A) <
µ(θ,A), since dp(ρ) < dp(θ(P )) and P /∈ Free({P 7→ Gh

α}A). So by inductive
hypothesis, there is a tableau T ′

∨ with substitution θ′∨ and root {P 7→ Gh
α}A

and a substitution ρ′∨, such that θ′ ∪ ρ′∨(A) = θ′ ∪ ρ′∨(B) ∨ θ′ ∪ ρ′∨(C). If we
combine T ′

∨ with a HT (prim) step at the root, we have the tableau shown in
figure 5 which has root A. Now let θ∨: = θ′∨ ∪ {P 7→ Gh

α} and ρ∨: = ρ′∨ ∪ ρ′,
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BT

CT

AT

nPαn
6=? G∨

αn

AT

n−1

AT
2Pα1 6=? Gj1

α1

AT

1Pα 6=? Gj1
α

PαU
T (θ(B) ∨ θ(C))T

θ(C)T

θ(B)T

θ

θ ∪ ρ∨

θ′
∪ ρ∨

Figure 5: Tableau Lifting

then

ρ∨ ◦ θ∨ = (θ′∨ ∪ {P 7→ Gh
α}) ◦ (ρ′∨ ∪ ρ′)

= (θ′∨ ◦ ρ′∨) ∪ (ρ′ ◦ {P 7→ Gh
α})

= θ[Dom(θ∨) = Dom(θ′∨) ∗ P ]

Furthermore θ′∨(B) = θ∨(B), since P /∈ Free(B) and similarly for C.

Clearly, similar results for the other structural HT rules can be shown by
exactly the same methods.

Theorem 3.16 (Tableau Lifting) Let A ∈ wffo(Σ) and θ a substitution, then
A has a HT -proof provided θ(A) has one.

Proof: Let Rθ.Tθ be a tableau refutation for θ(A), the claim is proven by an
induction on the construction of Rθ.Tθ constructing a tableau refutation R.T
for A, a substitution ρ and a θ ∪ ρ-compatible tableau embedding ω: Tθ → T .
This is sufficient for the proof of the assertion, since the leaves of R.T can only
be unification constraints as Tθ is closed. R.ET must be pre-unifiable, since ω
is θ ∪ ρ-compatible Rθ.Tθ is closed:

∅ 6= PU(Rθ.ETθ
) ⇔θ∪ρ PU(R.ET ∨ Eθ∪ρ) ⊆ PU(R.ET )

So let us now construct R.T , ρ and ω inductively on the structure of Tθ. To
make the induction go through, we need to treat the slightly stronger assertion,
where we do not assume Rθ.Tθ to be closed. If Rθ.Tθ is an initial tableau, then
we we take ω to be the obvious tableau embedding and ρ the empty substitution.
ω is θ ∪ ρ-compatible, since there are no unification constraints present.
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Now let us assume that the assertion holds for ω:R.Tθ → R.Tθ and θ ∪ ρ
and look at possible extensions of Tθ. If Tθ is extended by HT (∨) at node Nθ

to T ′
θ , then Nθ must be labelled with θ(A)T. As ω is θ∪ρ-compatible, the node

ω(Nθ) in T must have the label AT. Lemma 3.15 guarantees a tableau T∨ with
root θ(A), the two open leaves B and C.

Let R′.T ′ be T extended with T∨ at ω(Nθ), then R′ = R(θ∨) and E ′
T =

θ∨(ET ), since θ∨ is the substitution of T∨ and T∨ does not have open constraints.
Now let ω′ be the obvious extension of ω that maps the disjuncts of θ(A)

to the leaves B and C of T∨ and θ̃: = θ ∪ ρ ∪ ρ∨, then it only remains to
show that ω′ is θ̃-compatible. Now let θ = θ′ ∪ θ′′, where Dom(θ′ = θ∨ and
Dom(θ′′) ∩ Dom(θ∨) = ∅. Then θ′ = ρ∨ ◦ θ∨ and we have

PU(R′.ET ′ ∨ E
θ̃
) = PU(R(θ∨).θ∨(ET ) ∨ Eθ ∨ Eρ ∨ Eρ∨)

⇔ρ∨ PU(R(ρ∨ ◦ θ∨).ρ∨ ◦ θ∨(ET ) ∨ Eθ ∨ Eρ)

= PU(R(θ′).θ′(ET ) ∨ Eθ′′ ∨ Eρ)

θ′ ⇔ PU(R.ET ∨ Eθ ∨ Eρ)

⇔θ∪ρ PU(Rθ.ETθ
)

by inductive hypothesis. It is easy to check that Φ ⇔θ Φ′ and Φ′ ⇔ρ Φ′′ entail
Φ ⇔ρ◦θ Φ′′ and that Φ θ⇔ Φ′ and Φ′ ⇔ρ Φ′′ entail Φ ⇔ρ Φ′′ if θ ⊆ ρ, so that
we have

PU(R′.ET ′ ∨ E
θ̃
) ⇔θ∪ρ∪ρ∨ PU(Rθ .ETθ

)

This completes the assertion for the HT (∨) case, since θ̃ = θ ∪ ρ ∪ ρ∨.
The cases for the other structural HT rules can be shown by exactly the

same methods, using the respective analogs of Lemma 3.15.
In the HT (cut) case, we have have the left situation below, so we can extend

T by the right tableau.

θ(A)v

θ(B)w
HT (cut)

θ(A) 6=? θ(B)

Av

Bw

HT (cut)
A 6=? B

Since tableau embeddings do not extend to unification pairs, we can take ω̃ = ω
and θ̃ = θ. This extension adds a new pair θ(A) 6=? θ(B) to the unification
constraints of Tθ and A 6=? B of those of T . Now, lemma 3.13 gives

PU(R.E ∧ Eθ ∧ A 6=? B) ⇔θ PU(R.E ′ ∧ θ(A) 6=? θ(B))

Similarly, the simplification rule SIM (dec) does not affect the tableau embed-
ding ω, since that is restricted to labeled formulae and θ, since SIM (dec) it
conserve sets of pre-unifiers. Finally, for HT (subst) and HT (prim) which in-
stantiate the tableau by a substitution {X 7→ A} where X /∈ Dom(θ), thus we
can lift their applications directly (i.e. create the lifted tableau, by applying
exactly the same substitution to T ).
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Now we have examined all the cases of tableau construction and have thus
completed the proof of the assertion.

Example 3.17 (Tableau Lifting) Consider the concrete lifting situation in
figure 6 with the instantiated version on the right hand side.

qZ 6=? Qab qZ 6=? qa

qW F qW FqZF qZF

RabT qbT

QabT qaT

(Qab ∨Rab)T

P 6=? λXY.(QXY ∨RXY )

PabT (qa ∨ qb)T

(∀X.qX)F (∀X.qX)F

{R7→(λXY.qY )}

{Q7→λXY.qX}

{P 7→(λXY.qX∨qY )}

Figure 6: A concrete tableau lifting situation

Theorem 3.18 (Completeness) HT is refutation complete with respect to the
class of Σ-models, i.e. if Φ is a valid set of sentences, then there is a closed
higher-order tableau for ∅.ΦF.

Proof: Completeness of HT can be proven using the model existence theo-
rem 2.12 by verifying that the class ∇Σ defined by

∇Σ: = {Φ ⊂ wffo(Σ)
∣∣ 6⊢HT ΦT}

is a saturated abstract consistency class. For conditions 1. and 3.– 5., and
7. in the definition of abstract consistency class (cf. definition 2.11) this can
be achieved with the usual techniques (see for instance [10]). Condition 2. is
trivially met, since all formulae are kept in βη-normal form and we have treated
condition 6. in the tableau lifting theorem above.

For 8. let Φ = Φ′ ∗ ¬(A =α→β B) and let R.T be a closed tableau for
Φ ∗ (¬Aw = Bw) for some witness constant w that does not occur in Φ. The
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Φ′

A =α→β BF

A 6=? B
Awα 6=? Bw

(Aw =β Bw)F

T ′

(A = B)F

(∀Pα→o.PA ⇒ PB)F

rAT

rBF

rA 6=? rB
A 6=? B

(The first step in the left tableau abbreviates the right.)

Figure 7: Functional Extensionality for ∇Σ.

first tableau in figure 7 is a HT -refutation of Φ. Note that the witness constant
r is eliminated again from the unification constraint by SIM (dec), therefore the
intermediate variable condition R′: = R∗{r 7→ Free(A)∪Free(B)} in figure 7
can be simplified to R.

To show saturation of ∇Σ we assume that Φ ∗ A /∈ ∇Σ and Φ ∗ ¬A /∈ ∇Σ

for some proposition A ∈ wffo(Σ) and some Φ ∈ ∇Σ. In other words, there
are HT -refutations for both Φ ∗ A and Φ ∗ ¬A, and therefore there is one for
Φ∪{A∨¬A}, and consequently there is a HT -refutation for Φ, since tautologies
can be eliminated in HT . This contradicts our assumption that Φ ∈ ∇Σ.

3.4 Optimizations for Primitive Substitutions

The primitive substitution rules have originally been introduced by Peter An-
drews in [3]. Note that the set of general bindings is infinite, since we need one
for every quantifier Πα and the set of types is infinite. Thus in contrast to the
goal-directed search for instantiations in unification, the rule HT (prim) performs
blind search and even worse, is infinitely branching. Therefore, the problem of
finding instantiations for predicate variables is conceived as the limiting factor
to higher-order automated theorem proving.

It has been a long-standing conjecture that in machine-oriented calculi it is
sufficient to restrict the order of primitive quantifier substitutions to the order
of the input formulae. In [5], we have established a finer-grained variant of
theorem 2.12 that we can use as a basis to prove this conjecture. Let us now
introduce the necessary definitions.

Definition 3.19 (Order) For a type α ∈ T , we define the order ord(α) of
α as ord(ι) = ord(o) = 0, and ord(α → β) = max{ord(α),ord(β)} + 1.
Note that the set T k = {α ∈ T

∣∣ord(α) ≤ k} is finite for any order k. We
will take the order of a formula to be the highest order of any type of any of
its subformulae, and the order of a set of formulae to be the maximum of the
orders of its members.

Theorem 3.20 (Model Existence with Order) The model existence theo-
rem (2.12) holds even if we weaken the condition 6. of an abstract consistency
class (cf 2.11) to
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6. If ΠαA ∈ Φ, then Φ∗AB ∈ ∇Σ for each closed formula B ∈ wffα(Σ) with
ord(B) ≤ ord(Φ).

With this result [5] it is possible to restrict the order of the primitive sub-
stitutions in rule HT (prim) to the order of the initial formulae, since with this
restriction, all HT -rules are order-preserving. Thus, the HT tableau calculus
is finitely branching. However, even with this restriction the search space for
primitive substitutions is prohibitively large, so we have to restrict it even fur-
ther.

Remark 3.21 (Atomic Cut and HT (prim) in HT ) From the completeness
proof above we can directly verify, that the HT (cut) rule can be restricted to
the case where the formulae AT and BF are literals. Indeed, the base cases of the
definition of abstract consistency class only mention atomic formulae and the
lifting argument lifts atomic cuts to atomic cuts. This restriction considerably
restricts the possibilities of applications of HT (cut) and thus prunes the search
spaces associated with proof search in HT considerably.

In Example 3.17, we have shown a special instance of the lifting process used
in 3.16. This uses HT (prim) to instantiate the variable P with a disjunction

binding so that the literal PU
T

can be split into the two tableau branches
present in the ground proof. Indeed this is necessary, if we want to prune search
spaces by restricting HT (cut) to atomic cuts. However, if we do not impose
this restriction, then ∃P.(Pab) ⇒ ∀X.qX has a closed HT -tableau that does
not need HT (prim) (see figure 8). This suggests that without the restriction to
atomic cuts, HT may well be complete without HT (prim)6. Clearly, however,
we have to extend the HT (cut) rule by a variant, that acts on arbitrary pairs of
formulae Av, Bv with equal annotation in the branch (introducing a negation
operator for soundness).

Av

Bv

A 6=? ¬B

Av

Bv

¬A 6=? B

Since the primitive substitution rule HT (prim) basically employs blind search
for a propositional substitution, this variant of HT may well be more efficient,
since unification generates the necessary instantiations in a goal-driven manner
from the material already present in the tableau.

4 Extensional Tableaux

In the previous Section we have proven completeness of HT with respect to
Σ-models, which characterizes traditional higher-order refutation calculi, but

6Note that this is a fairly strong conjecture, since the resulting calculus would be able
to handle for instance generalizations in inductive proofs. Consider for instance the formula
∀Xι.X+(X+X) = (X+X)+X, which can only be proven by a detour to general associativity
of +.
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w 6=? wK 6=? λXY Z.Z

Kabw =? wH =? λXY Z.q(HXY Z)

Habw =? qw

Hab =? λZ.qZ

Π(Hab) =? Π(λZ.qZ)P 6=? λXY.Π(HXY )

Pab 6=? (∀X.qX)

(∀X.qX)F

PabT

Recall that ∀X.qX is an abbreviation for Π(λX.qX)

Figure 8: A closed tableau without HT (prim).
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is not a very intuitive notion of semantics. Indeed HT is not complete with
respect to Henkin models. Consider for instance the formula C: = ¬(co→obo) ∨
(c(¬¬b)) which cannot be proven in HT – the middle tableau in figure 9 shows
the maximal tableau for C, which cannot be closed, since no HT construction
rule applies to the last pair. This lack of completeness is unfortunate, since the
class of Henkin models is the most intuitive one that admits complete calculi.
In particular, our mathematical intuition which conforms to Henkin models
would make us believe that C should be refutable, because ¬¬b is provably
equivalent to b. This example shows us that in extensional calculi we have to
deal with propositions that appear in the arguments of parameters. The simplest
approach to build a calculus that can refute C is to add the equational theory
b = ¬¬b to higher-order unification. Even though this approach is intuitive, it
does not solve the general problem of incorporating extensionality into higher-
order tableaux. In fact, we can generalize the formula C: = (cb) ∨ ¬c(¬¬b) to
C′: = (cA)∨¬(cB), where A and B are arbitrary propositions. Now C′ is valid
in the class of Henkin models, iff A ⇔ B is valid. So the approach of enhancing
the unification would require augmenting the unification procedure by the theory
of logical equivalence, which would enable the unification procedure to prove any
theorem by unifying it with some elementary tautology like ∀Xo.X ∨ ¬X .

The semantic problem with completeness behind this example is maybe best
illustrated by the fact that in Σ-models does not hold and thus “buried occur-
rences” of propositions cannot be substituted for equivalent ones. Thus the
remedy for the incompleteness of HT is a tableau construction rule that relates
equality in unification constraints with equivalence.

Definition 4.1 (Extensional Tableau Calculus HTE) The tableau construc-
tion rules for HTE consist of those for HT augmented with the one from figure 9.
This rule interprets unification constraints of type o as equivalences.

Ao 6=
? Bo

HTE(ext)
AF

BT

∣∣∣∣
AT

BF

(¬(cb) ∨ c(¬¬b))F

¬(cb)F

c(¬¬b)F

cbT

cb 6=? c(¬¬b)
b 6=? ¬¬b

b 6=? ¬¬b
¬¬bF

bT

bF

b 6=? b

∣∣∣∣∣∣∣∣

¬¬bT

bF

bT

b 6=? b

Figure 9: Extensional Tableaux in HTE

In particular we can continue our example above with the right sub-tableau in
figure 9. Note that HTE completely blurs the distinction between propositional
reasoning by decomposition of formulae and substitution construction by uni-
fication constraint solving. In particular we can indeed prove a sentence A by
unifying it with a simple tautology, such as ∀Xo.X ∨ ¬X . We will now explore
this symmetry of propositional reasoning and unification.
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Theorem 4.2 (Soundness and Completeness) HTE is sound and refuta-
tion complete, i.e. a proposition A ∈ wffo(Σ) is valid in all Henkin models,
iff there is a closed higher-order extensional tableau for ∅.AF.

Proof: Soundness of HTE(ext) is immediate: If A and B have different truth
values, then one must be T, while the other must be F. Completeness is a
consequence of the model existence theorem for Henkin models 2.12. To show
that

∇Σ: = {Φ ⊂ wffo(Σ)
∣∣ 6⊢HTE ΦT}

is a saturated abstract consistency class, we build on 3.18, so we now only have
to verify the condition 9.

Φ′

(A =o B)F

A 6=? B
AF

BT

T 1

∣∣∣∣∣∣

AT

BF

T 2

Figure 10: Extensionality for ∇Σ

Let Φ = Φ′ ∗ ¬(A =o B), and R.T 1 a closed tableau for Φ ∪ {¬A,B} and
finally R.T 2 one for Φ∪{A,¬B} then thetableau in figure 10 is a HTE -refutation
for Φ. Here Q is a new negative variable of type α→ o.

Now that we have seen how we can achieve completeness with respect to Henkin
models, let us note that completeness with respect Σ-models is still an inter-
esting property for a higher-order calculus: For the fragment of formulae where
every propositional subformula (i.e. one of type o) is dominated only by logical
constants – let us call such formulae non-degenerate – the two notions of valid-
ity coincide. Since for most applications degenerate do not occur, if suffices to
employ calculi without rules such as HTE(ext).

5 Implementation: Concurrent Higher-Order Tableaux

The HTE-calculus has been used as the basis of the Hot system [21], a con-
current higher-order tableau theorem prover that is intended for applications
in mathematics and computational linguistics [20]. The system is implemented
in Oz [23], a constraint programming language based on a new computation
model providing a uniform foundation for higher-order functional program-
ming, constraint logic programming, and concurrent objects with multiple inher-
itance. Oz is a concurrent programming language, i.e., a procedure may start
sub-processes, called threads , which are executed concurrently in a fair way.
Hot uses this feature to implement a blackboard architecture for higher-order
tableaux where multiple tableau agents work together in order to construct a
proof.
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We can conceptualize tableaux implementations as blackboard architectures [9]
where tableau agents, equipped with abilities from their underlying calculus, ma-
nipulate a Blackboard-like data structure, the tableau. The proof search space
is defined by each agent’s possible nondeterministic decisions about which HTE
inference rule it applies. An agent may implement search strategies by choosing
an order of rule applications or restricting the location of rule applications.

Tableau agents analyze disjunctions in separate branches of the tree. Because
tree expansion is a potentially infinite process, each agent has to respect suitable
fairness conditions for branch expansion. Since common strategies of first-order
systems cannot be fully performed for HTE (higher-order formulae may change
their propositional structure by primitive substitution) we have implemented
a concurrent tableau expansion. Instead of a single tableau agent that has to
decide on the order of branches to visit, we analyze disjunctive branches by
multiple agents, each one working autonomously on its own part of the tableau.
The first agent which is able close a tableau branch decides on the important
choice of the next global variable substitution to explore, hopefully inhibiting
unnecessary unification attempts in other parts of the tableau. In this way, the
agents communicate with each other by manipulating the variable substitutions
that are part of the blackboard. As long as the concurrent execution of the
agents is fair, we emulate a weak form of breadth-first expansion by concurrency.

The concurrent architecture gives us an efficient method to cope with flex-
flex pairs. Recall that flex-flex leaves close their branch until one of the heads
becomes determined by a variable substitution. Each branch of a unification
problem is part of the tableau, and therefore a unique agent deals with it. In
the case of a branch ending in a flex-flex pair, the agent related to the branch
simply suspends and waits for one of the flexible heads to become determined.
An instantiation of one of the flexible heads will reactivate the agent, and the
extension/closing cycle of the branch continues.

6 Conclusion

We have presented two calculi for automated theorem proving in higher-order
logic and have semantically characterized their deductive power. We have chosen
the framework of analytic tableaux for this presentation because of its simplicity
and mathematical elegance, so that we could concentrate on the (syntactical
and semantical) peculiarities of higher-order logic. It should be clear, that the
methods developed here, carry over to all other automated theorem proving
paradigms known from first-order logic.

The first calculus HT is complete relative to a non-standard semantics that
also characterizes completeness of known higher-order refutation calculi like
Huet’s constrained resolution or Andrews’ higher-order matings method. All of
these calculi are not complete in the presence of buried occurrences of propo-
sitions, since substitutivity of equivalence is not admissible in them and thus
they are not complete with respect to Henkin models. We have remedied this
situation by introducing a special rule that trades propositional unification pairs
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for equivalences and gives a complete calculus.
The calculi presented in this chapter use Leibniz formulation of equality

instead of primitive equality. While this is theoretically sufficient, it is prac-
tically infeasible, since positive Leibniz equalities lead to flexible literals that
are subject to primitive substitutions and therefore to combinatorial explosion
of search spaces. Therefore it will be crucial to apply the methods described
in this chapter to first-order calculi with equality. Since reduction orderings
tend to be very weak for higher-order logic, it seems advantageous to focus on
difference-reducing calculi like those discussed in [15], particularly, since the
generalization of the colored unification algorithms needed to manipulate the
search restrictions has already worked out [16].
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