


KEIM: A Toolkit for Automated Deduction

Xiaorong Huang Manfred Kerber Michael Kohlhase Erica Melis
Dan Nesmith Jorn Richts Jorg Siekmann

Fachbereich Informatik, Universitat des Saarlandes
66041 Saarbricken, Germany
keim@cs.uni-sb.de
Telephone: (49) 681-302-4627

Abstract. KEIM is a collection of software modules, written in Com-
mon Lisp with CLOS, designed to be used in the implementation of
automated reasoning systems. KEIM is intended to be used by those
who want to build or use deduction systems (such as resolution theorem
provers) without having to write the entire framework. KEIM is also suit-
able for embedding a reasoning component into another Common Lisp
program. [t offers a range of datatypes implementing a logical language
of type theory (higher order logic), in which first order logic can be easily
embedded. KEIM’s datatypes and algorithms include: types; terms (sym-
bols, applications, abstractions); unification and substitutions; proofs,
including resolution and natural deduction styles.

1 Motivation

Though automated reasoning systems are among the earliest Al programs, the
methods developed and implemented by the theorem-proving community are
little-used outside of it. This phenomenon may be explained to some extent
by the computational complexity of the programs involved (often NP-complete
or undecidable), but an even larger share of the blame may be assigned to the
cognitive complexity involved in the implementation of the programs themselves.
It is easy to describe a proof process such as resolution, but actually writing a
fairly-efficient resolution prover is far from trivial. In addition, a prover requires
subcomponents, such as formula parsing and pretty-printing, which add to the
magnitude of the job. The work and experience required to build a good theorem
prover from scratch can be daunting for an outsider. Especially when the theorem
prover is not the main object of study, but rather intended to be used as a
component in some larger system, the foreseen difficulties will discourage many
from beginning.

One may of course decide to use a prover that is already available. This has
the advantage that its reliability is relatively assured and, being off-the-shelf,
requires no implementation. Unfortunately, it is rare that the needs of a new
application exactly fit the strengths of an existing theorem prover. Even if that
were the case, one would probably have to build some kind of bridge between the
two programs in order to exchange data, because the basic data structures used
(terms, formulas, etc.), not to mention input syntax, are probably incompatible.



One may try to modify the source code directly, but this is a very difficult task
for the nonexpert.

In addition, most theorem provers are sui generis; they are designed to in-
vestigate a particular paradigm or approach and are not intended to be useful
for all types of reasoning problems. This limits their applicability among a wide
audience. And trying to get two provers to cooperate without greatly changing
at least one of them is not a task for the faint of heart.

Because of these difficulties, those who wish to apply techniques developed
by the theorem-proving community face the choice of either learning this ‘black
art’ themselves by developing their own prover from scratch, or jury-rigging
available provers to get some kind of result. Hardly an encouraging prospect.
Even automated reasoning experts may wish to make a theoretical study of just
a minor aspect (say, a comparison of term indexing schemes), and not want to
go to the trouble of implementing the whole environment normally required.

We feel that what is needed to make theorem-proving technology widely
available in a useful way is a framework that provides the essential tools (data
structures and algorithms) to allow a theorem prover to be assembled by a non-
expert. Such a framework must be modular, to allow data structure or algorithm
variants to be swapped in or out, and extensible, to permit customization, as
well as the addition of new modules, with relatively modest effort.

2 An Open Architecture

Despite the diversity of theorem provers currently in use and in development,
there are many aspects that they share. They must support basic data structures
such as terms, formulas and, often, more complex objects such as clauses and
substitutions. There must be a way to parse user input into a usable form, and
to pretty-print the internal format in a human-readable way. Unification and/or
matching are also common components.

There are well-known algorithms and techniques for each of these areas. Their
current implementations, however, are not suited for generic use, often relying on
varying idiosyncratic data structures which cannot be reconciled. It is certainly
necessary to continue research in the optimization of techniques such as unifica-
tion, but for many applications, choosing one of the currently-known variants is
good enough. Most users of theorem-proving technology do not want to reinvent
the wheel, and even the best-known algorithms may be difficult to implement
correctly and efficiently.

KEIM provides a framework, through documented interface functions, which
allows such techniques to be implemented in a generic way, so that later im-
provements or customizations can be carried out without requiring changes to
other modules. Just as a toolbox holds several similar tools which do roughly
the same thing, KEIM will contain differing implementations of data structures
and algorithms. These will be provided in a modular form that will allow unne-
cessary components to be left out and improved components to be swapped in.



KEIM is like a cafeteria of theorem-proving tools, providing wholesome options
that can be appetizingly combined.

This modularity of KEIM is essential for three reasons. First, the state of
knowledge in theorem proving is always expanding; there will always be new
ideas and techniques worthy of sharing. Second, the resources of any one group
are limited. There is no way a single group can be expert in all the aspects of
theorem proving that KEIM should offer. The cooperation and contributions of
others must be possible if KEIM is to be truly useful. We wish KEIM to be a
toolbox, not a toybox with only sketchy or incomplete implementations of certain
techniques. Last but not least, it will be the rare case that a user will want to
use exactly what is provided without any customizations. This is especially true
when a theorem prover is to be embedded in an existing system, with its own
data structures. Tools that solve the wrong problem would be of little use.

3 The KEIM Toolbox

KEIM version 1.2 [3] is implemented in Common Lisp, using the Common Lisp
Object System (CLOS) [5]. CLOS allows great flexibility in the integration of
new classes of objects. The generic function paradigm allows one to specialize
the behavior of a function on a new type of object without changing its behavior
on existing objects and without having to rewrite or copy existing and unrelated
code, thus making it well-qualified for the implementation of modular, extensible
toolboxes.

KEIM offers a range of datatypes implementing a logical language of type
theory (higher order logic) called POST [3], in which first order logic can be
easily embedded. KEIM’s datatypes and algorithms include: types; terms (sym-
bols, applications, abstractions); unification and substitutions; proofs, including
resolution and natural deduction styles.

KEIM also provides functionality for the pretty-printing, error handling, for-
mula parsing and user interface facilities which form a large part of the code of
any theorem prover. These facilities are all easily customizable.

KEIM serves as the basis for the £2-MKRP [2] proof development environment
(successor to the MKRP project), and is developed as part of the German De-
duction Effort, which is sponsored by the Deutsche Forschungsgemeinschaft as
“Schwerpunkt Deduktion”.

Cooperation with other research groups is underway, and a KEIM imple-
mentation of the ACID [1] term indexing software has been made available.

3.1 A Scenario

Suppose a user wishes to build a small resolution prover. She must first decide
what logical language the prover will allow by selecting the KEIM modules
that contain the corresponding CLOS class definitions. She may want to make
some minor adjustments—to the pretty-printing functions, for example. Another
change may be to specialize a class, e.g., she may want to add a slot to the clause



class which counts the number of times it was used. This will then require adding
a method to the generic function that actually does the resolution, so that the
method updates the slot.

Modules will be chosen for the desired types of resolution, factoring, etc.
If the prover is to be interactive, commands can be defined in Lisp using the
KEIM primitives. Some Lisp ability will be required to sew things together. The
modules are loaded in the proper order into a Lisp environment, and the prover
1s ready for action. An example of a simple tableau prover and resolution prover
written in KEIM are described in [4].

4 Summary and Future Directions

KEIM is a software project that intends to offer, through its software library, a
way for the general Al community, as well as the theorem-proving community,
to take advantage of the many developments that have been made in automated
reasoning. KEIM will provide standard implementations of many techniques and
algorithms, making it useful not only for building reasoning systems, but also
for pedagogical purposes. KEIM is available for anonymous FTP from various
locations; send e-mail to keim@cs.uni-sb.de for instructions.

We intend to extend KEIM in both breadth and depth, that is, both to
improve the current implementations, as well as to add new variants (e.g., various
unification algorithms, equality-handling mechanisms). Another goal is to make
KEIM even easier for nonexperts to use by providing a better user interface.
Because of the amount of KEIM code, it can be intimidating for those who are
Just starting. We want to make getting started with KEIM a painless process.

We intend to explore cooperation with other groups who have expertise in
particular areas, and welcome collaboration and suggestions. Currently we are
setting up a KEIM user group consisting of those who do some implementation
on the basis of KEIM.

KEIM’s extensibility and customizability is intended to make 1t an open ar-
chitecture for (Lisp-based) reasoning systems. We hope that KEIM, by providing
the building blocks of a reasoning system, will allow others to concentrate on
the research areas which are of principal interest to them.

References

1. P. Graf: Path Indexing for Term Retrieval. Technical Report MPI-1-92-237 Max-
Planck-Institut fir Informatik, Saarbricken, Germany, 1992.

2. X. Huang et al.: £2-MKRP, A Proof Development Environment. In these proceed-
ings.

3. D. Nesmith, editor: KEIM-Manual version 1.2. Universitat des Saarlandes, Im
Stadtwald, Saarbriicken, Germany, 1994.

4. J. Richts and D. Nesmith: Implementing Simple Theorem Provers in KEIM: Case
Studies. To appear as a SEKI Report, Universitat des Saarlandes, Im Stadtwald,
Saarbriicken, Germany.

5. G. Steele: Common Lisp, second edition. Digital Press, Boston, 1990.



