
A Mechanization of Strong Kleene Logic for
Partial Functions?

Manfred Kerber Michael Kohlhase

Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany

+49-681-302-{4628|4627}
{kerber|kohlhase}@cs.uni-sb.de

Abstract. Even though it is not very often admitted, partial functions
do play a significant role in many practical applications of deduction sys-
tems. Kleene has already given a semantic account of partial functions
using three-valued logic decades ago, but there has not been a satisfac-
tory mechanization. Recent years have seen a thorough investigation of
the framework of many-valued truth-functional logics. However, strong
Kleene logic, where quantification is restricted and therefore not truth-
functional, does not fit the framework directly. We solve this problem by
applying recent methods from sorted logics. This paper presents a reso-
lution calculus that combines the proper treatment of partial functions
with the efficiency of sorted calculi.

1 Introduction
Many practical applications of deduction systems in mathematics and computer
science rely on the proper treatment of partial functions. Although there are
workarounds for most concrete situations, there has been a considerable interest
in the community for clean formalizations of partial functions.

One of the key problems to be solved when formalizing partial functions is to
decide what happens if partial functions are applied to arguments not in their
domain. In mathematical practice expressions like 0

0 = 1 or odd(predecessor(0))
are thought to be neither true nor false. This phenomenon can be handled in the
well-known systems for intuitionistic logic, where the law of the excluded middle
does not hold, hence 0

0 = 1 can be (and in fact is) neither true nor false, since nei-
ther the truth nor the falsehood of this expression can be shown. However, most
mathematicians do not want to give up the law of the excluded middle, because
it is basic for a strong proof technique, the indirect proof. The standard way to
deal with this situation in classical mathematics is to reject expressions like 0

0
as “meaningless”. This phenomenon of “truth value gaps” is studied in various
systems of free logic [22, 10, 15]. A related approach that seems more available
for mechanization has first been advocated by Kleene in [14]. He introduces an
additional individual ⊥ denoting meaningless individuals and a third truth value
u, standing for the “undefined” truth value. At first glance this seems to be a
great deviation from mathematical practice, which only acknowledges two truth
? This work was supported by the Deutsche Forschungsgemeinschaft (SFB 314)

values, but the third truth value simply labels situations that would be rejected
in mathematical practice anyway.

In recent years, methods for the operationalization of many-valued logics
have been developed by Carnielli [6], Hähnle [12], Baaz and Fermüller [2]. All of
these logics have in common that they are truth-functional , that is, composed
formulae obtain their truth values from their components and (for quantifiers)
from all instances of the scope. Therefore a direct utilization of these methods is
impossible for Kleene logic, since his quantifiers only range over defined values,
that is, not over ⊥. Kleene’s approach has been utilized by Tichy [21], Lucio-
Carrasco and Gavilanes-Franco [16] to give logical systems for partial functions.
Both approaches offer unsorted operationalizations of the systems in sequent
calculi by providing special subcalculi for reasoning about definedness.

Other authors (cf. [5, 8, 19, 24]) have avoided the problems that accompany
treating a third truth value, and simply consider all atomic expressions contain-
ing a meaningless term as false. This has the advantage that partial functions
can be handled within the classical two-valued framework. However, the seri-
ous drawback is that the results of these logic systems can be unintuitive to
the working mathematician. For instance it is mathematical consensus that the
following equation should only hold provided that y is not 0:

∀xIR, yIR, zIR z =
x

y
⇒ x = y ∗ z

However, in the abovementioned systems this is a theorem, since for y = 0 the
atom z = x

0 obtains the truth value f which in turn makes the implication true.
We formalize Kleene’s ideas for partial functions in an order-sorted three-valued
logic, called SKL, that uses the Kleene’s strong interpretation of connectives
and quantifiers and adapts techniques from Weidenbach’s logic [24] to handle
definedness information. It will turn out (cf. example 39) that the formula above
is not a theorem in our formalization, since the case y = 0 is a counterexample.

2 Strong Order-Sorted Kleene Logic (SKL)
In [14] Kleene presents a logic, which he calls strong three-valued logic for reason-
ing about partial recursive predicates on the set of natural numbers. He argues
that the intuitive meaning of the third truth value should be “undefined” or
“unknown” and introduces the truth tables shown in definition 26. Similarly
Kleene enlarges the universe of discourse by an element ⊥ denoting the unde-
fined number. In his exposition the quantifiers only range over natural numbers,
in particular he does not quantify over the undefined individual (number).

The approach of this paper is to make Kleene’s meta-level discussion of de-
fined and undefined individuals explicit by structuring the universe of discourse
with the sort D for all defined individuals. Furthermore all functions and predi-
cates are strict, that is, if one of the arguments of a compound term or an atom
evaluates to ⊥, then the term evaluates to ⊥ or the truth value of the atom is u.
Just as in Kleene’s system, our quantifiers only range over individuals in D, that
is, individuals that are not undefined. This is in contrast to the well-understood
framework for truth-functional many-valued logics, where the concept of defined-
ness and defined quantification cannot be easily introduced, since quantification

371

is truth-functional and depends on the truth values for all (even the undefined)
instantiations of the scope. Kleene’s concept of bounded quantification is essen-
tial for our program of representing partial functions, since in a truth-functional
approach no proper universally quantified expression can evaluate to the truth
value t (dually for the existential quantifier), since all functions and predicates
are assumed strict.

In the following we present the logic system SKL, which is a sorted version
of what we believe to be a faithful formalization of Kleene’s ideas from [14]. We
treat the sorted version here, since we need the machinery for dynamic sorts in
the calculus to be able to treat the sort D (sort techniques as that from [24, 25]
give us the bounded quantification). We will call formulations of SKL where D
is the only sort in the signature strong unsorted Kleene logic. The further use
of sorts gives the well-known advantages of sorted logics for the conciseness of
representation and reduction of search spaces.

Syntax
Definition 21 (Signature) A signature Σ: = (S,V,F ,P) consists of the fol-
lowing disjoint sets

– S is a finite set of sorts including the sort D. We define S∗ := S \ {D}
– V is a set of variable symbols. Each variable x is associated with a unique

sort S, which we write in the index, i.e. xS . We assume that for each sort
S ∈ S there is a countably infinite supply of variables of sort S in V.

– F is a set of function symbols.
– P is the set of predicate symbols.

The sets F and P are subdivided into the sets Fk of function symbols of arity k
and Pk of predicate symbols of arity k. Note that individual constants are just
nullary functions. We call a signature unsorted if S∗ is empty, that is, if D is the
only sort.

Definition 22 (Terms and Formulae) We define the set of terms to be the
set of variables together with compound terms f(t1, . . . , tk) for terms t1, . . . , tk

and f ∈ Fk.
If P ∈ Pk, then P (t1, . . . , tk) is a proper atom. If t is a term and S a sort then

t<−S is a sort atom. The set of formulae contains all atoms and with formulae
A and B the formulae A ∧B, A ∨B, A⇒ B, ¬A, !A, ∀xS A and ∃xS A. Here
the intended meaning of !A is that A is defined.

Semantics
In this section we will define the three valued semantics for SKL by postulating
an “undefined individual” ⊥ in the universe of discourse. Note that this is similar
to the classical flat CPO construction [20], but Kleene’s interpretation of truth
values does not make u minimal. Since we are not interested in least fix-points,
monotonicity does not play a role in this paper.

Definition 23 (Strict Σ-Algebra) Let Σ be a signature, then a pair (A, I)
is called a strict Σ-algebra, iff

1. the carrier set A is a set of at least two elements that contains ⊥,

372

2. the interpretation function I obeys the following restrictions:
(a) For all function symbols f , the function I(f):Ak −→ A is strict for ⊥,

that is, I(f)(a1, . . . , ak) = ⊥, if ai = ⊥ for (at least) one i.
(b) If P is a predicate symbol, then the relation I(P) ⊆ Ak is strict for ⊥,

that is, I(P)(a1, . . . , ak) = u, if ai = ⊥ for (at least) one i.
(c) If S 6= D is a sort, then I(S) is a total, unary, and strict relation, that

is, I(S)(a) ∈ {f, t}, if a 6= ⊥ and I(S)(⊥) = u.
(d) I(D)(⊥) = f and I(D)(a) = t, if a 6= ⊥. Note that in contrast to all

other sorts and predicates, the denotation of D is not a strict relation.

We define the carrier AS of sort S as AS := {a ∈ A
∣∣ I(S)(a) = t}. Note that

in contrast to other sorted logics, it is not assumed that the AS are non-empty.
This fact will require special treatments in the transformation to clause normal
form and for instantiations in the resolution calculus. Furthermore ⊥ /∈ AS for
any S ∈ S.

By systematically deleting ⊥ and u from the carrier and the truth values we
can canonically transform strict Σ-algebras into algebras of partial functions.
These are an algebraic account of the standard interpretation in mathemat-
ics, where partiality of functions is directly modeled by right-unique relations.
Obviously these notions of algebras have a one-to-one correspondence, so both
approaches are equivalent.

Definition 24 (Σ-assignment) Let (A, I) be a strict Σ-algebra, then we call
a total mapping ϕ:V −→ A a Σ-assignment, iff ϕ(xS) ∈ AS , provided AS is non-
empty and ϕ(xS) = ⊥ if AS = ∅. We denote the Σ-assignment that coincides
with ϕ away from x and maps x to a with ϕ, [a/x].

Definition 25 Let ϕ be a Σ-assignment into a strict Σ-algebra (A, I) then we
define the value function Iϕ from formulae to A inductively to be

1. Iϕ(f) := I(f), if f is a function or a predicate.
2. Iϕ(x) := ϕ(x), if x is a variable.
3. Iϕ(f(t1, . . . , tk)) := I(f)(Iϕ(t1), . . . , Iϕ(tk)), if f is a function or predicate.
4. Iϕ(t<−S) = I(S)(Iϕ(t)).

Note that this definition applies to P and F alike, thus we have given the seman-
tics of all atomic formulae. The semantic status of sorts is that of total unary
predicates; in particular in A we have Iϕ(t<−S) = u, iff Iϕ(t) = ⊥.

Definition 26 The value of a formula dominated by a connective is obtained
from the value(s) of the subformula(e) in a truth-functional way. Therefore it
suffices to define the truth tables for the connectives:

∧ f u t

f f f f
u f u u
t f u t

∨ f u t

f f u t
u u u t
t t t t

⇒ f u t

f t t t
u u u t
t f u t

¬
f t
u u
t f

!

f t
u f
t t

Kleene does not use the ! operator as a connective but treats it on the meta-
level. Note while it is useful it is not necessary for the treatment. Furthermore,

373

even this connective does not render SKL truth-functionally complete, since, just
like negation and conjunction, ! is normal, that is, when restricted to {f, t} all
connectives yield values in {f, t}.

The semantics of the quantifiers is defined with the help of function ∀̃ and ∃̃
from the non-empty subsets of the truth values in the truth values. We define

Iϕ(QxS A) := Q̃({Iϕ,[a/x](A)
∣∣ a ∈ AS})

where Q ∈ {∀,∃} and furthermore

∀̃(T) :=

 t for T = {t}
u for T = {t, u} or {u}
f for f ∈ T

and ∃̃(T) :=

 t for t ∈ T
u for T = {f, u} or {u}
f for T = {f}

Note that with this definition quantification is separated into a truth-functional
part ∀̃ and an instantiation part that only considers members of AS . Since ⊥ is
not a member of any AS , quantification never considers it and therefore cannot
be truth-functional even for the unsorted case.

For lack of space we will in the following often only treat the (sufficient)
subset {∧,¬, !,∀} of logical symbols, since all others can be defined from these.

Definition 27 (Σ-Model) Let A be a formula, then we call a strict Σ-algebra
M := (A, I) a Σ-model for A (written M |= A), iff Iϕ(A) = t for all Σ-
assignments ϕ. With this notion we can define the notions of validity, (un)-
satisfiability, and entailment in the usual way.

Remark 28 The “tertium non datur” principle of classical logic is no longer
valid, since formulae can be undefined, in which case they are neither true nor
false. We do however have a “quartum non datur” principle, that is, formulae
are either true, false, or undefined, which allows us to derive the validity of a
formula by refuting that it is false or undefined. We will use this observation in
our resolution calculus.

Extended Example
We will formalize an extended example from elementary algebra that shows the
basic features of SKL. Here the sort IR∗ denotes the real numbers without zero.
Note that we use the sort information to encode definedness information for
inversion: 1

x is defined for all x ∈ IR∗, since IR∗ is subsort of D by definition.
Naturally, we give only a reduced formalization of real number arithmetic that
is sufficient for our example. (For instance, we could add expressions like 1

0 6<−D.)
Consider the formula A := (A1 ∧A2 ∧A3 ∧A4 ∧A5)⇒ T with

A1 ∀xIR x 6= 0⇒ x<−IR∗

A2 ∀xIR∗
1
x<−IR∗

A3 ∀xIR∗ x
2 > 0

A4 ∀xIR ∀yIR x− y<−IR
A5 ∀xIR ∀yIR x− y = 0⇒ x = y

T ∀xIR ∀yIR x 6= y ⇒
(

1
x−y

)2

> 0

An informal mathematical argumentation why T is entailed by A1∧ . . .∧A5
can be as follows:

Let x and y be arbitrary elements of IR. If x = y, the premise of T is false,
hence the whole expression true (in this case the conclusion evaluates to u). If

374

x 6= y, then the premise is true and the truth value of the whole expression is

equal to that of the conclusion
(

1
x−y

)2

> 0. Since x 6= y we get by A5 that

x−y 6= 0 and by A4 that x−y<−IR, hence by A1 x−y<−IR∗ and by A2 1
x−y<−IR∗,

which finally gives
(

1
x−y

)2

> 0 together with A3.
However, if we analyze the justification of this argumentation, we see that

there is a hidden assumption, namely the totality of the binary predicate > on
IR×IR. In fact the formula A is not a tautology, since it is possible to interpret the
> predicate as undefined for the second argument being zero, so that A3 as well
as T evaluate to u, while the other Ai evaluate to t, hence the whole expression
evaluates to u. There are two solutions of this problem, namely adding further
formulae Ai, in which the definiteness of the predicates are specified, or – what
is normally done in mathematics – to start with a formula where the Ai are
assumed to be true, that is, neither false nor undefined. We will discuss the
alternatives in remark 310 and modify the example accordingly.

Relativization into Truth-Functional Logic

In this section we show that we can always systematically transform SKL for-
mulae to formulae in an unsorted truth-functional three-valued logic K3 in a
way that respects the semantics. However, we will see that this formulation will
lose much of the conciseness of the presentation and enlarge the search spaces
involved with automatic theorem proving.

At first glance it may seem that SKL is only an order-sorted variant of a
three-valued instance of the truth-functional many-valued logics that were very
thoroughly investigated by Carnielli, Hähnle, Baaz and Fermüller [2, 6, 12]. How-
ever, since all instances of this framework are truth-functional, even unsorted
SKL does not fit into this paradigm, since quantification excludes the undefined
element. In SKL quantification is bounded by sorts, which are all subsorts of
the sort D of defined objects. Therefore relativization not only considers sort
information, it also has to care about definedness aspects in quantification.

Informally, K3-formulae are just first-order formulae (with the additional
unary connective !). While the three-valued semantics of the connectives is just
that given in definition 26, the semantics of quantifications uses unrestricted
instantiation:

Iϕ(∀x A) := ∀̃({Iϕ,[a/x](A)
∣∣ a ∈ A})

Definition 29 We define transformations RelS and RelD, that map SKL-sen-
tences to unsorted SKL-sentences and further to K3-sentences. RelS is the iden-
tity on terms and atoms, homomorphic on connectives and

RelS(∀xS Φ) := ∀xD S(x)⇒ RelS(Φ)

Note that in order for these sentences to make sense in unsorted SKL we have to
extend the set of predicate symbols by unary predicates S for all sorts S ∈ S∗.
Furthermore, for any of these new predicates we need the axiom: ∀xD !S(x).
The set of all these axioms is denoted by RelS(Σ).

375

We define RelD to be the identity (only dropping the sort references from
the variables) on terms and proper atoms and

RelD(t<−D): = D(t) and RelD(∀xD A): = ∀x D(x)⇒ RelD(A)

Just as above we have to extend the set of predicate symbols by a unary predicate
D and need a set RelD(Σ) of signature axioms, which contains the axioms

∀x1, . . . , xn Pn(x1, . . . , xn) ∨ ¬Pn(x1, . . . , xn)⇒ (D(x1) ∧ . . . ∧D(xn))
∀x1, . . . , xn D(f(x1, . . . , xn))⇒ (D(x1) ∧ . . . ∧D(xn))

for any predicate symbol P ∈ Pn, such that P 6= D and for any function symbol
f ∈ Fn, together with the axioms

∀x !D(x)1 and ∃x D(x)

These axioms axiomatize the SKL notion of definedness in K3. In particular
the last axioms state that the predicate D is two-valued and non-empty, in
contrast to all other sort predicates which are strict, thus three-valued, and may
be empty. The other axioms force all functions and predicates to be interpreted
strictly with respect to the D predicate. Note that in the case of nullary function
symbols the signature axioms have the form D(c0), which state that individual
constants are defined.

Theorem 210 (Sort Theorem) Let Φ be a set of sentences, then the following
statements are equivalent

1. Φ has a Σ-model.
2. RelS(Φ) has a Σ ∪ S∗-model that satisfies RelS(Σ).
3. RelD◦RelS(Φ) has a K3-model that satisfies RelD(Σ∪S∗)∪RelD(RelS(Σ)).

Proof sketch: Using standard sort techniques we can use the signature axioms
of Σ to identify sorted models in the class of unsorted models, for details see [13].

As a consequence of the sort theorem, the standard operationalization for
many-valued logics [2, 6, 12] can be utilized to mechanize strong order-sorted
Kleene logic and in fact the system of Lucio-Carrasco and Gavilanes-Franco [16]
can be seen as a standard many-valued tableau operationalization [12, 3] of the
relativization of SKL. However, as the extended example shows, we can do better
by using sorted methods, since relativization expands the size and number of
input formulae and furthermore expands the search spaces involved in automatic
theorem proving by building up many meaningless branches. Note that already
the formulation of unsorted SKL where we only have the required sort D is more
concise than the relativized version and, as we will see, the theory of definedness
is treated by the sorts in theRPF calculus (cf. section 3). Thus theRPF calculus
is closer to informal practice than the relativization in this respect.

1 Since this is an axiom (see remark 310), we could also have used ∀x D(x) ∨ ¬D(x)
here.

376

Extended Example (continued)

The relativization RelS(RelD(A)) of the formula A in the extended example is
the K3-formula (R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5)⇒ RT.

R1 ∀x D(x)⇒ (IR(x)⇒ (x 6= 0⇒ IR∗(x)))
R2 ∀x D(x)⇒ (IR∗(x)⇒ IR∗(1

x))
R3 ∀x D(x)⇒ (IR∗(x)⇒ x2 > 0)
R4 ∀x D(x)⇒ (IR(x)⇒ (∀y D(y) ∧ IR(y)⇒ IR(x− y)))
R5 ∀x D(x)⇒ (IR(x)⇒ (∀y D(y)⇒ (IR(y)⇒ (x− y = 0⇒ x = y))))
RT ∀x D(x)⇒ (IR(x)⇒ (∀y D(y)⇒ (IR(y)⇒ (x 6= 0⇒

(
1
x

)2
> 0))))

The set of signature axioms RelD(Σ∪S∗)∪RelD(RelS(Σ)) is the following set
of K3-formulae:

R= ∀x, y (x = y ∨ x 6= y)⇒ D(x) ∧D(y)
R> ∀x, y (x > y ∨ x 6> y)⇒ D(x) ∧D(y)
R− ∀x, y D(x− y)⇒ D(x) ∧D(y)
R/ ∀x D(1

x)⇒ D(x)
R0 D(0)

R2 ∀x D(x2)⇒ D(x)
D! ∀x D(x) ∨ ¬D(x)
D∅ ∃x D(x)
RIR ∀x D(x)⇒!IR(x)
RIR∗ ∀x D(x)⇒!IR∗(x)

3 Resolution
In this section we present a resolution calculus RPF with dynamic sorts that is a
generalization of Weidenbach’s work [24, 25] with ideas from [2, 12]. In the litera-
ture [23, 7, 18, 11] there are various calculi for sorted logics that vary in deductive
power but have in common that the sort information available to sort reasoning
remains static over the length of a proof. These methods are not sufficient for
our purposes, since definedness2 cannot in general be decided by syntactic means
only, but is usually given in the form of logical axioms that have to be reasoned
about in the calculus itself. In contrast to these Weidenbach’s logics allows the
declaration of conditional sort (and thus definedness) information. When these
conditions are proved in the course of the proof, additional sort information be-
comes available for the sort reasoning mechanism. There are two variants of this
calculus (unsorted unification [24] and sorted unification [25]), we have general-
ized both for our purposes, but in this paper we only present the first (simpler)
version due to the lack of space. We refer the reader to the full version of this
paper [13] for the other variant.

Clause Normal Form
Definition 31 Let A be a formula, then we call Aα (the formula A indexed with
the intended truth value α ∈ {f, u, t}), a labeled formula. We will call a labeled
atom Lα a literal and a set of literals {Lα1

1 , . . . , Lαn
n } a clause. We say that a

Σ-modelM satisfies a clause C, iff it satisfies one of its literals Lα ∈ C, that is,
2 Cohn’s Boolean lattice of sorts [7] has ⊥ elements for ill-sorted terms and formu-

lae. While the notation is similar to ours, this concept should not be confused with
undefinedness. In contrast to Kleene’s interpretation, all of Cohn’s connectives are
strict and no expression containing ill-sorted elements can be a tautology, making
his calculus and his notion of ill-sortedness inappropriate for the treatment of unde-
finedness.

377

Iϕ(Lα) = α. M satisfies a set of clauses iff it satisfies each clause. In order to
conserve space, we employ the “,” as the operator for the disjoint union of sets,
so that C,Lα means C ∪ {Lα} and Lα is not a member of C. Furthermore we
adopt Hähnle’s notion of multi-labels in the form C,Aαβ to mean C,Aα, Aβ .

Definition 32 (Transformations to Clause Normal Form)

C, (A ∧B)t

C,At C,Bt

C, (A ∧B)u

C,Aut C,But C,Au, Bu

C, (A ∧B)f

C,Af , Bf

C, (¬A)t

C,Af

C, (¬A)u

C,Au

C, (¬A)f

C,At

C, (∀xS A[xS])t

C,A[xS]t

C, (∀xS A[xS])u

C,A[f(y1, . . . , yn)]u C,A[xS]ut C, (f(y1, . . . , yn)<−S)t

C, (∀xS A[xS])f

C,A[f(y1, . . . , yn)]f C, (f(y1, . . . , yn)<−S)t

C, (!A)t

C,Atf

C, (!A)u

C

C, (!A)f

C,Au

C, (t<−D)u

C

C, (t<−S)u

C, (t<−D)f

where {xS , y1, . . . , yn} = Free(A) and f is a new function symbol of arity n.
Here Free(A) denotes the set of free variables of A.

Note that this set of transformations is confluent, therefore any total reduc-
tion of a set Φ of labelled sentences results in a unique set of clauses. We will
denote this set with CNF(Φ).

General Assumption 33 The clause normal form transformations as presented
above are not complete, that is, they do not transform every given labelled for-
mula into clause form, since the rules for quantified formulae insist that the
bound variable occurs in the scope. In fact the handling of degenerate quantifi-
cations poses some problems in the presence of possibly empty sorts, as quan-
tification over empty sets are vacuously true. In this situation we have three
possibilities, either to forbid degenerate quantifications, or empty sorts, or treat
degenerate quantifications in the clause normal form transformations. For this
paper we chose the first, since degenerate quantifications do not make much
sense mathematically and do not appear in informal mathematics. See [13] for
the other possibilities. Thus we will asssume that in all formulae in this paper
the bound variables of quantifications occur in the scopes.

As usual the reduction to clause normal form conserves satisfiability.

Theorem 34 Let Φ be a set of labelled sentences, then the clause normal form
CNF(Φ) is satisfiable, iff Φ is.

378

Resolution Calculus (RPF)
Now we proceed to give a simple resolution calculus, which utilizes unsorted
unification. However, despite its name the calculus still utilizes the sort informa-
tion present in the clause set and therefore gives considerably improved search
behavior over unsorted methods as in [16]. In [13], we have further improved the
calculus by using a sorted unification algorithm, which delegates parts of the
search into the unification algorithm. For unsorted substitutions a naive resolu-
tion rule is unsound. Therefore we have to add a residual (the sort constraint)
that ensures the well-sortedness of the unifier.

Definition 35 (Sort Constraints) Let σ = [t1/x1
S1

], . . . , [tn/xnSn
] be a substi-

tution, then we define the sort constraint for σ to be the clause

SC(σ) := {(t1<−S1)fu, . . . , (tn<−Sn)fu}

Definition 36 (Resolution Inference Rules (RPF))

Lα, C Mβ , D
Res

σ(C), σ(D),SC(σ)

Lα,Mα, C
Fac

σ(Lα), σ(C),SC(σ)

(t<−D)f , C Lγ , D
Strict

ρ(C), ρ(D),SC(ρ)

where α 6= β and γ ∈ {t, f}. For Res and Fac the substitution σ is the most
general (unsorted) unifier of L and M and for Strict there exists a subterm s
of L, such that ρ is a most general unifier of t and s. Here we have assumed α,
β and γ to be single truth values, naturally the rules can be easily extended to
sets of truth values.

Remark 37 Note that clauses containing Afut are tautologous and can therefore
be deleted in the generation of the clause normal form as well as in the deduction
process. The calculus can be extended by the usual subsumption rule, allowing
to delete clauses that are subsumed (super-sets).

Definition 38 Let A be a sentence and Φ be the clause normal form of the set
{{Af}, {Au}} then we say that A can be proven in RPF (` A), iff there is a
derivation of the empty clause � from Φ with the inference rules above.

Example 39 Now we can come back to the example from the exposition. The
assertion is not a theorem of SKL, since the clause normal form of the instance
{{(1 = 1

0 ⇒ 1 = 0 ∗ 1)f}, {(1 = 1
0 ⇒ 1 = 0 ∗ 1)u}}, namely:

(1 = 1
0)u, (1 = 1

0)t

(1 = 0 ∗ 1)u, (1 = 0 ∗ 1)f

is satisfiable. In fact in any reasonable formalization of elementary algebra 1 = 1
0

is undefined, whereas 1 = 0 ∗ 1 is false. Thus, since RPF is sound (cf. 311), the
example cannot be a theorem.

379

Remark 310 In practical applications most problems will be of the formA := (A1∧
. . . ∧An ⇒ C) where the Ai are the assumptions and C is the intended conclu-
sion. In contrast to classical first-order predicate logic where it suffices to take
the clause normal form of {{At

1}, . . . , {At
n}, {C f}} the situation here is more

complex, since in SKL we also have to refute the case that A gets the value u.
It is however easy to see, that we can start the calculation of the clause normal
form with the set

{{Aut
1 }, . . . , {Aut

n }, {C fu}} or with the sets

{{Aut
1 }, . . . , {Aut

n }, {Au
1, . . . , A

u
n}, {Cu}} (∗)

{{At
1}, . . . , {At

n}, {C fu}} (∗∗)

which have to be refuted by the resolution calculus independently. In the sec-
ond case the refutation can be split in two independent proofs, thus reducing
the search space considerably. Nevertheless, the refutation of the set (∗) is im-
practical except for trivial examples. Fortunately in mathematical practice the
assumptions Ai often have the status of axioms, which are assumed to be true
independently of the theorem3. Then the problem is really of the form

A′ := (A1∧!A1 ∧ . . . ∧An∧!An ⇒ C)

The clause normal form of A′ is just that of (∗∗), which is close to the classical
case in derivational complexity. In particular the background theory formalized
by the Ai results in exactly the same clauses as in the classical case.

Extended Example (continued)

Following the discussion above we will continue our extended example with the
calculation of the clause normal form (∗∗) of A1∧!A1∧ . . .∧A5∧!A5⇒ T. Since
IR and IR∗ are not empty, we can use slightly simplified quantification rules in
the clause normal form transformations (see [13]).

A1 (xIR = 0)t, (xIR<−IR∗)t

A2 (1
xIR∗

<−IR∗)t

A3 (x2
IR∗ > 0)t

A4 (xIR − yIR<−IR)t

A5 (xIR − yIR = 0)f , (xIR = yIR)t

The price for the formal treatment of three-valued partiality has to be paid
in the complicated clause normal form of the formula T with the label fu.

T1 (c<−IR)t

T2 (d<−IR)t

T3 (e<−IR)t

T4 (f<−IR)t

T5 (g(yIR)<−IR)t

T6 (c = d)f , (e = f)fu

T7 (c = d)f ,

((
1

e−f

)2

> 0
)fu

T8
((

1
c−d

)2

> 0
)f

, (e = f)fu

T9
((

1
c−d

)2

> 0
)f

,

((
1

e−f

)2

> 0
)fu

Eight further clauses resulting from the theorem are not shown here, four are
tautologies, four others not needed for the derivation below.
3 This is also the very idea of the set of support strategy in resolution theorem proving.

380

T6 & A5→R1 (c− d = 0)f , (e = f)fu, (c<−IR)fu, (d<−IR)fu

R1 & A1→R2 (c− d<−IR∗)t, (e = f)fu, (c− d<−IR)fu, (c<−IR)fu, (d<−IR)fu

R2 & A4→R3 (c− d<−IR∗)t, (e = f)fu, (c<−IR)fu, (d<−IR)fu

R3 & T1→R4 (c− d<−IR∗)t, (e = f)fu, (d<−IR)fu

R4 & T2→R5 (c− d<−IR∗)t, (e = f)fu

T8 & A3→R6 (e = f)fu,
((

1
c−d

)
<−IR∗

)fu

R5 & A2→R7 (e = f)fu, (c− d<−IR∗)fu

R7 & R5→R8 (e = f)fu

Analogously, clause T7 can be reduced with T9 to R16.

. . . & . . . →R16
((

1
e−f

)2

> 0
)fu

R16 & A3 →R17
(

1
e−f<−IR∗

)fu

R17 & A2 →R18 (e− f<−IR∗)fu

R18 & A1 →R19 (e− f = 0)t, (e− f<−IR)fu

R19 & A4 →R20 (e− f = 0)t, (e<−IR)fu, (f<−IR)fu

R20 & A5 →R21 (e = f)t, (e<−IR)fu, (f<−IR)fu

R21 & T3 →R22 (e = f)t, (f<−IR)fu

R22 & T4 →R23 (e = f)t

R8 & R23→R24 �

381

Soundness and Completeness

Theorem 311 (Soundness) RPF is sound.

Proof sketch: The soundness of the resolution and factoring rules is established
in the usual way taking into account that the sort constraints make the substitu-
tions “well-sorted” and thus compatible with the semantics: The sort constraints
add two sort literals (t<−S)f , (t<−S)u per component of the substitution, which
only can be refuted if indeed (t<−S)t.

The Strict rule is sound, because functions and predicates in SKL are strict
and thus undefined subterms of a literal make the literal undefined.

Definition 312 Let C := {Lα1
1 , . . . , Lαn

n } be a clause, then the conditional in-
stantiation σ↓ (C) of σ to C is defined by

σ↓ (C) := {σ(Lα1
1), . . . , σ(Lαn

n)} ∪ SC(σ
∣∣
Free(C)

)

The following result from [24] is independent of the number of truth values.

Lemma 313 Conditional instantiation is sound: for any clause C, substitution
σ and Σ-model M we have that M |= σ↓ (C), whenever M |= C.

Definition 314 Let A be a sentence and CNF(A) be the clause normal form
of A, then we define the Herbrand set of clauses CNFH(A) for A as
CNFH(A) := {σ↓ (C)

∣∣ C ∈ CNF(A), σ ground substitution,Dom(σ) = Free(C)}

Definition 315 We will call two literals Lα and Lβ complementary, if α 6= β
and literals Lγ and (t<−D)f ⊥-complementary, if t is a subterm of L and γ ∈ {t, f}.

Definition 316 (Herbrand Model) Let Φ be a set of clauses, then the Her-
brand base H(Φ) of Φ is defined to be the set of all ground atoms contain-
ing only function symbols that appear in the clauses of Φ. If there is no in-
dividual constant in Φ, we add a new constant c. A valuation ν is a function
H(Φ) −→ {f, u, t}, such that for all atoms L,M ∈ H(Φ) the literals Lν(L) and
Mν(M) are not ⊥-complementary. Note that these literals are not complemen-
tary since ν is a function. The Σ-Herbrand model H for Φ and ν is the set
H := {Lα

∣∣ α = ν(L), L ∈ H(Φ)}.
We say that a Σ-Herbrand model H satisfies a clause set Φ iff for all ground

substitutions σ and clauses C ∈ Φ we have σ↓ (C)∩H 6= ∅. A clause set is called
Σ-Herbrand-unsatisfiable iff there is no Σ-Herbrand-model for Φ.

Theorem 317 (Herbrand Theorem) Let A be a formula, then the clause
normal form CNF(A) has a Σ-model iff CNFH(A) has a Σ-Herbrand-model.

Proof: Let M = (A, I) be a Σ-model for Φ := CNF(A). The set

H := {Lα
∣∣ L ∈ H(Φ), α = Iϕ(L)}

is a Σ-Herbrand model for Ψ := CNFH(A) if ϕ is an arbitrary Σ-assignment,
since obviously Iϕ is a valuation. To show that indeed H is a Σ-Herbrand model
for Ψ , we assume the opposite, that is, there is a clause C ∈ Ψ , such that

382

H∩C = ∅. Since C ∈ Ψ there is a substitution σ = [ti/xiSi
] and a clause D ∈ Φ,

such that C = σ↓ (D) = σ(D) ∪ SC(σ).
Without loss of generality we can assume that I(Si)(Iϕ(ti)) = t, since other-

wise Iϕ(ti<−Si) ∈ {f, u}, and therefore (ti<−Si)γ ∈ H for γ ∈ {f, u}, which contra-
dicts the assumption. Thus the mapping ψ := ϕ, [Iϕ(ti)/xi] is a Σ-assignment.

Note that sinceM is a model of Φ, we have thatM |= D and therefore there
is a literal Lα ∈ D, such that α = Iψ(L) = Iϕ(σ(L)), hence σ(L) ∈ H, which
contradicts the assumption.

For the converse direction let H be a Σ-Herbrand model for Ψ . To construct
a Σ-modelM for Φ we first construct an algebra of partial functions (A, I) (and
then pass to the corresponding strict Σ-algebra). Let

A := {t
∣∣ ∃Lα ∈ H where α ∈ {f, t} and t subterm of L}

and let I(S), I(fn) and I(Pn) be partial functions, such that

I(S)(t) = t iff (t<−S)t ∈ H
I(fn)(t1, . . . , tn) := fn(t1, . . . , tn) iff fn(t1, . . . , tn) ∈ A

I(Pn)(t1, . . . , tn) := α iff (Pn(t1, . . . , tn))α ∈ H

Now letM be the strict Σ-algebra corresponding to the partial Σ-algebra (A, I).
We proceed by convincing ourselves that M |= Φ. Let C ∈ Φ and ϕ := [ti/xiSi

]
be an arbitrary Σ-assignment. Since A is a set of ground terms ϕ is also a ground
substitution and moreover (ti<−Si)t ∈ H by construction of I.
H is a Σ-Herbrand model for Ψ and thus ϕ↓ (C)∩H = (ϕ(C)∪SC(ϕ))∩H 6=

∅. Because H cannot contain complementary literals we must already have a
literal ϕ(Lα) ∈ ϕ(C) ∩ H. Now let ν be the valuation associated with H. Since
ϕ(Lα) ∈ H we have α = ν(ϕ(L)) = Iϕ(L), which implies M |=ϕ L

α. We have
taken C and ϕ arbitrary, so we get the assertion.

Corollary 318 A set Φ of ground unit clauses is unsatisfiable iff it contains two
complementary or ⊥-complementary literals.

Theorem 319 (Ground Completeness) Let Φ be an unsatisfiable set of ground
clauses, then there exists a RPF derivation of the empty clause from Φ.

Proof: The proof is analogous to the standard k-parameter proof of Anderson
and Bledsoe [1]. We show be induction on k :=

∑
C∈Φ(card(C) − 1) that there

exists a refutation for Φ.
If k = 0 then Φ is a set of ground unit clauses. Therefore by Corollary 318

and the assumed unsatisfiability there has to be a pair of complementary or ⊥-
complementary literals in Φ. Thus a single application of the rule Res or Strict
yields the empty clause.

If k > 0, then there is a non-unit clause C =: C1 ∪ C2 ∈ Φ. If Φ = Φ′ ∪ {C}
then the k parameters for Φ1 := Φ′∪{C1} and Φ2 := Φ′∪{C2} are smaller than k
and therefore by inductive hypothesis there are refutations for Φ1 and Φ2 which
can be combined to a refutation for Φ, since Φ is ground.

Theorem 320 (Completeness) RPF is complete.

383

Proof sketch: For the proof of this assertion we combine the completeness
result from the ground case with a lifting argument. It turns out that the lifting
property can be established by methods from [24], since they are independent
of the number of truth values.

4 Conclusion

We have developed an order sorted three-valued logic for the formalization of
informal mathematical reasoning with partial functions. This system formalizes
and generalizes the system proposed by Kleene in [14] for the treatment of partial
functions over natural numbers to general first-order logic. In fact we believe
that the unsorted version of our system without the ! operator is a faithful
formalization of Kleene’s ideas. Furthermore we have presented a sound and
complete resolution calculus with dynamic sorts for our system, which uses the
sort mechanism to capture the fact that in Kleene’s logic quantification only
ranges over defined individuals.

Our calculus can be seen as an extension of classical logic that combines
methods from many-valued logics (cf. [2, 12]) for a correct treatment of the un-
defined and order-sorted logics (see [24, 25]) for an adequate treatment of the
defined. It differs from the sequent calculus in [16] in that the use of dynamic sort
techniques greatly simplifies the calculus. In particular in the version with sorted
unification as described in [13] most definedness preconditions can be taken care
of in the unification. Thus we believe that our system is not only more faithful
to Kleene’s ideas (definedness inference is handled in the unification at a level
below the calculus) but also more efficient for the sort techniques involved.

Of course further extensions of the system described here have to be consid-
ered in order to be feasible for practical mathematics. In particular this calculus
does not address the question of the efficient mechanization of equality, here
paramodulation (cf. [17]) or even superposition ([4]) methods would be inter-
esting to study. However, we believe that this endeavor will mainly involve the
development of the sort aspects for these calculi, because we think that the
aspects of three-valuedness will not be critical.

On the other hand, the mechanization of higher-order features is essential
for the formalization of mathematical practice. Higher-order logics are especially
suitable for formalizing partial functions, since functions are first class objects of
the systems, that can even be quantified over. In this direction the work of Farmer
et al. [8, 9] has shown that partial functions are a very natural and powerful tool
for formalizing mathematics. We expect that our three-valued approach, which
remedies some problems of their simpler two-valued approach (see the discussion
in the introduction and in example 39) can be generalized in much the same
manner and will be a useful tool for formalizing mathematics.

Acknowledgments: We would like to thank Christian Fermüller and Or-
twin Scheja for stimulating discussions and the anonymous referees for useful
comments.

384

References
1. R. Anderson and W.W. Bledsoe. A linear format for resolution with merging and

a new technique for establishing completeness. Journal of the ACM, 17:525–534,
1970.

2. Matthias Baaz and Christian G. Fermüller. Resolution for many-valued logics.
In A. Voronkov, editor, Proceedings of International Conference on Logic Pro-
gramming and Automated Reasoning, pages 107–118, St. Petersburg, Russia, 1992.
Springer Verlag. LNAI 624.

3. Matthias Baaz, Christian G. Fermüller, and Richard Zach. Dual systems of se-
quents and tableaux for many-valued logics. Technical Report TUW-E185.2BFZ.2-
92, Technische Universität Wien, 1993. Short version in Proceedings of the 23rd
International Symposium on Multiple Valued Logic, Sacramento, California, USA,
1993. IEEE Press.

4. Leo Bachmair and Harald Ganzinger. Non-clausal resolution and superposition
with selection and redundancy criteria. In A. Voronkov, editor, Proceedings of
International Conference on Logic Programming and Automated Reasoning, pages
273–284, St. Petersburg, Russia, 1992. Springer Verlag. LNAI 624.

5. Michael J. Beeson. Foundations of Constructive Mathematics. Springer Verlag,
1985.

6. Walter A. Carnielli. On sequents and tableaux for many-valued logics. Journal of
Non-Classical Logic, 8(1):59–76, 1991.

7. Anthony G. Cohn. A more expressive formulation of many sorted logics. Journal
of Automated Reasoning, 3:113–200, 1987.

8. William M. Farmer. A partial functions version of Church’s simple theory of types.
Technical Report M88-52, The MITRE Corporation, Bedford, Massachusetts,
USA, February 1990.

9. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An Interac-
tive Mathematical Proof System. Journal of Automated Reasoning, 11(2):213–248,
October 1993.

10. Bas C. van Fraassen. Singular terms, truth-value gaps, and free logic. The Journal
of Philosophy, LXIII(17):481–495, 1966.

11. Alan M. Frisch. The substitutional framework for sorted deduction: Fundamental
results on hybrid reasoning. Artificial Intelligence, 49:161–198, 1991.

12. Reiner Hähnle. Automated Deduction in Multiple-Valued Logics, Oxford Univer-
sity Press, 1994.

13. Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic
for partial functions. SEKI-Report SR-93-20 (SFB), Universität des Saarlandes,
Saarbrücken, Germany, 1993.

14. Stephen Cole Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
15. H. Leblanc and R. Thomason. Completeness theorems for some presupposition-free

logics. Fundamenta Mathematicae, 62:125–164, 1968.
16. Francisca Lucio-Carrrasco and Antonio Gavilanes-Franco. A first order logic for

partial functions. In Proceedings STACS’89, pages 47–58. Springer Verlag, 1989.
LNCS 349.

17. Arthur Robinson and Larry Wos. Paramodulation and TP in first order theories
with equality. Machine Intelligence, 4:135–150, 1969.

18. Manfred Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic with
Term Declarations. Springer Verlag, 1989. LNAI 395.

19. R. Schock. Logics without Existence Assumptions. Almquist & Wisell, 1968.
20. Dana S. Scott. Outline of a mathematical theory of computation. Technical Mono-

graph PRG-2, Oxford University Computing Laboratory, November 1970.

385

21. Pawel Tichy. Foundations of partial type theory. Reports on Mathematical Logic,
14:59–72, 1982.

22. Bertrand Russell. On denoting. Mind (New Series), 14:479–493, 1905.

23. Christoph Walther. A Many-Sorted Calculus Based on Resolution and Paramod-
ulation. Research Notes in Artificial Intelligence. Pitman and Morgan Kaufmann,
1987.

24. Christoph Weidenbach. A resolution calculus with dynamic sort structures and par-
tial functions. SEKI-Report SR-89-23, Fachbereich Informatik, Universität Kaiser-
slautern, Kaiserslautern, Germany, 1989. Short version in ECAI’90, p.668–693.

25. Christoph Weidenbach. A sorted logic using dynamic sorts. Technical Report
MPI-I-91-218, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1991.
Short version in IJCAI’93, p.60–65.

386

Errata
On page 379 in Definition 38

wrong: {{Af}, {Au}}
right: {{Af , Au}}

On page 379 in Example 39
wrong: {{(1 = 1

0 ⇒ 1 = 0 ∗ 1)f}, {(1 = 1
0 ⇒ 1 = 0 ∗ 1)u}}

right: {{(1 = 1
0 ⇒ 1 = 0 ∗ 1)f , (1 = 1

0 ⇒ 1 = 0 ∗ 1)u}}

