
A Colored Version of the λ-Calculus

Dieter Hutter1⋆ and Michael Kohlhase2⋆⋆

1 German Research Center for Artificial Intelligence, Stuhlsatzenhausweg 3,
D-66123 Saarbrücken, Germany, hutter@dfki.uni-sb.de

2 University of Saarland, Fachbereich Informatik, D-66041 Saarbrücken, Germany,
kohlhase@cs.uni-sb.de

Abstract. Rippling is a technique developed for inductive theorem prov-
ing which uses syntactic differences of terms to guide the proof search.
Annotations (like colors) to terms are used to maintain this information.
This technique has several advantages, e.g. it is highly goal oriented and
involves little search. In this paper we give a general formalisation of
coloring terms in a higher-order setting. We introduce a simply-typed
lambda calculus with color annotations and present algorithms for uni-
fication, pre-unification and pattern unification. Our work is a formal
basis to the implementation of rippling in a higher-order setting which
is required e.g. in case of middle-out reasoning.
Another application is in the construction of natural language semantics,
where the color annotations rule out linguistically invalid readings that
are possible using standard higher-order unification.

1 Introduction

In the field of inductive theorem proving syntactical differences between the
induction hypothesis and induction conclusion are used to guide the proof search
(cf. [Bun88,BSvH+93], or [Hut90]). This method to guide induction proofs is
called rippling / coloring terms. Annotations or colors to each occurrence of a
symbol are used to mark the syntactical differences between induction hypothesis
and induction conclusion. Specific colors denote the skeleton, the common parts
of both formulas, while the other parts belong to the wave-fronts. Analogously,
syntactical differences between both sides of equations or implications given in
the database are colored. These formulas are classified depending on the locations
of the wave-fronts inside the skeleton (e.g. wave-fronts on both sides, wave-fronts
only on the right-hand side, or wave-fronts only on the left-hand side). Using
these annotated (or colored) equations we are able to move, insert, or delete
wave-fronts within the conclusion. This rippling of wave-fronts allows to reduce
the differences between conclusion and hypothesis in a goal directed way.

This paper extends the coloring method to higher-order logic and presents
unification, pre-unification, and pattern unification algorithms. Thus our work
provides a formal basis to the implementation of rippling in a higher-order setting
which is required e.g. in case of middle-out reasoning [Hes91] or generalization of

⋆ This work was supported by the German BMBF in project PADS
⋆⋆ This work was supported by the DFG in project HOTEL

theorems using proof critics [IB96]. In the latter the unknown generalized version
of a formula is described by a pattern containing parts of the original formula
and higher-order variables denoting the unknown syntactical extensions of it.
Simulating the induction proof the higher-order variables will be instantiated
step by step by the unification with appropriate wave-rules resulting in a possible
(hopefully provable) generalization of the original formula.

But the set of possible applications of our method is not limited to auto-
mated deduction. From an abstract point of view, the coloring technique allows
adding annotations to symbol occurrences in λ-terms. Thus in contrast to other
semantic annotation techniques like sorts, it is possible to encode syntactic infor-
mation and use that to guide inferencing processes. In [GK96,Gar] applications
of our technique in computational linguistics and natural language semantics
are described, where the use of higher-order unification is used to construct the
values of elliptical references in the context of Montegovian semantics.

An extended version of this paper containing all formal definitions and proofs
is published as SEKI-report [HK95].

2 Colored λ-Terms

Since the formal development of the theory involves quite a lot of technical
machinery which we cannot present fully here, concentrate on the intuitions and
motivations and refer the reader to the supporting documentation for details
and proofs.

The colored λ-calculus is a variant of the simply typed λ-calculus [Chu40],
where symbol occurrences can be annotated with so-called colors (color con-
stants C = {a, b, . . .} and color variables X = {A, B, . . .}; whenever colors
are irrelevant, we simply omit them; colors are indicated by subscripts labeling
symbol occurrences).

The set wffα of well-formed formulae of type3 α consists of

– (colored) constants cα
b , fα

a , fα
A , . . .,

– (colored or uncolored) variables Xα
b , Gα

a , Fα . . . (of which we assume an in-
finite supply for each type and color) of type α,

– (function) applications of the form Mβ→αNβ and
– λ-abstractions of the form λXβ .Mγ , if α = (β → γ). Note that variables

occur only without annotated colors in wffα iff they are bound variables,
thus only variables without colors can be abstracted over.

We call a formula M c-monochrome, if all symbols (except bound variables)
in M are annotated by a single color c.

Clearly the colored λ-calculus is a generalization of the simply typed λ-
calculus, since we can always restrict the supply of colors to a single color con-
stant. Therefore we will use various elementary concepts of the λ-calculus, such
as free and bound occurrences of variables or substitutions without defining

3 Since for the purposes of this informal introduction types only play a theoretical
role (they for instance make βη-reduction terminating and therefore βη-equality
decidable), they are often omitted from the examples.

them explicitly here. We will denote the substitution of a term N for all free
occurrences of X in M with [N/X]M.

It is crucial for our system that colors annotate symbol occurrences (i.e.
colors are not sorts!), in particular, it is intended that different occurrences
of symbols carry different colors (e.g. f(Xa, Xb)) and that symbols that carry
different colors are treated differently. This observation leads to the notion of
colored substitutions, a notion of substitution that takes the color information
of formulae into account. In contrast to traditional (uncolored) substitutions, a
colored substitution σ is a pair 〈σt, σc〉, where the term substitution σt maps
colored variables (i.e. the pair Xc of a variable X and the color c) to formulae
of appropriate types and the color substitution σc maps color variables to
colors. In order to be a legal C-substitution such a mapping σ must obey the
following constraints:

– If A and B are different colors, then |σ(XA)| = |σ(XB)|, where |M| is the
color erasure of M, i.e. the formula obtained from M by erasing all color
annotations in M.

– If c ∈ C is a color constant, then σ(Xc) is c-monochrome.

The first condition ensures that the color erasure of a C-substitution is a classical
substitution of the simply typed λ-calculus. The second condition formalizes the
fact that free variables with constant colors stand for monochrome subformulae,
whereas variable colors do not constrain the substitutions.

Note that since the bound variables do not carry color information, βη-
reduction in the colored λ-calculus is just the classical notion. Thus we can
lift all the known theoretical results to the colored calculus

Higher-order unification computes substitutions σ such that σ(M) =βη σ(N)
for a given equation M = N. In the colored λ-calculus the space of (semantic)
solutions is further constrained by requiring the solutions to be C-substitutions.
Such a substitution is called a C-unifier of M and N. Even with the color restric-
tion, the set of C-unifiers of a given equation is enormous. Furthermore, most
of these solutions introduce un-necessary instantiations; thus one is not inter-
ested in the set of all C-unifiers, but rather in a subset that generates this set
by instantiation. A substitution σ is called more general than τ , iff there is
a substitution ρ, such that τ =βη ρ ◦ σ, i.e. τ can be reconstructed from σ by
instantiation with ρ.

3 Applications of a Colored Lambda Calculus

In this section we will present different kinds of application of higher-order col-
ored unification. These consist in rippling in a higher-order setting which is
required e.g. in case of middle-out reasoning [Hes91,IB96] and also in a logical
basis for an interface for linguistic extra-semantical information in the construc-
tion of natural-language semantics. Since this paper is mainly concerned with
automated deduction, we will only concentrate on the rippling aspects and refer
the interested reader to [GK96,Gar].

3.1 Inductive Proofs

Rippling was developed for proving theorems by induction and has been applied
to a large number of practical examples from this domain [Bun88,BSvH+93,Hut90].
It is based on an observation that one can iteratively unfold recursive functions
in the induction conclusion, preserving the structure of the induction hypoth-
esis while unfolding. We use colors in order to indicate the structure of the
hypothesis within the conclusion. Symbols belonging to this joined structure are
annotated with the color “white” while differences between both formulas are
colored “grey”. Also left- and right-hand sides of given equations are difference
unified: the common structure of both terms of a given equation is annotated
by color variables while differences are colored grey. The grey parts are called
wave-fronts while the non-grey parts denote the skeleton. Rippling restricts the
search space in a way that only deduction steps are allowed which preserve the
skeleton, i.e. do not change the non-grey parts of the formula.

For sake of simplicity we use a shading for symbols which are annotated by
the color grey while non-shaded areas are annotated either by white or color vari-
ables. But in case the distinction between color variables and white is necessary
we shall annotate the colors explicitly.

Rippling then applies just the annotated equations which move the difference
out of the way leaving behind the skeleton. In their simplest form, these equa-
tions to be used are of the form α(β(γ)) = ρ(α(γ)). By design, the skeleton
α(γ) remains unaltered by their application. If rippling succeeds then the induc-
tion conclusion P (s(n)) is rewritten using wave-rules into some function of the

induction hypothesis, P (n); that is, into f(P (n)) (f may be the identity). At
this point we can call upon the induction hypothesis to simplify the result.

To illustrate rippling and motivate our work on colored higher order unifica-
tion let us consider the following simple theorem that can be proven by inductive
theorem provers using rippling/colouring techniques.

n∑

i=1

f(i) +

n∑

i=1

g(i) =

n∑

i=1

[f + g](i)

where f, g are functions from natural numbers to naturals and we have over-
loaded the function + also to act on such functions. This example illustrates the
properties of rippling and introduces also some higher-order colored unification
problems.

We formalise summation by a binary function sum that takes a function
(that is summed over) and a upper bound as arguments. Furthermore, we will
the following definition of sum (let f, g, H be of type nat → nat and N, n be of
type nat)4:

∀H : sum(H, 0) = 0 (1)

∀H, N : sum(H, s(N)) = sum(H, N) + H(s(N)) (2)

Then our theorem takes the form

∀f, g, n : sum(f, n) + sum(g, n) = sum(λx f(x) + g(x), n)

4 We employ the Prolog convention of using capital letters to indicate metavariables.

In order to prove this, simple heuristics employed by most inductive provers
suggest induction on n which results in the following step case5:

sum(f, n) + sum(g, n) = sum(λx f(x) + g(x), n)
→ sum(f, s(n)) + sum(g, s(n)) = sum(λx f(x) + g(x), s(n))

To simplify the step case using rippling, the differences between the induction
conclusion and the induction hypothesis are shaded as follows:

sum(f, n) + sum(g, n) = sum(λx f(x) + g(x), n)
→ sum(f, s(n)) + sum(g, s(n)) = sum(λx f(x) + g(x), s(n))

(3)

If we can move the shaded areas, so-called wave-fronts, out of the way, then we
will be able to simplify the induction conclusion by appealing to the induction
hypothesis.

Rippling moves wave-fronts using annotated equations based on axioms, re-
cursive definitions and previously proven lemmas that preserve the skeleton of
the term being rewritten. Corresponding to the recursive definitions for sum we
have the following annotated equation of (2)

sum(H, s(N)) = sum(H, N) + H(s(N)) (4)

When rippling, the annotations on the left-hand side of the wave-rule must match
those in the term being rewritten. As a consequence, there is very little search
during rewriting. In order to simplify the conclusion of (3) by rippling we apply
(4) on both sides yielding the modified conclusion:

(sum(f, n) + f(s(n))) + (sum(g, n) + g(s(n)))

= sum(λx f(x) + g(x), n) + (f(s(n)) + g(s(n)))

Applying associativity and commutativity law of + results in

((sum(f, n) + sum(g, n)) + f(s(n)) + g(s(n)))

= (sum(λx f(x) + g(x), n) + (f(s(n)) + g(s(n))))

which allows weak fertilization6 on either side which completes the proof.

3.2 Lemma Speculation

The rippling process — as illustrated in the example above — relies on the
existence of appropriate annotated equations in order to ripple out (or ripple
inside) the occurring wave-fronts. In cases appropriate equations are missing,
Ireland & Bundy [IB96] presented a technique to speculate lemmata which push
the rippling process further and which are treated as subtasks to be proven
separately. Their approach is based on some kind of higher order rippling.

In order to illustrate this application of our calculus, consider the following
example involving list manipulations

∀x, y : list rev(app(rev(x), y)) = app(rev(y), x)

Here rev and app stand for the operations of reversing and concatenating lists.
Using induction on x we obtain the following formula as an induction conclusion:

rev(app(rev(cons(h, x)), y)) = app(rev(y), cons(h, x))

5 The proof of the base case is directly obtained by applying (1) and is omitted here.
6 This standard technique from inductive theorem proving allows to use the inductive

hypothesis to rewrite the inductive conclusion

The rippling process gets blocked7 after unfolding the definition of rev on the
left-hand side:

rev(app(app(rev(x), cons(h, nil)), y)) = app(rev(y), cons(h, x))

In order to push the rippling process further, Ireland & Bundy speculate ap-
propriate lemmata which are then considered as subtasks of the proof. In this
example they calculate a schematic form of an appropriate annotated equation

app(X, cons(Y, Z)) = app(F1(X, Y, Z), Z) (5)

which can be used to move the blocked wave-front on the right-hand side towards
the sink y. While the left-hand side of the speculated lemma is just a general-
ization of the subterm to be modified, the higher-order variable F1 represents
the unknown wave-front on the right-hand side which has still to be constrained
by the further rippling process. Applying this equation on the right-hand side
yields:

rev(app(app(rev(x), cons(h, nil)), y)) = app(F1(rev(y), h, x), x) (6)

In order to enable the use of the induction hypothesis in this example the wave-
front has to be moved in front of the universally quantified variable y which
operates as a so-called sink. Thus, we use the annotated equation

app(rev(Y), cons(X,nil)) = rev(cons(X, Y)) (7)

in order to ripple the wave-front on the right-hand side towards y. In order for (7)
to be applicable to (6), we unify8 F1(rev(y), h, x) and app(rev(Y), cons(X,nil)).
Higher-order colored unification (see example at the end of section 5 for a trace of
the computation) results in a solution [λU, V, W app(U , cons(V, nil))/F1 , y/Y]
Applying the instance of (7) to the right-hand side of (6) the wave-front is moved
towards the sink y:

rev(app(app(rev(x), cons(h, nil)), y)) = app(rev(cons(h, y)), x) (8)

The unifier used to perform this step now also refines the scheme of the specu-
lated annotated equation (5) we used previously to unblock the rippling process,
to

app(X, cons(Y, Z)) = app(app(X, cons(Y,nil)), Z) (9)

Using this speculated equation (9) also on the left-hand side finally yields:

rev(app(rev(x), cons(h, y))) = app(rev(cons(h, y)), x)

which enables the use of the induction hypothesis and completes this particular
proof. Proving also the speculated lemma (9) by induction finishes the overall
proof.

7 There are no applicable annotated equations in the data base.
8 To ease readability we have slightly simplified the method of [IB96]. In practice the

overall method is a bit more elaborate: In order to allow the speculation of more
complex wave-fronts the occurrence of the meta-variable F1(rev(y), h, x) is replaced

by a nested term F2(F1(rev(y), h, x), h, x). Thus, in general F2 allows one to create
additional wave-fronts in the later rippling process but in this example it is of no
use and will only be instantiated to the projection λX, Y, Z.X.

4 Skeleton

So far we used the informal definition of a skeleton in section 3.1 as being the
non-grey parts of a colored term. In this section we will give a precise definition
of a skeleton, which turns out to be much more involved that in the first-order
case (compare also [SG96] and section 7). For this, we split up the set of color
constants C into a subset D of color constants which contribute to the skeleton,
like for instance “white”, and other colors C \ D, like “grey”, which indicate
wave-fronts.

In order to compute the skeleton ΩD(t) of a colored term t we like to extract
all parts of t which are either annotated by some color constant of D or by a
color variable and “glue” them together. Besides the information which symbols
annotated with specific colors occur within t, the skeleton keeps also track of the
subterm-relation between these different symbols. Thus the skeleton of a colored
term describes which symbols of specific colors occur within a colored term and
how these occurrences are related to each other wrt. the subterm-relation.

In section 3.1 we used the skeleton to restrict the number of possible de-
ductions. Only deduction steps which preserve the skeleton are admissible. In
order to ensure this property in advance we would like to trace back the prop-
erty of an deduction step being skeleton-invariant to some property of the used
equation. Thus, we require that a skeleton has to be stable with respect to
subterm-replacement: if ΩD(A|π) = ΩD(B) then ΩD([B/π]A) = ΩD(A). I.e.
once both sides of an equation A|π = B share the same skeleton, applying this
equation to an annotated term does not change its skeleton. In order to obtain
stability wrt. subterm-replacement we define the skeleton ΩD of an annotated
term t along the term-constructors of the λ-calculus:

ΩD(AB) = {(A′B′)|A′ ∈ ΩD(A) and B′ ∈ ΩD(B)}

In contrast to the first-order case, the simple-typed λ-calculus imposes an im-
plicit equality relation of terms by α, β, and η-reduction. Since the skeleton
guides the proof search we demand that the skeletons of terms being equal wrt.
α, β, η-reduction are also equal wrt. α, β, η-reduction. Otherwise, the proof search
would depend on the representation of a term. Thus - and also to obtain stability
wrt. subterm-replacement - we define

ΩD(λX.A) = {λX.A′|A′ ∈ ΩD(A)}.

We are left with the case t is an atomic expression of the form hd. In case d is a
skeleton color or a color variable then hd belongs to the skeleton and ΩD(hd) =
{hd}. In case d is a wave-front color then hd does not belong to the skeleton.
Thus, for h being of a base type we define ΩD(hd) = ∅. In case h is a function or
function variable, i.e. hd ∈ wffαn→β , we have to ensure ΩD(hdt1...tn) = ΩD(t1)∪
... ∪ ΩD(tn), i.e. the skeleton of the application of hd is equal to the union of
the skeletons of its arguments. Thus we define the skeleton of hd to be all the
possible projections to its arguments. Since we want to conserve well-typedness
during the process of skelettification, we need for any pair αi, β of types the
existence of syntactical type-conversion functions fαiβ

ω of type αi → β. Then,
we define ΩD(hd) = {λXn fα1→β

ω X1, . . . , λXn fαn→β
ω Xn}. In case t is a bound

variable Z, t has no attached color information and we define ΩD(Z) = {Z}.

In order to obtain typed terms as members of the skeleton we had to invent
type-conversion functions. In some terms, occurrences of such constants are re-
dundant, so we use the following ω-reduction rules to remove redundancies in
the members of a skeleton

(fβ→γ
ω (fα→β

ω Xα)) −→ω (fα→γ
ω Xα), (fα→α

ω Xα) −→ω Xα, λx x −→ω fα→α
ω

As shown in [HK95] these ω-reduction rules commute with βη-equality and there
exists a βηω-normal-form which can be used to compare the skeletons of differ-
ent terms. Just as in the first-order case, the skeleton is stable with respect to
subterm replacement.

for all A,B ∈ wffα(Σ; ΓZ) ΩD(A) = ΩD(B|π) implies ΩD(B) = ΩD([A/π]B)

and also, the skeleton is invariant wrt. βη-reductions

for all A ∈ wffα(Σ; ΓZ) : A −→β,η B implies ΩD(A) →α ΩD(B)

But the skeleton does not have all nice properties it has in the first-order logic: In
particular, it is not stable with respect to C-substitutions, i.e. if ΩD(A) = ΩD(B)
then ΩD(σ(A)) = ΩD(σ(B)) does not hold for all A,B and substitutions σ.

Note that this is not a problem of our particular definition: In the lambda
calculus any meaningful definition of a skeleton will violate this restriction. Con-
sider, for example, the terms Fdac and fdac. Let c ∈ D while d 6∈ D such that
both terms coincide in their skeletons ac. Instantiating Fd by λX bd will (after
β-reduction) result in terms bd and fdac which do obviously not coincide in their
skeleton. The reason is that the instantiation enables the use of the β-rule which
then, deletes parts of the skeleton. Two possibilities to get rid of this problem
immediately suggest themselves: adding function variables (regardless of their
annotations) always to the skeleton or restricting admissible substitutions in or-
der to avoid these substitutions. However both will be too restrictive for practical
reasons. Thus, the skeleton is in general not substitution-stable if some variable
of a non-base type is affected by the substitution. This is no major drawback
in using a C-calculus for deduction. For instance in case of instantiating a C-
equation we have only to test whether the skeletons of both instantiated sides
of the equation still coincides.

5 Calculating Colored Unifiers

It is well-known, that in first-order logic there is always a most general unifier for
any equation that is solvable at all. This is not the case for higher-order (colored)
unification, where variables can range over functions, instead of only individuals.
In fact there can even be solvable equations that have infinite chains of unifiers
that become more and more general. In other words most general unifiers need
not exist in general.

Just as in the case of unification for first-order terms, the higher-order unifi-
cation algorithm is a process of recursive decomposition and variable elimination
that transform sets of equations into solved forms. Since C-substitutions have two
parts, a term– and a color part, we need two kinds of equations (M =t N for
term equations and c =c d for color equations). Sets E of equations in solved
form (i.e. where all equations are of the form X = M such that the variable X

does not occur anywhere else in Mc or E) have a unique most general C-unifier
σE that also C-unifies the initial equation.

There are several rules that decompose the syntactic structure of formulae,
we will only present two of them. The rule for abstractions transforms equations
of the form λX.A =t λY.B to [Z/X]A =t [Z/Y]B, where Z is a new constant,
while the rule for applications decomposes ha(s

1, . . . , sn) =t hb(t
1, . . . , tn) to the

set {a =c b, s1 =t t1, . . . , sn =t tn}, provided that h is a constant. Furthermore
equations are kept in βη-normal form. Note that this decomposition process also
eliminates trivial equations, where both sides are βη-equal.

The variable elimination process for color variables is very simple, it allows
to transform a set E ∪ {A =c d} of equations to [d/A]E ∪ {A =c d}, making the
equation {A =c d} solved in the result. In case of formula equations, elimination
is not that simple, since we have to ensure that |σ(XA)| = |σ(XB)| to obtain
a C-substitution σ. Thus we cannot simply transform a set E ∪ {Xd =t M}
into [M/Xd]E ∪ {Xd =t M}, since this would (incorrectly) solve the equa-
tions {Xc = fc, Xd = gd}. The correct variable elimination rule transforms
E ∪ {Xd =t M} into σ(E) ∪ {Xd =t M, Xc1 = M1, . . . , Xcn

=t Mn}, where ci

are all colors of the variable X occurring in M and E , the Mi are appropriately
colored variants (same color erasure) of M, and σ is the C-substitution that
eliminates all occurrences of X from E .

It would be convenient, if the transformations described so far, were sufficient
for transforming all unifiable sets of equations into solved form and thus finding
all unifiers. But, due to the presence of function variables, systematic application
can terminate with equations of the form Xc(s

1, . . . , sn) =t hd(t
1, . . . , tm). Such

equations can neither be further decomposed by the rules above, since this would
loose unifiers, nor can the right hand side be substituted for X as in a variable
elimination rule, since the types would clash. Let us consider the uncolored
equation X(a) =t a which has the solutions (λZ.a) and (λZ.Z) for X .

The standard solution for finding a complete set of solutions in this so-called
flex/rigid situation is to substitute a term for X that will enable decomposi-
tion to be applicable afterwards. It turns out that for finding all C-unifiers it
is sufficient to bind X to terms of the same type as X (otherwise the unifier
would be ill-typed) and compatible color (otherwise the unifier would not be a
C-substitution) that either have the same head as the right hand side; the so-
called imitation solution (λZ.a in our example) or where the head is a bound
variable that enables the head of one of the arguments of X to become head;
the so-called projection binding (λZ.Z).

In order to get a better understanding of the situation let us reconsider
our example using colors. X(ac) = ad. For the imitation solution (λZ.ad) we
“imitate” the right hand side, so the color on a must be d. For the projection
solution we instantiate (λZ.Z) for X and obtain (λZ.Z)ac, which β-reduces to
ac. We see that this “lifts” the constant ac from the argument position to the
top. Incidentally, the projection is only a C-unifier of our colored example, if c
and d are identical.

Fortunately, the choice of instantiations can be further restricted to the most
general terms in the categories above. If Xc has type βn → α and hd has type

γm → α, then these so-called general bindings have the following form:

Gh
d = λZα1 . . . Zαn .hd(H

1
e1

Z) . . . (Hm
em

Z)

where the Hi are new variables of type βn → γi and the ei are either distinct
color variables (if c ∈ X) or ei = d = c (if c ∈ C). If h is one of the bound vari-
ables Zαi , then the annotation d at h is omitted and Gh

d is called a projection
binding, and else, (h is a constant or a free variable), Gh

d is called an imitation
binding. Note that while imitation bindings are unique up to the names of the
new free variables Hi, there can be up to n projection bindings, depending on
the types involved.

The general rule for flex/rigid equations transforms equations of the form

E ∧ Xc(s
1, . . . , sn) =t hd(t

1, . . . , tm)

into E ∧ Xc(s
1, . . . , sn) =t hd(t

1, . . . , tm) ∧ Xc = Gh
c

which in essence only fixes a particular binding for the head variable Xc. It turns
out that these general bindings suffice to solve all flex/rigid situations, possibly
at the cost of creating new flex/rigid situations after elimination of the variable
Xc and decomposition of the changed equations (the elimination of X changes
Xc(s

1, . . . , sn) to Gh
c (s1, . . . , sn) which has head h).

Finally the only remaining case, where the heads of both sides of the equation
are free variables the so-called flex/flex case. The solution of this case is either
to project as in the flex/rigid case or to “guess” (computationally: to search
for) the right head for the equation and bind the head variable to the appropri-
ate imitation binding. Clearly this need for guessing the right head leads to a
serious explosion of the search space, which makes higher-order colored unifica-
tion computationally infeasible. Fortunately, most applications do not need full
higher-order unification, we will discuss two restrictions in section 6.

First, however, we will fortify our intuition on calculating higher-order colored
unifiers by reconsider the Lemma speculation example. There the key step was
to solve the equation

Fg(revw(uw), hg, vg) =t appg(revB(YA), (consg(Xg, nilg)))

Since F is a function variable, we are in a flex/rigid situation, and have the
possibilities of projection and imitation. There are three possible projections,
λU, V, W U , λU, V, W V , λU, V, W W , which all lead to immediate failure, since
they project up the rigid subterms revw(uw), hg or vg, which would clash with
the head appg of the right hand side. So we only have the imitation binding
λU, V, W appg(HUV W)(KUV W)) for Fg. If we bind Fg to that and decompose
(we can directly eliminate Fg since there are no variants of it around), then we
are left with the equations

Hg(revw(uw), hg, vg) =t revB(YA) ∧ Kg(revw(uw), hg, vg) =t consg(Xg, nilg)

Here, we choose9 the imitation λUV W consg(MgUV W)(NgUV W) for Kg and
the 1-projection binding (λUV W U) for Hg and arrive at

revw(uw) =t revB(YA) ∧

consg(Mg(revw(uw), hg, vg), Ng(revw(uw), hg, vg)) =t consg(Xg, nilg)

finally we can decompose again

A =c w ∧ uw =t YA ∧ Xg =t Mg(revw(uw), hg, vg) ∧ Ng(revw(uw), hg, vg) =t nilg

the first two equations can directly be solved by eliminating A for w and YA (which
is actually Yw after the previous elimination) for uw. The third equation cannot
be solved this way, since Mg(revwuw)hgvg) is not g-monochrome, so we choose
the 2-projection binding10 λU, V, W V for XC and solve the fourth equation with
the imitation binding λUV W nilg and for Ng. Eliminating these bindings allows
us to simplify the equations to the trivial set hg =t hg and nilg =t nilg.

Thus one final solution of the unification problem is

[λUV W appg(U, consg(V,nilg))/Fg], [uw/YA], [hg/Xg]

We have indicated the choice points for the other solutions in the footnotes.

6 Tractable Fragments

Most applications do not need full higher-order unification, as we have discussed
it above. First, for theorem proving purposes it is only important to know about
the existence of any unifier. In the case of classical higher-order unification it
is therefore sufficient to consider flex/flex pairs as solved, since they are guar-
anteed to have unifiers. Second, there are applications of rippling in program
synthesis [Hes91,Kra94] which rely on higher-order patterns [Mil92]. This syn-
tactic fragment has a unitary unification problem which is decidable in linear
time for the uncolored case. Third, in the linguistic applications [GK96,Gar]
formulae belong to very restricted syntactic subclasses, for which much better
results are known (for classical higher-order unification). In particular, the fact
that free variables only occur on the left hand side of our equations reduces the
problem of finding solutions to higher-order matching, of which decidability has
been proven for the subclass of third-order formulae [Dow92]. This class, (intu-
itively allowing only nesting functions as arguments up to depth three) covers
all examples studied so far. In this section we will discuss two of the fragments:
pre-unification and higher-order patterns.

6.1 Pre-C-Unification

For the pre-unification problem flex-flex pairs are considered already solved,
since they can always be trivially solved by binding the head variables to special
constant functions that identify the formulae by absorbing their arguments. In

9 The 2-projection binding is impossible for type reasons and the 3-projection bind-
ing leads to immediate subsequent clash. The imitation binding leads to a solution
λUV W appg(revg(LgUV W))(consgY nil) for Fg that is not wanted in our motivating
example, so we will not pursue it here.

10 The 3-projection (λUV W W) or the imitation binding (λUV W Qg) for some new
variable Q would also have worked.

case of the colored lambda-calculus a flex-flex pair may have no solution if the
top-level variables of both terms are annotated by different colors. For instance
Fdad =t Gcac has no unifier. On the other hand Fdac =t Gcac has a unifier
[λX X/Fd], [λX X/Gc]. The reason for this is the fact that projections, i.e. terms

of the form λXk X i, carry no color information but are valid instances of colored
variables like Fd or Gc. Hence, in order to solve such flex-flex pairs we have to
map one of the top-level variables to a projection formula. The relevant notion,
when this has to happen is that of a flexible chain, i.e. a set E ′ = A1 =t

B1 ∧ . . .∧An =t Bn of flex/flex pairs, such that head(Ai) = head(Bi−1) ∈ VX

for 2 ≤ i ≤ n. We call head(A1) = Fc and head(Bn) = Gd the left and right
ends of E ′. Such a chain is called reducible, if c, d ∈ C and c 6= d then we call
E ′ a reducible chain, otherwise safe.

It turns out that safe chains always have solutions, whereas a reducible chain
in a system E indicates a clash of different color annotations to the top-level vari-
ables. Thus the notion of solved form for colored pre-unification allows flex/flex
pairs, as long as there are no reducible chains.

This definition is tailored to guarantee that pre-C-unifiers can always be ex-
tended to C-unifiers by finding trivial unifiers for the flexible pairs and that equa-
tional problems in pre-C-solved form always have most general unifiers. Therefore
an equational system E is pre-C-unifiable, iff it is C-unifiable. The trivial unifiers
of the safe flex/flex pairs FaU =t GbV are constructed as constant functions

[λX1
α1

. . . Xn
αn

Hβ

cr(Fa,E)/Fa], [λX1
γ1

. . . Xm
γm

Hβ

cr(Gb,E)/Gb]

where the colors of the new head variables H are so-called color restrictions
cr(Xa, E). These are defined in terms of the flexible chains in the unification
problem E :

cr(Xa, E) = d if a ∈ X and there is flexible chain E ′ in E with left head Xa

and right head Yd for some d ∈ C and cr(Xa, E) = a otherwise.
Given a safe system E the notion of color restriction is well-defined: two

subsets of E satisfying the condition of the definition above which result in
different color restrictions c, c′ ∈ C could always be merged into a reducible
chain, contradicting our assumption that E is safe.

For the actual pre-unification transformations, we exchange the flex/flex rule
by a rule that reduces the number of reducible chains step by step by binding
some head variable to suitable projection binding. While — unlike in the uncol-
ored case — we cannot drop the flex/flex rule altogether, the restrictions arising
from reducible chains are severe enough to make pre-C-unification tractable.
In particular the restriction alleviates the need for unspecified imitations the
flex/flex case, which makes full unification infinitely branching.

In our example above, the third equation in the last unification problem is a
flex/flex equation, which can be reduced by pre-C-unification. In particular, the
imitation mentioned in footnote 10 is unnecessary.

6.2 Higher-Order Patterns

For the colored λ-calculus, the definition of higher-order patterns is exactly as in
the uncolored case (i.e. free variables may only occur at the leaves of formulae or

applied to distinct bound variables). However, in the colored case, the problem
of pattern unification is slightly more complex, and we will profit from the un-
derstanding of colored flex/flex pairs that we have achieved in the last section.
In particular, colored pattern unification cannot be unitary, since conflicting col-
ors on flex/flex pairs can force the instantiations to be (uncolored) projections.
As we have seen above, conflicting colors can entail that flex/flex pairs are un-
solvable, on the other hand, for pattern unification, they can also lead multiple
solutions (the erasure of which can be represented by a more general uncolored
higher-order pattern11). Consider for instance the pair

λXY ZW.FaXY ZW =t λXY ZW.FbY XZW

where a, b ∈ C. Obviously, there are two most general solutions

[λXY ZW.Z/Fa], [λXY ZW.Z/Fb] and [λXY ZW.W/Fa], [λXY ZW.W/Fb]

The tractable nature of pattern unification hinges on the observation that
the solving of flex/rigid pairs is deterministic, that is, all but the imitation or
one projection immediately lead to failure. Thus for pattern unification we only
can directly inherit the decomposition and flex/rigid rules from general colored
higher-order unification and only have to concern ourselves with the flex/flex
situations. Clearly, all the discussion about flexible chains also applies also to
higher-order patterns, so we keep the flex/flex rule for reducible flexible chains.
This leaves us with the case of safe flex/flex pairs, where (as we have seen above)
color clashes are not a problem. Therefore, we can directly adapt the well-known
rules for higher-order pattern unification: If we have a pair FaXn ==t FbY n,
then Fa is bound to to λZn HaWk and Fb to λZn HbWk, where the W k are those
bound variables, where X i = Y i12. Unlike in the uncolored case, an application
of this rule does not immediately solve the pair, (the colors a and b need not be
identical), but it transforms it into a form, in which decomposition can do the
rest (this will always succeed, iff the pair the rule acts upon is safe).

For the remaining case of safe flex/flex pairs with differing head variables,
we use a similar argumentation (directly modeled after the uncolored case) and
rule. From this argumentation (the flex/rigid and the safe flex/flex cases are
deterministic and the reducible flex/flex cases only involve projections), we can
directly derive that colored pattern unification is decidable13 and finitary i.e.
pattern unification problems have at most finitely many most general unifiers.

11 This observation shows that a generate-and-test procedure for colored pattern uni-
fication is infeasible, since this would have generated the uncolored solution and
rejected it, erroneously predicting the absence of colored solutions.

12 For any unifier σ we have σ(Fa) = λZn A. A can only have occurrences of Zi, such
that Xi = Y i: If we assume that A contains an occurrence of Zi (say at position

p) with Xi 6= Y i, then σ(F)Xn=βη[Xn/Zn]A and σ(F)Y n=βη[Y n/Zn]A, so these
differ at position p, which contradicts the assumption that σ is a unifier of E .

13 The termination and confluence arguments can be directly modeled after the stan-
dard case.

7 Related Work

Recently, Smaill and Green [SG96] developed the notion of higher-order embed-

dings. An embedding ⊂
→ is a relation on terms and s ⊂

→t - speaking A is embedded

in B - denotes intuitively that A is a skeleton of B. As a base case each atomic
expression B is embedded into itself: t ⊂

→t. Also a term A is embedded into an
application (B1B2) if it is embedded into one of its arguments or A is itself
an application (A1A2) and each Ai is embedded in Bi. A is embedded into an
abstraction (λX.B) if it is embedded into all instantiations (λX.B)C for all C
or A is itself an abstraction (λX.A′) and (λX.A′)C is embedded into (λX.B)C
for all C.

Comparing this notion of embedding and our definition of skeletons one ob-
serve several conceptual differences. In case of applications the definition of em-
beddings does not preserve the intended subterm relation on (first-order) terms.
For example, consider a first order term (g(fac)b) then (fab) ⊂

→(g(fac)b) holds.
This confusion of arguments of f and g may cause severe problems when defining
termination orderings on rippling with the help of embeddings. In our setting
the skeleton of (g (fac)b) is the empty set and the use of the syntactic type-
conversion functions prevents the mix-up of arguments. Hence, the intended
subterm-relation is preserved.

The notion of embeddings is a step towards a generate-and-test procedure14

based on standard higher order matching/unification which performs an (arbi-
trary) deduction steps and tests whether a specific term is embedded into the
result of this step. Our approach to attach additional information at each symbol
allows one to maintain the information about embedding during the deduction
process since skeletons are stable wrt. subterm-replacement. This information is
also necessary to restrict the number of possible solutions (e.g during higher-
order unification) as soon as possible.

In contrast to our approach, higher-order embeddings are restricted to the
λI-calculus which hampers their use for example in case of lemma speculation
(cf. section 3.2). In this application instantiations of higher-order variables have
to be speculated which typically use only some (but not necessarily all) of its
arguments and thus, are outside the scope of λI-calculus.

8 Conclusion and Further Work

We have extended the first-order rippling/coloring method to higher-order logic
and present unification, pre-unification and pattern unification algorithms that
we prove correct and complete. Thus we have provided a formal basis to the
implementation of rippling in a higher-order setting which is required e.g. in case
of middle-out reasoning [Hes91,IB96] and also a logical basis for an interface for
linguistic extra-semantical information in the construction of natural-language
semantics [GK96].

Furthermore, the work presented in this paper provides a starting point
for the mechanization of higher-order reasoning with equality along the lines

14 For principal difficulties of this approach cf. footnote 11.

of [WNB92,CH94,Hut96] which develop heuristics that guide the difference re-
duction process in first-order equality calculi such as [Mor69,Dig81]. These dif-
ference reducing approaches seem to be more promising for higher-order logic,
since they can reduce the search spaces (comparing to those induced by encod-
ing equality via the Leibniz formula) without needing reduction orderings, which
become very weak in the presence of higher-order (function)-variables.

References

[BSvH+93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip-
pling: a heuristic for guiding inductive proofs. AI, 62:185–253, 1993.

[Bun88] A. Bundy. The use of explicit plans to guide inductive proofs. 9th CADE,
Springer, LNCS 310, Argonne, Illinois, USA, 1988.

[CH94] J. Cleve and D. Hutter. A methodology for equational reasoning. Hawaii
International Conference on System Sciences 27 Volume III, IEEE Com-
puter Society Press, 1994.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[Dig81] Vincent J. Digricoli. The efficacy of RUE resolution, experimental results
and heuristic theory. In Ann Drinan, editor, 7th ICJAI,Vancouver, Canada,
Morgan Kaufmann, 1981.

[Dow92] Gilles Dowek. Third order matching is decidable. In Proceedings of the 7th
Annual IEEE Symposium on Logic in Computer Science (LICS-7), pages
2–10. IEEE Computer Society Press, 1992.

[GK96] Claire Gardent and Michael Kohlhase. Higher-order coloured unification
and natural language semantics. Proceedings ACL’96, Santa Cruz 1996.

[Gar] Claire Gardent. Sloppy identity. Proceedings LACL’96, Springer Verlag
forthcoming.

[Hes91] Jane Hesketh. Using Middle-Out Reasoning to Guide Induction. PhD thesis,
University of Edinburgh, 1991.

[HK95] Dieter Hutter and Michael Kohlhase. A colored version of the lambda
calculus. Seki-95-05, University of Saarland, Saarbruecken, Germany, 1995.

[Hut90] Dieter Hutter. Guiding induction proofs. 10th CADE, Springer, LNCS 449,
Kaiserslautern, Germany, 1990.

[Hut96] Dieter Hutter. Using rippling for equational reasoning. 20. Jahrestagung
Künstliche Intelligenz, Springer LNAI 1137, Dresden, Germany, 1996.

[IB96] Andrew Ireland and Alan Bundy. Productive use of failure in inductive
proof. Special Issue of the Journal of Automated Reasoning, 16(1/2), 1996.

[Kra94] Ina Kraan. Proof Planning for Logic Program Synthesis. PhD thesis, Uni-
versity of Edinburgh, 1994.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Com-
putation, 14:321–358, 1992.

[Mon74] R. Montague. The proper treatment of quantification in ordinary english. In
R. Montague, editor, Formal Philosophy. Selected Papers. Yale University
Press, New Haven, 1974.

[Mor69] James B. Morris. E-resolution: Extension of resolution to include the equal-
ity relation. 1st IJCAI, 1969

[SG96] A. Smaill and I. Green. Higher-order annotated terms for proof search.
TPHOLs’96, 1996

[WNB92] Toby Walsh, A. Nunes, and Alan Bundy. The use of proof plans to sum
series. 11th CADE, Saratoga Spings, USA, Springer LNCS 607, 1992.

