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Abstract

We present a preliminary study on disambiguation of symbolic expressions in math-
ematical documents. We propose to use the natural language within which the expres-
sions are embedded to resolve their semantics. The approach is based on establish-
ing a similarity between the expression’s discourse context and a set of terms from
Term Clusters based on OpenMath Content Dictionaries. The Term Clusters are
semi-automatically constructed terminological resources which classify related mathe-
matical concepts into groups. Each group is labelled with a term which represents the
common denominator between the concepts.

1 Motivation

Technical and scientific documents have been gaining increasing attention in the computa-
tional linguistics community. These documents stretch the current natural language pro-
cessing technology, among others because they contain embedded structures such as tables,
diagrams, or mathematical formulae, which interact with the textual content. While inter-
pretation of such structures is currently outside of the state-of-the-art in language process-
ing, their automatic understanding will enable us to provide services such as fact search,
plagiarism detection, and change management for technical and scientific documents. In
this paper we address this problem from a linguistic perspective and present a step towards
the semantics construction of mathematical formulae. Concretely, we address symbol over-
loading as one of the sources of ambiguities occurring in mathematical notations.

Authors tend to exploit established conventions in mathematical notation leaving some
of the ambiguous notation without explicit explanation, relying on the reader being able
to recover the intended meaning. Consider the expression “ω−1”: If ω is known to be a
function, then ω−1 is the inverse function corresponding to ω. However, if ω is a scalar,
ω−1 should be understood as 1/ω. Consider now the following expression: “S−Bf(C lnS)”.
It is a complex term consisting of two subterms, S−B and f , whose concatenation denotes
multiplication: S−B is a scalar by which f is multiplied. f(C lnS), in turn, is a function:
here, concatenation of f and (C lnS) denotes function application. The different appropri-
ate interpretations of the superscript and symbol concatenation are taken for granted by
the reader.
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Mathematical discourse, however, does not consist of symbolic expressions alone. It is
rather the familiar combination of natural language and symbolic expressions. Crucially for
interpretation, the expressions’ linguistic context often contains information which helps
determine the expressions’ meaning. Readers can therefore in many cases immediately
resolve the intended reading of mathematical expressions by looking at the embedding
discourse context. For instance, in the second example the text actually reads:

“. . .The scaling function has the form S−Bf(C ln S), where f is a 2π-periodic

function.” from [9]

Given this linguistic context, the symbolic expression can be immediately interpreted to
denote a function and with the knowledge that S−B is a scalar, the internal structure of
the expression can be identified.

The intended interpretation of symbolic mathematical expressions can be a useful source
of information in a number of sub-tasks in a mathematical document processing pipeline
for digitalising mathematics. For instance, in the task of parsing mathematical notation,
i.e. identifying the structure and (compositional) semantics of symbolic expressions, the
information about the expressions’ interpretation can guide the selection (or weighing) of
likely parse candidates. This could be useful in processing LATEX documents as well as
in mathematical OCR, in particular, in handwriting recognition; for instance, in examples
such as above, in deciding between horizontal adjacency and super-/subscript relation when
the super-/subscript is written partly across the centre horizontal line of the expression.

In this paper we present a preliminary study on disambiguating a certain subset of sym-
bolic expressions in mathematical documents. Namely, we focus on those mathematical
expressions which are syntactically part of a nominal group and, in particular, are in an
apposition relation with an immediately preceding noun phrase. That is, our target expres-
sions come from a linguistic pattern: “. . . noun phrase symbolic math expression . . . ” (as
in the example above). Therefore, in the approach described here we assume that a target
mathematical expression can be disambiguated using its left context.

We formulate the disambiguation problem as follows: Given a mathematical document
containing a target mathematical expression, can we indicate one (or more) concepts from
a predefined set of concepts as the interpretation of the given expression. We claim that
the linguistic context information improves disambiguation accuracy.

Our approach is based on the use of natural language lexical context information which is
contained in the natural language surrounding a target expression. We compute a semantic
similarity between the words from the lexical context of a given expression and a set of
terms from manually constructed and semi-automatically extended Term Clusters based
on OpenMath. Lexical contexts for the Term Clusters are compiled from a large corpus.
As interpretation of a mathematical expression we consider the cluster (represented by its
name) with the highest similarity to the words in the context.

Outline The paper is organised as follows: In Section 2 we describe our approach to
disambiguation of appositional mathematical expressions: the lexical resources it uses and
the word similarity-based disambiguation. In Section 3 we outline the experiment setup:
the data we used, the performance metrics, and the baselines. The results are presented in
Section 4. In Section 5 we present conclusions and discuss further work.



Symbol Name CD Name Description
(CD Group)

inverse fns1 This symbol is used to describe the inverse of its argu-
(Functional
Operators)

ment (a function). This inverse may only be partially
defined because the function may not have been surjec-
tive. If the function is not surjective the inverse function
is ill-defined without further stipulations. No assump-
tions are made on the semantics of this inverse.

inverse arith2 A unary operator which represents the inverse of an
(Arithmetic
Functions)

element of a set. This symbol could be used to represent
additive or multiplicative inverses.

eigenvector linalg4 This symbol represents the eigenvector of a matrix. It
(Linear
Algebra)

takes two arguments the first should be the matrix, the
second should be an index to specify which eigenvalue
this eigenvector should be paired with. The ordering is
as given in the eigenvalue symbol. A definition of eigen-
vector is given in Elementary Linear Algebra, Stanley I.
Grossman in Definition 1 of chapter 6, page 533.

Table 1: Excerpt from OpenMath Content Dictionaries

2 The Approach

Our approach is based on two observations: First, the linguistic context is often a good
indicator of the intended semantics of a mathematical expression. Second, similar lexical
contexts indicate similar mathematical domain content. The central part of the approach
is the use of co-occurrence statistics in computing semantic similarity between the words
from the mathematical expressions’ context and a set of terms from predefined semantic
classes. These are represented by manually constructed Term Clusters which model certain
logical classes of mathematical concepts according to lexical terms which evoke them.

2.1 Lexical Resources

The main resource on which our approach relies is a collection of Term Clusters (TC)
which we derive from OpenMath Content Dictionaries (CDs). OpenMath [6, 14] is a
language for representing mathematics, in particular symbolic mathematical expressions,
both at the surface structure and the semantics level. It is becoming a de facto standard for
communicating content-based mathematics over the Web. OpenMath uses CDs to define
the semantics of symbols used to build mathematical expressions.

OpenMath Content Dictionaries The OpenMath CDs group symbol definitions by
sub-fields of mathematics and carry names (e.g. arith2, linalg4, set1) that reflect this
(see Table 1). We make use of the fact that they are further organized into groups ac-
cording to mathematical areas (Arithmetic Functions, Linear Algebra, etc.). Note that
mathematical concepts are identified by a symbol name (e.g. inverse, eigenvector, empty-
set) together with CD names, so that CDs can have symbols of the same name, which are
nonetheless different mathematical concepts. Note also that one CD can belong to more
than one group.



TCN Representative Terms

algebraic structure algebra, array, basis, field, generator, group, groupoid, ideal,
lattice, matroid, monoid, quaternion, ring, semigroup, space,
subfield, submonoid, subsemigroup, . . .

function application, automorphism, closure, convolution, density,
eigenfunction, endomorphism, entropy, function, functor,
hamiltonian, hermitian, homomorphism, homotropy, inverse,
isomorphism, lagrangian, logarithm, map, morphism, trans-
formation, . . .

property associativity, commutativity, concavity, continuity, convexity,
differentiability, diffusion, distributivity, goodness, linearity,
noise, property, violation, . . .

Table 2: Excerpt of the Term Clusters

Each symbol declaration in a CD is accompanied by a natural language description
of the symbol’s meaning. The descriptions are written according to an informal set of
guidelines [8]. They share a certain formulaic style, relatively simple syntactic structure, and
are characterized by brevity. There are 190 CDs in the currently available OpenMath [15].
Table 1 shows the definitions of an eigenvector and two definitions of the inverse concepts.

Term Clusters for Mathematical Expression Disambiguation We will use the
OpenMath CDs to build Term Clusters as linguistic terminological resources that group
mathematical lexical terms (corresponding to mathematical concepts) into sets of terms
subordinate to a more general term (concept). It is these more general terms, Term Cluster
Names (TCN), that we will use as interpretations of mathematical expressions in the dis-
ambiguation process: for each target expression we will assign a TCN as its interpretation.

For the experiments described in this paper we created 17 TCs semi-automatically. The
structure and the content of the TCs were to a large extent inspired and semi-automatically
extracted from the OpenMath Content Dictionaries.∗ The Term Clusters were constructed
as follows: First, we extracted mathematical terms from each OpenMath CD and removed
modifiers from multi-word terms obtaining bare nouns. Next, the CDs associated with the
same mathematical area were collapsed (e.g. arith1, arith2 and arith3 correspond to
arithmetics). The same procedure was applied to pairs of CDs with high term overlaps.
We then extended the set of terms per cluster by extracting the top 100 most frequently co-
occurring words from 10,000 documents from the arXMLiv collection [17]. Co-occurrence
frequencies were calculated for pairs of words within one sentence.

Finally, in order to further enrich the lexical resource we partially automatically and
partially manually extracted terms from various online lexica of mathematical terms, in
particular, the University of Cambridge mathematical thesaurus [7] and the MathWorld
lexicon of mathematical terms [11], and added them to the appropriate Term Clusters. The
lexical entries in the TCs are bare nouns in the singular form. Table 2 shows excerpts from
the TCs algebraic structure, function and property.

∗In initial experiments, we used a pre-processed version of OpenMath CDs , but found its granularity
too fine-grained on the one hand, and on the other hand, its coverage too limited.



2.2 Mathematical Expression Disambiguation

The method we propose is inspired by recent computational approaches to word sense
disambiguation and lexical similarity which use statistical association measures to estimate
semantic relatedness between words by analysing their distributional properties. In these
approaches distributional similarity is computed based on, for instance, WordNet glosses [21]
the Wikipedia, large corpora, or even the Web (see, for instance, [3, 12, 13, 16, 19]).

By analogy, our approach considers similarity between the given mathematical expres-
sion’s lexical context and the terms in Term Clusters introduced above. The disambiguation
process consists of three parts: First, we preprocess the documents and identify the candi-
date target mathematical expressions, then we compute corpus-based similarities for each
TC, and finally disambiguate each target expression based on the words in their context
and the TCs. Below we briefly present the disambiguation components.

Preprocessing We used 10,000 mathematical documents from the arXMLiv collection [17],
word- and sentence-tokenized them, stemmed the words, and normalized the mathematical
expressions by replacing them with a unique identifier. This preprocessing was performed
both on the corpus for similarity computation and on the documents we used for evaluation
of the approach. The latter documents were also processed with the Stanford part-of-speech
(POS) tagger [18] in order to identify nouns in the left context of appositional mathemat-
ical expressions. The recall results we report in Section 4 are based on the output of this
tagger.†

The evaluation set we furthermore processed in two ways in order to obtain results for
alternative approaches to selection of candidates for computing semantic similarity: stop-
word based and POS-based. In the stop-word approach the candidate terms for computing
similarity were selected using a stop-word list alone. In the POS approach we used those
words which were tagged as nouns by the Stanford tagger.

Computing term similarity We experimented with three statistics to find words se-
mantically related to the TC terms: the Dice coefficient (Dice), the pointwise mutual
information (PMI ) and the z-score (z ). These measures estimate relative probability with
which words occur in proximity and have been previously successfully used in computa-
tional linguistics [4, 5, 20]. For two words w1 and w2, Dice is defined as twice the ratio of
the joint probability to the sum of the individual probabilities, PMI is defined as the log of
the ratio of the probability of the words occurring together to the product of the individual
probabilities, and z is the proportion of the difference of the expected and the observed
probabilities (P ) to the expected probability (E):

Dice(w1, w2) =
2× P (w1, w2)

P (w1) + P (w2)

PMI(w1, w2) = log2
P (w1,w2)

P (w1)×P (w2)
z(w1, w2) = P (w1,w2)−E(w1,w2)√

E(w1,w2)

Because log is monotonically increasing, relative ordinal rankings of PMI estimates are
preserved if log is dropped. We approximate the probabilities by raw frequencies, as is a
common practice.

†We are aware of the fact that these results are affected by the low performance of the tagger which was
not trained on documents from our domain. To our knowledge, there are currently no available dedicated
language processing tools, in particular, part-of-speech taggers, for mathematical discourse. In the future,
we are planning to develop a dedicated tagger and re-evaluate our approach on more accurate POS outputs.



Based on experimentation we used the Dice coefficient for those words with Dice scores
higher than a certain predefined threshold, λ ≈ 0.6, otherwise we used either PMI or z :

sim(w1, w2) =

{

Dice(w1, w2) if Dice(w1, w2) > λ

PMI(w1, w2) or z(w1, w2) otherwise

PMI is a frequently used statistical estimator of the strength of word co-occurrence; see,
for example, [20]. The use of different lexical co-occurrence statistics is motivated by the
fact that mutual information is reported to be less efficient on low-frequency events [10].
Comparisons with latent semantic analysis show that PMI achieves better results when
large amounts of data is used [4, 5]. In Section 4 we report results for different similarity
thresholds: for PMI we experimented with thresholds δ ∈ {0.6, 0.8, 0.9}, while for z the
considered values were δ ∈ {0.0, 10.0, 20.0} Lexical similarity was computed based on a
subset of arXMLiv documents preprocessed as described above. The obtained co-occurrence
pairs were type- not token-based, i.e. they contained only word-stems.

Disambiguation For each mathematical expression identified as appositional (i.e. pre-
ceded by a noun, based on the output of the Stanford parser; see Section 3 for the details
on the evaluation set) we considered a local context C consisting of all the nouns appearing
in the five word window to the left of a target mathematical expression. For each candidate
noun w in the context C we identified the TC terms, tct, with the highest semantic similar-
ity according to the similarity metrics described above. In order to identify the TC which
best matches the context, we used modified versions of similarity measures presented in [12].
The obtained similarity scores were weighted, summed up, and normalized by the length of
the considered context (e.g. the number of nouns found within the five word windows). In
weighing the candidates we took into account the distance to the target expression; with the
weights decreasing with the distance to the target expression. The similarity was calculated
using the following scoring function:

Sim(C, TC) =
∑

w∈C

maxsim(w, TC) × cw(w), where

maxsim(w, TC) = max
tct∈TC

{sim(w, tct)} and cw(w) is the weight for the word w

That is, the resulting assigned interpretation is the TC with the highest similarity score
between the lexical context and the terms from each of the sets of TC terms.

3 Experiment Setup

We tested the disambiguation method on a manually constructed gold-standard, a set of
manually identified and disambiguated appositive mathematical expressions. We compared
the algorithm’s performance with two baselines which do not use context or have access to
limited context information. Below we introduce our evaluation sets, define the performance
measures we employed and present the baselines.

Data We conducted an initial evaluation of the approach on all mathematical expressions
from one randomly selected document from the arXMLiv containing 451 mathematical
expressions [2]; we will refer to this initial evaluation set as init-set.



In order to obtain more reliable performance results, in particular, on disambiguation in
documents originating from various authors and mathematical sub-areas, we also conducted
further evaluation on a set of randomly selected mathematical expressions extracted from
a random collection of different documents. This evaluation set (eval-set) was constructed
as follows: First, we selected 28 random arXMLiv documents which were successfully pre-
processed. Second, from each of these documents we selected 20 random mathematical
expressions and manually identified the appositive cases among those, obtaining 116 ap-
positive instances. Third, we manually annotated this set with the expected categories,
thereby creating a gold standard. The gold standard contains 101 disambiguated appositive
mathematical expressions. (15 unclear cases from the original set were discarded.)

Performance measures As evaluation metrics we use precision (P), recall (R), F0.5, and
Mean Reciprocal Rank (MRR). Precision and recall are set-based measures. In classifica-
tion, precision is the proportion of correctly labelled examples, while recall is the proportion
of labelled examples out of all examples. In mathematical expression disambiguation we
prefer correct disambiguation over coverage, therefore, we choose F0.5 as a combined mea-
sure. F0.5 is a variant of the harmonic mean of precision and recall which weights precision
twice as high as recall. MRR is one of the standard measures used in Information Retrieval
for evaluating performance of systems which produce ranked lists of results, for example,
ordered lists of documents retrieved in response to a query. It is the inverse of the rank of
the expected (best) result item. More specifically,

P = tp
tp+fp

R = tp
tp+fn

F0.5 = (0.52+1)PR

0.52P+R
MRR = 1

N

∑N

i=1
1

ranki

where tp are true positive classifications, fp are false positives, fn are false negatives, and
N is the number of evaluated instances.

Baselines We employed two baselines for comparison with our approach. The trivial
baseline does not use any context information and simply assigns a random order of cat-
egories. The top random category is used in calculating precision. We can consider this
as the lower-bound for the performance of the approach. The second baseline uses lim-
ited context information: It uses only the noun (NN ) immediately preceding the target
mathematical expression as candidate for disambiguation.

4 Results

Table 3 summarises the results of the evaluation. Init-set is our initial set of mathematical
expressions from a single document. Eval-set is our gold-standard evaluation set. Re-
sults are reported for the two baselines: random ranking (random) and limited context
(nearest NN ). SW is the approach which uses stop-words to select candidates for simi-
larity computation and PMI as the similarity measure. POS-z and POS-PMI are the
approaches which use POS tags for candidate selection and z and PMI as co-occurrence
statistics alternative to Dice. δ are the different similarity thresholds.

Init-set was our preliminary evaluation set which served to verify the plausibility of the
approach. We did not calculate MRR for this set, however, with the average precision at
81% (for δ = 0.9) we considered the approach promising. With limited access to context
information both baselines perform poorly, as expected; recall is not reported because for
the baselines some interpretation is always returned. In future experiments we will use



δ P R F0.5 MRR

Init-set POS-PMI
0.6 64.00 31.00 52.77 −
0.9 81.00 21.00 51.55 −

Eval-set

Baselines
random − 8.51 − − 0.19

nearest NN − 20.21 − − 0.32

SW

0.6 53.09 81.13 57.03 0.60
0.8 61.36 36.49 54.00 0.68
0.9 63.16 14.28 37.50 0.74

POS-z
0.0 56.96 44.55 53.96 0.68
10.0 65.52 37.62 57.06 0.74
20.0 69.70 22.77 49.36 0.77

POS-PMI
0.6 65.67 43.56 59.62 0.76
0.8 80.39 40.59 67.21 0.85
0.9 83.33 39.60 68.26 0.87

Table 3: Evaluation results

other baselines with less limited context information, but limited capabilities of similarity
estimation; one plausible baseline could use larger context (e.g. five word window) but
calculate only word overlap with Term Clusters, rather than corpus-based similarity.

Considering the limited linguistic preprocessing we employ (the method is based solely
on co-occurrence statistics with only stemming, stop-words and largely faulty POS tagging
as preprocessing) both the precision results and the ranking results on the evaluation set
are encouraging. PMI appears to outperform the z-score on this task. Interestingly, the
results of the best performing stop-word based model appear comparable not only with the
z-score models, but also with the PMI -based model at δ = 0.6. This suggests that perhaps
further work could be also invested in the knowledge-poor approaches, given the lack of
reliable language processing tools for mathematical discourse. Moreover, not surprisingly,
with all the measures, the performance is strongly sensitive to the similarity thresholds. We
must perform further systematic analyses of the effect of different threshold combinations.

5 Conclusion and Future Work

We can cautiously conclude that the method produces promising results and that, even
with limited linguistic information, the lexical context provides useful information in math-
ematical expression disambiguation. Of course more work and experimentation is needed
to further tune the co-occurrence statistics and the similarity metrics. In particular, we are
planning to experiment with other corpus-based term association measures. Moreover, we
have started to experiment with methods analogous to those presented here, but applied to
mathematical expressions which need the right context for disambiguation.

Our Term Clusters require further work. In their present state some of the clusters
group unrelated terms; see, for instance, the terms grouped under property. We are currently
working on a more coherent resource with a richer hierarchical structure and with thesaurus-
like relations between concepts. With such a resource we can investigate thesaurus-based
similarities based on relations such as “broader/narrower concept”. As an initial step we are
planning to investigate the relations included in the Cambridge Mathematical Thesaurus.



Similarity could be computed as inversely proportional to the distance between words in
the thesaurus hierarchy; short paths between two concepts would indicate high degree of
semantic similarity. This is analogous to the way WordNet is used in lexical similarity tasks.

Another resource that we plan to take into account is the “Mathematics Subject Classifi-
cation” (MSC [1]), a hierarchically organized set of over 5000 mathematical subjects. These
could act as Term Cluster Names that cover all of mathematics. We will try to generate the
representative terms from the Zentralblatt Math corpus [22], an MSC-classified set of 2.5
million abstracts of mathematical (journal) publications of the last 100 years. We expect
to obtain much more accurate disambiguation results from such a resource.

It is clear that linguistic knowledge would help in the disambiguation task. For the left-
context appositional cases, the noun phrase part of the nominal group is alone sufficient
for disambiguation. However, in order to be able to perform more linguistically-based
analysis of the context, we need language processing tools (POS taggers, chunkers, etc.)
which are nowadays taken for granted in language processing. Unfortunately, existing tools
are typically trained on newspaper text and therefore produce sub-standard results on the
mathematical genre. A serious problem here is the lack of annotated data to re-train such
tools. We are presently investigating ways of creating a POS-annotated document set and
building a specialised POS tagger.

Finally note that our definition of disambiguation still falls significantly short of seman-
tics construction for formulae, where every symbol is interpreted by a semantic concept.
Our approach based on the left context and general mathematical resources cannot work
since mathematical texts are well-known to introduce notations and concepts as they go
along. We would need a deeper discourse analysis that detects notation introductions (and
imports for that matter) and brings them to bear locally in the disambiguation process.
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