
Large-scale proof and
libraries in Isabelle/HOL

Gerwin Klein

NICTA Copyright 2010 From imagination to impact

NICTA Copyright 2010 From imagination to impact

1 microkernel

0 bugs

 8,700 l nes of Ci

qed

*conditions apply

*

NICTA Copyright 2010 From imagination to impact 2

The Goal

NICTA Copyright 2010 From imagination to impact 12

NICTA Copyright 2010 From imagination to impact 13

NICTA Copyright 2010 From imagination to impact

The Problem

6

NICTA Copyright 2010 From imagination to impact

Small Kernels

7

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

Hardware

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

NICTA Copyright 2010 From imagination to impact

Small Kernels

7

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

The Proof

The Proof

NICTA Copyright 2010 From imagination to impact 9

Functional Correctness

Specification

Code

Proof

NICTA Copyright 2010 From imagination to impact 9

Functional Correctness

Specification

Code

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact 9

Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact 10

*conditions apply

Specification

Proof

Code

NICTA Copyright 2010 From imagination to impact 10

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

NICTA Copyright 2010 From imagination to impact 10

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

NICTA Copyright 2010 From imagination to impact 11

Proof Architecture

Specification

Proof

C Code

NICTA Copyright 2010 From imagination to impact

Proof Architecture

12

C Code

Design

Specification

NICTA Copyright 2010 From imagination to impact

Proof Architecture

12

C Code

Design

Specification

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

12

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

12

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact

Proof Architecture

12

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

12

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

NICTA Copyright 2010 From imagination to impact seL4

• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

NICTA Copyright 2010 From imagination to impact 14

Did you find any Bugs?

Bugs found

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

NICTA Copyright 2010 From imagination to impact 14

Did you find any Bugs?

Bugs found

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Proofs and Libraries

Proofs and Libraries

NICTA Copyright 2010 From imagination to impact

Main Proof Components

16

6

100

13
60

16

25

35

30

Abstract Spec
Refinement 1
Executable Spec
Refinement 2
C Code
Gen Libraries
C Libraries
SIMPL

NICTA Copyright 2010 From imagination to impact 17

Theory Inclusion Graph

ARM_Machine_A

WordSetup

NonDetMonad

ARMMachineTypes

Lib

Platform

ARM_Structs_A

ExceptionTypes_APreStructures_A

MiscMachine_AMain

ArchInvocation_A

Structures_A

MachineOps

ArchVSpaceAcc_A

KHeap_A

Exceptions_A

ArchVSpace_A

Retype_A

CSpaceAcc_AInvocations_A

Arch_A

CSpace_A

IpcCancel_A NonDetMonadLemmas

SplitRule

Decode_A

Interrupt_A

InvocationLabels_H

Ipc_A

Enum

Glossary_Doc

Syscall_A

Init_A

Event_H

Tcb_A

Intro_Doc

Schedule_A

MachineTypes

API_H

Syscall_H

Delete_HKernel_H

CNode_H

Interrupt_HEndpoint_H

Thread_H

ARMStructures_H

Types_H

Hardware_H ArchTypes_H

State_H

ArchInterrupt_H

RetypeDecls_H

ArchRetypeDecls_H

FaultMonad_H

Structures_H

Invocations_H

ArchObjInsts_H

PSpaceStorable_H

ObjectInstances_H

KernelStateData_H

DataMap

Config_H

EndpointDecls_H KernelInitMonad_HPSpaceFuns_H

Fault_H

ArchRetype_H

ArchVSpaceDecls_H KI_Decls_H

ThreadDecls_H

ArchStateData_H

ArchTCB_H

TCBDecls_H

ArchThreadDecls_H

ArchThread_H

RegisterSet_H

HaskellLib_H

ArchVSpace_H

CSpaceDecls_H

AsyncEndpoint_H

TCB_H

VSpace_H

CSpace_H

Object_H

Retype_H

FaultHandlerDecls_H

FaultHandler_H

PSpaceStruct_H

KernelInit_H

Untyped_H

ADTs

Simulation

Invariant

Wellformed

ArchAcc_R

SubMonad_R

EmptyFailKHeap_R

Arch_R

Untyped_R

Finalise_R

Invocations_R

Detype_R

Retype_RIpcCancel_R

InterruptAcc_R

Bits_R

Corres

StateRelation

BuildRefineCache

CNodeInv_R

Ipc_R

CSpace_I

CSpace_R

Cache

VSpace_R

Schedule_R

TcbAcc_R

IncKernelInit

Tcb_R

Include

InitLemmas

Interrupt_R

LevityCatch

Machine_R

KernelInit_R

LemmaBucket

Orphanage

Refine

Syscall_R

ADT_C

Schedule_C

StoreWord_C

Tcb_C

Arch_C

VSpace_C

Retype_C

IpcCancel_C

Finalise_C

Recycle_C

CSpace_C

Machine_C

TcbAcc_C

Ctac

CSpace_All Detype_C

SyscallArgs_C

Delete_C

BuildRefineCache_C

CLevityCatch

Include_C LemmaBucket_C

KernelInc_C

CSpaceAcc_C

PSpace_C

Corres_C

SR_lemmas_C

CSpace_RAB_C

Corres_UL_C

SIMPL_Lemmas StateRelation_C

GenericLib_C

CTranslation

DetWP

DetWPLib

TcbQueue_C

FastpathMachine_C

Syscall_CMonadicRewrite

Interrupt_C

Invoke_C

Ipc_C

MoreHoare

Fastpath_CInit_C

Move

Refine_C

Wellformed_C

Asid_D

Invocations_DCSpace_D

Types_D

KHeap_D NonDetMonadVCG

CNode_D

Monads_D

Decode_D

Interrupt_D

PageTable_D Tcb_DUntyped_D Endpoint_D

Intents_D

NICTACompat

Schedule_D

Syscall_D

Arch_DR

CNode_DR

KHeap_DR

Corres_D

StateTranslation_D

StateTranslationProofs_DR

ExtraCorres

MoreCorres

MoreHOL

Include_D

Interrupt_DR

Ipc_DR

Crunch

Refine_D

Schedule_DR

Syscall_DR

Tcb_DR Untyped_DR

NICTA Copyright 2010 From imagination to impact 17

Theory Inclusion Graph

NICTA Copyright 2010 From imagination to impact

Main Libraries

• Libraries
– Word library
– Enums
– Haskell library support
– Monads
– Monad VCG + case splitter + strengthening
– Refinement on Monads
– Submonads and rewriting under refinement
– Refinement between Monads and C + tools
– SIMPL + imperative VCG
– Crunch
– LemmaBucket

18

NICTA Copyright 2010 From imagination to impact

Main Libraries

• Libraries
– Word library
– Enums
– Haskell library support
– Monads
– Monad VCG + case splitter + strengthening
– Refinement on Monads
– Submonads and rewriting under refinement
– Refinement between Monads and C + tools
– SIMPL + imperative VCG
– Crunch
– LemmaBucket

18

NICTA Copyright 2010 From imagination to impact

Main Libraries

• Libraries
– Word library
– Enums
– Haskell library support
– Monads
– Monad VCG + case splitter + strengthening
– Refinement on Monads
– Submonads and rewriting under refinement
– Refinement between Monads and C + tools
– SIMPL + imperative VCG
– Crunch
– LemmaBucket

18

NICTA Copyright 2010 From imagination to impact

Tools

• Productivity tools
– theorem search (find_thms)
– theorem moving (Levity)
– finding definitions (locate)
– theorem web search (www_find)
– numeral syntax (hex, oct, binary)

• Isabelle
– Record package
– Proof cache
– attributes like “rotated”
– automated simp rules for case construct

19

NICTA Copyright 2010 From imagination to impact

Tools

• Productivity tools
– theorem search (find_thms)
– theorem moving (Levity)
– finding definitions (locate)
– theorem web search (www_find)
– numeral syntax (hex, oct, binary)

• Isabelle
– Record package
– Proof cache
– attributes like “rotated”
– automated simp rules for case construct

19

NICTA Copyright 2010 From imagination to impact

What we thought would work

• Automation
– First order provers (vampire)
– SAT for word problems
– Termination proofs

• What we thought might be a problem
– Performance
– Memory
– Lemmas/goals/proofs too big to parse

20

NICTA Copyright 2010 From imagination to impact

Problems

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records
• waiting for large goals to be printed

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records
• waiting for large goals to be printed

– Memory, but only recently

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records
• waiting for large goals to be printed

– Memory, but only recently
– Image rebuilds, theory merges and context

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records
• waiting for large goals to be printed

– Memory, but only recently
– Image rebuilds, theory merges and context
– Avoiding duplication and wheel reinvention

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records
• waiting for large goals to be printed

– Memory, but only recently
– Image rebuilds, theory merges and context
– Avoiding duplication and wheel reinvention
– Annoying word proofs

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records
• waiting for large goals to be printed

– Memory, but only recently
– Image rebuilds, theory merges and context
– Avoiding duplication and wheel reinvention
– Annoying word proofs
– Developing/maintaining libraries + frameworks

21

NICTA Copyright 2010 From imagination to impact

Problems

• What turned out to be a problem
– Isabelle updates
– Performance, but not as bad

• theory merges
• defining large locales + entering large contexts
• large records
• waiting for large goals to be printed

– Memory, but only recently
– Image rebuilds, theory merges and context
– Avoiding duplication and wheel reinvention
– Annoying word proofs
– Developing/maintaining libraries + frameworks

• Hard to get over good enough

21

NICTA Copyright 2010 From imagination to impact

Wish List

• Better name space management

• Better performance (time + memory)

• Better parallelisation
– run nitpick, quickcheck, sledgehammer etc in background
– run proofs faster interactively

• Better dependency handling
– faster turnaround for deep definition changes
– faster image rebuilding

22

Archive of Formal Proofs

Archive of Formal Proofs

NICTA Copyright 2010 From imagination to impact

AFP

• Repository of Isabelle proofs
– Open Source (BSD + LGPL)
– Maintained
– Archived, version controlled
– Quality controlled

• Hosted on SourceForge
– [http://afp.sf.net]

24

http://afp.sf.net
http://afp.sf.net

NICTA Copyright 2010 From imagination to impact

Screen Shot

25

NICTA Copyright 2010 From imagination to impact

Index by Topic

26

NICTA Copyright 2010 From imagination to impact

An Entry

27

NICTA Copyright 2010 From imagination to impact

Statistics

• Numbers
– started 2003
– now 77 entries
– 473 kloc of proof scripts
– 22,000 lemmas
– runs 4-6h daily

28

0 loc

20000 loc

40000 loc

60000 loc

• Typical entry
– belongs to a paper
– nice proof document
– small, 1-4 kloc
– some big developments

NICTA Copyright 2010 From imagination to impact

What works well

• Archival and Maintenance
– everything kept up to date by Isabelle team
– new release with every Isabelle release
– good number of submissions
– mostly good quality submissions
– some authors keep improving their entries

• (but need better high-level change tracking, versioning)

– good test bed for Isabelle team
– good place to publish proofs for paper authors
– authors can get repository access

29

NICTA Copyright 2010 From imagination to impact

Reuse?

• Not much reuse:
– Few entries designed as libraries
– Few entries used in others (3)

• Reasons
– Cultural (mostly papers)
– Good libraries go directly into Isabelle distribution
– Technical hurdles

• not enough instruction on how to include
• could give more built-in support, name spaces again
• can’t import from more than one image
• dependencies? hackage site?

30

Summary

Summary

NICTA Copyright 2010 From imagination to impact 32

Summary

Proof Libraries are like Program Libraries

• Archive of Formal Proofs
• 77 entries, 470kloc proof in total

• works well for papers

• not so well for libraries yet, hope to get more in the future

• L4.verified:
• 200kloc proof

• lots of libraries

• some are reusable, costs more work, usually worth it

Thank You

