NICTA
Large-scale proof and

libraries in Isabelle/HOL

Gerwin Klein

NICTA Members

~ , .) Cepartment of Yiste ard
2! Australian Government UN_SW ; S canaas as

Tl ASTRALAN SATORAL UAAVERSTY Swte haen

Department of Communications,

Information Technology and the Arts . e .

0 o= WyGrfith

Australian Research Council Defacelote L Quosasiend —
NICTA Partners

- y 4 PRY LN Iv-N.

€8 \lonikiol

1 microkernel
8,700 lines of C

O bugs”®

gqed

*conditions apply

Hindows

An exception 06 has occured at 0028:C11B3ADC in WD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in ¥xD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue,
* Press CTRLHALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

The Problem

Small Kernels

Small trustworthy foundation

hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

High assurance components in
presence of other components

selL4 API:

IPC
Threads
VM

IRQ
Capabilities

NICTA

Untrusted Trusted

Small Kernels

Oe

Small trustworthy foundation

hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

High assurance components in
presence of other components

selL4 API:

IPC
Threads
VM

IRQ
Capabilities

NICTA

Untrusted Trusted

!pps h

- . —
N - ®
- -

Functional Correctness Oe

NICTA

Specification

Proof 1

Functional Correctness e

NICTA

definition
schedule :: unit s_monad where

schedule = do
Wh at threads <« allActiveTCBs;

thread «— select threads;
switch_to_thread thread
od

- : OR switch_to_idle_thread
Specification

Proof

Functional Correctness (Jeo

NICTA

definition
schedule :: unit s_monad where

schedule = do
Wh at threads <« allActiveTCBs;

thread «— select threads;
switch_to_thread thread
od

- : OR switch_to_idle_thread
Specification

void

P ro Of schedule(void) {
switch ((word t)ksSchedulerAction) ({

case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

HOW default: /* SwitchToThread */

switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

*conditions apply e

NICTA

S ST E TR LR e

Specification

Proof

10

*conditions apply @

@) Expectation

Proof I

Assumptions

*conditions apply ®

O ' Assume correct:
- compiler + linker (wrt. C op-sem)

- assembly code (600 loc)

- hardware (ARMvOG)

- cache and TLB management
- boot code (1,200 loc)

Proof

Assumptions

Proof Architecture Qe

NICTA

S ST E TR LR e

Specification

Proof

11

Proof Architecture Qe

NICTA

Specification

|

|

12

Proof Architecture Qe

NICTA

Access Control Spec “

Specification

|

|

12

Proof Architecture Qe

NICTA
Access Control Spec “

Specification

Prototype

12

Proof Architecture Qe

NICTA
Access Control Spec ~ Confinement
Lf 3
i definition
= schedule :: unit s_monad where

schedule = do

threads <« allActiveTCBs;
SpeCIflcatlon thread < select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

Haskell

o

Prototype

12

Proof Architecture

Access Control Spec ~

Confinement

Specification
schedule :: Kernel ()

schedule = do
action <- getSchedulerAction
case action of
ResumeCurrentThread -> return ()
ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread

SwitchToThread t -> do

switchToThread t
chooseThread :: Kernel ()

chooseThread = do
r <- f£indM chooseThread' (reverse [minBound .. maxBound])

when (r) switchToIdleThread

12

Proof Architecture

Access Control Spec ~

Confinement

- ."'

Specification

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction_ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

default: /* SwitchToThread */
switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

}

void
C COde chooseThread(void) ({
prio t prio;

B0, S
| S ye |

WCLta7 o SN
N ALK DR DR \
XA~ A~ / 1: 9,0 % A\
005500 BN
A‘:///A(/A"V/A\ :
2 ‘

>
4 XA R o
P
/

Y. T :
X/ | 7 'n —NY

7 9;"7.;\4’A JAQ&\‘A‘\:!:D;’«
K\ d+4 |

YD\)

- mm A I VAV b -
NI IS N XE\ /,
, Wy
\"‘-
g/’

A7 I | N\

// -

|

selid

Did you find any Bugs? ®

schedule (v 1) {
E; .f (j switch ((word t)ksSchedulerAction) {
u gs o u n (word t)SchedulerAction ResumeCurrentThread:
break:;

(word t)SchedulerAction ChooseNewThread:

e inC: 160 (); .
ksSchedulerAction = SchedulerAction_ ResumeCurrentThread;

hyaalre.

* indesign: ~150

* inspec: ~150] Effort
460 bugs }_ Haskell design 2 py F
) First C impl. 2 weeks
Debugging/Testing 2 months
Kernel verification 12 py
Formal frameworks 10 py

Total 25 py

Did you find any Bugs? ®

schedule(void) {
E; .f (j switch ((word t)ksSchedulerAction) {
u gs o u n (word_t)SchedulerAction_ResumeCurrentThread:
break;

(word t)SchedulerAction ChooseNewThread:

()7
ksSchedulerAction = SchedulerAction ResumeCurrentThread;

e inC: 160
* indesign: ~150

* inspec: ~150 { Effort P
460 bugs } Haskell design 2 py
} First C impl. 2 weeks
Debugging/Testing 2 months
Kernel verification 12 py
Formal frameworks 10 py
Total 25 py

14

Main Proof Components e

Abstract Spec
Refinement |
Executable Spec
Refinement 2

C Code

Gen Libraries
C Libraries
SIMPL

16

Theory Inclusion Graph

Theory Inclusion Graph

Schedule_A

Init_A CSpace_A

VSpace_A

IpcCancel _A NonDetMonadLemmas

InvocationLabels_H

PSpaceFuns_H

Config_H

Rct

ArchVSpaceAcc_A CSpaceAcc_A
KHeap_A

Nuresz&

y

4

Y
A
@chine_A

Y
ARM_Machine_A

WordSetup

nvocations_A

ArchInvocation_A

eStructures_A

y
NonDetMonad

A
Hardware_H '

MachineOps RegisterSet_H
<\
MachineTypes HaskellLib_H
ARMMachineTypes

ObjectInstancesH

‘ PSpaceStorable_H

’

ArchObjlInsts_H
< 7]

4

ArchTypes_H

ARMStructuresH

ArchRetypeDecls_H

P
S
=

. >
‘ S

ArchThreadDecls_

KernellnitMonad_H

ArchStateData_H)

Main Libraries (Y@

NICTA

 Libraries
—Word library
—Enums
—Haskell library support
—Monads
—Monad VCG + case splitter + strengthening
—Refinement on Monads
—Submonads and rewriting under refinement
— Refinement between Monads and C + tools
—SIMPL + imperative VCG
—Crunch
—LemmaBucket

Main Libraries (Y®

 Libraries
—Word library
—Enums
—Haskell library support
—Monads
—Monad VCG + case splitter + strengthening
—Refinement on Monads
—Submonads and rewriting under refinement
— Refinement between Monads and C + tools
—SIMPL + imperative VCG
—Crunch
—LemmaBucket

Main Libraries ®

 Libraries
—Word library
—Enums
—Haskell library support
—Monads
—Monad VCG + case splitter + strengthening
—Refinement on Monads
—Submonads and rewriting under refinement
— Refinement between Monads and C + tools
—SIMPL + imperative VCG
—Crunch
—LemmaBucket

Tools

* Productivity tools
—theorem search (find_thms)
—theorem moving (Levity)
—finding definitions (locate)
—theorem web search (www_find)
—numeral syntax (hex, oct, binary)

* |sabelle
—Record package
—Proof cache
—attributes like “rotated”
—automated simp rules for case construct

——

19

——

Tools

* Productivity tools
—theorem search (find_thms)
—theorem moving (Levity)
—finding definitions (locate)
—theorem web search (www_find)
—numeral syntax (hex, oct, binary)

* |sabelle
—Record package
— Proof cache
—attributes like “rotated”
—automated simp rules for case construct

What we thought would work

* Automation
—First order provers (vampire)
— SAT for word problems
— Termination proofs

* What we thought might be a problem
—Performance
—Memory
—Lemmas/goals/proofs too big to parse

Problems

Problems

* \What turned out to be a problem

NICTA

21

Problems

* \What turned out to be a problem
—Isabelle updates

(1@
NICTA

21

Problems

* \What turned out to be a problem
—Isabelle updates
—Performance, but not as bad

21

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges

21

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges
* defining large locales + entering large contexts

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges
* defining large locales + entering large contexts
* large records

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges
» defining large locales + entering large contexts
* large records
 waiting for large goals to be printed

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges
» defining large locales + entering large contexts
* large records
 waiting for large goals to be printed

—Memory, but only recently

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges
» defining large locales + entering large contexts
* large records
 waiting for large goals to be printed

—Memory, but only recently
—Image rebuilds, theory merges and context

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges
» defining large locales + entering large contexts
* large records
 waiting for large goals to be printed

—Memory, but only recently
—Image rebuilds, theory merges and context
— Avoiding duplication and wheel reinvention

Problems

* \What turned out to be a problem
—Isabelle updates

—Performance, but not as bad
 theory merges
» defining large locales + entering large contexts
* large records
 waiting for large goals to be printed

—Memory, but only recently

—Image rebuilds, theory merges and context
— Avoiding duplication and wheel reinvention
—Annoying word proofs

Problems

* \What turned out to be a problem
—Isabelle updates

— Performance, but not as bad
 theory merges
» defining large locales + entering large contexts
* large records
 waiting for large goals to be printed

—Memory, but only recently

—Image rebuilds, theory merges and context

— Avoiding duplication and wheel reinvention
—Annoying word proofs
—Developing/maintaining libraries + frameworks

Problems

* \What turned out to be a problem
—Isabelle updates

— Performance, but not as bad
 theory merges
» defining large locales + entering large contexts
* large records
 waiting for large goals to be printed

—Memory, but only recently

—Image rebuilds, theory merges and context
— Avoiding duplication and wheel reinvention
—Annoying word proofs

—Developing/maintaining libraries + frameworks
« Hard to get over good enough

Wish List

» Better name space management

» Better performance (time + memory)

» Better parallelisation
—run nitpick, quickcheck, sledgehammer etc in background
—run proofs faster interactively

» Better dependency handling
—faster turnaround for deep definition changes
—faster image rebuilding

22

Archive of Formal Proofs

AFP

» Repository of Isabelle proofs
— Open Source (BSD + LGPL)
—Maintained
— Archived, version controlled
— Quality controlled

» Hosted on SourceForge
—[http://afp.sf.net]

24

http://afp.sf.net
http://afp.sf.net

Screen Shot @

The Archive of Formal Proofs

| ‘ > -+ /bhttp://afp.sourceforge.net/ ¢ | (Qr Google

Google SMH Spiegel Slashdot L4v Wiki Bugzilla ERTOS 2 Wiki

THE ARCHIVE OF F ORMAL PROOFS

The Archive of Formal Proofs is a collection of proof libraries, examples, and larger
scientific developments, mechanically checked in the theorem prover Isabelle. Itis
organized in the way of a scientific journal and has an ISSN: 2150-914x. Submissions
are refereed. The preferred citation style is available [here]. A development version of the
archive is available as well.

Home

About 200

2010-06-24: Free Groups

Supml_sswn Author: Joachim Breitner
Guidelines
i : 2010-06-20: Category Theory
Updating entries Author: Alexander Katovsky
Search 2010-06-17: Executable Matrix Operations on Matrices of Arbitrary Dimensions
Index Author: Christian Sternagel and René Thiemann

2010-06-14: Abstract Rewriting
Download Author: Christian Sternagel and René Thiemann

2010-05-28: Verification of the Deutsch-Schorr-Waite Graph Marking Algorithm using
Data Refinement
Author: Viorel Preoteasa and Ralph-Johan Back

Index by Topic ®

The Archive of Formal Proofs - Index by Topic
- ‘ > + % http://afp.sourceforge.net/topics.shtml ¢ | (Qr Google
(0 i Google SMH Spiegel Slashdot L4v Wiki Bugzilla ERTOS 2 Wiki

INDEX BY TOPIC

Computer Science

Automata and Formal Languages
Reqgular-Sets Presburger-Automata Functional-Automata Tree-Automata

Home Algorithms
DPT-SAT-Solver Depth-First-Search FFT GraphMarkingI|BP
About SATSolverVerification MuchAdoAboutTwo Distributed: DiskPaxos
Submission GenClock ClockSynchinst
{Hdesnos Data Structures
Updating entries AVL-Trees BDD BinarySearchTree FinFun Collections FileRefinement
List-Index Matrix Huffman Lazy-Lists-lI
Search
e Functional Programming
ndex Coinductive Stream-Fusion
Download

Programming Languages

Language Definitions: CoreC++ FeatherweightJava Jinja JinjaThreads
Locally-Nameless-Sigma POPLmark-deBruijn Simpl Type 26
Systems: iviniML VolpanoSiiith Logies: Simpl Abstract-Hoare-Logics
BytecodelLogicJmITypes DataRefinementiBP SIFPL Compiling: Compiling-

An Entry

<[>

an)

i1 Google SMH Spiegel

Slashdot

Archive of Formal Proofs

+ 4 http:/ /afp.sourceforge.net/entries/SATSolverVerification.shtml ¢ | (Qr Google

L4v Wiki Bugzilla ERTOS 2 Wiki

Home
About

Submission
Guidelines

Updating entries
Search

Index
Download

SOURCEFORGE.NET

Title:
Author:

date:
Abstract:

Submission

FORMAL VERIFICATION OF MODERN SAT SOLVERS

Formal Verification of Modern SAT Solvers
Filip Maric
2008-07-23

This document contains formal correctness proofs of modern SAT
solvers. Following (Krstic et al, 2007) and (Nieuwenhuis et al., 2006),
solvers are described using state-transition systems. Several different
SAT solver descriptions are given and their partial correctness and
termination is proved. These include:

e asolver based on classical DPLL procedure (using only a
backtrack-search with unit propagation),

e avery general solver with backjumping and leaming (similar to
the description given in (Nieuwenhuis et al., 2006)), and

o a solver with a specific conflict analysis algorithm (similar to the
description given in (Krstic et al., 2007)).

Within the SAT solver correctness proofs, a large number of lemmas
about propositional logic and CNF formulae are proved. This theory
is self-contained and could be used for further exploring of properties
of CNF based SAT algorithms.

Proof outline
Proof document

Browse theories

Downl

this en

Statistics @

 Numbers » Typical entry
—started 2003 —belongs to a paper
—now 77 entries —nice proof document
—473 kloc of proof scripts —small, 1-4 kloc
—22,000 lemmas —some big developments

—runs 4-6h daily

60000 loc

] : 40000 loc

- Lo TR E ,nlﬂmm

28

What works well ®

» Archival and Maintenance
—everything kept up to date by Isabelle team
—new release with every Isabelle release
—good number of submissions
—mostly good quality submissions

—some authors keep improving their entries
* (but need better high-level change tracking, versioning)

—good test bed for Isabelle team
—good place to publish proofs for paper authors
—authors can get repository access

Reuse?

* Not much reuse:
—Few entries designed as libraries
—Few entries used in others (3)

 Reasons
— Cultural (mostly papers)
—Good libraries go directly into Isabelle distribution
— Technical hurdles
* not enough instruction on how to include
* could give more built-in support, name spaces again

e can’t import from more than one image
» dependencies? hackage site?

30

Summary

Proof Libraries are like Program Libraries

e | 4. verified:
e 200kloc proof
e |ots of libraries

* some are reusable, costs more work, usually worth it

 Archive of Formal Proofs
e 77 entries, 470kloc proof in total
e works well for papers
* not so well for libraries yet, hope to get more in the future

NICTA

