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22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;
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Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)
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What we thought would work

• Automation
– First order provers (vampire)
– SAT for word problems
– Termination proofs

• What we thought might be a problem
– Performance
– Memory
– Lemmas/goals/proofs too big to parse

20
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Wish List

• Better name space management

• Better performance (time + memory)

• Better parallelisation
– run nitpick, quickcheck, sledgehammer etc in background
– run proofs faster interactively

• Better dependency handling
– faster turnaround for deep definition changes
– faster image rebuilding

22
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AFP

• Repository of Isabelle proofs
– Open Source (BSD + LGPL)
– Maintained
– Archived, version controlled 
– Quality controlled

• Hosted on SourceForge
– [http://afp.sf.net]

24

http://afp.sf.net
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An Entry
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Statistics

• Numbers
– started 2003
– now 77 entries
– 473 kloc of proof scripts
– 22,000 lemmas
– runs 4-6h daily  

28

0 loc

20000 loc

40000 loc

60000 loc

• Typical entry
– belongs to a paper
– nice proof document
– small, 1-4 kloc
– some big developments
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What works well

• Archival and Maintenance
– everything kept up to date by Isabelle team
– new release with every Isabelle release
– good number of submissions
– mostly good quality submissions
– some authors keep improving their entries

• (but need better high-level change tracking, versioning) 

– good test bed for Isabelle team
– good place to publish proofs for paper authors
– authors can get repository access

29
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Reuse?

• Not much reuse:
– Few entries designed as libraries
– Few entries used in others (3)

• Reasons
– Cultural (mostly papers)
– Good libraries go directly into Isabelle distribution
– Technical hurdles

• not enough instruction on how to include
• could give more built-in support, name spaces again
• can’t import from more than one image
• dependencies? hackage site?

30
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Summary

Proof Libraries are like Program Libraries

• Archive of Formal Proofs
• 77 entries, 470kloc proof in total

• works well for papers

• not so well for libraries yet, hope to get more in the future

• L4.verified:
• 200kloc proof

• lots of libraries

• some are reusable, costs more work, usually worth it
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