Proceedings of the Second Workshop on

Modules and Libraries for Proof
Assistants (MLPA-09)

Florian Rabe, Carsten Schiirmann
(organizers)

July 15, 2010, Edinburgh

affiliated with the IJCAR and ITP conferences at the
Federated Logic Conference



Over the last twenty years, users of proof assistants and auto-
mated theorem provers have created large libraries of formal proofs
and mathematical knowledge. Module systems help with the te-
dious tasks of organizing, sharing, and maintaining libraries. In
the view of the ever increasing complexity of this network of infor-
mation, module systems offer many of the answers to the practical
problems that proof assistant system developers face today and can
therefore be seen as an emerging research for the automated deduc-
tion community.

The MLPA workshop aims to attract and bring together re-
searchers and practitioners with background and experience in the
design, implementation, and application of module systems from dif-
ferent logic-based systems such as theorem provers, proof assistants,
and programming languages.

The second MLPA workshop will be held during the 2010
Federated Logic Conference. It is affiliated both with the Interna-
tional Conference on Interactive Theorem Proving (ITP) and the
International Joint Conference on Automated Reasoning (IJCAR).
The program committee consists of

e Stefan Berghofer, Technische Universitt Miinchen, Germany

e Derek Dreyer, Max Planck Institute for Software Systems, Ger-
many

e Georges Gonthier, Microsoft Research, United Kingdom

e Zhaohui Luo, University of London, United Kingdom

e Till Mossakowski, DFKI Lab Bremen, Germany

e Scott Owens, University of Cambridge, United Kingdom

e Florian Rabe, Jacobs University Bremen, Germany (chair)

e Carsten Schiirmann, I'T University of Copenhagen, Denmark

(chair)

The program will consist exclusively of invited talks.



Modules and records in Agda
Ulf Norell

Chalmers University

Abstract

In Agda, record types and modules are orthogonal features; record
types are simple sigma types without any advanced features such as sub-
typing or row polymorphism, and modules are non-first class entities
whose purpose is to manage names. I will show how modules and records
play together to allow us to work with hierarchical structures without
having to extend the language with more powerful features.

Large-scale proof and libraries in Isabelle
Gerwin Klein
University of New South Wales

Abstract

In this presentation I will give an overview on the experience on proof-
reuse and proof-libraries in Isabelle/HOL in two areas. The first is the
L4.verified project, a large-scale proof of implementation correctness on
the C level of the sel.4 Operating Systems Microkernel. The proof con-
sists of 200,000 lines of Isabelle script, includes multiple frameworks and li-
braries, had used external developments in core areas, and has contributed
libraries and components back into the Isabelle distribution. The second
part of the talk will be about the experience so far in submissions and re-
use in the Archive of Formal Proofs (AFP), an archive of user-contributed
Isabelle developments and libraries.

Mizar Mathematical Library - a large repository of
formalized mathematics

Andrzej Trybulec
University of Bialystok

Abstract

Mizar is a computer system verifying mathematical proofs translated
to or written in the Mizar language. The Mizar Mathematical Library
(MML) is the main repository of formalized and computer-checked math-
ematics. Over two hundred authors contributed to the MML, which at
the present includes almost ten thousand definitions and over fifty thou-
sand theorems with complete proofs. The Hahn-Banach theorem, the
Bing and Nagata-Smirnow metrization theorems, the Jordan curve theo-
rem, and the Brouwer fixed point theorem are among the most advanced
theorems contributed. The goal of the talk is to describe semantic mech-
nisms: structures, attributes and registrations used to develop abstract
mathematics in Mizar.



Proofs in structured specifications
Don Sannella

University of Edinburgh

Abstract

Work on structured algebraic specifications provide syntax and seman-
tics for a module language for proof assistants, together with a rich theory
giving useful connections to relevant notions including module refinement
and transformation. Modules can be built using different logical systems,
once appropriate connections between the logics in use are provided. This
theory takes a mainly model-oriented point of view, and proofs turn out
to be less straightforward than one might wish. I will give an overview of
this body of work, with stress on the issues that arise in connection with
proof.

Towards a broad spectrum proof certificate
Dale Miller
INRIA

Abstract

Proof assistants and automated theorem provers generally produce evi-
dence of a successful proof in an assortment of (often ad hoc) formats. The
extent to which one prover can understand and check such evidence from
another prover is the extent to which they can successfully inter-operate.
I will outline some recent work on providing a single proof system that
can be tuned so that it can host proof systems such as sequent calculus,
natural deduction, tableau, and tabled deduction for classical and intu-
itionistic logics. A proof checker for the hosting proof system can then
immediately be a proof checker for all of these other proof systems. The
hope is that such a flexible format for proof certificates can be the basis
of a lingua franca among proof systems. Central to this work is the use
of linear logic and focused proof systems.

A Bottom-Up Approach to Safe Low-Level Programming
Adam Chlipala

Harvard University

Abstract

It’s hard to please everyone with a systems programming language. If
we follow the usual rules of language design, every programmer will miss
some feature and complain that some feature should have been left out.
Safe programming languages rely on increasingly complicated (and often
arbitrary-seeming) type systems and program analyses, and yet still these



features don’t support full verification. What if we stopped trying to de-
sign a single language and instead let programmers implement language
features as libraries? With traditional compiler architectures, it would be
very hard to ensure that the different features played well together... but
what if our platform is a proof assistant, not a traditional compiler? In
this talk, I will discuss some preliminary experiments of that kind: imple-
menting an open ”systems language” via Coq metaprogramming libraries
that build verified machine code programs.



