
A Formalized Set-Theoretical Semantics of
Isabelle/HOL

Florian Rabe and Mihnea Iancu

Jacobs University Bremen

Abstract. Higher-order logic (HOL) and Zermelo-Fraenkel set theory (ZFC) are
very different foundations of mathematics. The latter is preferred in mathemat-
ics, the former has been used successfully in machine-readable formalizations of
mathematics and computer science. Isabelle is a logical framework offering a va-
riety of advanced features such as a module system and axiomatic type classes.
Its most advanced use is the Isabelle implementation of HOL.
We give a translation from Isabelle/HOL to ZFC set theory that formalizes its
set-theoretical semantics. The whole translation is represented in the Edinburgh
logical framework LF and includes representations of Isabelle, Isabelle/HOL, and
ZFC in LF. The soundness of the semantics is guaranteed by the LF type theory.
All representations are implemented in and verified by the Twelf system.

1 Introduction

Both type theory and (axiomatic) set theory were introduced in the beginning of the
20th century as a response to the inconsistencies discovered in naive set theory, the
Grundlagenkrise of mathematics. While the majority of mathematicians favor set the-
ory, the advent of computer science and the desire to recreate mathematics in machine-
understandable way has fostered the development of type theories. This is because type
theories favor algorithmic definitions and decidable notions, and these prove indispens-
able when formalizing major parts of mathematics in a computer ([6,10]) or when im-
plementing automated reasoning support for mathematics ([13,7,2]). Only few systems
use set theoretical foundations such as Mizar ([24]) or Isabelle/ZF ([20]), and the latter
is less popular than its sister Isabelle/HOL ([17]).

In this paper, we give a formal translation from the most popular type-theoretical
foundation – higher-order logic (HOL, [4]) – to the most popular set-theoretical one –
Zermelo-Fraenkel set theory ([26,5]). This translations yields a formal set-theoretical
semantics of HOL interpreting types as sets, terms as elements, and theorems as theo-
rems.

Among the versions of HOL, we pick the Isabelle/HOL implementation because
Isabelle is arguably the most advanced language for large scale formalizations offering
polymorphism, type classes and a strong module system as well as, e.g., structured
proofs and notation support. Furthermore, Isabelle and Isabelle/HOL have been used
extensively to formalize specification languages and software verification. Therefore, it
is interesting to formalize the semantics of Isabelle itself.

A formal translation between two languages requires to represent both of them in
a formal framework. We employ the Edinburgh logical framework LF and its Twelf

implementation ([11,21]) for two reasons. Its dependent type theory permits us to for-
malize ZFC set theory in a way that is very close to a mathematician’s intuition. And
its module system ([22]) is strong enough to represent Isabelle locales and type classes.
Furthermore, the Twelf module system can verify the type-preservation and thus the
soundness of the translation.

For a researcher on Isabelle and HOL, our main result is the representation of Is-
abelle/HOL and its set-theoretical semantics in LF. For a mathematician, this serves as
a formal proof that the primitives of Isabelle/HOL can be seen as syntactic sugar to
reason about ZFC set theory. And for a computer scientist familiar with type theory
but not with the idiosyncrasies of Isabelle and HOL, it provides an entry point that is
complementary to the existing documentation.

This paper is organized as follows. In Sect. 2, we will repeat the basics of Isabelle
and LF to make the paper self-contained. In Sect. 3, we design a slight extension to the
LF module system needed for the representation of Isabelle type classes. In Sect. 4, 5,
and 6 we describe the formalizations of Isabelle/HOL, ZFC, and the translation of the
former into the latter in LF. The complete Twelf source files are available as [15].

2 Preliminaries

2.1 Isabelle and HOL

Isabelle Isabelle is a logical framework and generic LCF-style interactive theorem
prover based on polymorphic higher-order logic ([18,19]). It is a grown and widely
used system, which has led to a rich ontology of Isabelle declarations. We will only
consider the core and module system declarations in this paper. And even among those,
we will restrict attention to a proper subset of Isabelle’s power. For the purposes of this
paper, we make some minor adjustments for simplicity and consider Isabelle’s language
to be generated by the grammar in Fig. 1. Here | and ∗ denote alternative and repetition,
and we use special fonts for nonterminals and keywords.

A theory is a named group of declarations. Theories may use imports to import
other theories, which yields a simple module system. Within theories, locale decla-
rations provide a second module system. The core declarations occurring in theories
(thysymbol) and locales (locsymbol) are quite similar. consts and fixes declare typed
constants c :: τ . defs and defines declare definitions for a constant f taking n arguments
as f_def : f x1 . . . xn ≡ t where t is a term in the variables xi. axioms and assumes
declare named axioms a asserting a proposition ϕ as a : ϕ. lemma declares a named
lemma l asserting ϕwith proof P as l : ϕ P . Furthermore, in theories, typedecl declares
n-ary type operators t as (α1, . . . , αn) t, and similarly types declares an abbreviation t
for a type τ in the variables αi as (α1, . . . , αn) t = τ .

The constant declarations within a locale serve as parameters that can be instanti-
ated. The intuition is that a locale instance loc where σ takes the locale with name
loc and translates it into a new context (which can be a theory or another locale). Here
σ is a list of parameter instantiations (namedinst) of the form c = t instantiating the
parameter c of loc with the term t in that new context.

Locale instances are used in two places. Firstly, locale declarations may contain a
list of instances used to inherit from other locales. In a locale declaration

2

theory ::= theory name imports name∗ begin thycont end
thycont ::= (locale | sublocale | interpretation |

| class | instantiation | thysymbol)∗

locale ::= locale name = (name : instance)∗ for locsymbol∗ + locsymbol∗

sublocale ::= sublocale name < instance proof ∗

interpretation ::= interpretation instance proof ∗

instance ::= name where namedinst∗

class ::= class name = name∗ + locsymbol∗

instantiation ::= instantiation type :: (name∗)name begin locsymbol∗ proof ∗ end
thysymbol ::= consts con | defs def | axioms ax | lemma lem

| typedecl typedecl | types types
locysymbol ::= fixes con | defines def | assumes ax | lemma lem
con ::= name :: type
def ::= name : name var∗ ≡ term
ax ::= name : prop
lem ::= name : prop proof
typedecl ::= (var∗) name
types ::= (var∗) name = type
namedinst ::= name = term
type ::= var :: name | name | (type, . . . , type) name | type⇒ type | prop
term ::= var | name | name term∗ | λ(var :: type)∗.term
prop ::= prop =⇒ prop |

∧
(var :: type)∗.prop | term ≡ term

proof ::= a proof term
name, var ::= identifier

Fig. 1. Simplified Isabelle Grammar

locale loc = ins1 : loc1 where σ1 . . . insn : locn where σn for Σ + Σ′

the new locale loc inherits via n names instances: Instance insi inherits from the locale
loci via the list of parameter instantiations σi. The declarations in Σ logically precede
the instances, i.e., are available for the parameter instantiations. Thus, the list of decla-
rations of loc consists of the declarations of Σ, a copy of the declarations of each loci
translated by σi, and finally the declarations of Σ′. The σi do not have to instantiate
all parameters of loci – parameters that are not instantiated become parameters of loc.
Thus, the parameters of loc consist of the not-instantiated parameters of the loci and
the constants declared in Σ and Σ′. The names insi serve as qualifiers to resolve name
clashes if two declarations of the same name are inherited from different locales.

Secondly, a sublocale declaration sublocale loc′ < loc where σ π postu-
lates a translation from loc to loc′, which maps the parameters of loc according to σ.
The axioms and definitions of loc induce proof obligations over loc′ that must be dis-
charged by giving a list π of proofs. If all proof obligations are discharged, all theorems
about loc can be translated to yield theorems about loc, and Isabelle does that automat-
ically. A locale interpretation is very similar to a sublocale. The difference
is that all loc expressions are translated into the current theory rather than into a second
locale.

3

The concepts of locales and type classes have recently been aligned ([9]) and in
particular type classes are also locales. But the syntax still reflects their different use
cases. A type class is a locale inheriting only from other type classes and only with-
out parameter instantiations. Thus, the locale syntax can be simplified to class C =
C1 . . . Cn+Σ where C inherits from the Ci. All declarations in Σ may refer to at most
one type variable, which can be assumed to be of the form α :: C. Thus, Σ provides
polymorphic operations c1, . . . , cn on the parametric type α and axioms about them.
An instance of a type class is a tuple (τ, c1_def, . . . , c2_def) where τ is a type and
ci_def is a definition for ci at the type τ . Because every ci can only have one definition
per type, the definitions can be dropped from the notation; then the type class can be
seen as a unary predicate on types τ .

Type class instantiations are of the form instantiation t :: (C1, . . . , Cn)C
begin Σ π end where t is an n-ary type operator. Σ contains the definitions for the
operations of C at the type (τ1, . . . , τn)t in terms of the operations of the instances
τi :: Ci. This creates proof obligations for the axioms of C, and we assume that all the
needed proofs are provided as a list π. The semantics is that if τi :: Ci are type class
instances, then also (τ1, . . . τn)t :: C. Note that this includes base types for n = 0.

Finally the inner syntax for terms, types, propositions, and proof terms – also called
the Pure language – is given by an intuitionistic higher-order logic with shallow poly-
morphism. Types are formed from type variables α :: C for type classes C, base types,
type operator applications, function types, and the base type prop of propositions. Type
class instances of the form τ :: C are formed from type variables α :: C and type op-
erator applications (τ1, . . . , τn)t for a corresponding instantiation t :: (C1, . . . , Cn)C
and type class instances τi :: Ci. We will assume every type to be a type class instance
by using the special type class Type of all types.

Terms are formed from variables, typed constants, application, and lambda abstrac-
tion. Constants may be polymorphic in the sense that their types may contain free type
variables. When a polymorphic constant is used, Isabelle automatically infers the type
class instances for which the constant is used. Propositions are formed from implication,
universal quantification over any type, and equality on any type. Finally, we omit the
Isar proof language and simply use proof terms from Pure’s natural deduction calculus.

Isabelle/HOL HOL ([17]) is the most often used and farthest developed theory of
Isabelle. It formalizes classical higher-order logic with shallow polymorphism, non-
empty types, and choice operator ([4,8]).

Isabelle/HOL uses the same types and function space as Isabelle. However, it intro-
duces a type bool for HOL-propositions (i.e., booleans since HOL is classical) that
is different from the type prop of Isabelle-propositions. The coercion Trueprop :
bool⇒ prop is used as the Isabelle truth judgment on HOL propositions. HOL declares
primitive constants for implication, equality on all types, definite description operator
the x : τ.P for types τ and predicates P : τ ⇒ bool, and (in the theory Hibert_Choice)
the indefinite description operator eps of the same type.

Furthermore, HOL declares a polymorphic constant undefined of any type and (in
the theory Nat) an infinite base type ind. We omit these in the following, but they are
part of our encoding in [15]. Based on these primitives and their axioms, simply-typed
set theory is developed by purely definitional means.

4

Isabelle/HOL is not only an Isabelle theory. The Isabelle system also provides spe-
cial support for the HOL theory. Among those, we will only consider the most important
one, namely Gordon/HOL-style type definitions using representing sets. A set A on the
type τ is given by its characteristic function, i.e., A : τ ⇒ bool. An Isabelle/HOL type
definition is of the form typedef (α1, . . . , αn) t = A P where P and A contain the
variables α1, . . . , αn and P proves that A is non-empty. If such a definition is in effect,
t is an additional type that is axiomatized to be equal to the set A.

2.2 LF

LF ([11]) is a logical framework based on dependent type theory and the judgments-
as-types methodology. It is related to Martin-Löf type theory ([16]) and the corner of
the λ-cube ([1]) that extends simple type theory with dependent function types. We will
work with the Twelf implementation of LF ([21]).

The non-modular declarations in an LF signature are kinded type family symbols
a : K and typed constants c : A. Both may carry definitions, e.g., c : A = t introduces
c as an abbreviations for t. The objects of Twelf are kinds K, kinded type families
A : K, and typed terms t : A. type is the kind of types, and A → type is the kind
of type families indexed by terms of type A. We use Twelf notation for binding and
application: The type Πx:AB(x) of dependent functions taking x : A to an element of
B(x) is written {x : A}B x, and the function term λx:At(x) taking x : A to t(x) is
written [x : A] t x. We write A→ B instead of {x : A}B if x does not occur in B, and
we will also omit the types of bound variables if they can be inferred.

The Twelf module system ([22]) is based on the notions of signatures and signature
morphisms ([12]). Given two signatures sig S = {Σ} and sig T = {Σ′},
a signature morphism from S to T is a type-preserving map µ of Σ-symbols to Σ′-
expressions. Thus, µ maps every constant c : A of Σ to a term µ(c) : µ(A) and every
type family symbol a : K to a type family µ(a) : µ(K). Here, µ(−) doubles as the
homomorphic extension of µ to closed Σ-expressions. Signature morphisms preserve
typing and kinding, i.e., if `Σ E : F , then `Σ′ µ(E) : µ(F).

The modular declarations are signatures and explicit morphisms called views. Sig-
natures may be nested and may import other signatures via inclusions and structures.
We will work with the following slightly simplified grammar:

Signatures Σ ::= · | Σ, sig T = {Σ} | Σ, view v : S → T = {σ}
| Σ, include S | Σ, struct s : S = {σ}
| Σ, c : A[= t] | Σ, a : K[= A]

Instantiations σ ::= · | σ, c := t | σ, a := A | σ, struct s := µ
Kinds K ::= type | A→ K
Type families A ::= S.aµ | A t | {x : A}A
Terms t ::= S.cµ | x | [x : A] t | t t
Morphisms µ ::= (v | T.s | {σ : S → T})∗

We pick a syntactically awkward but conceptually elegant syntax for constants and
type family symbols: The constant S.cµ is available in signature T and has type µ(A) iff
c : A is a constant declared in signature S and µ is a signature morphism from S to T .

5

This reduces the difficult question which constants are in scope to defining well-formed
morphisms.

Signature morphisms µ are compositions of atomic morphisms: µ µ′ is a morphism
from R to T if µ and µ′ are morphisms from R to S and S to T , respectively. The
atomic morphisms are given below.
{σ : S → T} is an explicitly given signature morphism. If declared on toplevel, it is

called a view. Because judgments are represented as types and proofs as terms, signature
morphisms must map axioms and inference rules to proofs and derived rules. Thus,
views have the flavor of a theorem expressing the judgment-preserving representation
of one signature in another.

An inclusion include S in T literally includes S into T . The empty list is a
signature morphism from S to T iff the pair (S, T) is in the transitive-reflexive closure
of the include relation. This makes local and included constants available, which
we abbreviate as S.c or simply c. Similarly, within a subsignature, the empty list is a
morphism from its supersignature.

A structure struct s : S = {σ} declared in T enforces a signature morphism
T.s from S into T by copying all declarations of S into T . It has the same effect as
declaring a constant s.c : T.s(A) in T for every constant c : A of S. In addition,
σ may instantiate some symbols of S with expressions over T : If σ contains c := t,
the constant s.c is defined as t. Technically, s.c is just an abbreviation for the constant
S.cT.s. The same holds for type family symbols a.

Because structures are named, a signature may have multiple structures of the same
signature, which are all distinct. For example, if S already contains a structure r in-
stantiating a third signature R, then struct r′ : R in T leads to the two morphisms
r′ and S.r T.s, which we abbreviate as s.r, from R to T and thus two copies of the
constants of R. Structures may also instantiate whole structures at once: If T declares
instead struct r′ : R = {struct r := T.r′}, then the two instances s.r and r′ are
shared.

In order to represent Isabelle type classes, we will add one feature to Twelf: mor-
phism variables. We describe them below, but their productions are already given in
gray.

3 Morphism Variables in LF

We add a feature to the LF module system that permits to abstract over morphism vari-
ables: For signatures S, we permit variables X : S and use X as a morphism from
S into the current signature. Thus, if c : A is a constant declared in S, the constant
S.cX with type X(A) becomes well-formed in context X : S. Thus, we add the fol-
lowing productions to the grammar (where we omit the binding of morphism variables
occurring in kinds for simplicity):

Type families A ::= {X : S}A
Terms t ::= [X : S] t | t µ
Morphisms µ ::= X

6

This can also be seen as using S as a (dependent) record type and morphisms µ :
S → T as record values over the signature T . Then S.cµ is just the projection out of
the record type S at the field c applied to the record value µ.

The rules are the same as for the abstraction over term variables x : A. For a term
t : A : type in a free variable X : S, we have the abstraction [X : S] t : {X :
S}A : type. And for terms f : {X : S}A and a morphism µ from S into the current
signature, we have the application f µ : A′ whereA′ arises by substitutingX inA with
µ. Furthermore, we have the straightforward αβη-conversions.

The extension is meant to be conservative, i.e., to be elaborated into the core system.
If S is of the form {c1 : B1. . . . cn : Bn}. Then [X : S] t is elaborated to [X.c1 :
X(B1)] . . . [X.cn : X(Bn)] t′ where t′ is like t but with every occurrence of S.ciX

replaced with the fresh variable X.ci. Accordingly, we elaborate {X : S}A. f µ is
elaborated to f S.c1µ . . . S.cn

µ.
If S contains structures, we eliminate the structures first, using the elaboration given

in [22]. Furthermore, if S contains defined constants, we expand all definitions and then
drop the defined constants. Finally, to handle the case of declarations include R in
S, we make the following restriction: Abstraction over the variable X : S within a
signature T is only well-formed if T includes all signatures that are included into S.
Furthermore, we define that X maps all included symbols to themselves; and similarly
an application f µ is only well-formed if µ maps every included symbol to itself. Then,
all included symbols of S can be skipped in the elaboration.

This extended module system is not conservative over LF if S contains type dec-
larations because LF does not permit type variables. But we retain conservativity if
we make the following additional restriction: Abstraction over a variable X : S is only
well-formed if all type declarations available in S are included from other signatures. In
light of the above restriction on inclusion, we can show that the elaboration of abstrac-
tions over X : S only introduces term variables. Thus, our extended module system is
conservative.

The restriction to signatures with only included type declarations is quite natural.
When LF is used as a logical framework, type declarations are usually only used at the
meta-level to represent the syntactic categories and judgments of the object logic and to
reason about object logic. LF signatures representing theories of the object logic usually
only add term declarations.

4 Representing Isabelle/HOL in LF

The representation of Isabelle in LF proceeds in two steps. In a first step, we declare an
LF signature Pure for the inner syntax of Isabelle. This syntax declares symbols for
all primitives that can occur (explicitly or implicitly) in Pure expressions. In a second
step, every Isabelle expression E is represented as an LF expression pEq. Finally we
have to justify the adequacy of the encoding. In this section we will only sketch the
definition of pEq. A full definition is given in the appendix.

For the inner syntax, the LF signature Pure is given in Fig. 4. This is a rather typical
encoding of higher-order logic in LF. Pure types τ are encoded as LF-terms pτq : tp
and Pure terms t :: τ as LF-terms ptq : tm pτq. Note that contrary to the encoding

7

sig Pure = {
tp : type.
⇒ : tp→ tp→ tp. infix right 0⇒.
tm : tp→ type. prefix 0 tm.
λ : (tm A→ tm B)→ tm (A⇒ B).
@ : tm (A⇒ B)→ tm A→ tm B. infix left 1000 @.

prop : tp.∧
: (tm A→ tm prop)→ tm prop.

=⇒ : tm prop→ tm prop→ tm prop. infix right 1 =⇒.
≡ : tm A→ tm A→ tm prop. infix none 2 ≡.

` : tm prop→ type. prefix 0 `.∧
I : (x : tm A ` (B x)) → `

∧
([x]B x).∧

E : `
∧

([x]B x) → {x : tm A} ` (B x).
=⇒I : (` A → ` B) → ` A =⇒ B.
=⇒E : ` A =⇒ B → ` A → ` B.
refl : ` X ≡ X .
subs : {F : tm A → tm B} ` X ≡ Y → ` F X ≡ F Y.
exten : {x : tm A} ` (F x) ≡ (G x) → ` λF ≡ λG.
beta : ` (λ[x : tm A]F x) @ X ≡ F X .
eta : ` λ ([x : tm A]F @ x) ≡ F .
sig Type = {this : tp.}.

}.

Fig. 2. LF Signature for Isabelle

of HOL in Isabelle, the LF function space A → B with λ-abstraction [x : A] t and
application f t is distinguished from the encoding tm (pσq ⇒ pτq) of the Isabelle
function space with application pfq @ ptq and λ-abstraction λ([x : tm pτq] ptq). Pure
propositions ϕ are encoded as LF-terms pϕq : prop, and derivations of ϕ as LF-terms
of type ` pϕq. Where possible, we use the same symbol names in LF as in Isabelle,
and we can also mimic most of the Isabelle operator fixities and precedences.

The signature Pure only encodes how composed Pure expressions are formed from
the atomic ones. The atomic expressions – variables and constants etc. – are added when
encoding the outer syntax as LF declarations. For the non-modular declarations, this is
straightforward, and overview is given in the following table:

Expression Isabelle LF
base type, type operator (α1, . . . , αn) t t : tp→ . . .→ tp→ tp
type variable α α : tp
constant c :: τ c : tm pτq
variable x :: τ x : tm pτq
assumption/axiom/definition a : ϕ a : ` pϕq
theorem a : ϕ P a : ` pϕq = pPq

8

The main novelty of our encoding is to also cover the modular declarations. The
basic idea is to represent all high-level scoping concepts as signatures and all relations
between them as signature morphisms as in the following table:

Isabelle LF
theory, locale, type class signature
theory import morphism (inclusion)
locale import, type class import morphism (structure)
sublocale, interpretation, type class instantiation morphism (view)
instance of type class C morphism with domain C

Isabelle theories and theory imports are encoded directly LF-signature and signature
inclusions. The only subtlety is that the LF encodings additionally include our Pure
signature. Isabelle locales are encoded as subsignatures: A locale

locale loc = ins1 : loc1 where σ for Σ +Σ′

is encoded as the LF signature

sig loc = {pΣq struct ins1 : loc1 = {pσq}. pΣ′q}.

Locales inheriting from more than one locale are encoded correspondingly, but some
sharing declarations become necessary.

Sublocale declarations

sublocale loc′ < loc where σ π

are encoded as view from the super- to the sublocale (for some fresh name ν):

view ν : loc→ loc′ = {pσq pπq}.

Locale interpretations are interpreted in the same way except that the codomain is the
current LF signature (which encodes the Isabelle theory containing the locale interpre-
tation).

We have the general result that loc is a sublocale of loc′ (loc can be interpreted in
the theory T) iff there is an LF signature morphism from loc to loc′ (from loc to T). For
example, loc is a sublocale of loc1 from above via the composed morphism ν loc.ins1.
Note that there may be several different sublocale relationships between two locales,
e.g., for monoid < ring or semilattice < lattice. In LF these are distinguished
elegantly as different morphisms between the locales.

The representation of Isabelle type classes in LF is non-trivial. The basic idea is
that an Isabelle type class C is represented as an LF signature C that contains all the
declarations of C and a field this : tp. All occurrences in C of the single permitted
type variable α :: C are translated to this such that this represents the type that is an
instance of C. An Isabelle type class instance τ :: C is represented as an LF morphism
pτ :: Cq from C into the current LF signature that maps the field this to pτq and
all operations of C to the encoding of their definitions at τ . This means that α is not

9

considered as a type variable but as a type declaration that is present in the type class.
This change of perspective is essential to obtain an elegant encoding of type classes.

In particular, the subsignature Type of Pure represents the type class of all types.
Morphisms with domain Type are simply terms of type tp, i.e., types.

Type class instantiations

instantiation t :: (C1, . . . , Cn)C begin Σ π end

are represented as LF functors taking morphisms from the Ci and returning a morphism
from C. LF functors are themselves a derived notion represented as a signature

sig ν = {struct α1 : C1 . . .struct αn : Cn}.

collecting the input of the functor and a signature morphism

view ν′ : C → ν = {this := t α1(C1.this) . . . αn(Cn.this). pΣqpπq}.

showing how C can be realized in terms of the input. ν′ must map the field tp of C to
the type that is an instance of C. This type is obtained by applying t to the argument
types that are instances of the Ci. In Isabelle, this is t α1 . . . , αn; in LF, each αi is a
structure of Ci, thus the morphism application αi(Ci.this) is needed.

Given type class instances τi :: Ci with encodings pτi :: Ciq : Ci → S (where S
is the current signature), the encoding p(τ1, . . . , τn)t :: Cq : C → S is obtained as the
composition ν′ {. . .struct αi := pτi :: Ciq. . . .}. Note that we indeed have

p(τ1, . . . , τn)t :: Cq(C.this) = {. . .struct αi := pτi :: Ciq. . . .}(ν′(C.this))

{. . .struct αi := pτi :: Ciq. . . .}(t α1(C1.this) . . . αn(Cn.this)) =

t pτ1 :: C1q(C1.this) . . . pτn :: Cnq(Cn.this) = t pτ1q . . . pτnq

Like for locales, we have the general result that the Isabelle subclass relationC ⊆ D
holds iff there is an LF morphism incl : D → C. For example, if the type class instance
τ :: C (occurring in some theory or locale S) is represented as a morphism pτ :: Cq :
C → S, then the type class instance τ :: D is represented as pτ :: Dq = incl pτ :: Cq.
Isabelle has the limitation that there can be at most one way how C is a subclass of D,
which has the advantage that incl is unique and can be dropped from the notation. In
LF, we have to make it explicit.

Finally, an Isabelle constant c :: τ with type parameters αi :: Ci is represented as
an LF-constant c : {α1 : C1} . . . {αn : Cn} tm pτq. Here in pτq every occurrence
of the morphism variable αi is represented as αi(Ci.this). If c occurs with inferred
type arguments τi :: Ci in a composed expression, it is represented in LF as pcq =
c pτ1 :: C1q . . . pτn :: Cnq. Definitions, axioms, and theorems with type parameters
are represented accordingly.

Theorem 1. A sequence of Isabelle theories T1 . . . Tn is well-formed (in the sense of
Isabelle) iff the sequence of LF signatures Pure pT1q . . . pTnq is well-formed (in the
sense of LF extended with morphism variables).

10

Proof. To show the adequacy for the encoding of the inner syntax is straightforward. A
similar proof was given in [11].

For the outer syntax, the only difficulty is to show that at any point in the translated
LF signatures exactly the right atomic expressions are in scope. This has to be verified
by a difficult and tedious comparison of the specifications of Isabelle and Twelf. In
particular, in our simplified grammar for Isabelle, we have omitted the features that
would break this result such as overloading and unqualified locale instantiation, which
can only be translated to Twelf by inventing and keeping track of fresh names.

HOL We can apply the above translation directly to obtain pHOLq. The fragment aris-
ing from translating only the primitive declarations of HOL is given in the upper part
of Fig. 4. For readability, we have added the auxiliary functions ↑, .=′, and −→. These
have the effect that, e.g., A −→ B in Isabelle can be encoded as A −→ B in LF, which
abbreviates −→′ Pure.@APure.@B. We also use an open declaration to use some
Pure symbols without qualification. (Note that the defined constants true, false, and
disjunction | are not expanded in the axiom of excluded middle.)

More importantly, we have to extend HOL with LF declarations that represent the
HOL type definitions. These are given in the lower part of Fig. 4 where we omit the
obvious definitions of nonempty. The central declaration here is typedef , which takes
a set S on the type A and a proof that S is nonempty and returns a new type T . The
remaining declarations represent the two new primitive constants Rep and Abs and
three axioms that Isabelle/HOL generates for every well-formed type definition. The
axioms make Rep and Abs mutually inverse functions between T and the subtype of A
containing the elements of S. We refer to [25] for the details.

5 Representing Set Theory in LF

Now we give an LF signature for ZFC set theory ([26,5]). Using the dependent typing
of LF, we can represent untyped set theory in a rather natural way and then introduce a
typed language on top. Based on this typed language, we can finally formulate the nec-
essary prerequisites to interpret Isabelle/HOL. Our LF signature for ZFC is developed
in a strictly definitional way: After the initial primitives all further notions are added
using Twelf definitions. We will only sketch the development of set theory here, which
covers over 1000 lines of Twelf declarations, and refer to [15] for the Twelf sources.

Our axiomatization of untyped set theory is based on classical first-order logic with
equality and the single sort set, and the natural deduction proof calculus. We use a type
prop for propositions, and a truth judgment `: prop → type. To obtain ZFC, we add
a binary predicate ∈: set → setprop and the axioms of extensionality, (unordered)
pairing, union, powerset, and infinity, as well as the axiom schemes of specification
and replacement. Our axiomatization stays close to the ZFC axioms as they usually ap-
pear in the literature in using only a binary predicate for membership and no function
symbols. This is in contrast to Mizar where primitive function symbols are used for sin-
gleton, unordered pair, and union ([24,23]), and to Isabelle/ZF where primitive function
symbols are used for empty set, powerset, union, infinite set, and replacement ([20]).

Not using primitive function symbols means that there are no terms besides vari-
ables. Therefore, we add the (definite) description operator δ : {F : set → prop} `

11

sigHOL = {
include Pure open tp tm ` ⇒ prop λ @

∧
=⇒≡.

bool : tp.
trueprop : tm bool⇒ prop.
↑ : tm bool→ tm prop

= [x] trueprop@x. prefix 3 ↑.
the : tm (A⇒ bool)⇒ A.
eps : tm (A⇒ bool)⇒ A.
.
=
′ : tm A⇒ A⇒ bool.
.
= : tm A→ tmA→ tm bool

= [x][y]
.
=
′

@x@ y. infix left 50 .
=.

−→’ : tm bool⇒ bool⇒ bool.
−→ : tm bool→ tm bool→ tm bool

= [x][y] −→′ @x@ y. infix left 25 −→.
refl : `↑ X .

= X .
subst : `↑ S .

= T −→ P @S
.
= P @T .

ext : ` (
∧

[x : tm A] ↑ F @x
.
= G@x) =⇒↑ (λ[x]F @x)

.
= (λ[x]G@x).

the_eq_trivial : `↑ the@(λ[x]x
.
= A)

.
= A.

someI : `↑ (P @X) −→↑ (P@(eps@P)).
impI : ` (↑ P =⇒↑ Q) =⇒↑ (P −→ Q).
mp : `↑ (P −→ Q) =⇒↑ P =⇒↑ Q.
iff : `↑ (P −→ Q) −→ (Q −→ P) −→ (P

.
= Q).

true_or_false : `↑ (P
.
= true) | (P .

= false).

set : tp→ tp = [a]a⇒ bool.
nonempty : (tm set A)→ bool = . . .
typedef : {s : tm set A} `↑ nonempty s → tp.
Rep : tm (typedef S P)⇒ A.
Abs : tm A⇒ (typedef S A)P .
Rep_thm : {x : tm typedef S P} `↑ (Rep@x) ∈ S.
Rep_inverse : {x : tm typedef S P} `↑ Abs@(Rep@x)

.
= x.

Abs_inverse : {y : tm A} ` (↑ y ∈ S) =⇒ (↑ Rep@(Abs@ y))
.
= y.

}.

Fig. 3. LF signature for HOL with Type Definitions

∃!([x]F x) → set, which takes a formula F (x) with a free variable x and a proof of
∃!x.F (x) and returns a set (where the binder ∃! of unique existence is defined as an
abbreviation). Because a proof is passed as an argument, the LF type system guarantees
that δ encodes the accepted mathematical practice of giving a name for a uniquely de-
termined object. δ is axiomatized using an axiom scheme F (δ F P) (from which we
can derive proof irrelevance).

Untyped set theory is not able to interpret a typed theory directly because there
is only one type set, but we want to interpret every type of Isabelle/HOL as a type
over ZFC. Therefore, we develop a typed set theory within ZFC inspired by a similar
treatment in [3]. First we introduce the type neset of non-empty ZFC sets. Intuitively,

12

we can think of it as the dependent product Σa:setded a 6= ∅, i.e., the type of pairs of a
set and a proof of non-emptiness. Such pairs are introduced using elem : Πa:setded a 6=
∅ → neset. Then, we use Elem a : type to represent the type of elements of the
non-empty set a, which we can think of as the product Σe:setded e ∈ a. Again we use
elem : Πe:setded e ∈ a→ Elem a as the introductory form for such pairs.

Base on this, we can introduce a variety of operations for typed set theory as abbre-
viations, in particular:

func : set→ set→ set = . . .
lambda : (Elem A→ Elem B)→ Elem(func A B) = . . .
app : Elem(func A B)→ Elem A→ Elem B = . . .
forall : (Elem A→ prop)→ prop = . . .
filter : (Elem A→ prop)→ set = . . .
eq : Elem A→ Elem A→ prop = . . .
ifte : {F : o}(` F → Elem A)→ (` ¬ F → Elem A)→ Elem A = . . .

func A B is the set of functions from A to B, and lambda[f : Elem A] and
app f x formalize {(x, f(x)) : x ∈ A} and “the y such that (x, y) ∈ f”. filter[x :
Elem A]F x formalize ∀x ∈ A.F (x) and {x ∈ A|F (x)} respectively. eq a b is equal-
ity of elements of the same “type”. And ifte F X Y formalizes “if F then X else Y ”.
Note that X and Y take proofs of F and ¬F , respectively, as arguments. This permits
to use an object X (Y) that only exists if F is true (false). Note that the LF type system
guarantees that ifte F X Y exists without the need to assume a default or undefined
value, which would alter the ZFC set theory.

A set-theoretical semantics of HOL was given [8] using a universe of non-empty
sets, which serve as the interpretation of the monomorphic types, that is closed under
subsets, products, powersets, and infinity. HOL models consist of a universe with a
choice function for it and interpretations of all declared constants and types. We could
axiomatize such models in some other logical formalism and then prove that they can
interpret HOL. We did the latter for first-order logic in [14], and it would be easy to do
the same for HOL. However, contrary to first-order logic (where the universe is simply
a set), both giving a universe for HOL and proving that it satisfies the needed properties
is quite cumbersome in practice.

Therefore, we go a slightly different way here and treat set theory itself as the se-
mantics of HOL, i.e., we use the (proper) class neset of non-empty sets as the universe
and assume a global choice function choice : {a : neset}Elem a. Clearly, every HOL
model can be embedded into this semantics. Technically, the use of a global choice
function makes our set theory stronger than ZFC, but if a specific universe and a choice
function for it are given, it is easy to do without choice.

6 Interpreting Isabelle/HOL in Set Theory

Let ZFC be our LF signature for ZFC. Then we can give the semantics of Isabelle
and Isabelle/HOL as two LF signature morphisms from Pure and HOL into ZFC.
The basic idea of the view is to interpret Isabelle types as non-empty sets and Isabelle

13

propositions as booleans. Then the interpretation of⇒, λ, @, =⇒,≡, and
∧

is straight-
forward. Finally, ` F is interpreted as the ZFC proposition that F is interpreted as 1,
and all proof rules of Pure are interpreted as corresponding derived rules.

view PureSem : Pure→ ZFC = {
tp := neset.
⇒ := func.
tm := elem.
λ := lambda.
@ := app.
prop := bool.∧

:= ∀.
=⇒ :=⇒.
≡ := eq.
` := [x] ` eq x 1.
...

}.

The listing on the right gives a frag-
ment of the resulting view, and we re-
fer to [15] for the full encoding. We use
bool to abbreviate the LF-encoding of the
set {0, 1} with 0 = ∅ and 1 = {0}.
It would be more elegant to interpret Is-
abelle propositions as propositions about
set theory, i.e., prop := prop. However,
that is impossible because prop is a reg-
ular type in Isabelle and thus must be in-
terpreted as a set. Instead of the booleans,
any Heyting algebra could be chosen.

Similarly, we obtain a viewHOLSem
from HOL to ZFC. Again we only give
a fragment. bool is also mapped to the
booleans, which means that trueprop is simply the identity. The description opera-
tors the and eps are interpreted using ifte and choice. Here the then-branch has to use
elem to construct an element of neset, i.e., a non-empty set, and the second argument
of elem must be a proof that this set is non-empty. In both cases, this proof must use
the assumption p that the condition of the ifte-split is true. In both cases, we omit some
bookkeeping proof steps and elide the projections from Elem A to set; in the former
case, we use P to abbreviate the proof of ∃!x.F (x)⇒ ∃x.F (x).

Finally, typedef f p is interpreted as filter f and then using the proof p of the
non-emptiness of filter f to obtain an element of neset. Thus, Rep is mapped to the
inclusion function from filter f to A, and Abs to one of its inverses. Then their three
axioms are mapped to the corresponding proofs.

view HOLSem : HOL→ ZFC = {
bool := bool.
trueprop := [x]x.
the := [f : Elem (func A bool)] ifte (∃![x]x ∈ (filter f))

([p] (choice (elem (filter f)(⇒Elim P p))))
([p] choice A).

the := [f : Elem (func A bool)] ifte (nonempty (filter f))
([p] (choice (elem (filter f) p)))
([p] choice A).

.=′ := Eq.
...
typedef := [A] [f : Elem (func A bool)] [p] elem (filter f) p.
...

}.

14

Theorem 2. For every closed term t : τ over Isabelle/HOL, we obtain its semantics in
ZFC as the term HOLSem(ptq) : Elem HOLSem(pτq).
If a locale interpretation of loc in Isabelle/HOL is represented as a view ν : loc →
HOL, then the morphism ν HOLSem : loc→ ZFC is a ZFC-model of loc.

Proof. Both results follow from the type preservation of views.

7 Conclusion

We have represented both Isabelle/HOL type theory and the ZFC set theory in the logi-
cal framework LF. Both encodings are new and quite difficult.

The representation of Isabelle/HOL covers a large fragment of Isabelle. In partic-
ular, it includes locales and type classes so that the modularity of Isabelle theories is
preserved in their LF representation. This is especially valuable as the LF module sys-
tem is significantly simpler than that of Isabelle and thus more amenable to utilize for
system interoperability. The representation of HOL covers all primitives of HOL except
for the natural numbers, which can be added easily. In particular, it includes the most
distinctive idiosyncrasies of HOL: the two description operators and type definitions.

The encoding of ZFC provides a new formalization of set theory. While not as far
developed as existing formalizations, it is interesting because its choice of primitives is
very close to textbook mathematics.

Finally, the translation of Isabelle/HOL and ZFC is unique in that it provides a
completely formalized and verified translation between two very different foundations
of mathematics.

References

1. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2. Oxford University Press, 1992.

2. Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.
3. C. Brown. Combining Type Theory and Untyped Set Theory. In U. Furbach and N. Shankar,

editors, International Joint Conference on Automated Reasoning, pages 205–219. Springer,
2006.

4. A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic,
5(1):56–68, 1940.

5. A. Fraenkel. The notion of ’definite’ and the independence of the axiom of choice. 1922.
6. G. Gonthier. A computer-checked proof of the four colour theorem, 2006. http:

//research.microsoft.com/~gonthier/.
7. M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In G. Birtwistle and

P. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages 73–128.
Kluwer-Academic Publishers, 1988.

8. M. Gordon and A. Pitts. The HOL Logic. In M. Gordon and T. Melham, editors, Introduction
to HOL, Part III, pages 191–232. Cambridge University Press, 1993.

9. F. Haftmann and M. Wenzel. Constructive Type Classes in Isabelle. In T. Altenkirch and
C. McBride, editors, TYPES conference, pages 160–174. Springer, 2006.

10. T. Hales. The flyspeck project, 2003. See http://code.google.com/p/
flyspeck/.

15

http://research.microsoft.com/~gonthier/
http://research.microsoft.com/~gonthier/
http://code.google.com/p/flyspeck/
http://code.google.com/p/flyspeck/

11. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, 1993.

12. R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic representations.
Annals of Pure and Applied Logic, 67:113–160, 1994.

13. J. Harrison. HOL Light: A Tutorial Introduction. In Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design, pages 265–269. Springer, 1996.

14. F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical Logical Frame-
work. In Fourth Workshop on Logical and Semantic Frameworks, with Applications, volume
256 of Electronic Notes in Theoretical Computer Science, pages 49–65, 2009.

15. M. Iancu and F. Rabe. A formal semantics of isabelle/hol, 2010. See https://svn.
kwarc.info/repos/twelf/projects/isabelle.

16. P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Proceedings of the ’73
Logic Colloquium, pages 73–118. North-Holland, 1974.

17. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Springer, 2002.

18. L. Paulson. The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning,
5(3):363–397, 1989.

19. L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer
Science. Springer, 1994.

20. L. Paulson and M. Coen. Zermelo-Fraenkel Set Theory, 1993. Isabelle distribution,
ZF/ZF.thy.

21. F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for
deductive systems. Lecture Notes in Computer Science, 1632:202–206, 1999.

22. F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Cheney and A. Felty,
editors, Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice
(LFMTP), pages 40–48. ACM Press, 2009.

23. A. Trybulec. Tarski Grothendieck Set Theory. Journal of Formalized Mathematics, Ax-
iomatics, 1989.

24. A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi, editor,
Proceedings of the 9th International Joint Conference on Artificial Intelligence, pages 26–28,
1985.

25. M. Wenzel. The Isabelle/Isar Reference Manual, 2009. http://isabelle.in.tum.
de/documentation.html, Dec 3, 2009.

26. E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische An-
nalen, 65:261–281, 1908. English title: Investigations in the foundations of set theory I.

16

https://svn.kwarc.info/repos/twelf/projects/isabelle
https://svn.kwarc.info/repos/twelf/projects/isabelle
http://isabelle.in.tum.de/documentation.html
http://isabelle.in.tum.de/documentation.html

A Encoding Isabelle in LF

In the following, we give the definition of p− q mapping from Isabelle to LF by induc-
tion on the Isabelle syntax. We use color to distinguish the meta-level symbols (such as
=) from Isabelle and Twelf syntax such as =.

• Theories:
ptheory T imports T1, . . . , Tn begin Σ endq =
sig T = { include Pure. include T1. . . .include Tn. pΣq}.

where theory content Σ is translated component-wise.
• Locales:

plocale loc = I1 . . . In for Σ + Σ′q =
sig loc = { pΣq pI1q. . . pInq pΣ′q }.

where the for clause Σ and the locale content Σ′ are translated component-wise.
The named instances Ii are translated according to

pinsi : loci where σiq = struct insi : loci = {pσiq ρi}.
Here the occurrence of ρi is due to a subtlety in the semantics of Isabelle locales: If
a locale inherits two equal instances (same locale, equivalent instantiations), they
are identified rather than producing two distinct copies of the same declarations
(which they do in LF). Therefore, we need an explicit sharing declaration. In LF,
that is just a special case of instantiation: ρi contains struct ins := ins′. for
every instance ins imported via Ii that is equal to an instance ins′ already imported
via I1, . . . , Ii−1. Furthermore, if loc inherits from more than one type class, all their
this fields are shared. 1

• Sublocales:
psublocale loc′ < loc where σ P1 . . . Pnq =
view ν : loc→ loc′ = {pσq a1 := pP1q. . . . an := pPnq.}.

Here ν is a fresh name because LF views are always named. ai is the qualified
name of the axiom declared in or imported into loc inducing the proof obligation
discharged by Pi. Note how the discharging of proof obligations is just a special
case of an instantiation.
If loc contains an import ins1 : loc1 and if a sublocale declaration loc′ < loc1
encoded as a view ν1 : loc1 → loc is present, it is possible to discharge all proof
obligations inherited from loc1 at once with an instantiation struct ins1 := ν1..
The same is possible if loc′ < loc1 holds because loc′ also inherits from loc1. In
both cases the involved instantiations have to match which is checked by Twelf.

• Interpretations:
pinterpretation loc where σ P1 . . . Pnq =
view ν : loc→ T = {pσq a1 := pP1q. . . . an := pPnq.}.

Here ν is a fresh name and T is the name of the Isabelle theory containing the
interpretation (which is also the LF signature containing the view). ai is as for
sublocales above.
• Type classes:

pclassC = C1 . . . Cn+Σq = sigC = {this : tp. I1. . . . In. pΣq}.
1 Interestingly, LF structures seem both simpler and more expressive than Isabelle locale in-

stances.

17

where Ii abbreviates struct insi : Ci = {this := this. ρi} for some fresh
names insi.
Σ is translated component-wise with one exception: All references in Σ to the
single permitted type variable α :: C are translated to this. Note that another this
is imported from each superclass Ci, but they are all shared using the instantiation
this := this..
ρi contains one structure sharing declaration for each type class imported by Ii that
has already been imported by I1, . . . , Ii−1. This is exactly the same as for locales
above.

• Instantiations: The representation of instantiations requires an auxiliary signature ν
holding instances of the n type variables of the classes Ci. Then a view ν interprets
C in terms of these instances.

pinstantiation t :: (C1, . . . , Cn)C begin D1 . . . Dm P1 . . . Pn
endq
= sig ν = {struct α1 : C1 . . .struct αn : Cn}.

view ν′ : C → ν = {this := (t α1.this . . . αn.this). σ}.
ν maps the this field of C to the type that instantiates C – the application of t to its
type arguments. σ provides the instantiations for the operations and axioms of C.
It is obtained as follows. Each Di must be a definition ci_def : ci x1 . . . xr ≡ ti
for a (possibly imported) constant ci of C. And each Pi must be the proof a proof
obligation induced by a (possibly imported) axiom of C. Then σ contains (i) qi :=
[x1] . . . [xr] ptiq. for i = 1, . . . ,mwhere qi is the qualified name of ci (qi = ci if ci
is declared in C; otherwise, qi is obtained by prefixing the structure names chosen
when translating the type class C) and (ii) ai := pPiq. for i = 1, . . . , n where ai is
the qualified name of the axiom of C inducing the respective proof obligation.

• Typed constants where α1 :: C1, . . . , αn :: Cn are the type variables in τ :

pc :: τq = c : {α1 : C1} . . . {αn : Cn} tm pτq.

• Constant definitions where α1 :: C1, . . . , αn :: Cn are the type variables in t:

pc_def : f x1 . . . xn ≡ tq =
c_def : {α1 : C1} . . . {αn : Cn} ` (f α1 . . . αn) @x1 . . .@xn ≡ ptq.

• Axioms where α1 :: C1, . . . , αn :: Cn are the type variables in ϕ:

pa :: ϕq = a : {α1 : C1} . . . {αn : Cn} ` pϕq.

• Lemmas where α1 :: C1, . . . , αn :: Cn are the type variables in ϕ:

pl :: ϕ Pq = l : {α1 : C1} . . . {αn : Cn} ` pϕq = [α1 : C1] . . . [αn : Cn] pPq.

• Type declarations (where we include the case n = 0 of base types):

p(α1, . . . , αn) tq = t : tp→ . . .→ tp→ tp.

• Type definitions:

p(α1, . . . , αn) t = τq = t : tp→ . . .→ tp→ tp = [α1 : tp] . . . [αn : tp]pτq.

18

• Named instantiations:

pc1 = t1 . . . cm = tmq = c1 := pt1q. . . . cm := ptmq.

• Constants. An Isabelle constant c that is declared in the current theory or locale and
is used with inferred type arguments τ1 :: C1, . . . , τn :: Cn is represented as an LF
application T.c pτ1 :: C1q . . . , pτn :: Cnq.
An Isabelle constant c that is declared in an imported theory T is represented in the
same way except for using T.c instead of c.
In a theory or locale, an Isabelle constant c that is declared in the type class C and
that is used on the inferred type class instance τ :: C is translated to the morphism
application pτ :: Cq(c).
Within a type class C, an Isabelle constant c that is imported from another type
class is translated to the qualified name arising by prefixing the structure name ins
generated in the representation of the class C.

• Type class instances. Given an Isabelle type class instance τ :: C in some type
variables α1 :: C1, . . . , αn :: Cn, we obtain an LF-morphism pτ :: Cq in structure
variables struct α : C1, . . . , struct αn : Cn.
Firstly, let τ=αi be a type variable. If C=Ci, we can put µ=α. Otherwise, Ci must
be a subclass ofC. That means there must be a morphism incl=D1.ins1 . . . Dr.insr
fromC toCi where (i) insj is a type class import fromDj−1 toDj and (ii)D1.ins1
instantiates C and Dr = Ci. Thus, we put µ=incl α.
Secondly, let τ=(ω1, . . . , ωm)t be a type operator application (including the case
n = 0 for base types). If τ has Isabelle type class C, there must be a corresponding
type class instantiation t :: (Ω1, . . . , Ωm)D (*) and type class instances ωi :: Ωi
(**).
Due to (*), there are an LF signature S = {struct β1 : D1 . . .struct βm :
Dm}. and a view v from D to S (see the representation of type class instantiations
above). Due to (**), we obtain recursively morphisms µi from Ωi into the current
signature. Then µS={β1 := µ1. . . . βm := µm.} is a morphism from S into the
current signature.
Now if C=D, we obtain the needed morphism pτ :: Cq=v µS from C to the
current signature. Otherwise, D must be a subclass of C, so let incl : C → D be
obtained as for type variables above; then we obtain pτ :: Cq=incl v µS .

• Proofs are mapped in a straightforward way replacing all invocations of a proof rule
r with Pure.r and all references to definitions, axioms, or theorems are translated
as for constants.

• Remaining inner syntax:

p(τ1, . . . , τn) tq = ptq pτ1q . . . pτnq
pτ ⇒ τ ′q = pτq⇒ pτ ′q
ppropq = prop
pc t1 . . . , tnq = pcq @ pt1q . . . @ ptnq
pλx1 :: τ1 . . . xn :: τn.tq = λ[x1 : tm pτ1q] . . . λ[xn : tm pτnq]ptq
pϕ =⇒ ψq = pϕq =⇒ pψq
p

∧
λx1 :: τ1 . . . xn :: τn.ϕq =

∧
[x1 : tm pτ1q] . . .

∧
[xn : tm pτnq]pϕq

pt ≡ t′q = ptq ≡ pt′q

19

Term variables are represented as themselves. Type variables α :: C are translated
to pα :: Cq(this) where pα :: Cq is an LF-morphism from C into the current
signature. Note that the single type variable permitted within type classes is treated
differently (see type classes above).

Actually, we have to escape all characters occurring in Isabelle identifiers that are
illegal in Twelf identifiers, but we omit this technicality.

20

	A Formalized Set-Theoretical Semantics of Isabelle/HOL
	Florian Rabe and Mihnea Iancu
	1 Introduction
	2 Preliminaries
	2.1 Isabelle and HOL
	2.2 LF

	3 Morphism Variables in LF
	4 Representing Isabelle/HOL in LF
	5 Representing Set Theory in LF
	6 Interpreting Isabelle/HOL in Set Theory
	7 Conclusion
	A Encoding Isabelle in LF

