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Overview

Modularity in software has been a key concern since Doug
McIlroy’s plea at the 1968 NATO conference on software
engineering.

The concept of a module appears to be fundamental to
programming and specification languages.

Examples include Ada and ML modules, C++ templates, Z
schemas, PVS theories, and SAL modules.1

Yet, it has no precise definition

A similar vagueness exists with respect to process, class,
object, method .

What is modularity?

Why do we need it?

How can we capture modularity in language?

1My perspective is informed by the module systems in PVS and SAL.
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Some Language Design/Modularity Principles

Frege principle (Referential Transparency): Equal expressions
should be interchangeable.
Chomsky Principle: A name is merely an abbreviation for
something. The denotation of a name can be used in place of the
name.
Most languages violate this principle. E.g., PVS theories cannot be
used in place of the theory names.
Reynolds Principle: Language features should be orthogonal.
Scott Principle: Features should be nestable.
Occam Principle: Make no irrelevant distinctions.
Parnas Principle: Localize design decisions that change together.
Dijkstra Principle: Separate concerns between different aspects
of computation.
Lampson Principle: Practical modularity stems from big
components with small interfaces.
Berry Principle: Write everything (at most) once.
Corollary: Prove everything (at most) once.
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What is the Point of a Module?

Packaging: Entire module can be referenced instead of individual
components.
Naming: Names in a module can be distinguished from those in
other modules.
Reuse: Distinct copies of the module can be obtained by varying
the parameters.
Testing: A module is a unit of unit testing.
Abstraction: All interaction with the module instance must be
through an external interface.
Documentation: Modules capture concepts that need to be
documented together.
Information Hiding: Design and implementation of the module
can vary as long as the abstract interface is satisfied.
Separate Compilation: Modules are units of separate
compilation.
Composition: A module calculus introduces composition
operators to define new modules from existing ones.
Compositional Design: Systems can be designed to have
properties by composing component and subsystem properties.
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What is the Problem with Modules?

The black box nature of the decision procedure is fre-
quently destroyed by the need to integrate it.

Boyer and Moore

Modules make incompatible assumptions

Communication overhead of communicating with a module is
high

Modularity gets in the way of fine-grained interaction

Perhaps it is easier to reimplement than reuse?
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Language Examples: C++ Templates

Allows type and value abstraction in the definition of classes and
functions.
Example (from Shapiro):

template <class T, int N> class Queue

T queueEntries[N];

int queueDepth;
...

;

Templates used by macro-expansion.

Natarajan Shankar Modularity 6/14



Language Example: ML modules

Structures package a collection of declarations.
The “type” of a structure is a signature, i.e., the declarations
without the definitions.
Functors map structures to structures.
Example (from Munoz):

module type OrderSig =

sig

type t

val comp : t -> t -> int

end;;

module OrderedList(Order: OrderSig) =

struct

type element = Order.t

type olist = element list
...

end;;
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Language Example: Z Schemas

A schema consists of a signature and some predicates.

The signature is the visible portion of the global state space.

Schemas can either assert invariants or transitions.

Schemas can be imported within other schemas and can take
sets as parameters.

Compatible schemas can be combined by logical operations.

Transition schemas can be sequenced.
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Modularity Example: PVS Theories

A PVS theory is a collection of type, constant, and formula
declarations.
A theory can be parametric in certain types and constants.

functions [D, R: TYPE]: THEORY

BEGIN

f, g: VAR [D -> R]

x, x1, x2: VAR D

extensionality: POSTULATE

(FORALL (x: D): f(x) = g(x)) IMPLIES f = g

congruence:

LEMMA f = g AND x1 = x2 IMPLIES f(x1) = g(x2)

END functions

Theories can be instantiated, extended, combined, and interpreted.
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Compositional Verification of Concurrent Modules

Proof techniques that decompose P(C1‖C2) to P1(C1) and
P2(C2), for some generic notion of composition ‖, e.g.,
parallel composition.

Typical rule of inference would assert that C1‖C2 |= P1 ∧P2 if
1 C1 |= R2 =⇒ P1

2 C2 |= R1 =⇒ P2

3 P1 |= R1

4 P2 |= R2

The rule is circular (and unsound): Consider the case when
P1 = P2 = R1 = R2 = false.

Sound versions of the proof allow R
+

=⇒ P for safety
properties when R fails before P does.
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Compositional Model Checking

McMillan defines a compositional proof rule for reducing
M1‖M2 |= �(P1 ∧ P2) by showing

1 M1 |= P2 B P1, and
2 M2 |= P1 B P2

Here, P B Q means that P fails before Q or ¬(P
⋃
¬q).

Also, composition M1‖M2 is just the conjunction of the
transition relations.

In general, the composition operation can depend on the
model of computation: e.g., synchronous, asynchronous,
dataflow, message-passing, shared-variable communication,
etc.
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SAL Example: Peterson

mutex[tval: bool; STATE turn : bool] : MODULE

BEGIN

pc : STATE {sleep, try, critical}
try: RULE pc = sleep ==>

{pc’ = try;

turn’ = tval}
critical: RULE pc = try AND turn /= tval ==>

{pc’ = critical}
exit: RULE pc = critical ==>

{pc’ = sleep;

turn’ = tval}
mutexproc: PROCESS

INITIALLY {pc = sleeping}
NEXT try || exit || critical

END mutex

Natarajan Shankar Modularity 12/14



SAL Example: Peterson

peterson: MODULE

BEGIN

turn : STATE bool

mutex1: MODULE = mutex[TRUE, turn]

mutex2: MODULE = mutex[FALSE, turn]

proc: PROCESS =

mutex1.mutexproc || mutex2.mutexproc

exclusive: ASSERTION = NOT (mutex1.pc = critical AND

mutex2.pc = critical)

mutual_exclusion: LEMMA proc |= AG(exclusive)

END peterson
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Questions for Discussion

What exactly is a module?

Are modules primarily a design time aid for reusing definitions
and theorems, or do they have some first-class status in the
computation itself?

Can we usefully modularize knowledge? What
language+design principles do we need?

Can we usefully modularize in-the-small software design?

Are the composition mechanisms for decomposing designs
more critical than the modules themselves?

Think outside the module.
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