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Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment:

xyz

(x∨ y)∧ (x∨ y)∧ (y∨ z)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs
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What Is a Proof in SAT?

In general, a proof is a string that

certifies the unsatisfiability of a formula.

• Proofs are efficiently (usually polynomial-time) checkable...

... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . , Cm of clauses.

• Every clause is either contained in the formula or derived from two
earlier clauses via the resolution rule:

C∨ x x∨D
C∨D

• Cm is the empty clause (containing no literals), denoted by ⊥.

• There exists a resolution proof for every unsatisfiable formula.
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Resolution Proofs

Example: F = (x∨ y∨ z)∧ (z)∧ (x∨ y)∧ (u∨ y)∧ (u)

Resolution proof:
(x∨ y∨ z), (z), (x∨ y), (x∨ y), (y), (u∨ y), (u), (u),⊥

u∨ y

x∨ y∨ z z

x∨ y x∨ y

y

u u
⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.
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Clausal Proofs

Reduce the size of the proof by only storing added clauses

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

Clauses whose addition preserves satisfiability are redundant.

Checking redundancy should be efficient.

å Idea: Only add clauses that fulfill an efficiently checkable
redundancy criterion.
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Reverse Unit Propagation

Unit propagation (UP) satisfies unit clauses by assigning
their literal to true (until fixpoint or a conflict).

Let F be a formula, C a clause, and α the smallest
assignment that falsifies C. C is implied by F via UP
(denoted by F

1̀
C) if UP on F |α results in a conflict.

Example

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (b∨ c∨ d)∧ (b∨ c∨ d) ∧

(a∨ c∨ d)∧ (a∨ c∨ d)∧ (a∨ b∨ d)∧ (a∨ b∨ d)

α = {a = 0, b = 0}

(a∨ c∨ d) (b∨ c∨ d)

(a∨ b∨ c) (a∨ b∨ c)

(a∨ b)
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Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C∨ x x∨D
(RES)

C∨D
A A→ B

(MP)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.
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Early work on reasoning beyond resolution

The early SAT decision procedures used the Pure Literal rule
[Davis and Putnam 1960; Davis, Logemann and Loveland 1962]:

x /∈ F
(pure)

(x)

Extended Resolution (ER) [Tseitin 1966]

Combines resolution with the Extension rule:
x /∈ F x /∈ F

(ER)

(x∨ a∨ b)∧ (x∨ a)∧ (x∨ b)

Equivalently, adds the definition x := AND(a, b)

Can be considered the first interference-based proof system

Is very powerful: No known lower bounds
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Short Proofs of Pigeon Hole Formulas [Cook 1967]

Can n+1 pigeons be in n holes (at-most-one pigeon per hole)?

Resolution proofs are exponential in n [Haken 1985]

Cook constructed polynomial-sized ER proofs

However, these proofs require introducing new variables:

Hard to find such proofs automatically

Existing ER approaches produce exponentially large proofs

How to get rid of this hurdle? First approach: blocked
clauses...
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Blocked Clauses [Kullmann 1999]

Definition (Block Clause)

A clause (C∨ x) is a blocked on x w.r.t. a CNF formula F if
for every clause (D∨ x) ∈ F, resolvent C∨D is a tautology.

Or equivalently: A clause (C∨ x) is a blocked on x w.r.t. a
CNF formula F if x is pure in F |C.

Example

Consider the formula (a∨ b)∧ (a∨ b∨ c)∧ (a∨ c).
First clause is not blocked.
Second clause is blocked by both a and c.
Third clause is blocked by c.

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.
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Blocked Clause Addition and Blocked Clause Elimination

The Blocked Clause proof system (BC) combines the
resolution rule with the addition of blocked clauses.

BC generalizes ER [Kullmann 1999]

Recall x /∈ F x /∈ F
(ER)

(x∨ a∨ b)∧ (x∨ a)∧ (x∨ b)

The ER clauses are blocked on the literals x and x w.r.t. F

Blocked clause elimination used in preprocessing and inprocessing

Simulates many circuit optimization techniques

Removes redundant Pythagorean Triples
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DRAT: An Interference-Based Proof System

DRAT is a popular interference-based proof system

DRAT allows adding RATs (defined below) to a formula.
• It can be efficiently checked if a clause is a RAT.

• RATs are not necessarily implied by the formula.

• But RATs are redundant: their addition preserves satisfiability.

DRAT also allows clause deletion
• Initially introduced to check proofs more efficiently

• Clause deletion may introduce clause addition options (interference)

Definition (Resolution Asymmetric Tautology)

A clause (C∨ x) is a resolution asymmetric tautology (RAT)
on x w.r.t. a CNF formula F if for every clause (D∨ x) ∈ F,
C∨D is implied by F via unit-propagation, i.e., F

1̀
C∨D.
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Proof Search in Strong Proof Systems
Existence of Short Proofs

Extended Resolution ’70

Frege Systems

Cutting Plane Method ’62

Resolution ’60 / CDCL ’97

Regular Resolution

Tree Resolution / DPLL ’62

Analytic Tableaux ’68

logical equivalence
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Existence of Short Proofs

Extended Resolution ’70

Frege Systems

Cutting Plane Method ’62

Resolution ’60 / CDCL ’97

Regular Resolution

Tree Resolution / DPLL ’62

Analytic Tableaux ’68

logical equivalence

Finding Short Proofs

Propagation Red. (PR) ’17

Set Prop. Red. (SPR) / SDCL ’17

Res. Asym. Taut. (RAT) ’12

Blocked Clauses (BC) ’99

Extended Resolution (ER) ’70

satisfiability equivalence

Express solving techniques compactly
[Järvisalo, Heule, and Biere ’12]

Short proofs without new variables
[Heule, Kiesl, and Biere ’17]
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Mutilated Chessboards: “A Tough Nut to Crack” [McCarthy]

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

There are more white squares than black squares; and

A domino covers exactly one white and one black square.
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Without Loss of Satisfaction

One of the crucial techniques in SAT solvers is to generalize a
conflicting state and use it to constrain the problem.

1. 2.

The used proof system can have a big impact on the size:

1. Resolution can only reduce the 30 dominos to 14 (left); and

2. “Without loss of satisfaction” can reduce them to 2 (right).
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Mutilated Chessboards: An alternative proof
Satisfaction-Driven Clause Learning (SDCL) is a new solving
paradigm that finds proofs in the PR proof system [HKB ’17]

SDCL can detect that the above two patterns can be blocked

This reduces the number of explored states exponentially

We produced SPR proofs that are linear in the formula size
marijn@cmu.edu 20 / 35



Proofs of Unsatisfiability

Beyond Resolution

Finding Short Proofs

Short Proofs via Preprocessing

Future Work and Challenges
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Autarkies

A non-empty assignment α is an autarky for formula F if every
clause C ∈ F that is touched by α is also satisfied by α.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula F := (x∨ y)∧ (x∨ y)∧ (y∨ z).

α1 = z is an autarky: (x∨ y)∧ (x∨ y)∧ (y∨ z).

α2 = xy z is an autarky: (x∨ y)∧ (x∨ y)∧ (y∨ z).

Given an assignment α, F |α denotes a formula F without the
clauses satisfied by α and without the literals falsified by α.

Theorem ([Monien and Speckenmeyer 1985])

Let α be an autarky for formula F.
Then, F and F |α are satisfiability equivalent.
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Conditional Autarkies

An assignment α = αcon ∪ αaut is a conditional autarky for
formula F if αaut is a non-empty autarky for F |αcon.

Example

Consider the formula F := (x∨ y)∧ (x∨ y)∧ (y∨ z).
Let αcon = x and αaut = y, then α = αcon ∪ αaut = xy is a
conditional autarky for F:

αaut = y is an autarky for F |αcon = (y∨ z).

Let α = αcon ∪ αaut be a conditional autarky for formula F.
Then F and F∧ (αcon → αaut) are satisfiability-equivalent.

In the above example, we could therefore learn (x∨ y).
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Finding Conditional Autarkies

The positive reduct of a formula F and an assignment α,
denoted by p(F, α), is the formula that contains clause C = α
and all assigned(D,α) with D ∈ F and D is satisfied by α.

Example

Consider the formula F := (x∨ y)∧ (x∨ y)∧ (y∨ z).

Let α1 = x, so C1 = (x) The positive reduct
p(F, α1) = (x)∧ (x)∧ (x) is unsatisfiable.

Let α2 = xy, so C2 = (x∨ y). The positive reduct
p(F, α2) = (x∨ y)∧ (x∨ y)∧ (x∨ y) is satisfiable.

Theorem ([Heule, Kiesl, Biere ’17B])

Given a formula F and an assignment α. Every satisfying
assignment ω of p(F, α) is a conditional autarky of F.
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Satisfaction-Driven Clause Learning [Heule, Kiesl, Biere ’17B]

SDCL generalizes CDCL and finds proofs in the SPR proof system.

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;

3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

Short proofs for problems that are hard for resolution

including pigeonhole, Tseitin, and mutilated chessboard problems
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Beyond Resolution

Finding Short Proofs

Short Proofs via Preprocessing

Future Work and Challenges
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Preprocessing: PReLearn [Reeves, Heule, Bryant 2022]

Key observation: If PR clauses are useful, then we only need
PR clauses of length at most 2.

Idea: only look for PR clauses of length at most 2

For each literal l ∈ F, check if (l∨ k) is a PR clause.

Restrict the search by k occurring in F \ F |l.

Use the positive reduct to check for PR.

PReLearn CDCL Proof CheckerCNF
PR Clauses

PR Proof
RAT Proof

Verified
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Preprocessing: Mutilated Chessboard

N Time Rounds Avg. Units Bin. Avg. Units Avg. Bin.

8 0.14 1 0.14 30 164 30.00 164.00
12 4.94 1 4.94 103 1,045 103.00 1,045.00
16 62.47 2 31.23 195 3,988 97.50 1,994.00
20 513.12 6 85.52 339 1,4470 56.50 2,411.67
24 4,941.38 26 190.05 512 64,038 19.69 2,463.00
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Preprocessing: Small Formulas (up to 10K clauses)
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Preprocessing: Medium-Sized Formulas (10K-50K clauses)
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Preprocessing: Biggest Impact on Performance

Size Value With Without Clauses Formula Year

0-10k UNSAT 1.26 – 2,033 ph12* 2013
0-10k UNSAT 35.69 – 20,179 Pb-chnl15-16 c18* 2019
0-10k UNSAT 105.01 – 46,759 Pb-chnl20-21 c18 2019
0-10k UNSAT 59.99 – 1,633 randomG-Mix-n17-d05 2021
0-10k UNSAT 61.08 – 1,472 randomG-n17-d05 2021
0-10k UNSAT 407.51 – 1,640 randomG-n18-d05 2021
0-10k UNSAT 584.95 – 1,706 randomG-Mix-n18-d05 2021
0-10k SAT 1,082.62 – 9,650 fsf-300-354-2-2-3-2.23.opt 2013
0-10k SAT 1,250.82 – 10,058 fsf-300-354-2-2-3-2.46.opt 2013

10k-50k SAT 1,076.34 – 804 sp5-26-19-bin-stri-flat 2021
10k-50k SAT 608.48 – 901 sp5-26-19-una-nons-tree 2021

10k-50k SAT – 22.99 254 Ptn-7824-b13 2016
10k-50k SAT – 549.27 133 Ptn-7824-b09 2016
10k-50k SAT – 1,246.42 39 Ptn-7824-b02 2016
10k-50k SAT – 1,290.49 121 Ptn-7824-b08 2016
10k-50k UNSAT – 3,650.21 31,860 rphp4 110 shuffled 2016
10k-50k UNSAT – 4,273.88 31,531 rphp4 115 shuffled 2016
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Future Work: Arbitrarily Complex Solvers

Verifying efficient automated reasoning tools is a daunting task:

Tools are constantly modified and improved; and

Even top-pier and “experimentally correct” solvers turned
out to be buggy. [Järvisalo, Heule, Biere ’12]

Verified checkers of certificates in strong proof systems:

Don’t worry about correctness or completeness of tools;

Facilitates making tools more complex and efficient; while

Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally verified checkers now also used in industry
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Theoretical Challenges

Lower bounds for interference-based proof systems with new
variables will be hard, but what about without new variables?

Lower bound for BC w/o new variables? Pigeon-hole formulas?

Lower bound for SET w/o new variables? Tseitin formulas?

Lower bound for PR w/o new variables?!

What is the power of conditional autarky reasoning?

Can the new proof systems without new variables simulate old
ones, in particular Frege systems (or the other way around)?
What about cutting planes?

Can we design stronger proof systems that make it even easier
to compute short proofs?
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Practical Challenges

The current version of SDCL is just the beginning:

Which heuristics allow learning short PR clauses?

How to construct an AnalyzeWitness procedure?

Can the positive reduct be improved?

Can local search be used to find short proofs of unsatisfiability?

Constructing positive reducts (or similar formulas) efficiently:

Generating a positive reduct is more costly than solving them

Can we design data-structures to cheaply compute them?
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