
Declarative Programming for Microcontrollers -
Datalog on Arduino

Mario Wenzel

MLU Halle-Wittenberg

mario.wenzel@informatik.uni-halle.de

March 26, 2021

Presentation of ongoing PhD research

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 1 / 21

Declarative Logic Programming

Declarative techniques allow us to write programs that relate closely
to the specification (or even write compilable specifications).

Declarative Logic Programming languages have mathematical precise
semantics based on logic.

LP is used in industrial applications and taught at university courses.

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 2 / 21

Microcontrollers

Microcontrollers are ubiquitous: Internet of Things (IoT), home
automation, model train control, sensing, other hardware control.

Cheap (one target platform costs less than 1 EUR)

Restricted Resources (2 KB SRAM, 32 KB program memory)

Used in teaching in university and schools

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 3 / 21

Microcontroller Programming

Not enough resources for operating system
(programming “on the metal”)

Native C/C++ programming

Thousands of libraries are already availabe

Few declarative approaches (MicroScheme, frp-arduino)

No special LP framework

No general purpose low-memory LP framework in C++

Rule-based programming seems well-suited for microcontrollers

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 4 / 21

Microlog Language Overview

Language based on Datalog with successor predicate

All rules are range-restricted.

No access to extensional Database

All facts have an explicit timestamp

Deductive Rules:

Normal Datalog deduction steps
p(T ,X)← q(T ,X ,Y) ∧ p(T ,Y).
p(X) :- q(X, Y), p(Y).

Inductive Rules:

Govern how data flows through time
p(T ′,X)← q(T ,X ,Y) ∧ p(T ,Y) ∧ succ(T , T ′).
p(X)@next :- q(X, Y), p(Y).

Comparisons of arithmetic expressions in rule bodies allowed

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 5 / 21

Microlog Language Overview (IO)

For a C-function int digitalRead(uint8 t pin) we introduce two
predicates

Deducing call-fact (with set semantics) leads to function call
call digitalRead(T ′,P, ?), with ? for every output argument.
short: #digitalRead(P, ?)@next as rule head
ret-facts are used to access return values (without side-effects):
ret digitalRead(T ,P,R)
short: #digitalRead(P, R) in rule bodies.

call-predicates are only allowed in next-rule heads, to preserve
causality and finite state size.

Whole statement blocks can be mapped to call/ret-predicates.

Leads to condition-action-rule:
call f(T ′,X , ?)← p(T ,X) ∧ succ(T , T ′).

short: #f(X, ?)@next :- p(X).

All allowed actions are taken, no negation in rule head,
therefore no nondeterministic choice, no backtracking.

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 6 / 21

Statewise/Time-Stratified Deduction

The default Microlog runtime works by iteratively applying the program
rules, discarding past states by omission of the timestamps.

We rewrite the rules to standard Datalog program by

removing the timestamps
replacing @next by the prefix “next” (new predicates) and removing the
succ-predicate

Execute the Datalog Program

Execute all function calls for the “call”-facts, creating instantiated
return-facts (replacing the ?)

Take all next-facts and return-facts and use them as seed facts (EDB)
for the next iteration (removing the next-prefix)

You can use any Datalog engine with very little plumbing code

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 7 / 21

State

notion of deletion and updates
(facts missing/changed from the “next” timestamp)

notion of time (not everything happening at once)

Example: table(X)@next :- add(X).

table(X)@next :- table(X), !delete(X).

Time add delete table

101 add(1)
102 table(1)
103 add(27) table(1)
104 table(1), table(27)
... table(1), table(27)
300 delete(1) table(1), table(27)
301 table(27)

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 8 / 21

General Overview

Embedding into Datalog allows reuse of existing research, and engines

Lack of dynamic database enables strong static analysis

I/O can still be managed through strict call-convention,
external calls and side-effects are never implicit

Value invention is restricted to IO

Datalog with stratified negation is expressive enough for many use
cases of embedded decision procedures

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 9 / 21

Compilation Approaches

Usually: small datalog-runtime that executes deduction steps

In-memory database with deductive engine
Slow deduction
Very Strong memory restrictions

No generally proven memory bound
Usually no way to communicate OOM-Errors

If finite memory proven: Compile Programs to Finite State Machines

Precomputation of possible interactions
Compilation to State Machine
Fixed and known memory requirements (by construction)

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 10 / 21

Example Application (Heating Control)

If the window is open, heating should be off

Common application for home automation systems

But rooms have doors and adjacent rooms may also have windows

We want to shut off heating in all (transitively) adjacent rooms, if the
doors are open

This can usually not be encoded in HA rule systems

1 2 1 2 1 2 1 2
Our example home: 2 rooms

1 and 2 are connected, 2 has a window
darkened rooms should have the heat turned off

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 11 / 21

Example Application Source (Heating Control)

% static example configuration (adjusted by user)

hasWindow(2).

adjacent(1, 2).

% gathering world state

#readWindow(R, ?)@next :- hasWindow(R).

#readDoor(A, B, ?)@next :- adjacent(A, B).

% deduce model using transitive closure

windowOpen(R) :- #readWindow(R, #open).

doorOpen(A, B) :- #readDoor(A, B, #open).

connected(A, B) :- doorOpen(A, B).

connected(B, A) :- doorOpen(A, B).

connected(A, C) :- connected(A, B),connected(B, C), A!=C.

% effects

#heatingOff(R)@next :- windowOpen(R).

#heatingOff(O)@next :- windowOpen(R), connected(R, O).

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 12 / 21

Abstract Deduction (General)

Facts get attached conditions depending on IO return values

Example: windowOpen(2) if #readWindow(2, #open))

Static analysis requires an oracle for satisfiability in the theory of the
arithmetic comparisons

the closer it matches the runtime, the better
an overapproximation is fine (at worst generates unreachable states)

Conditional Facts with unsatisfiable conditions are removed

Conditions with truth value depending on return values are checked at
runtime

Case distinction leads to state transition function

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 13 / 21

Abstract Deduction (Example)

Replacing ? with variables, seed facts from previous state are

ret readWindow(2,V1)
ret readDoor(1, 2,V2)
Plus maybe ret heatingOff()-facts (don’t affect behaviour)

case analysis leads to 3 different behaviours depending on the return
values of the readWindow and readDoor calls.

V1 6= #open V1 = #open
V2 = #open V2 6= #open

readWindow(2, ?) readWindow(2, ?) readWindow(2, ?)
readDoor(1, 2, ?) readDoor(1, 2, ?) readDoor(1, 2, ?)

heatingOff(2) heatingOff(2)
heatingOff(1)

S0 S1 S2

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 14 / 21

Finite State Machine

1 2

1 2

1 2

1 2

S0

S1

S2
RheatingOff(R) ∈ S

ret readWindow(2, #open) 6∈ Enext

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) ∈ Enext

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) 6∈ Enext

1 2

1 2

1 2

1 2

S0

S1

S2
RheatingOff(R) ∈ S

ret readWindow(2, #open) 6∈ Enext

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) ∈ Enext

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) 6∈ Enext

1 2

1 2

1 2

1 2

S0

S1

S2
RheatingOff(R) ∈ S

ret readWindow(2, #open) 6∈ Enext

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) ∈ Enext

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) 6∈ Enext

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 15 / 21

Conclusion

Microlog is a deductive logic programming language that is viable for
microcontrollers and other interactive applications

No dynamic database, input/output is done explicitly
Strict call-convention
Approach is general (we also use it for LEGO EV3)

The rule system is expressive

If finite memory bounds can be shown, compilation to FSM is
possible

We trade compilation time/static analysis for runtime and get a
memory bound for free
We can check all states for additional constraints

Related Ideas:

Logic Production Systems (Kowalski, Sadri)
Action Atoms/External Atoms in ASP (Eiter)

https://dbs.informatik.uni-halle.de/microlog/

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 16 / 21

https://dbs.informatik.uni-halle.de/microlog/

Addendum: Divergent Program

read_sensor(?)@next.

table(X) :- read_sensor(X).

table(X)@next :- table(X).

table could be optimized away as it never causes IO

We could add the rule #out(X)@next :- table(X).

read sensor’s return values are actually restricted by its type

We do not inspect any of the C-Code

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 17 / 21

Addendum: Conditional Facts

formula of the form p(t1, . . . , tm)← ϕ

each ti is a constant or a parameter variable
(memory locations for return values)

ϕ is a consistent conjunction of atomic formulas u γ u′ with
γ ∈ {=, 6=, <,≤,≥, >}
(equality for unification, plus comparison predicates of runtime/oracle)

u and u′ are parameters or constants

We will do all possible deduction steps at compile time, delaying the
evaluation of conditions until runtime.

Conditional facts have been previously used by Brass and Dix for semantic
analysis of nonmonotonic negation.

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 18 / 21

Addendum: Conditional Facts (Example)

Replacing ? with fresh (pairwise distinct) variables instead of
instantiations from actual calls:

ret readWindow(2,V1). Generated Code: V1 = readWindow(1);

ret readDoor(1, 2,V2). V2 = readDoor(1, 2);

Consider the rule
windowOpen(R)← ret readWindow(R, #open).

applied to the fact
ret readWindow(2,V1)

This leads to conditional fact
windowOpen(2)← V1 = #open.

(V1 = #open) is the condition for successful unification

Applying rule call heatingOff(R)← windowOpen(R).
leads to call heatingOff(2)← V1 = #open.

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 19 / 21

Addendum: Calculating Successor States (Example)

In the example, the conditional successor state is:

hasWindow(2).
adjacent(1, 2).
call readWindow(2, ?).
call readDoor(1, 2, ?).
ret readWindow(2,V1).
ret readDoor(1, 2,V2).
windowOpen(2)← V1 = #open.
doorOpen(1, 2)← V2 = #open.
connected(1, 2)← V2 = #open.
connected(2, 1)← V2 = #open.
call heatingOff(2)← V1 = #open.
call heatingOff(1)← V1 = #open ∧ V2 = #open.

Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 20 / 21

Complete Example/Demo

.decl pressed

.decl setup

% IO Predicates

#pinIn(P: byte) = {pinMode(#P, INPUT);}

#pinOut(P: byte) = {pinMode(#P, OUTPUT);}

#digitalWrite(P: byte, Val: byte) = {digitalWrite(#P, #Val);}

#digitalRead(P: byte, Val: byte) = {int Val = digitalRead(#P);}

% Input

#digitalRead(12, ?)@next.

pressed :- #digitalRead(12, #HIGH).

% Setup and Initialization

setup@0.

#pinIn(12)@next :- setup.

#pinOut(13)@next :- setup.

% Output

#digitalWrite(13, #HIGH)@next :- pressed.

#digitalWrite(13, #LOW)@next :- !pressed.
Mario Wenzel (MLU) Declarative Programming for Microcontrollers March 26, 2021 21 / 21

	Introduction

