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Aim
We show how to add negation as failure

¬P

to (a fragment of)

intuitionistic logic

in a methodological generic way.

Short-term aim: Tame the failure of deduction (cut elimination) in
N-prolog: we design an analytic proof calculus.

N-prolog = Intuitionistic implication truth, falsity and negation as failure,
computed like prolog.

Long-term aim: Propose a method that can be applied to other logics,
such as linear logics useful for internalising resources and processes.
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Semantic point of view
Consider intuitionistic proposition logic, with distinct atoms Q , and
connectives

{→,⊥,>}

This logic has a canonical Kripke model (S,≤) where:

I S is all wffs of the language.
I A ≤ B iff B `Int A .
I A � b iff A ` b, where b ∈ Q is atomic.
I A � B1 → B2 iff for any A ′ ≥ A , if A ′ � B1 then A ′ � B2.
I A � >
I A 2 ⊥.

In the cannonical model we have: A � B iff A `Int B, for any A ,B.

So, A 0Int B1 → B2 only if
for some A ′, A ′ `Int A and A ′ `Int B1 and A ′ 0Int B2.1

Not analytic since A ′ need not be a subformula of A or B1 → B2.

1Observation adapted by Schroeder-Heister to handle inequality.
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Our idea
We add Gödel-Tarski provability constants:

For any ∆,A add the constant Pr(∆,A), where ∆ is a finite set of wffs
and A is a wff.

We let:

Pr(∆,A) =

 > if ∆ `Int A
⊥ if ∆ 0Int A

Let X be a variable ranging over finite sets of wffs. Then Pr(X ,A) does
not have a value unless X is instantiated.

By playing with how we instantiate X we can capture a variety of problems (answer set
programming, abduction problems, preferred extensions, etc.). E.g., scoped negation as
failure, i.e., failure from a specific database X becomes

Pr(X ,A)→ ⊥

For example the following holds, if X ` b.

� (Pr(X , b)→ ⊥)→ a
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First design step: a proof calculus of success ...and failure

Calculus of success

(atom)
∆, q ` q

(⊥)
∆,⊥ ` A

(>)
∆ ` >

∆ ` A x = q or x = ⊥
(elim)

∆,A → x ` q

∆,A ` q
(intro)

∆ ` A ⇒ q

Calculus of failure

∆,A 0 q
(¬intro)

∆ 0 A ⇒ q

{
∆ 0 A :

for any A such that
(A ⇒ x) ∈ ∆, where x = q or x = ⊥

}
q < ∆ ⊥ < ∆

(¬atom)
∆ 0 q

{
∆ 0 A : for A such that (A ⇒ ⊥) ∈ ∆

}
⊥ < ∆

(¬⊥)
∆ 0 ⊥
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A digression: naïvely adding NAF means deduction fails

First attempt: Following N-Prolog directly we could try the following naïve
rules for fibering the systems of success and failure together using NAF.

∆ 0 a
(to fail)

∆ ` ¬a

∆ ` a
(to succ)

∆ 0 ¬a

An issue: it fails cut elimination (hence modus ponens)
“There are reasons to think that the addition of negation-as-failure to intuitionistic
logic programming will lead to serious semantic diffculties. Gabbay studied the
problem in [N-Prolog 1985], and concluded that the entire idea was logically in-
coherent, since modus ponens would no longer be valid.” Boner and McCarty
1990

Their example: The following hold.

¬C → B , (C → B)→ D ` B and B ,¬C → B , (C → B)→ D ` D

but
¬C → B , (C → B)→ D 0 D

The issue: The two instances of ¬C refer to different databases.
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Back to our resolution

Don’t use these rules.
∆ 0 a

(to fail)
∆ ` ¬a

∆ ` a
(to succ)

∆ 0 ¬a

Use Gödel-Tarski constants to record the database
used for by each occurence of negation

...duplicating clauses if used in different contexts (to be explained later).

The system fibering, presented next, becomes richer.
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Second design step: add rules replacing >,⊥ with Gödel-Tarski constants

Rules added to calculus of success:

(⊥)
∆,⊥ ` A −→

Γ 0 B
(⊥)

∆,Pr(Γ,B) ` A

(>)
∆ ` >

−→
Γ ` B

(>)
∆ ` Pr(Γ,B)

∆ ` A
(elim)

∆,A → ⊥ ` q
−→

∆ ` A Γ 0 B
(elim)

∆,A → Pr(Γ,B) ` q

Remark: First and third rules fiber the calculus of failure into the calculus
of success.
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Second design step: add rules replacing >,⊥ with Gödel-Tarski constants

Rules added to calculus of failure:

Old rule:{
∆ 0 A :

for A such that
(A ⇒ x) ∈ ∆, where x = q or x = ⊥

}
q < ∆ ⊥ < ∆

(¬atom)
∆ 0 q

↓

New Rule:{
∆ 0 A :

for A such that
(A ⇒ x) ∈ ∆ where x = q or x = ⊥

}
q < ∆ ⊥ < ∆{

∆ 0 A or Γ ` B :
for A such that
(A ⇒ Pr(Γ,B)) ∈ ∆

} {
Γ ` B : Pr(Γ,B) ∈ ∆

}
(¬atom)

∆ 0 q

Remark: Fibers the calculus of success into the calculus of failure.

Note: The new rule replaces the old rule (in contrast to the system for
success).

The rules with conclusions ∆ 0 ⊥ or ∆ 0 Pr(Γ,B) are similar to the above.
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Bonner & McCarty’s example in this setting

We had:

¬C → B , (C → B)→ D ` B and B ,¬C → B , (C → B)→ D ` D

Now we have for some X :

(Pr(X ,C)→ ⊥)→ B , (C → B)→ D ` B and B , (Pr(X ,C)→ ⊥)→ B , (C → B)→ D ` D

To preserve intuitionistic logic + NAF, we could set:

X = (C → B)→ D

...or more generally X 0 C.

Applying cut we obtain:

(Pr(X ,C)→ ⊥)→ B , (C → B)→ D ` D

Observation: This is now beyond N-Prolog, due to the jump to database X . We have moved
to a richer logic to admit deduction.
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Examples showing ¬ changes meaning.

Consider program consisting of (1) and (2):

1. ¬c → a

2. (c → a)→ c

Ask if a succeeds using NAF: (1), (2) ` a.

(1), (2), c ` c

(1), (2), c 0 ¬c

(1), (2), c 0 a

(1), (2) 0 c → a

(1), (2) 0 c

(1), (2) ` ¬c

(1), (2) ` a
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Examples showing ¬ changes meaning.
More explicit program replaces (1) with (1.1) and (1.2):

1. ¬c → a

1.1 (Pr(
{
(1.2), (2)

}
, c)→ ⊥)→ a

1.2 (Pr({c} , c)→ ⊥)→ a
2. (c → a)→ c

Ask if a succeeds using NAF: (1.1), (1.2), (2) ` a.

c ` c

c,Pr({c} , c) 0 ⊥

c 0 Pr({c} , c)→ ⊥

(1.2), c 0 a

(1.2) 0 c → a

(1.2), (2) 0 c

(1.2), (2),Pr(
{
(1.2), (2)

}
, c) ` ⊥

(1.2), (2) ` Pr(
{
(1.2), (2)

}
, c)→ ⊥

(1.1), (1.2), (2) ` a

Remark: Consuming (2) avoids a cycle at the last step. In fact, to avoid cycles we can use
as many copies of each clause as needed and then let our computation consume any
clause it uses. So consuming resources acts as a loop checker, and adding resources acts
as separating different occurences of ¬.
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Example of resolving inconsistency

Consider a 2-cycle.

a
�� ��
b

UUUU

Model using the logic program with clauses:
I (Pr(X , a)→ ⊥)→ b
I (Pr(X , b)→ ⊥)→ a

Step 1: Pick a goal we want to hold, say a.

Step 2: Unfold the rules of our analytic proof calculus.

X 0 b

(Pr(X , a)→ ⊥)→ b , (Pr(X , b)→ ⊥)→ a,Pr(X , b) ` ⊥

(Pr(X , a)→ ⊥)→ b , (Pr(X , b)→ ⊥)→ a ` Pr(X , b)→ ⊥

(Pr(X , a)→ ⊥)→ b , (Pr(X , b)→ ⊥)→ a ` a

Remark: This is consistent with argumentation theory: if b is “out” then a is “in”.



14/18

An inconsistency that cannot be resolved.

Consider a self loop.
a dddd

Model using the logic program with clauses:
I (Pr(X , a)→ ⊥)→ a

Step 1: Pick a goal we want to hold, say a.

Step 2: Unfold the rules of our analytic proof calculus.

X 0 a

(Pr(X , a)→ ⊥)→ a,Pr(X , a) ` ⊥

(Pr(X , a)→ ⊥)→ a, ` Pr(X , a)→ ⊥

(Pr(X , a)→ ⊥)→ a ` a

Remark: For goal a to be “in”, a must not be given resources. We loop if we try to make X
consistent with the program, so cannot collapse between the goal and action levels.
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Example of Inferring actions to take for a goal to succeed
Consider a chain.

a // // b // // c

Model using the logic program with clauses:
I (Pr(X , b)→ ⊥)→ c
I (Pr(X , a)→ ⊥)→ b

Step 1: Pick a goal we want to hold, say c.

Step 2: Unfold the rules of our analytic proof calculus.

X 0 b

(Pr(X , b)→ ⊥)→ c, (Pr(X , a)→ ⊥)→ b ,Pr(X , b) ` ⊥

(Pr(X , b)→ ⊥)→ c, (Pr(X , a)→ ⊥)→ b ` Pr(X , b)→ ⊥

(Pr(X , b)→ ⊥)→ c, (Pr(X , a)→ ⊥)→ b ` c

Step 3: Force X to be consistent with our initial program.

X ` a

(Pr(X , b)→ ⊥)→ c, (Pr(X , a)→ ⊥)→ b ,Pr(X , a) 0 ⊥

(Pr(X , b)→ ⊥)→ c, (Pr(X , a)→ ⊥)→ b 0 Pr(X , a)→ ⊥

(Pr(X , b)→ ⊥)→ c, (Pr(X , a)→ ⊥)→ b 0 b

Minimal solution: X = a — give a resources and goal c will succeed.
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Example, back to intuitionistic logic + ¬ with multiple contexts
Consider program:
I ((¬a → b)→ ¬b)→ c
I (b → c)→ a

Problem: Need two copies of first clause used to prove c fails in different contexts.

Find contexts X1, Y1, X2, and Y2 in the following program.
1. (((Pr(Y1, a)→ ⊥)→ b)→ (Pr(X1, b)→ ⊥))→ c
2. (((Pr(Y2, a)→ ⊥)→ b)→ (Pr(X2, b)→ ⊥))→ c
3. (b → c)→ a

Taking X1 ` b we have a proof

X1 ` b

(2), (3), (Pr(Y1, a)→ ⊥)→ b ,Pr(X1, b) `→ ⊥

(2), (3), (Pr(Y1, a)→ ⊥)→ b ` Pr(X1, b)→ ⊥

(2), (3) ` ((Pr(Y1, a)→ ⊥)→ b)→ (Pr(X1, b)→ ⊥)

(1), (2), (3) 0 c

Refining to X1 = (2), (3) (Pr(Y1, a)→ ⊥)→ b, we can restart the proof.

Y1 0 a

(2), (3),Pr(Y1, a) ` ⊥

(2), (3) ` Pr(Y1, a)→ ⊥

(2), (3), (Pr(Y1, a)→ ⊥)→ b ` b

Which is a proof if Y1 0 a.
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Example, back to intuitionistic logic + ¬ with multiple contexts
We have X1 = (2), (3), (Pr(Y1, a)→ ⊥)→ b, and Y1 0 a.
Let Y1 = (2), (3), so we can restart the proof:

X2 ` b

b , (Pr(Y2, a)→ ⊥)→ b ,Pr(X2, b) 0 ⊥

b , (Pr(Y2, a)→ ⊥)→ b 0 Pr(X2, b)→ ⊥

b 0 ((Pr(Y2, a)→ ⊥)→ b)→ (Pr(X2, b)→ ⊥)

(2), b 0 c

(2) 0 b → c

(2), (3) 0 a

Thus X2 ` b.
Restarting with X2 = b , (Pr(Y2, a)→ ⊥)→ b we conclude the proof.

b , (Pr(Y2, a)→ ⊥)→ b ` b

Thus there are no constraints on Y2
Final solution, making proof analytic:

X1 = (2), (3), (Pr(Y1, a)→ ⊥)→ b
Y1 = (2), (3)
X2 = b , (Pr(Y2, a)→ ⊥)→ b
Y2 = >
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Conclusion

proof theory
Analytic proof calculi are
designed for algorithmic
proof search and
deduction (cut elimination).

KR
Negation as failure is
useful for knowledge
representation.
Common-sense problems can be
addressed by making the context of
different assertions explicit.

It is possible to have the best of both these worlds
together in one system: a logic with ¬ in which the effect of cut
is respected by cut elimination.

The system remembers from which database a query failed.

Future direction: this methodology will extend to any logic with
well-founded proof system and constants for truth and falsity. Generating
the rules for the system of failure should be achieved by systematically
pushing ¬ to the atoms in deductions of the form Γ ` ¬∆.




