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Paraconsistent and Paracomplete Logics

Motivation in CS: Useful for knowledge representation and reasoning in presence
of partial/incomplete and excessive/contradictory information.

A logic is called

e paraconsistent if it ‘tolerates contradictions’, i.e.

‘Principle of explosion’ or ex contradictione (sequitur) quodlibet (ECQ) is
not valid, i.e. from a contradiction (A & —A) not everything follows!

e paracomplete if it does not ‘enforce completeness/exhaustiveness’, i.e.

Law of excluded middle or tertium non datur (TND) is not valid, it can be
the case that neither A nor its negation is the case (cf. intuitionistic logics).



Paraconsistent and Paracomplete Logics

Paraconsistency and

paracompleteness are dual notions! Paracomplete

W= [A|U|TA]
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Paraconsistent and Paracomplete Logics

Paraconsistent (resp. paracomplete) logics validate TND (resp. ECQ) only.

”»

Some logics do not validate either, they are termed “paranormal” or “paradefinite”.
Classical logic validates both.

By giving up TND/ECQ other properties of negation become ‘negotiable’, e.g.

o DS1-4: disjunctive syllogism

o DM1-4; De Morgan laws (finite & infinite)

o DNI/DNE: double negation intro/elim (rule & axiom)
o CoP1-4: contraposition (rules & axioms)

o MT1-4: modus tollens (rules & axioms)

o ... and many others

Automated theorem proving can be employed to explore (minimal) semantic
conditions under which they obtain.



Logics with “Recovery Operators™ LFls & LFUs

Giving up TND or ECQ does not necessarily ‘weaken’ our logic!
We can have special operators (‘O’,'%”) allowing us to recover classical properties in a
‘sentence-wise’ fashion. (Think of a sort of “quality seal” for formulas.)

For (paraconsistent) LFI's:
read ‘OA’ as “Ais consistent”

For (paracomplete) LFU’s:
read ‘YA’ as “Ais determined”



Logics with “Recovery Operators™ LFls & LFUs

For (paraconsistent) LFIs we have that:
The Principle of “Explosion” (ECQ)
A,NAFB

is NOT valid. Instead we have:

The Principle of “Gentle Explosion”
(cf. W. Carnielli & J. Marcos (2001). “A Taxonomy of C-Systems”)

oA, A,7AFB



Logics with “Recovery Operators™ LFls & LFUs

Dually, for (paracomplete) LFUs we have that:

The Law of Excluded Middle (TND)
FAV A (ie. T FA DA)
is NOT valid. Instead we have:
F%A—A YV 1A (ie. I FkA, A,7A ; where xA=~%A)

(W. Carnielli, M. Coniglio & A. Rodrigues (2020). Recovery operators, paraconsistency and duality. LJIGPL)



Logics with “Recovery Operators™ LFls & LFUs

Recovery extends to other properties too. For example, we have for LF| system mbC:

(1)
(2)
(3)
(4)

a A —a Fmpe "o but —oa e a A —a;
oa Fmbe ~(a A na) but —(a A —a) Fmbe oa;
—a— BFmpcaVpB but aV B Hmwe ~a— B;

oa,a V B Fmbc " — 3;

(5)

a — B Fmbec 23 = na but of,a — BFmbpe 78 — —a;

(6)
(7)
(8)

a— f Fmbe B — na but of,a — =8 Fube B — Da;
= = B Fmbe 28 — a but of,ma — B Fmbc 78 — «;

—a — 3 Fmbe B = a but of,~a — =8 Fmbc B — «.

mbC negation (71) is indeed very ‘weak’. (e.g. contraposition, DNI/DNE, etc. are not valid)
However, we can recover classical properties by employing the consistency operator: ‘0’



Logics with “Recovery Operators™ LFls & LFUs

In a sense, mbC extends classical logic (i.e. it is more ‘expressive’). We can indeed
define a ‘bottom particle’ (L), and with it a classical negation (~), inside mbC:

ol 1, :=0aAaAa

act precisely as bottom particles, i.e., they satisfy

1L, Fmbe B, for every sentence [3;

o~ ,a:=a — L, |act precisely as classical (strong) negations, i.e., they

saliSfy Fmbc @ V ~,a, and o A ~ya bFmpe B for every sentence 3.

Employing the above interpretation for L and ~ \(-f
classical logic becomes a ‘subsystem’ of mbC 'zi/; ‘




Logics with “Recovery Operators™ LFls & LFUs

Several well-studied axiomatic extensions of the minimal (LFI) logic mbC employ:

oaV (a A a) (ciw)
—oa — (a A —a) (ci)
—(a A ~a) = oa (cl)

A WO (Cf)

&Y —F T 26 (Ce)

(oax A of3) = o(ax A 3) (can)
(o A of3) = o(a V 3) (cay)
(oa A off) = o(a — ) (ca_y)

W. Carnielli and M. Coniglio (2016). Paraconsistent Logic: Consistency, Contradiction and Negation. Springer



Logics with “Recovery Operators™ LFls & LFUs

On (paraconsistent) LFls:

W. Carnielli and M. Coniglio (2016). Paraconsistent Logic: Consistency, Contradiction and Negation. Springer
W. Carnielli, M. Coniglio, J. Marcos (2007). “Logics of Formal Inconsistency” Handbook of Phil. Logic. Springer
On (paracomplete) LFUs:

J. Marcos (2005). Nearly every normal modal logic is paranormal. Logique et Analyse

Recent developments:

W. Carnielli, M. Coniglio, D. Fuenmayor (2020). “Logics of Formal Inconsistency enriched with replacement:
an algebraic and modal account”. Preprint at arXiv: https://arxiv.org/abs/2003.09522

W. Carnielli, M. Coniglio & A. Rodrigues (2020). Recovery operators, paraconsistency and duality. LJIIGPL


https://arxiv.org/abs/2003.09522

Topological semantics for LFls & LFUs (with replacement)

Consider Boolean algebras extended with an additional unary
operator (e.g. Closure, Interior, Border, or Frontier algebras)

Ex. for LFIs we can use frontier algebras (with F(.) primitive)
e C(A)=AUFA)
o I(A) =A\FA)
o | 1A := C(-A) = —AUF(-A)

o | 0A| := (D'P(A) = -B(A) = —AUI(A) =|A — I(A)

where (®)P(A) := ®(A) = A

D. Fuenmayor (2020) “Topological semantics for paraconsistent and paracomplete logics” (Isabelle AFP)
www.isa-afp.org/entries/Topological_Semantics.html

or extended abstract in ResearchGate: “Paraconsistent and paracomplete logics in Isabelle/HOL”
https://www.researchgate.net/publication/349043183_Paraconsistent and _paracomplete logics_in_lsabelleHOL
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Topological semantics for LFls & LFUs (with replacement)

Consider Boolean algebras extended with an additional unary
operator (e.g. Closure, Interior, Border, or Frontier algebras)
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Non-classical logics in Isabelle/HOL via semantic embeddings:
Simple Type Theory as universal meta-logic (jww. Christoph Benzmiiller)

2 BASIC MODAL LOGIC

In this section we introduce the basic modal language and its relational semantics. We define
basic modal syntax, introduce models and frames, and give the satisfaction definition. We then
draw the reader’s attention to the internal perspective that modal languages offer on relational
structure, and explain why models and frames should be thought of as graphs. Following this
we give the standard translation. This enables us to convert any basic modal formula into a first-
order formula with one free variable. The standard translation is a bridge between the modal and
classical worlds, a bridge that underlies much of the work of this chapter.

2.1 First steps in relational semantics syntax

)se elements we typs€allfy write as p, ¢,  and

M eta I an g ua g @ :nts we typi writefis m, m’, m”, and so
naturgh®t similarity tffpe) of the language; in

WAL TUHTUWS WE 11 WdCIUYy ddSUllIe uldL IRV 1S ug erab]y infinite, agd we’ll often work with
Telement. Given a signltuge we define the basic

iguage (over the sngnature) as follows

¢ u= p|T|L|l-eleAd|eVi|le—=v|peoy|(me|[mle

at is, a baelc modal formula is either a proposition symbol, a boolean con%tant a booleap
combing asic modal formulas, or (most interesting of all) a formula prefixedss

Handbook of
Modal Logic
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Non-classical logics in Isabelle/HOL via semantic embeddings:
Simple Type Theory as universal meta-logic (jww. Christoph Benzmiiller)

A model (or Kripke model) 9 for the basic modal language (over some fixed signature) is a
triple M = (W, { R } ,nemon, V). Here W, the domain, is a non-empty set, whose elements we
usually call points, but which, for reasons which will soon be clear, are sometimes called states,
times in a model is a binary relation on W,
and | sosition symbol p in PROP a subset

V(p) M etalang uage p is true. The first two components
(WA

> model. If there is only one relation

in the (W, R, V) for the model itself. We

encourage the reader to think of Kripke models as graphs (or to be slightly more precise, directed

graphs, that is, graphs whose points are linked by directed arrows) and will shortly give some

examples which show why this is helpful. Handbook Of
Suppose w is a point in a model M = (W, { R },.emon, V). Then we inductively define the MOdal Loglc

notion of a formula ¢ being satisfied (or true) in 9 at point w as follows (we omit some of the

clauses for the booleans): se m a n t i cs

ﬂ, wkp iff  weV(p),

MwpE=T always,
Mw =L never,
M w = —p iff  not M, w = ¢ (notation: M, w = ¢),
MwlE= Ay iff  MwE e and M w = 9,
MwEe—y iff MwlpEe or Mw =P,
M, w = (myp iff  for some v € W such that R wv we have M, v |= ¢,
M, w = [m]e iff  forall v € W such that R™wv we have M, v |= .




Non-classical logics in Isabelle/HOL via semantic embeddings:
Simple Type Theory as universal meta-logic (jww. Christoph Benzmiiller)

HOL (meta-logic)

A
()

L (object-logic) /e
Embedding of F in I



Non-classical logics in Isabelle/HOL via semantic embeddings:
Simple Type Theory as universal meta-logic (jww. Christoph Benzmiiller)

HOL St = Cq | Xa | (/ansﬁ)(r—ﬁ | (sn—>ﬂ ta),B | Y | So V 1y | an Iy
HOML o = | eleAYle oY 0p| Ol Vx| dx, @
HOML in HOL.:

HOML formulas ¢ are mapped to HOL predicates ¢,,.,,
(explicit representation of labelled formulas)



Non-classical logics in Isabelle/HOL via semantic embeddings:
Simple Type Theory as universal meta-logic (jww. Christoph Benzmiiller)

HOL S, = Cq |xa | (/lx(rsﬁ)a—ﬁ | (Sa—>,[3 [ar)ﬂ I 5o | So VI | vxn lo
HOML o = e leAYleoy|op| Ol Ve | dx, @

HOML in HOL: HOML formulas ¢ are mapped to HOL predicates ¢,
(explicit representation of labelled formulas)

= A@uoodwy—pw
= ASO#*(JA(##*O/IW#(SDW AYw)

= A uroliflro AW (oW V YW C. Benzmiiller & L. Paulson (2013)
= Ahy_ o)W, Vd, hdw "Quantified Multimodal Logics in Simple Type
= AhysoyAw,3d, hdw Theory" Logica Universalis

= A@u—odwy Yuy, (mrwu V ou)

om Ws |5
|

= A@y_odwydu, (rwu A pu)

valid = Ag,_,Ywueow

The equations in Ax are given as axioms to the HOL provers!



Non-classical logics in Isabelle/HOL via semantic embeddings:
Simple Type Theory as universal meta-logic (jww. Christoph Benzmiiller)

Logics L embedded using the semantic embeddings
approach (all of them supporting quantification) HOL

Multi-modal & hybrid logics
Deontic logics & conditional logics t
Many-valued logics _ .
Free logics (+ axiomatizing Category theory) 09¢L . _LogiclL

. , . . Syntax Semantics
2D-semantics (Kaplan’s Logic of Indexicals)
Dynamic logics (incl. preference logics, public

announcement), and many others...
paraconsistent & paracomplete logics

19



Non-classical logics in Isabelle/HOL via semantic embeddings:
Simple Type Theory as universal meta-logic (jww. Christoph Benzmiiller)

Theorem provers become universal logic reasoning engines:
interactive: Isabelle/HOL, PVS, HOL, Coq/HOL, Lean, ...
automated: Leo-2/3, Satallax, Vampire, SMT solvers,
(counter)model finders (Nitpick, Nunchaku)

New approach towards combining logics:
e object logics correspond to different fragments of HOL
(i.e. Church’s simple type theory).
e encoding semantic conditions and ‘bridge’ meta-axioms

e using theorem provers and model finders for verification ‘ :\%\I

20



Isabelle/HOL encoding of LFIs & LFUs

Live 2min demo

o=

Q&A
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