

Christine Müller

Survey on Mathematical Notations

KWARC Report No. KWARC2008-1 (version 3) March 2008

School of Engineering and Science

Survey on Mathematical Notations

Christine Müller

School of Engineering and Science Jacobs University Bremen gGmbH Campus Ring 12 28759 Bremen Germany

Summary

This paper aims at collecting various examples that illustrate the ambiguity of notations. In particular, we point out alternative notations that are used to present the same mathematical concept, i.e. mathematical content expression with the same meaning. In addition, we exemplify mathematical expression, which represent different mathematical concepts, but are presented with the same notation. Moreover, this work aims at classifying alternative notations according to the context their are used in.

Contents

1	Introduction	1
2	Display Style	2
3	Level of Expertise3.1Bracket Elision3.2Type Elision	2 2 3
4	Individual Style	3
5	Language and Cultural Differences	3
6	Area of Application	4
7	Same Concept But Different Notations7.1 Basic mathematical symbols7.2 Hydrodynamics	5 5 6
8	Same Notation For Different Concept8.1Basic mathematical symbols8.2Same Notation For Different Formulae8.3Naming Conventions	6 6 9 9
9	Conclusion and Outlook	10

1 Introduction

Wikipedia says: A mathematical notation is a writing system (in fact, a formal language) used for presenting concepts in mathematics or other fields. The notation uses symbols or symbolic expressions which are intended to have a precise semantic meaning (cf. [Wik08b]).

Notations are central for understanding mathematical discourse. Readers would like to read notations that transport the meaning well and prefer notations that are familiar to them. Therefore, authors optimize the choice of notations with respect to these two criteria, while at the same time trying to remain consistent over the document and their own prior publications. The latter task is indeed not trivial because different mathematical expressions may share the same notations. In contrast, the same meaning can be expressed by various alternative notations. Moreover, notations can be provided with different level of completeness, e.g. authors may choose to omit types and brackets. For example, ax + yis actually (ax) + y, since multiplication "binds stronger" than addition. This may be clear to some readers, but not to all.

The markup of the meaning (or the content of a mathematical expression) and the used notations (the presentation for the mathematical expression) has been the first step to addressing the ambiguity of mathematical notations. Content Markup formats for mathematics such as OPENMATH [BCC⁺04] and content MATHML [ABC⁺03] concentrate on the functional structure of mathematical formulae, thus allowing mathematical software systems to exchange mathematical objects and to identify the meaning of a mathematical expression. For communication with humans, Presentation Formats such as Presentation-MATHML [ABC⁺03] allow to specify alternative notation of the same content expression.

Various researchers have provided examples, in which mathematical expressions are differently presented depending on the *context* they are used:

In [SW06] Watt and Smirnova introduce possible reasons for multiple notations of the same mathematical concept, namely area of application, national conventions, level of sophistication, the mathematical context, and the historical period. In contrast to the five "reasons" in [SW06], the ACTIVEMATH [MLUM06] distinguishes four "context categories" that influence the adaptation of notations, namely language, different patterns of the argument, the author's style, and notations of the same collection. In [KMR08] the notion of context dimensions and context values was used to describe the contextualization of notations.

This paper aims at collecting various examples that illustrate the ambiguity of notations. In particular, we point out alternative notations that are used to present the same mathematical concept, i.e. mathematical content expression with the same meaning. In addition, we exemplify mathematical expression, which represent different mathematical concepts, but are presented with the same notation. Moreover, this work aims at classifying alternative notations according to the context their are used in, in particular, by grouping them according to the dimensions *display style*, *level of expertise*, *language*, *individual styles*, and *area of application*. The illustrated examples are collected from various online sources as well as the course material of the General Computer Science lecture (GenCS) at the Jacobs University Bremen.

Display Style 2

u	itnors select notations for a specific output format:		
	Text Output	Display Output	
	$\sum_{k=1}^{n}$	$\sum_{x=1}^{n} x$	
	$\bigcup_{k=1}^{n}$	$\bigcup_{k=1}^{n}$	

ife Auth

3 Level of Expertise

Mathematicians gloss over parts of the formulae, e.g., leaving out arguments, if they are non-essential, conventionalized or can be deduced from the context. Indeed this is part of what makes mathematics so hard to read for beginners, but also what makes mathematical language so efficient for the initiates.

In this section we collect examples that illustrate notations that can be classified based on different *level of expertise* of readers and authors:

- **School Level** While $a \div b$ is mostly used in elementary school, $\frac{a}{b}$ is used in higher education [SW06].
- **Logarithm** $\log(x)$ or even $\log x$ or $\lg x$ can be used for $\log_{10}(x)$ (cf. [KMR08])
- **Natural Logarithm** denoted by either $\ln y$ or $\log_e y$. Teacher may choose to use the latter notation to lead to the former.
- **Negation** Experienced users refer to $x^2 3yx + 1$ rather than $x^2 + (-3y)x + 1$ (cf. [NW01])

Sinus Experienced users refer to $\sin^y x$ rather than $(\sin x)^y$

Multiplication Experienced users omit the times operator, if it can be deduced from the context: ab rather than a * b

3.1**Bracket Elision**

Authors may choose to insert brackets that are not necessarily needed or to omit them if their readers are more experienced:

- (a+b) + c = a + (b+c)
- ax + y is actually (ax) + y, since multiplication "binds stronger" than addition
- $5 + x * y^{n+3}$ rather than $5 + (x * (y^{n+3}))$

3.2 Type Elision

Authors may choose to leave out types, if they can be deduced from the context:

- $\llbracket t \rrbracket$ for $\llbracket t \rrbracket_{\mathcal{M}}^{\phi}$, if there is only one model \mathcal{M} in the context and ϕ is the most salient variable assignment (cf. [KMR08])
- $\Lambda^* = \lambda FGX_{\iota}.F(X)\Lambda G(X)$ rather than $\Lambda^*_{(\iota \to o) \to ((\iota \to o))} = \lambda F_{\iota \to o}G_{\iota \to o}X_l.F_{\iota \to o}(X_{\iota})\Lambda_{o \to (o \to o)}G_{\iota \to o}(X_{\iota})$

4 Individual Style

Depending on their practice, professors are using different combinations of (1) $A \subset B$, (2) $A \subseteq B$, and (3) $A \subsetneq B$, in which cases the presentation (1) represent different meanings: When using (1) and (2), (1) means that A is the proper subset of B (excluding the equality of both sets). In contrast, when using (1) and (3), (1) represents the subset of B (including the equality of both sets).

Alternatively, for (2) also $A \subseteq B$ is used and for (3) one can also use $A \subsetneq B$, $A \subsetneqq B$, or $A \subsetneq B$.

5 Language and Cultural Differences

This section gathers example that exemplify the cultural or language-dependent influence on notations.

Half-open Interval The anglo-saxon (0, 1] and the french [0, 1] (cf. [DL08])

Decimal Point is a symbol in arithmetics, which is used to separate the fractional part of a decimal from the whole part. For decimal numbers, *German* use a comma where *English* use a decimal point. For example 4, 5 in German is equivalent to 4.5 in English.

In contrast, in German 1000 is written/printed as either 1000, 1.000 or 1000 - using adecimal point (Punkt) or a space where English uses a comma (1,000). This also applies to all German numbers above 1,000.

Binomial Coefficient We can distinguish notations that are commonly used in different language. For example, various notations exists to denote the binomial coefficient, the number of k-element subsets of an n-element set $\frac{n!}{k!(n-k!)}$: The symbol is denoted with C_n^k in French/ Russian speaking countries and with $\binom{n}{k}$ in German/ English speaking countries. Further notation exists, e.g., C(n,k), ${}_nC^k$, nC_k , ${}_nC_k$, as well as system-specific notation, such as binomial(n,k) in MAPLE and Binomial[n,k] in MATHEMATICA [NW01].

Polish Notation for Sentential Logic Differences between Conventional and Polish Notation: The table below shows the core of Jan Łukasiewicz's notation for sentential

Mathematical Concept	Conventional Notation	Polish Notation
Negation	$\neg \varphi$	$N\varphi$
Conjunction	$\varphi \wedge \psi$	$K \varphi \psi$
Disjunction	$\varphi \lor \psi$	$Aarphi\psi$
Material conditional	$arphi ightarrow \psi$	$C arphi \psi$
Biconditional	$\varphi \leftrightarrow \psi$	$E arphi \psi$
Sheffer stroke	$\varphi \mid \psi$	$Darphi\psi$
Possibility	$\Diamond \varphi$	$M\varphi$
Necessity	$\Box \varphi$	$L \varphi$
Universal Quantifier	$\forall \varphi$	$\Pi arphi$
Existential Quantifier	$\exists \varphi$	$\Sigma arphi$

logic. The "conventional" notation did not become so until the 1970s and 80s (cf. [Wik07a, Luk67])

6 Area of Application

The same mathematical concept can be expressed by different notations depending on the area it is used in (see Section 7 for more examples).

- **Imaginary Unit** A mathematician uses the symbol i. In contrast, an electrical engineer uses j to avoid confusion with the symbol I for electric current. i and j are two alternative presentation for the symbol *imaginary unit*.
- **Inequality** In mathematics \neq is used, while computer scientists use ! =or <>.

Sometimes the same notation is used to present different mathematical concepts (see Section 8 for more examples):

Derivative In calculus f' stands for the first derivative of f but can mean any other entity different from f in other fields (cf. [RB97]).

More complex example include the *natural numbers*, which are defined and presented differently in various areas: A natural number (also called *counting number*) can mean either an element of the set $\{1, 2, 3, ...\}$ (the *positive integers*) or an element of the set $\{0, 1, 2, 3, ...\}$ (the *non-negative integers*). See below different notations and definitions for both concepts:

Positive Integers: $\{1, 2, 3, \ldots\}$

- Definition used in *number theory* (cf. [Wik08a]).
- cf. http://www.research.att.com/~njas/sequences/A000027
- Definitions used in Russia

Notation	Explanation	Source		
$\mathbf{N}^+, \mathbf{N}^*, \mathbf{N}$	\mathbf{N}^+ (English), \mathbf{N}^* (English), \mathbf{N} (German, number the-	[DL08]		
	ory: natural numbers are the numbers used for count-			
	ling)			
\mathbf{N}^*	The notation * is standard for non-zero or rather in-	[Wik08a]		
	vertible elements, i.e. elements that can 'undo' the ef-			
	fect of combination with another given element.			
\mathbb{W}, \mathbb{P}	Some authors who exclude zero from the naturals use	[Wik08a]		
	the term whole numbers, denoted \mathbb{W} , for the set of			
	non-negative integers. Others use the notation \mathbb{P} for			
	the positive integers.			
Ν	denotes natural numbers in Russia	Vyacheslav		
		Zholudev		
\mathbf{N}_1	???	unknown		
\mathbf{N}_+	???	unknown		

Non-negative Integers: $\{0, 1, 2, \ldots\}$

- Definition used in *mathematical logic*, set theory, and computer science (cf. [Wik08a]).
- cf. Peano Axioms [Wik08a] include 0 into the set of natural numbers (cf. [Wik08a]).
- cf. http://www.research.att.com/~njas/sequences/A001477
- cf. Bourbaki [Bou68]
- cf. Halmos [Hal74]

Notation	Explanation	Source
$\mathbf{N} \text{ or } \mathbb{N}$	Mathematicians use ${\bf N}$ (blackboard bold) or $\mathbb N$ (Uni-	[Wik08a]
	code)	
\mathbf{N}_0, \mathbf{N}	\mathbf{N}_0 (German, number theory), \mathbf{N} (German, set the-	[DL08]
	ory), \mathbf{N} (English)	
\mathbb{Z}^+	\mathbb{Z}^+ signifies non-negative integers; is used in Russia to	[Wik08a],
	denote the set $\{0, 1, 2, \ldots\}$	Vyacheslav
		Zholudev
ω	Set theorists often denote the set of all natural num-	[Wik08a]
	bers by a lower-case Greek letter omega: ω . When	
	this notation is used, zero is explicitly included as a	
	natural number.	

7 Same Concept But Different Notations

This section exemplifies mathematical object with the same meaning, which are presented differently depending on the mathematical subarea they are used in:

7.1 Basic mathematical symbols

I grateful acknowledge the use of examples from Wikipedia [Wik07b].

Mathematical Concept	Notations	context	reads
inequality	\neq or ! = or $<>$	everywhere	is not equal to/
			does not equal
inequality	$\leq $ or $\leq =$	order theory	is less than or equal
			to
inequality	\geq or $>=$	order theory	is greater than or
			equal to
division	\div or /	arithmetics	divide
multiplication	× or ·	arithmetics	times
material implication	$\Rightarrow, \rightarrow, \text{ or } \supset$	prop. logic, Heyting al-	implies; if then
		gebra	
material equivalence	\Leftrightarrow or \leftrightarrow	prop. logic	if and only if; iff
logical negation	$\sim \text{ or } \neg$	prop. logic	not
definition	\equiv , :=, or : \Leftrightarrow	everywhere	is defined as
set builder notation	$\{:\} \text{ or } \{ \}$	set theory	the set of such
		-	that
empty set	Ø or {}	set theory	empty set
set-theoretic complement	- or \	set theory	minus, without
natural numbers	\mathbb{N} or \mathbb{N} or \mathbb{N}_0	numbers	Ν
integers	\mathbb{Z} or \mathbf{Z}	numbers	Z
rational numbers	\mathbb{Q} or \mathbf{Q}	numbers	Q
real numbers	\mathbb{R} or \mathbf{R}	numbers	R
complex numbers	\mathbb{C} or \mathbf{C}	numbers	С
real or complex numbers	\mathbb{K} or \mathbf{K}	linear algebra	Κ
sum	\sum or S; as well as	arithmetics	summation over
	$\sum_{k=1}^{n}$		
derivative	· or /	calculus	prime, deriva-
			tive of
inner product	$\wedge \text{ or } \&$	linear algebra	inner product of
exclusive or	\oplus or \leq	prop. logic, Boolean	xor
		algebra	
logical truth	$\top, \top, 1$	prop. logic, Boolean	top
		algebra	
logical falsity	$\perp, F, 0$	prop. logic, Boolean	bottom
		algebra	
disjoint union	\cup or +	set Theory	the disjoint union

7.2 Hydrodynamics

In hydrodynamics the following appearances represent the same notation. People also call it "rotor (rotation)", "curl" or "vorticity" depending on the appearance they choose: rot A, $\nabla \times A$, curl A, or $\nabla^{\perp} A$

8 Same Notation For Different Concept

This section exemplifies mathematical notations that present mathematical object with different meanings and provides the area they are most frequently used in.

8.1 Basic mathematical symbols

I grateful acknowledge the use of examples from Wikipedia [Wik07b].

N.	Math. Concept	Example	Math. Area	Notation Reads
+	addition	1 + 3 = 4	arithmetics	plus
+	disjoint union	$\{1,2\}$ + $\{2\}$ =	set theory	the disjoint union of
		$\{(1,0),(2,0),(2,1)\}$		and
+	range	$\mathbb{Z}_{+} = 1, 2, 3, \dots$	numbers	
_	substraction	3 - 1 = 2	arithmetics	minus
-	negation	-1	arithmetics	negative, minus
				Continued on next page

Notation Collection – continued from previous page					
N.	Math. Concept	Example	Math. Area	Notation Reads	
-	set-theoretic comple-	$\{1, 2, 4, 6, 7\}$ –	set theory	minus, without; e.g.	
	ment	$\{1,3,4\} = \{2,6,7\}$		A - B means 'the set	
				that contains all the el-	
				ements of A that are	
				tively else	
	multiplication	$2 \times 3 - 6$	arithmetics	tively also ()	
×	Cartesian product	$\begin{cases} 2 \times 3 = 0 \\ \{1,2\} \times \{3\} \end{cases} =$	set theory	reads $e \sigma X \times Y$ means	
~		$\{(1,3), (2,3)\} \times$	set theory	the set of all ordered	
		((-, •), (-, •))		pairs with the first	
				element of each pair	
				selected from X and	
				the second element se-	
				lected from Y'	
×	cross product	$(1,2,3) \times (4,5,6) =$	vector algebra	cross, e.g. $u \times v$ means	
		(-3, 6, -3)		the cross product of	
	1			vectors u and v'	
•	det product	$2 \times 3 = 0$	arithmetics	intes	
			vector algebra	the dot product of vec-	
				tors u and v'	
±	plus-minus	6 ± 3 means both $6 + 3$	arithmetics	'plus or minus'	
	I the second	and $6-3$		I the state	
±	plus-minus	10 ± 2 or equivalently	measurement	'plus or minus'	
		10 ± 20 means the range			
		from $10 - 2$ to $10 + 2$			
Ŧ	minus-plus		is only used in		
			arithmetics !!!		
\checkmark	square root	\sqrt{x} means 'the positive	real numbers	the principal square	
		ic x'		root of	
/	square root	15 A	complex num-	'the complex square	
V			bers	root of'	
	absolute value or mod-	x means 'the dis-	numbers	absolute value (modu-	
	ulus	tance along the real		lus) of	
		line (or across the com-			
		plex plane) between x			
		and zero'			
	Euclidean distance	x - y means the	geometry	Euclidean distance be-	
		tween x and y		norm of	
	Determinant	A means the deter-	Matrix theory	determinant of	
11		minant of the matrix A	intaorine encory		
	divides	$a \mid b$ means a divides b	number theory	divides; a single verti-	
			, i i i i i i i i i i i i i i i i i i i	cal bar is used to de-	
				note divisibility	
	Conditional probabil-	$P(A \mid B)$ means a	probability	'Given' A single verti-	
	ity	given b		cal bar is used to de-	
				scribe the probability	
				of an event given an-	
-	probability distribu-	$X \sim D$ means the	etatietice	bas distribution	
	tion	random variable X has	Statistics	has distribution	
		the probability distri-			
		bution D			
~	row equivalence	$A \sim B$ means that B	matrix theory	is row equivalent to	
		can be generated by us-			
		ing a series of elemen-			
		tary row operations on			
_	lenierlennie (*	A The states i A t D	1	and had all to	
~	logical conjunction	I ne statement $A \wedge B$	propositional	and; but also alterna-	
		both true elso it is	logic	$\begin{bmatrix} \text{tively used: } AND \end{bmatrix}$	
		false			
^	meet	For functions $A(x)$	lattice theory	min	
		and $B(x), A(x) \wedge B(x)$	street shooty		
		is used to mean			
		min(A(x), B(x))			
				Continued on next page	

Notation Collection – continued from previous page				
N .	Math. Concept	Example	Math. Area	Notation Reads
V	logical disjunction	The statement $A \lor B$ is true if A or B (or both) are true; if both are false, the statement	propositional logic	or; but also alterna- tively used: OR
V	join	is false For functions $A(x)$ and $B(x)$, $A(x) \lor B(x)$ is used to mean max(A(x), B(x))	lattice theory	max
()	function application	f(x) means the value of the function f at the element x	set theory	of
0	precedence grouping	Perform the operations inside the parentheses first: $(8/4)/2 = 2/2 =$ 1, but $8/(4/2) = 8/2 =$ 4	everywhere	parentheses
$ \begin{array}{c} \mathbb{C} \text{ or } C \\ \mathbb{C} \text{ or } C \end{array} $	complex numbers arbitrary constant	C can be any num- ber, most likely un- known; usually occurs when calculating an- tiderivatives: if $f(x) =$ $6x^2 + 4x$, then $F(x) =$ $2x^3 + 2x^2 + C$, where F'(x) = f(x)	numbers integral calcu- lus	CC
Π	product	$\prod_{k=1}^{n} a_k$ means	arithmetic	product over
П	Cartesian product	$ \begin{array}{c} a_1, a_2 \dots a_n \\ \prod_{i=0}^n Y_i \text{ means the set} \\ \text{of all } (n+1)\text{-tuples; the} \\ \text{direct product of'} \end{array} $	set theory	the Cartesian product of
ſ	indefinite integral or antiderivative	$\int f(x) dx \text{ means a func-} $ tion whose derivative is f	calculus	indefinite integral of the antiderivative of
ſ	definite integral	$\int_{a}^{f} f(x)_{a}^{b} dx means the signed area between the x-axis and the graph of the function f between x = a and x = b$	calculus	integral fromto ofwith respect to
∇	gradient	$ \nabla f(x_1, \dots, x_n) $ is the vector of par- tial derivatives $\delta f/\delta x_1, \dots, \delta f/\delta x_n) $	vector calculus	del, nabla, gradient of
∇ ∇	divergence curl	$ \begin{array}{l} \nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \\ \nabla \times \vec{v} = \\ \left(\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial z} \right) \mathbf{i} \\ + \\ \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) \mathbf{j} \\ \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_z}{\partial y} \right) \mathbf{k} \end{array} $	vector calculus vector calculus	del dot, divergence of curl of
Ţ	perpendicular	$x \perp y$ means x is perpendicular to y; or more generally x is or- thogonal to y	geometry	is perpendicular to
Ţ	bottom element	thigh at to y $x = \bot$ means x is the smallest element e.g. $\forall x : x \land \bot = \bot$	lattice theory	the bottom element
/	quotient group	G/H means the quo- tient of group G mod- ulo its subgroup H	group theory	mod
/	quotient set	A/ ~ means the set of all ~ equivalence classes in A (If we de- fine ~ by $x \sim y \Leftrightarrow$ $x - y \in \mathbb{Z}$, then $\mathbb{R}/\sim =$ $\{\{x + n : n \in \mathbb{Z}\} : x \in$ $(0, 1]\}$	set theory	mod
~	approximately equal	$x \approx y$ means x is approximately $x \approx y$	everywhere	is approximately equal
		proximately equal to y		Continued on next page

Notation Collection – continued from previous page						
N.	Math. Concept	Example	Math. Area	Notation Reads		
~	isomorphism	$G \approx H$ means that group G is isomorphic to group H (Q/1, 1 \approx V, where Q is the quaternion group and V is the Klein four- group)	group theory	is isomorphic to		

8.2 Same Notation For Different Formulae

The formula $a_n = \frac{1}{2}n(n-1)$ describes different mathematical aspects: [Thi84]

- 1. The sum of the first n-1 natural numbers; e.g. for $n=3\sum_{k=1}^{n-1}k=\frac{1}{2}3(3-1)=3$
- 2. The number of connecting passage between n points; e.g. for n = 3 points there are 3 connecting passages
- 3. The number of options to select 2 things simultaneously from a set of n things: e.g. given a set of 3 objects; there are three possibilities to select two objects at the same time

 $O(n^2 + n)$ could present different terms. By common notational convention we know that the latter is most likely to hold. [Lan08]

- 1. O times $n^2 + n$
- 2. O (being a function) applied to $n^2 + n$
- 3. the set of all integer functions not growing faster than $n^2 + n$

8.3 Naming Conventions

Different Names For The Same Concept Russians add the names of Russian scientists to the names of theorems. For example, *Cauchy-Schwarz inequality* becomes the *Cauchy-Bunyakovski inequality*. In France, it is referred to as *inégalité de Cauchy-Schwarz-Bunyakovskii*.¹

Similar Names For Different Concepts In Contrast, adding a name to a theorem can change the meaning. For example, the *Cantor theorem*, *Cantor-Bernstein-Schroeder theorem*, or *Cantor-Bendixson theorem* are three different theorems.

Same Names For Different Concepts The Homogeneous equation can mean:

- 1. An equations with the right-hand side equal to zero or
- 2. An equations with the left-hand side being a polynomial whose terms are monomials all having the same total degree.

¹for a references to Cauchy-Schwarz-Bunyakovskii see Wikipedia at http://en.wikipedia.org/w/ index.php?title=Cauchy%E2%80%93Schwarz_inequality&oldid=171567559 or Planetmath at http: //planetmath.org/encyclopedia/CauchySchwarzInequality.html

Commonly Known Best Practices Polya [Pól73] presents several examples for best practices in mathematics:

- Use meaningful initials as symbols, such as a V for Volume or an r for radius.
- Notations are helpful when the order and the connection of the sign suggest the order and the connections of the objects, e.g. by using letters at the beginning of the alphabet (a, b, c) for given quantities or constants and letters at the end of the alphabet (x, y, z) for unknown quantities or variables.
- Denote objects that belong to the same category with letters of the same alphabet,
 i.e. Roman capitals (A, B, C) for points, small Roman letters as (a, b, c) for lines,
 Greek letters (α, β, γ) for angles.

9 Conclusion and Outlook

This paper summarizes various examples that illustrate the ambiguity of notations. In particular, we pointed out alternative notations that are used to present the same mathematical concept, i.e. mathematical content expression with the same meaning. In addition, we exemplified mathematical expression, which represent different mathematical concepts, but are presented with the same notation. Moreover, this work aimed at classifying alternative notations according to the context their are used in, in particular, by grouping them according to the dimensions *display style*, *level of expertise*, *language*, *individual styles*, and *area of application*.

The included examples are used to motivate and develop a sophisticated reader for mathematical documents that, based on the reader's context, adapts the mathematical notation of a document (cf. [pan]).

Acknowledgement I grateful acknowledge the use of examples from Wikipedia [Wik07b, Wik07a], and several publications on the topic [SW06, NW01, ?, Thi84, RB97, DL08, MLUM06, Luk67, Lan08]. I also want to thank the members of the KWARC group as well as all students of the General Computer Science Lecture for their valuable contributions.

References

- [ABC⁺03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen Watt. Mathematical Markup Language (MathML) version 2.0 (second edition). W3C recommendation, World Wide Web Consortium, 2003.
- [BCC⁺04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar, Marc Gaetano, and Michael Kohlhase. The Open Math standard, version 2.0. Technical report, The Open Math Society, 2004.
- [Bou68] Nicolas Bourbaki. *Theory of Sets.* Elements of Mathematics. Springer Verlag, 1968.

- [DL08] James H. Davenport and Paul Libbrecht. The Freedom to Extend OPEN-MATH and its Utility. Journal of Mathematics and Computer Science, special issue on Mathematical Knowledge Management, 2008.
- [Hal74] Paul R. Halmos. *Naive Set Theory*. Springer Verlag, 1974.
- [KMR08] Michael Kohlhase, Christine Müller, and Florian Rabe. Notations for living mathematical documents. In Serge Autexier, John Campbell, Julio Rubio, Volker Sorge, Masakazu Suzuki, and Freek Wiedijk, editors, Intelligent Computer Mathematics, 9th International Conference, AISC 2008 15th Symposium, Calculemus 2008 7th International Conference, MKM 2008 Birmingham, UK, July 28 - August 1, 2008, Proceedings, number 5144 in LNAI, pages 504–519. Springer Verlag, 2008.
- [Lan08] Christoph Lange. Mathematical semantic markup in a wiki: The roles of symbols and notations. In Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and Max Völkel, editors, Proceedings of the 3rd Workshop on Semantic Wikis, European Semantic Web Conference 2008, volume 360 of CEUR Workshop Proceedings, Costa Adeje, Tenerife, Spain, June 2008.
- [Luk67] Jan Lukasiewicz. Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls, Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie 23:51-77 (1930). Translated by H. Weber as Philosophical Remarks on Many-Valued Systems of Propositional Logics. Clarendon Press: Oxford, 1967. Originally published in 1930.
- [MLUM06] Shahid Manzoor, Paul Libbrecht, Carsten Ullrich, and Erica Melis. Authoring Presentation for OPENMATH. In Michael Kohlhase, editor, Mathematical Knowledge Management, MKM'05, number 3863 in LNAI, pages 33–48. Springer Verlag, 2006.
- [NW01] Bill Naylor and Stephen M. Watt. Meta-Stylesheets for the Conversion of Mathematical Documents into Multiple Forms. In *Proceedings of the International Workshop on Mathematical Knowledge Management*, 2001.
- [pan] The panta rhei Project. seen March 2009.
- [Pól73] George Pólya. *How to Solve it.* Princeton University Press, 1973.
- [RB97] Dave Raggett and Davy Batsalle. Mathematics on the web: The EzMath notation, 27. Nov. 1997. available at http://www.w3.org/People/Raggett/ EzMath/EzMathPaper.html.
- [SW06] Elena Smirnova and Stephen M. Watt. Notation Selection in Mathematical Computing Environments. In Proceedings Transgressive Computing 2006: A conference in honor of Jean Della Dora (TC 2006), pages 339–355, Granada, Spain, 2006.
- [Thi84] Rüdiger Thiele. *Mathematische Beweise*. BSB B.G. Teubner Verlagsgesellschaft, 1984.

- [Wik07a] Polish notation for logic (from Wikipedia, the free encyclopedia). web page at http://en.wikipedia.org/w/index.php?title=Polish_ notation&oldid=165738551, seen November2007.
- [Wik07b] Table of Mathematical Symbols (from Wikipedia, the free encyclopedia). web page at http://en.wikipedia.org/w/index.php?title=Table_of_ mathematical_symbols&oldid=169848764, seen November2007.
- [Wik08a] Natural numbers, 2008. Online; accessed March 2008.
- [Wik08b] Mathematical notation, 2008. Online; accessed March 2008.

Christine Müller is currently doing her Ph.D. in the computer science program of the School of Engineering & Science at the Jacobs University Bremen. In her research, Christine Müller aims at verifying whether (mathematical) practice is inscribed into documents. She uses semantic technologies in order to automatically extract practice-relevant information from scientific documents. Moreover, she wants to develop a model for (mathematical) Communities of Practice (CoP), allowing a system to classify users as CoP members based on their documents, annotations, and ratings. She is implementing the panta rhei system to provide a proof-of-concept. web

page: http://kwarc.info/cmueller