
Informatische Werkzeuge in den Geistes- und
Sozialwissenschaften 1/2

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2024-02-08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 0 2024-02-08

Michael.Kohlhase@FAU.de

Chapter 1
Preliminaries

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 0 2024-02-08

1.1 Administrativa

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 0 2024-02-08

Prerequisites

▶ General Prerequisites: Motivation, interest, curiosity, hard work.
nothing else! We will teach you all you need to know

▶ You can do this course if you want! (we will help)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 1 2024-02-08

Assessment, Grades

▶ Grading Background/Theory: Only modules are graded! (by the law)
▶ Module “DH-Einführung” (DHE) =̂ courses IWGS1/2, DH-Einführung.
▶ DHE module grade ; pass/fail determined by “portfolio” =̂ collection of

contributions/assessments.
▶ Assessment Practice: The IWGS assessments in the “portfolio” consist of
▶ weekly homework assignments, (practice IWGS concepts and tools)
▶ 60 minutes exam directly after lectures end: ∼ Feb. 10. 2024.

▶ Retake Exam: 60 min exam at the end of the exam break. (∼ May 4. 2024)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 2 2024-02-08

IWGS Homework Assignments

▶ Homeworks: will be small individual problem/programming/system
assignments
▶ but take time to solve (at least read them directly ; questions)
▶ group submission if and only if explicitly permitted.

▶ Without trying the homework assignments you are unlikely to pass the exam.
▶ Admin: To keep things running smoothly
▶ Homeworks will be posted on StudOn.
▶ Sign up for IWGS under https://www.studon.fau.de/crs5323051.html.
▶ Homeworks are handed in electronically there. (plain text, program files, PDF)
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

▶ Homework Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study group help)
▶ Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 3 2024-02-08

https://www.studon.fau.de/studon
https://www.studon.fau.de/crs5323051.html

IWGS Tutorials

▶ Weekly tutorials and homework assignments (first one in week two)

Tutor: (Doctoral Student in CS)
▶ ▶ Jonas Betzendahl: jonas.betzendahl@fau.de

They know what they are doing and really want to
help you learn! (dedicated to DH)

▶ Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

▶ Goal 2: Let you experiment with Python (think of them as Programming Labs)
▶ Life-saving Advice: go to your tutorial, and prepare it by having looked at the

slides and the homework assignments
▶ Inverted Classroom: the latest craze in didactics (works well if done right)

in IWGS: Lecture + Homework assignments + Tutorials =̂ inverted classroom

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 4 2024-02-08

jonas.betzendahl@fau.de

Textbook, Handouts and Information, Forums, Videos

▶ No Textbook: but lots of online python tutorials on the web.
▶ Course notes will be posted at http://kwarc.info/teaching/IWGS (see

references)
▶ I mostly prepare/adapt/correct them as we go along.
▶ please e-mail me any errors/shortcomings you notice. (improve for the group)

▶ The lecture videos of WS 2020/21 are at
https://www.fau.tv/course/id/1923 (not much changed)

▶ Matrix chat at #iwgs:fau.de (via IDM) (instructions)
▶ StudOn Forum: https://www.studon.fau.de/crs5323051.html for
▶ announcements, homeworks (my view on the forum)
▶ questions, discussion among your fellow students (your forum too, use it!)

▶ If you become an active discussion group, the forum turns into a valuable
resource!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 5 2024-02-08

http://kwarc.info/teaching/IWGS
https://www.fau.tv/course/id/1923
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/
https://www.studon.fau.de/crs5323051.html

Experiment: Learning Support with KWARC Technologies

▶ My research area: Deep representation formats for (mathematical) knowledge
▶ One Application: Learning support systems (represent knowledge to transport

it)
▶ Experiment: Start with this course (Drink my own medicine)

1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)
2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)
3. Try it on you all (to get feedback from you)

▶ Research tasks
▶ help me complete the material on the slides (what is missing/would help?)
▶ I need to remember “what I say”, examples on the board. (take notes)

▶ Benefits for you (so why should you help?)
▶ you will be mentioned in the acknowledgements (for all that is worth)
▶ you will help build better course materials (think of next-year’s students)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 6 2024-02-08

http://courses.voll-ki.fau.de

VoLL-KI Portal at https://courses.voll-ki.fau.de

▶ Portal for ALeA Courses: https://courses.voll-ki.fau.de

▶ AI-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1
▶ All details for the course.
▶ recorded syllabus (keep track of material covered in course)
▶ syllabus of the last semester (for over/preview)

▶ ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking six courses
▶ (some) students use the system actively (our logs tell us)
▶ reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 7 2024-02-08

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

New Feature: Drilling with Flashcards
▶ Flashcards challenge you with a task (term/problem) on the front. . .

. . . and the definition/answer is on the back.
▶ Self-assessment updates the learner model (before/after)
▶ Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until

the learner model eliminates all.
▶ Bonus: Flashcards can be generated from existing semantic markup

(educational equivalent to free beer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 8 2024-02-08

Practical recommendations on Lecture Videos

▶ Excellent Guide: [Nor+18a] (german Version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

▶ Normally intended for “offline students” =̂ everyone during Corona times.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 9 2024-02-08

Software/Hardware tools

▶ You will need computer access for this course
▶ we recommend the use of standard software tools
▶ find a text editor you are comfortable with (get good with it) A text editor is a

program you can use to write text files. (not MSWord)
▶ any operating system you like (I can only help with UNIX)
▶ Any browser you like (I use FireFox: less spying)

▶ Advice: learn how to touch-type NOW (reap the benefits earlier, not later)
▶ you will be typing multiple hours/week in the next decades
▶ touch-typing is about twice as fast as “system eagle”.
▶ you can learn it in two weeks (good programs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 10 2024-02-08

1.2 Goals, Culture, & Outline of the Course

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 10 2024-02-08

Goals of “IWGS”

▶ Goal: giving students an overview over the variety of digital tools and methods
▶ Goal: explaining their intuitions on how/why they work (the way they do).
▶ Goal: empower students for their for the emerging field “digital humanities and

social sciences”.
▶ NON-Goal: Laying the mathematical and computational foundations which

will become useful in the long run.
▶ Method: introduce methods and tools that can become useful in the short

term
▶ generate immediate success and gratification,
▶ alleviate the “programming shock” (the brain stops working when in contact with

computer science tools or computer scientists) common in the humanities and social
sciences.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 11 2024-02-08

Academic Culture in Computer Science

▶ Definition 2.1. The academic culture is the overall style of working, research,
and discussion in an academic field.

▶ Observation 2.2. There are significant differences in the academic culture
between computer science, the humanities and the social sciences.

▶ Computer science is an engineering discipline (we build things)
▶ given a problem we look for a (mathematical) model, we can think with
▶ once we have one, we try to re-express it with fewer “primitives” (concepts)
▶ once we have, we generalize it (make it more widely applicable)
▶ only then do we implement it in a program (ideally)

Design of versatile, usable, and elegant tools is an important concern
▶ Almost all technical literature is in English. (technical vocabulary too)
▶ CSlings love shallow hierarchies. (no personality cult; alle per Du)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 12 2024-02-08

Outline of IWGS 1:

▶ Programming in Python: (main tool in IWGS)
▶ Systematics and culture of programming
▶ Program and control structures
▶ Basic data strutures like numbers and strings, character encodings, unicode, and

regular expressions
▶ Digital documents and document processing:
▶ text files
▶ markup systems, HTML, and CSS
▶ XML: Documents are trees.

▶ Web technologies for interactive documents and web applications
▶ internet infrastructure: web browsers and servers
▶ serverside computing: bottle routing and
▶ client-side interaction: dynamic HTML, JavaScript, HTML forms

▶ Web application project (fill in the blanks to obtain a working web app)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 13 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture

▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .

▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture
▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .

▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture
▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!

▶ I really mean it: If you come to class, be involved, ask questions, challenge me
with comments, tell me about errors, . . .

▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture
▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .

▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture
▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .
▶ I would much rather have a lively discussion than get through all the slides

▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture
▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .
▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)

▶ You may have to change your habits, overcome shyness, . . . (please do!)
▶ This is what I get paid for, and I am more expensive than most books (get your

money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture
▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .
▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Do I need to attend the lectures

▶ Attendance is not mandatory for the IWGS lecture
▶ There are two ways of learning IWGS: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .
▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Part 1
IWGS-1: Programming, Documents, Web

Applications

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Chapter 2
Introduction to Programming

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

2.1 What is Programming?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 14 2024-02-08

Computer Hardware/Software & Programming

▶ Definition 1.1. Computers consist of hardware and software.
▶ Definition 1.2. Hardware consists of

▶ a central processing unit (CPU)
▶ memory: e.g. RAM, ROM, . . .
▶ storage devices: e.g. Disks, SSD,

tape, . . .
▶ input: e.g. keyboard, mouse,

touchscreen, . . .
▶ output: e.g. screen, earphone,

printer, . . .
▶ Definition 1.3. Software consists of

▶ data that represents objects and their
relationships in the world

▶ programs that inputs, manipulates,
outputs data

data

hardware

program

▶ Remark: Hardware stores data and runs programs.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 15 2024-02-08

Programming Languages

▶ Programming =̂ writing programs (Telling the computer what to do)

▶ Remark 1.4. The computer does exactly as told
▶ extremely fast extremely reliable
▶ completely stupid: will not do what you mean unless you tell it exactly

▶ Programming can be extremely fun/frustrating/addictive (try it)
▶ Definition 1.5. A programming language is the formal language in which we

write programs (express an algorithm concretely)
▶ formal, symbolic, precise meaning (a machine must understand it)

▶ There are lots of programming languages
▶ design huge effort in computer science
▶ all programming languages equally strong
▶ each is more or less appropriate for a specific task depending on the circumstances

▶ Lots of programming paradigms: imperative, functional, logic, object oriented
programming.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 16 2024-02-08

Programming Languages

▶ Programming =̂ writing programs (Telling the computer what to do)
▶ Remark 1.6. The computer does exactly as told
▶ extremely fast extremely reliable
▶ completely stupid: will not do what you mean unless you tell it exactly

▶ Programming can be extremely fun/frustrating/addictive (try it)

▶ Definition 1.7. A programming language is the formal language in which we
write programs (express an algorithm concretely)
▶ formal, symbolic, precise meaning (a machine must understand it)

▶ There are lots of programming languages
▶ design huge effort in computer science
▶ all programming languages equally strong
▶ each is more or less appropriate for a specific task depending on the circumstances

▶ Lots of programming paradigms: imperative, functional, logic, object oriented
programming.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 16 2024-02-08

Programming Languages

▶ Programming =̂ writing programs (Telling the computer what to do)
▶ Remark 1.8. The computer does exactly as told
▶ extremely fast extremely reliable
▶ completely stupid: will not do what you mean unless you tell it exactly

▶ Programming can be extremely fun/frustrating/addictive (try it)
▶ Definition 1.9. A programming language is the formal language in which we

write programs (express an algorithm concretely)
▶ formal, symbolic, precise meaning (a machine must understand it)

▶ There are lots of programming languages
▶ design huge effort in computer science
▶ all programming languages equally strong
▶ each is more or less appropriate for a specific task depending on the circumstances

▶ Lots of programming paradigms: imperative, functional, logic, object oriented
programming.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 16 2024-02-08

Programming Languages

▶ Programming =̂ writing programs (Telling the computer what to do)
▶ Remark 1.10. The computer does exactly as told
▶ extremely fast extremely reliable
▶ completely stupid: will not do what you mean unless you tell it exactly

▶ Programming can be extremely fun/frustrating/addictive (try it)
▶ Definition 1.11. A programming language is the formal language in which we

write programs (express an algorithm concretely)
▶ formal, symbolic, precise meaning (a machine must understand it)

▶ There are lots of programming languages
▶ design huge effort in computer science
▶ all programming languages equally strong
▶ each is more or less appropriate for a specific task depending on the circumstances

▶ Lots of programming paradigms: imperative, functional, logic, object oriented
programming.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 16 2024-02-08

Program Execution

▶ Definition 1.12. Algorithm: informal description of what to do (good enough
for humans)

▶ Example 1.13.
▶ Example 1.14. Program: computer processable version, e.g. in Python.

for x in range(0, 3):
print ("we tell you",x,"time(s)")

▶ Definition 1.15. Interpreter: reads a program and executes it directly
▶ special case: interactive interpretation (lets you experiment easily)

▶ Definition 1.16. Compiler: translates a program (the source) into another
program (the binary) in a much simpler programming language for optimized
execution on hardware directly.

▶ Remark 1.17. Compilers are efficient, but more cumbersome for development.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 17 2024-02-08

2.2 Programming in IWGS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 17 2024-02-08

Programming in IWGS: Python

▶ We will use Python as the programming language in this course
▶ We cover just enough Python, so that you
▶ understand the joy and principle of programming
▶ can play with objects we present in IWGS.

▶ After a general introduction we will introduce language features as we go along
▶ For more information on Python (homework/preparation)

RTFM (=̂ “read those fine manuals”)
▶ RTFM Resources: There are also lots of good tutorials on the web,
▶ I like [LP; Sth; Swe13];
▶ but also see the language documentation [P3D].
▶ [Kar] is an introduction geared to the (digital) humanities

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 18 2024-02-08

But Seriously. . . Learning programming in IWGS

▶ The IWGS lecture teaches you
▶ a general introduction to programming and Python (next)
▶ various useful concepts and how they can be done in Python (in principle)

▶ The IWGS tutorials
▶ teach the actual skill and joy of programming (hacking ̸= security breach)
▶ supply you with problems so you can practice that.

▶ Richard Stallman (MIT) on Hacking: “What they had in common was
mainly love of excellence and programming. They wanted to make their
programs that they used be as good as they could. They also wanted to make
them do neat things. They wanted to be able to do something in a more
exciting way than anyone believed possible and show “Look how wonderful this
is. I bet you didn’t believe this could be done.”

▶ So, ... Let’s hack

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 19 2024-02-08

2am in the Kollegienhaus CIP Pool

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 20 2024-02-08

no, let’s think

▶ We have to fully understand the problem, our tools, and the solution space first
(That is what the IWGS lecture is for)
▶ read Richard Stallman’s quote carefully ; problem understanding is a crucial

prerequisite for hacking.
▶ The GIGO Principle: Garbage In, Garbage Out (– ca. 1967)
▶ Applets, Not Crapletstm (– ca. 1997)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 21 2024-02-08

2.3 Programming in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 21 2024-02-08

2.3.1 Hello IWGS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 21 2024-02-08

Python in a Nutshell

▶ Why Python?:

▶ general purpose programming language
▶ imperative, interactive interpreter
▶ syntax very easy to learn (spend more time on problem solving)
▶ scales well:
▶ easy for beginners to write simple programs,
▶ but advanced software can be written with it as well.

▶ Interactive mode: The Python shell IDLE3
▶ For the eager (optional):

Establish a Python interpreter (version 3.7) (not 2.?.?, that has different syntax)
▶ install Python from http://python.org (for offline use)
▶ make sure (tick box) that the python executable is added to the path. (makes shell

interaction much easier)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 22 2024-02-08

http://python.org

Arithmetic Expressions in Python

▶ Expressions are “programs” that compute values (here: numbers)

▶ Integers (numbers without a decimal point)
▶ operators: addition (+), subtraction (), multiplication (∗),

division (/), integer division (//), remainder/modulo (%), . . .
▶ Division yields a float

▶ Floats (numbers with a decimal point)
▶ Operators: integer below (floor), integer above (ceil),

exponential (exp), square root (sqrt), . . .

▶ Numbers are values, i.e. data objects that can be
computed with. (reference the last computed one with _)

▶ Definition 3.1. Expressions are created from values (and
other expressions) via operators.

▶ Observation: The Python interpreter simplifies expressions
to values by computation.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 23 2024-02-08

Comments in Python

▶ Generally: It is highly advisable to insert comments into your programs,
▶ especially, if others are going to read your code, (TAs/graders)
▶ you may very well be one of the “others” yourself, (in a year’s time)
▶ writing comments first helps you organize your thoughts.

▶ Comments are ignored by the Python interpreter but are useful information for
the programmer.

▶ In Python: there are two kinds of comments
▶ Single line comments start with a #
▶ Multiline comments start and end with three quotes (single or double: """ or ’’’)

▶ Idea: Use comments to
▶ specify what the intended input/output behavior of the program or fragment
▶ give the idea of the algorithm achieves this behavior.
▶ specify any assumptions about the context (do we need some file to exist)
▶ document whether the program changes the context.
▶ document any known limitations or errors in your code.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 24 2024-02-08

Comments in Python

▶ Generally: It is highly advisable to insert comments into your programs,
▶ especially, if others are going to read your code, (TAs/graders)
▶ you may very well be one of the “others” yourself, (in a year’s time)
▶ writing comments first helps you organize your thoughts.

▶ Comments are ignored by the Python interpreter but are useful information for
the programmer.

▶ In Python: there are two kinds of comments
▶ Single line comments start with a #
▶ Multiline comments start and end with three quotes (single or double: """ or ’’’)

▶ Idea: Use comments to
▶ specify what the intended input/output behavior of the program or fragment
▶ give the idea of the algorithm achieves this behavior.
▶ specify any assumptions about the context (do we need some file to exist)
▶ document whether the program changes the context.
▶ document any known limitations or errors in your code.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 24 2024-02-08

Comments in Python

▶ Generally: It is highly advisable to insert comments into your programs,
▶ especially, if others are going to read your code, (TAs/graders)
▶ you may very well be one of the “others” yourself, (in a year’s time)
▶ writing comments first helps you organize your thoughts.

▶ Comments are ignored by the Python interpreter but are useful information for
the programmer.

▶ In Python: there are two kinds of comments
▶ Single line comments start with a #
▶ Multiline comments start and end with three quotes (single or double: """ or ’’’)

▶ Idea: Use comments to
▶ specify what the intended input/output behavior of the program or fragment
▶ give the idea of the algorithm achieves this behavior.
▶ specify any assumptions about the context (do we need some file to exist)
▶ document whether the program changes the context.
▶ document any known limitations or errors in your code.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 24 2024-02-08

2.3.2 JupyterLab, a Python Web IDE for IWGS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 24 2024-02-08

JupyterLab A Cloud IDE for Python

▶ For helping you it would be good if the TAs could access to your code
▶ Idea: Use a web IDE (a web based integrated development environment):

JupyterLab, which you can use for interacting with the interpreter.

▶ We will use JupyterLab for IWGS. (but you can also use Python locally)
▶ Homework: Set up JupyterLab
▶ make an account at http://jupyter.kwarc.info

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 25 2024-02-08

http://jupyter.kwarc.info

JupyterLab A Cloud IDE for Python

▶ For helping you it would be good if the TAs could access to your code
▶ Idea: Use a web IDE (a web based integrated development environment):

JupyterLab, which you can use for interacting with the interpreter.
▶ We will use JupyterLab for IWGS. (but you can also use Python locally)
▶ Homework: Set up JupyterLab
▶ make an account at http://jupyter.kwarc.info

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 25 2024-02-08

http://jupyter.kwarc.info

JupyterLab Components
▶ Definition 3.2. The JupyterLab dashboard gives you access to all components.

▶ Definition 3.3. The JupyterLab python console, i.e. a Python interpreter in
your browser. (use this for Python interaction and testing.)

▶ Definition 3.4. The JupyterLab terminal, i.e. a UNIX shell in your browser. (use
this for managing files)

▶ Definition 3.5. A shell is a command line interface for accessing the services of
a computer’s operating system.
There are multiple shell implementations: sh, csh, bash, zsh; they differ in
advanced features.

▶ Useful shell commands: See e.g. [All18] for a basic tutorial
▶ ls: “list” the files in this directory
▶ mkdir: “make” folder (called “directory”)
▶ pwd: “print working directory” (where am I)
▶ cd ⟨⟨dirname⟩⟩: “change directory”
▶ if ⟨⟨dirname⟩⟩ = ..: one up in the directory tree
▶ empty dirname: go to your home directory.

▶ rm ⟨⟨name⟩⟩: remove file/directory
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨newname⟩⟩: copy to or rename
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨dirname⟩⟩: copy or move to
▶ . . . see [All18] for more . . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 26 2024-02-08

JupyterLab Components
▶ Definition 3.6. The JupyterLab dashboard gives you access to all components.
▶ Definition 3.7. The JupyterLab python console, i.e. a Python interpreter in

your browser. (use this for Python interaction and testing.)

▶ Definition 3.8. The JupyterLab terminal, i.e. a UNIX shell in your browser. (use
this for managing files)

▶ Definition 3.9. A shell is a command line interface for accessing the services of
a computer’s operating system.
There are multiple shell implementations: sh, csh, bash, zsh; they differ in
advanced features.

▶ Useful shell commands: See e.g. [All18] for a basic tutorial
▶ ls: “list” the files in this directory
▶ mkdir: “make” folder (called “directory”)
▶ pwd: “print working directory” (where am I)
▶ cd ⟨⟨dirname⟩⟩: “change directory”
▶ if ⟨⟨dirname⟩⟩ = ..: one up in the directory tree
▶ empty dirname: go to your home directory.

▶ rm ⟨⟨name⟩⟩: remove file/directory
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨newname⟩⟩: copy to or rename
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨dirname⟩⟩: copy or move to
▶ . . . see [All18] for more . . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 26 2024-02-08

JupyterLab Components
▶ Definition 3.10. The JupyterLab dashboard gives you access to all components.

▶ Definition 3.11. The JupyterLab python console, i.e. a Python interpreter in
your browser. (use this for Python interaction and testing.)

▶ Definition 3.12. The JupyterLab terminal, i.e. a UNIX shell in your browser.(use
this for managing files)

▶ Definition 3.13. A shell is a command line interface for accessing the services
of a computer’s operating system.
There are multiple shell implementations: sh, csh, bash, zsh; they differ in
advanced features.

▶ Useful shell commands: See e.g. [All18] for a basic tutorial
▶ ls: “list” the files in this directory
▶ mkdir: “make” folder (called “directory”)
▶ pwd: “print working directory” (where am I)
▶ cd ⟨⟨dirname⟩⟩: “change directory”
▶ if ⟨⟨dirname⟩⟩ = ..: one up in the directory tree
▶ empty dirname: go to your home directory.

▶ rm ⟨⟨name⟩⟩: remove file/directory
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨newname⟩⟩: copy to or rename
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨dirname⟩⟩: copy or move to
▶ . . . see [All18] for more . . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 26 2024-02-08

JupyterLab Components
▶ Definition 3.14. The JupyterLab dashboard gives you access to all components.

▶ Definition 3.15. The JupyterLab python console, i.e. a Python interpreter in
your browser. (use this for Python interaction and testing.)

▶ Definition 3.16. The JupyterLab terminal, i.e. a UNIX shell in your browser.(use
this for managing files)

▶ Definition 3.17. A shell is a command line interface for accessing the services
of a computer’s operating system.
There are multiple shell implementations: sh, csh, bash, zsh; they differ in
advanced features.

▶ Useful shell commands: See e.g. [All18] for a basic tutorial
▶ ls: “list” the files in this directory
▶ mkdir: “make” folder (called “directory”)
▶ pwd: “print working directory” (where am I)
▶ cd ⟨⟨dirname⟩⟩: “change directory”
▶ if ⟨⟨dirname⟩⟩ = ..: one up in the directory tree
▶ empty dirname: go to your home directory.

▶ rm ⟨⟨name⟩⟩: remove file/directory
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨newname⟩⟩: copy to or rename
▶ cp/mv ⟨⟨filename⟩⟩ ⟨⟨dirname⟩⟩: copy or move to
▶ . . . see [All18] for more . . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 26 2024-02-08

A first program in Python
▶ A classic “Hello World” program: start your python console, type

print("Hello␣IWGS"). (print a string)

▶ Alternatively:
1. got to the JupyterLab dashboard select “Text File”,
2. Type your program,
3. Save the file as hello.py
4. Go to your terminal and type python3 hello.py
3’ Alternatively: go to your python console and type (in the same directory)

import hello

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 27 2024-02-08

A first program in Python
▶ A classic “Hello World” program: start your python console, type

print("Hello␣IWGS"). (print a string)
▶ Alternatively:

1. got to the JupyterLab dashboard select “Text File”,
2. Type your program,

3. Save the file as hello.py
4. Go to your terminal and type python3 hello.py
3’ Alternatively: go to your python console and type (in the same directory)

import hello

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 27 2024-02-08

jupyter Notebooks

▶ Definition 3.18. Jupyter notebooks are documents that combine live runnable
code with rich, narrative text (for comments and explanations).

▶ Definition 3.19. Jupyter notebooks consist of cells which come in three forms:
▶ a raw cell shows text as is,
▶ a markdown cell interprets the contents as markdown text, (later more)
▶ a code cell interprets the contents as (e.g. Python) code.

▶ Cells can be executed by pressing “shift enter”. (Just “enter” gives a new line)
▶ Idea: Jupyter notebooks act as a REPL, just as IDLE3, but allows
▶ documentation in raw and markdown cells and
▶ changing and re-executing existing cells.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 28 2024-02-08

jupyter Notebooks
▶ Example 3.20 (Showing off Cells in a Notebook).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 29 2024-02-08

Markdown a simple Markup Format Generating HTML

.
▶ Idea: We can translate between markup formats.
▶ Definition 3.21. Markdown is a family of markup formats whose control words

are unobtrusive and easy to write in a text editor. It is intended to be converted
to HTML and other formats for display.

▶ Example 3.22. Markdown is used in applications that want to make user input
easy and efficient, e.g. wikis and issue tracking systems.

▶ Workflow: Users write markdown, which is formatted to HTML and then
served for display.

▶ A good cheet-sheet for markdown control words can be found at https:
//github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 30 2024-02-08

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

2.3.3 Variables and Types

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 30 2024-02-08

Variables in Python
▶ Idea: Values (of expressions) can be given a name for later reference.
▶ Definition 3.23. A variable is an (the variable name) that references a memory

location which contains a .
▶ Note: In Python a variable name
▶ must start with letter or _,
▶ cannot be a Python keyword
▶ is case-sensitive (foobar, FooBar, and fooBar are different variables)

▶ A variable name can be used in expressions everywhere its value could be.
▶ Definition 3.24 (in Python). A variable assignment ⟨⟨var⟩⟩=⟨⟨val⟩⟩ assigns a

new value to a variable.
▶ Example 3.25 (Playing with Python Variables).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 31 2024-02-08

Variables in Python: Extended Example

▶ Example 3.26 (Swapping Variables). To exchange the values of two variables,
we have to cache the first in an auxiliary variable.
a = 45
b= 0
print("a␣=", a, "b␣=", b)
print("Swap␣the␣contents␣of␣a␣and␣b")
swap = a
a= b
b = swap
print("a␣=", a, "b␣=", b)

Here we see the first example of a Python script, i.e. a series of Python
commands, that jointly perform an action (and communicates it to the user).

▶ Example 3.27 (Variables for Storing Intermediate Variables).

>>> x = "OhGott"
>>> y = x+x+x
>>> z = y+y+y
>>> z
’OhGottOhGottOhGottOhGottOhGottOhGottOhGottOhGottOhGott’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 32 2024-02-08

Data Types in Python

▶ Recall: Python programs process data (values), which can be combined by
operators and variable into expressions.

▶ Data types group data and tell the interpreter what to expect
▶ 1, 2, 3, etc. are data of type “integer”
▶ "hello" is data of type “string”

▶ Data types determine which operators can be applied
▶ In Python, every values has a type, variables can have any type, but can only be

assigned values of their type.
▶ Definition 3.28. Python has the following five basic types

Data type Keyword contains Examples
integers int bounded integers 1, −5, 0, . . .
floats float floating point numbers 1.2, .125, −1.0, . . .
strings str strings "Hello", ’Hello’, "123", ’a’, . . .

Booleans bool truth values True, False
complexes complex complex numbers 2+3j,. . .

▶ We will ecounter more types later.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 33 2024-02-08

Data Types in Python (continued)

▶ The type of a variable is automatically determined in the first variable
assignment (before that the variable is unbound)

>>> firstVariable = 23 # integer
>>> type(firstVariable)
<class ’int’>
weight = 3.45 # float
first = ’Hello’ # str

▶ Hint: The Python function type to computes the type (don’t worry about the
class bit)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 34 2024-02-08

Data Types in Python (continued)

▶ Observation 3.29. Python is strongly typed, i.e. types have to match
▶ Use data type conversion functions int(), float(), complex(), bool(), and str() to

adjust types
▶ Example 3.30 (Type Errors and Type Coersion).

>>> 3+"hello"
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
3+"hello"

TypeError: unsupported operand type(s) for +: ’int’ and ’str’
>>> str(4)+"hello"
’4Hello’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 35 2024-02-08

2.3.4 Python Control Structures

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 35 2024-02-08

Conditionals and Loops

▶ Problem: Up to now programs seem to execute all the instructions in
sequence, from the first to the last. (a linear program)

▶ Definition 3.31. The control flow of a program is the sequence of execution of
the program instructions. It is specified via special program instructions called
control structures.

▶ Definition 3.32. Conditional execution (also called branching) allows to execute
(or not to execute) certain parts of a program (the branches) depending on a
condition. We call a code block that enables conditional execution a conditional
statement or conditional.

▶ Definition 3.33. A condition is a Boolean expression in a control structure.
▶ Definition 3.34. A loop is a control structure that allows to execute certain

parts of a program (the body) multiple times depending on the value of its
conditions.

▶ Example 3.35. In Python, conditions are constructed by applying a Boolean
operator to arguments, e.g. 3>5, x==3, x!=3, . . .
or by combining simpler conditions by Boolean connectives or, and, and not
(using brakets if necessary), e.g. x>5 or x<3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 36 2024-02-08

Conditionals in Python

▶ Definition 3.36. Conditional execution via if/else statements
if ⟨⟨condition⟩⟩ :

⟨⟨then− part⟩⟩
else :

⟨⟨else− part⟩⟩
⟨⟨morecode⟩⟩

Block 1: continuation

Block 2: continuation

Block 3

Block 2: start

Block 1: start

Start

cond

then else

end

True False

▶ then-part and else-part have to be indented equally. (e.g. 4 blanks)
▶ If control structures are nested they need to be further indented consistently.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 37 2024-02-08

Conditional Execution Example

▶ Example 3.37 (Empathy in Python).
answer = input("Are␣you␣happy?␣")
if answer == ’No’ or answer == ’no’:

print("Have␣a␣chocolate!")
else:

print("Good!")
print("Can␣I␣help␣you␣with␣something␣else?")
Note the indenting of the body parts.

▶ BTW: input is an operator that prints its argument string, waits for user input,
and returns that.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 38 2024-02-08

Variant: Multiple Branches

▶ Making multiple branches is similar
if ⟨⟨condition⟩⟩ :

⟨⟨then− part⟩⟩
elif ⟨⟨condition⟩⟩ :

⟨⟨otherthen− part⟩⟩
else :

⟨⟨else− part⟩⟩
▶ The there can be more than one elif clause.
▶ The conditions are evaluated from top to bottom and the then-part of the first one

that comes out true is executed. Then the whole control structure is exited.
▶ multiple branches could achieved by nested if/else structures.

▶ Example 3.38 (Better Empathy in Python). In 3.37 we print Good! even if
the input is e.g. I feel terrible, so extend if/else by
elif answer == ’Yes’ or answer == ’yes’ :

print("Good!")
else :

print("I␣do␣not␣understand␣your␣answer")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 39 2024-02-08

Loops in Python

▶ Definition 3.39. Python makes loops via while blocks

▶ syntax of the while loop

while ⟨⟨condition⟩⟩ :
⟨⟨body⟩⟩

⟨⟨morecode⟩⟩

▶ breaking out of loops with break
▶ skipping the current body with

continue
▶ body must be indented!

Start

cond body

end

True

False

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 40 2024-02-08

Examples of Loops

▶ Example 3.40 (Counting in python).

Prints out 0,1,2,3,4
count = 0
while count < 5:

print(count)
count += 1 # This is the same as count = count + 1

This is the standard pattern for using while: using a loop variable (here count)
and incrementing it in every pass through the loop.

▶ Example 3.41 (Breaking an unbounded Loop).

Prints out 0,1,2,3,4 but uses break
count = 0
while True:

print(count)
count += 1
if count >= 5:

break

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 41 2024-02-08

Examples of Loops

▶ Example 3.42 (Exceptions in the Loop).

Prints out only odd numbers − 1,3,5,7,9
count = 0
while count < 10

count += 1
Check if x is even
if count % 2 == 0:

continue
print(count)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 42 2024-02-08

2.4 Some Thoughts about Computers and
Programs

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 42 2024-02-08

Computers as Universal Machines (a taste of theoretical CS)
▶ Observation: Computers are universal tools: their behavior is determined by a

program; they can do anything, the program specifies.
▶ Context: Tools in most other disciplines are specific to particular tasks. (except

in e.g. ribosomes in cell biology)

▶ Remark 4.1 (Deep Fundamental Result). There are things no computer can
compute.

▶ Example 4.2. There cannot be a program that decides whether another
program will terminate in finite time.

▶ Remark 4.3 (Church-Turing Hypothesis). There are two classes of languages
▶ Turing complete (or computationally universal) ones that can compute what is

theoretically possible.
▶ data languages that cannot. (but describe data sets)

▶ Observation 4.4 (Turing Equivalence). All programming languages are (made
to be) universal, so they can compute exactly the same. (compilers/interpreters
exist)

▶ . . . in particular . . . : Everybody who tells you that one programming
languages is the best has no idea what they’re talking about (though differences
in efficiency, convenience, and beauty exist)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 43 2024-02-08

Computers as Universal Machines (a taste of theoretical CS)
▶ Observation: Computers are universal tools: their behavior is determined by a

program; they can do anything, the program specifies.
▶ Context: Tools in most other disciplines are specific to particular tasks. (except

in e.g. ribosomes in cell biology)
▶ Remark 4.5 (Deep Fundamental Result). There are things no computer can

compute.
▶ Example 4.6. There cannot be a program that decides whether another

program will terminate in finite time.

▶ Remark 4.7 (Church-Turing Hypothesis). There are two classes of languages
▶ Turing complete (or computationally universal) ones that can compute what is

theoretically possible.
▶ data languages that cannot. (but describe data sets)

▶ Observation 4.8 (Turing Equivalence). All programming languages are (made
to be) universal, so they can compute exactly the same. (compilers/interpreters
exist)

▶ . . . in particular . . . : Everybody who tells you that one programming
languages is the best has no idea what they’re talking about (though differences
in efficiency, convenience, and beauty exist)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 43 2024-02-08

Computers as Universal Machines (a taste of theoretical CS)
▶ Observation: Computers are universal tools: their behavior is determined by a

program; they can do anything, the program specifies.
▶ Context: Tools in most other disciplines are specific to particular tasks. (except

in e.g. ribosomes in cell biology)
▶ Remark 4.9 (Deep Fundamental Result). There are things no computer can

compute.
▶ Example 4.10. There cannot be a program that decides whether another

program will terminate in finite time.
▶ Remark 4.11 (Church-Turing Hypothesis). There are two classes of languages
▶ Turing complete (or computationally universal) ones that can compute what is

theoretically possible.
▶ data languages that cannot. (but describe data sets)

▶ Observation 4.12 (Turing Equivalence). All programming languages are
(made to be) universal, so they can compute exactly the same.
(compilers/interpreters exist)

▶ . . . in particular . . . : Everybody who tells you that one programming
languages is the best has no idea what they’re talking about (though differences
in efficiency, convenience, and beauty exist)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 43 2024-02-08

Artificial Intelligence

▶ Another Universal Tool: The human mind. (We can understand/learn
anything.)

▶ Strong Artificial Intelligence: claims that the brain is just another computer.
▶ If that is true then
▶ the human mind underlies the same restrictions as computational machines
▶ we may be able to find the “mind-program”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 44 2024-02-08

Top Principle of Programming: Compositionality

▶ Observation 4.13. Modern programming languages compose various primitives
and give them a pleasing, concise, and uniform syntax.

▶ Question: What does all of this even mean?
▶ Definition 4.14. In a programming language, a primitive is a “basic unit of

processing”, i.e. the simplest element that can be given a procedural meaning
(its semantics) of its own.

▶ Definition 4.15 (Compositionality). All programming languages provide
composition principles that allow to compose smaller program fragments into
larger ones in such a way, that the semantics of the larger is determined by the
semantics of the smaller ones and that of the composition principle employed.

▶ Observation 4.16. The semantics of a programming language, is determined by
the meaning of its primitives and composition principles.

▶ Definition 4.17. Programming language syntax describes the surface form of
the program: the admissible character sequences. It is also a composition of the
syntax for the primitives.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 45 2024-02-08

Consequences of Compositionality

▶ Observation 4.18. To understand a programming language, we (only) have to
understand its primitives, composition principles, and their syntax.

▶ Definition 4.19. The “art of programming” consists of composing the primitives
of a programming language.

▶ Observation 4.20. We only need very few – about half a dozen – primitives to
obtain a Turing complete programming language.

▶ Observation 4.21. The space of program behaviors we can achieve by
programming is infinites large nonetheless.

▶ Remark 4.22. More primitives make programming more convenient.
▶ Remark 4.23. Primitives in one language can be composed in others.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 46 2024-02-08

A note on Programming: Little vs. Large Languages

▶ Observation 4.24. Most such concepts can be studied in isolations, and some
can be given a syntax on their own. (standardization)

▶ Consequence: If we understand the concepts and syntax of the sublanguages,
then learning another programming language is relatively easy.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 47 2024-02-08

2.5 More about Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 47 2024-02-08

2.5.1 Sequences and Iteration

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 47 2024-02-08

Lists in Python

▶ Definition 5.1. A list is a finite sequence of objects, its element.
▶ In programming languages, lists are used for locally storing and passing around

collections of objects.
▶ In Python lists can be written as a sequence of comma separated expressions

between square brackets.
▶ Definition 5.2. We call [⟨⟨seq⟩⟩] the list constructor.
▶ Example 5.3 (Three lists). Elements can be of different types in Python

list1 = [’physics’, ’chemistry’, 1997, 2000];
list2 = [1, 2, 3, 4, 5];
list3 = ["a", "b", "c", "d"];

▶ Example 5.4. List elements can be accessed by specifying ranges

>>> list1[0]
’physics’

>>> list1[−2]
1997

>>> list2[1:4]
[2, 3, 4]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 48 2024-02-08

Sequences in Python

▶ Definition 5.5. Python has more types that behave just like lists, they are called
sequence types.

▶ The most important sequence types for IWGS are lists, strings and ranges.
▶ Definition 5.6. A range is a finite sequence of numbers it can conveniently be

constructed by the range function: range(⟨⟨start⟩⟩,⟨⟨stop⟩⟩,⟨⟨step⟩⟩) construts a
range from ⟨⟨start⟩⟩ (inclusive) to ⟨⟨stop⟩⟩ (exclusive) with step size ⟨⟨step⟩⟩.

▶ Example 5.7. Lists can be constructed from ranges:

>>> list(range(1,6,2))
[1,3,5]

range(1,6,2) makes a “range” from 1 to 6 with step 2, list makes it a list.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 49 2024-02-08

Iterating over Sequences in Python

▶ Definition 5.8. A for loop iterates a program fragment over a sequence; we call
the process iteration. Python uses the following general syntax:

for ⟨⟨var⟩⟩ in ⟨⟨range⟩⟩:
⟨⟨body⟩⟩

⟨⟨othercode⟩⟩

▶ Example 5.9. A range function makes an sequence over which we can iterate.

for x in range(0, 3):
print ("we␣tell␣you",x,"time(s)")

▶ Example 5.10. Lists and strings can also act as sequences. (try it)

print("Let␣me␣reverse␣something␣for␣you!")
x = input("please␣type␣somegthing!")
for i in reversed(list(x)):

print(i)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 50 2024-02-08

Python Dictionaries

▶ Definition 5.11. A dictionary is an unordered collection of ordered pairs (k,v),
where we call k the key and v the value.

▶ In Python dictionaries are written with curly brackets, pairs are separated by
commata, and the value is separated from the key by a colon.

▶ Example 5.12. Dictionaries can be used for various purposes,

painting = {
"artist": "Rembrandt",
"title": "The␣Night␣Watch",
"year": 1642

}

dict_de_en = {
"Maus": "mouse",
"Ast": "branch",
"Klavier": "piano"

}

enum = {
1: "copy",
2: "paste",
3: "adapt"

}

▶ Dictionaries and sequences can be nested, e.g. for a list of paintings.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 51 2024-02-08

Interacting with Dictionaries

▶ Example 5.13 (Dictionary operations).
▶ painting["title"] returns the value for the key "title" in the dictionary painting.
▶ painting["title"]="De␣Nachtwacht" changes the value for the key "title" to its

original Dutch (or adds item "title": "De␣Nachtwacht")
▶ Example 5.14 (Printing Keys and Values).

keys values key/value pairs

for x in thisdict.keys():
print(x)

for x in thisdict.values():
print(x)

for x, y in thisdict.items():
print(x, y)

▶ More dictionary commands:
▶ if ⟨⟨key⟩⟩ in ⟨⟨dict⟩⟩ checks whether ⟨⟨key⟩⟩ is a key in ⟨⟨dict⟩⟩.
▶ painting.pop("title") removes the "title" item from painting.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 52 2024-02-08

2.5.2 Input and Output

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 52 2024-02-08

Input/Output in Python

▶ Recall: The CPU communicates with the user through input devices like
keyboards and output devices like the screen.

▶ Programming languages provide special instructions for this.
▶ In Python we have already seen
▶ input(⟨⟨prompt⟩⟩) for input from the keyboard, it returns a string.
▶ print(⟨⟨objects⟩⟩,sep=⟨⟨separator⟩⟩,end=⟨⟨endchar⟩⟩) for output to the screen.

▶ But computers also supply another object to input from and output to (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 53 2024-02-08

Secondary (Disk) Storage; Files, Folders, etc.

▶ Definition 5.15. A file is a resource for recording data in a storage device. File
size is measured in bit.

▶ Definition 5.16. Files are identified by a file name which usually consists of a
base name and an extension separated by a dot character.
Files are managed by a file system which organize them hierarchically into
named folder and locate them by a path; a sequence of folder names. The file
name and the path together fully identify a file.

▶ Some file systems restrict the characters allowed in the file name and/or lengths
of the base name or extension.

▶ Definition 5.17. Once a file has been opened, the CPU can write to it and read
from it. After use a file should be closed to protect it from accidental reads and
writes.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 54 2024-02-08

Disk Input/Output in Python

▶ Definition 5.18. Python uses file objects to encapsulate all file input/output
functionality.

▶ In Python we have special instructions for dealing with files:
▶ open(⟨⟨path⟩⟩,⟨⟨iospec⟩⟩) returns a file object f ; ⟨⟨iospec⟩⟩ is one of r (read only; the

default), a (append =̂ write to the end), and r+ (read/write).
▶ f .read() reads the file represented by file object f into a string.
▶ f .readline() reads a single line from the file (including the newline character (\n)

otherwise returns the empty string ’’.
▶ f .write(⟨⟨str⟩⟩) appends the string ⟨⟨str⟩⟩ to the end of f , returns the number of

characters written.
▶ f .close() closes f to protect it from accidental reads and writes.

▶ Example 5.19 (Duplicating the contents of a file).

f = open(’workfile’,’r+’)
filecontents = f.read()
f.write(filecontents)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 55 2024-02-08

Disk Input/Output in Python (continued)

▶ Example 5.20 (Reading a file linewise).
>>> f.readline()
’This␣is␣the␣first␣line␣of␣the␣file.\n’
>>> f.readline()
’Second␣line␣of␣the␣file\n’
>>> f.readline()
’’

>>> for line in f:
... print(line, end=’’)
...
This is the first line of the file.
Second line of the file

▶ If you want to read all the lines of a file in a list you can also use list(f) or
f.readlines().

▶ For reading a Python file we use the import(⟨⟨basename⟩⟩) instruction
▶ it searches for the file ⟨⟨basename⟩⟩.py, loads it, interprets it as Python code, and

directly executes it.
▶ primarily used for loading Python libraries (additional functionality)
▶ also useful for loading Python-encoded data (e.g. dictionaries)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 56 2024-02-08

2.5.3 Functions and Libraries in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 56 2024-02-08

Functions in Python (Introduction)
▶ Observation: Sometimes programming tasks are repetitive

print("Hello Peter, how are you today? How about some IWGS?")
print("Hello Roxana, how are you today? How about some IWGS?")
print("Hello Frodo, how are you today? How about some IWGS?)
...

▶ Idea: We can automate the repetitive part by functions.
▶ Example 5.21.We encapsultate the greeting functionality in a function:

def greet (who):
print("Hello ",who," how are you today? How about some IWGS?")

greet("Peter")
greet("Roxana")
greet("Frodo")
greet(input ("Who are you?"))
...

and use it repeatedly.
▶ Functions can be a very powerful tool for structuring and documenting programs

(if used correctly)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 57 2024-02-08

Functions in Python (Example)

▶ Example 5.22 (Multilingual Greeting). Given a value for lang

def greet (who):
if lang == ’en’ :

print("Hello ",who," how are you today? How about some IWGS?")
elif lang == ’de’ :

print("Sehr geehrter ",who,", wie geht’s heute? Wie waere es mit IWGS?")

we can even localize (i.e. adapt to the language specified in lang) the greeting.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 58 2024-02-08

Functions in Python (Definition)

▶ Definition 5.23. A Python function is defined by a code snippet of the form

def f (p1,. . .,pn):
"""docstring, what does this function do on parameters

:param pi : document arguments}
"""
⟨⟨body⟩⟩ # it can contain p1, . . . , pn, and even f
return ⟨⟨value⟩⟩ # value of the function call (e.g text or number)

⟨⟨morecode⟩⟩

▶ the indented part is called the body of f , (: whitespace matters in Python)
▶ the pi are called parameters, and n the arity of f .

A function f can be called on arguments a1, . . ., an by writing the expression
f (a1, . . ., an). This executes the body of f where the (formal) parameters pi are
replaced by the arguments ai .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 59 2024-02-08

Functions vs. Methods in Python

▶ There is another mechanism that is similar to functions in Python. (we briefly
introduce it here to delineate)

▶ Background: Actually, the types from 3.28 are classes, . . .
▶ Definition 5.24. In Python all values belong to a class, which provide special

functions we call methods. Values are also called objects, to emphasise class
aspects. Method application is written with dot notation:
⟨⟨obj⟩⟩.⟨⟨meth⟩⟩(⟨⟨args⟩⟩) corresponds to ⟨⟨meth⟩⟩(⟨⟨obj⟩⟩,⟨⟨args⟩⟩).

▶ Example 5.25. Finding the position of a substring

>>> s = ’This␣is␣a␣Python␣string’ # s is an object of class ’str’
>>> type(s)
<class ’str’> # see, I told you so
>>> s.index(’Python’) # dot notation (index is a string method)
10

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 60 2024-02-08

Functions vs. Methods in Python

▶ Example 5.26 (Functions vs. Methods).

>>> sorted(’1376254’) # no dots!
[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’]

>>> mylist = [3, 1, 2]
>>> mylist.sort() # dot notation
>>> mylist
[1, 2, 3]

▶ Intuition: Only methods can change objects, functions return changed copies
(of the objects they act on).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 61 2024-02-08

Python Libraries

▶ Idea: Functions, classes, and methods are re usable, so why not package them
up for others to use.

▶ Definition 5.27. A Python library is a Python file with a collection of functions,
classes, and methods. It can be imported (i.e. loaded and interpreted as a
Python program fragment) via the import command.

▶ There are ≥ 150.000 libraries for Python (=̂ packages on http://pypi.org)
▶ search for them at http://pypi.org (e.g. 815 packages for “music”)
▶ install them with pip install ⟨⟨packagename⟩⟩
▶ look at how they were done (all have links to source code)
▶ maybe even contribute back (report issues, improve code, . . .) (open source)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 62 2024-02-08

http://pypi.org
http://pypi.org

2.5.4 A Final word on Programming in IWGS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 62 2024-02-08

For more information on Python

RTFM (=̂ “read the fine manuals”)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 63 2024-02-08

Chapter 3
Numbers, Characters, and Strings

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 63 2024-02-08

Documents as Digital Objects

▶ Question: how do texts get onto the computer? (after all, computers can only
do 0/1)

▶ Hint: At the most basic level, texts are just sequences of characters.
▶ Answer: We have to encode characters as sequences of bits.
▶ We will go into how:
▶ documents are represented as sequences of characters,
▶ characters are represented as numbers,
▶ numbers are represented as bits (0/1).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 64 2024-02-08

3.1 Representing and Manipulating Numbers

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 64 2024-02-08

Natural Numbers

▶ Numbers are symbolic representations of numeric quantities.
▶ There are many ways to represent numbers (more on this later)
▶ Let’s take the simplest one (about 8,000 to 10,000 years old)

▶ We count by making marks on some surface.
▶ For instance //// stands for the number four (be it in 4 apples, or 4 worms)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 65 2024-02-08

Unary Natural Numbers on the Computer

▶ Definition 1.1. We call the representation of natural numbers by slashes on a
surface the unary natural numbers.

▶ Question: How do we represent them on a computer? (not bones or walls)
▶ Idea: If we have a memory bank of n binary digits, initialize all by 0, represent

each slash by a 1 from the right.
▶ Example 1.2. Memory bank with 32 binary digits, representing the number 11.

0 1 1 1 1 1 1 1 1 1 1 1
▶ Problem: For realistic arithmetic we need better number representations than

the unary natural numbers (e.g. for representing the number of EU citizens =̂
100 000 pages of /)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 66 2024-02-08

Positional Number Systems

▶ Problem: Find a better representation system for natural numbers.
▶ Idea: Build a clever code on the unary natural numbers, use position

information and addition, multiplication, and exponentiation.
▶ Definition 1.3. A positional number system N is a pair ⟨D , φ⟩ with
▶ D is a finite set of b digits; b:=#(D) is the base or radix of N .
▶ φ : D→[0,b − 1] is bijective.

We extend φ to a bijection between sequences dk , . . ., d0 of digits and natural
numbers by setting

φ(dk , . . ., d0):=
k∑

i=0

φ(d i) · bi

We say that the digit sequence nb:=dk , . . ., d0 is the positional notation of a
natural number n, iff φ(dk , . . ., d0) = n.

▶ Example 1.4. ⟨{a, b, c}, φ⟩ with with φ(a):=0, φ(b):=1, and φ(c):=2 is a
positional number system for base three. We have

φ(c , a, b) = 2 · 32 + 0 · 31 + 1 · 30 = 18+ 0+ 1 = 19

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 67 2024-02-08

Commonly Used Positional Number Systems

▶ Definition 1.5. The following positional number systems are in common use.
name set base digits example
unary N1 1 0 000001
binary N2 2 0,1 01010001112
octal N8 8 0,1,. . . ,7 630278
decimal N10 10 0,1,. . . ,9 16209810 or 162098
hexadecimal N16 16 0,1,. . . ,9,A,. . . ,F FF3A1216

Binary digits are also called bits, and a sequence of eight bits an octet.
▶ Notation: Attach the base of N to every number from N . (default: decimal)
▶ Trick: Group triples or quadruples of binary digits into recognizable chunks(add

leading zeros as needed)
▶ 1100011010111002 = 01102︸ ︷︷ ︸

616

00112︸ ︷︷ ︸
316

01012︸ ︷︷ ︸
516

11002︸ ︷︷ ︸
C16

= 635C 16

▶ 1100011010111002 = 1102︸︷︷︸
68

0012︸︷︷︸
18

1012︸︷︷︸
58

0112︸︷︷︸
38

1002︸︷︷︸
48

= 615348

▶ F3A16 = F16︸︷︷︸
11112

316︸︷︷︸
00112

A16︸︷︷︸
10102

= 1111001110102, 47218 = 48︸︷︷︸
1002

78︸︷︷︸
1112

28︸︷︷︸
0102

18︸︷︷︸
0012

= 1001110100012

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 68 2024-02-08

Arithmetics in Positional Number Systems

▶ For arithmetic just follow the rules from elementary school (for the right base)
▶ Tom Lehrer’s “New Math”:

https://www.youtube.com/watch?v=DfCJgC2zezw
▶ Example 1.6.

Addition base 4 binary multiplication

1 2 3
+ 11 21 3

3 1 2

1 0 1 0
∗ 1 1 0

0 0 0 0
1 0 1 0

1 0 1 0
1 1 1 1 0 0

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 69 2024-02-08

https://www.youtube.com/watch?v=DfCJgC2zezw

How to get back to Decimal (or any other system)

▶ Observation: ?? specifies how we can get from base b representations to
decimal. We can always go back to the base b numbers.

▶ Observation 1.7. To convert a decimal number n to base b, use successive
integer division (division with remainder) by b:

i := n; repeat (record i mod b, i := i div b) until i = 0.

▶ Example 1.8 (Convert 456 to base 8). Result: 7108

456 div 8 = 57 456mod 8 = 0
57 div 8 = 7 57mod 8 = 1
7 div 8 = 0 7mod 8 = 7

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 70 2024-02-08

3.2 Characters and their Encodings: ASCII and
UniCode

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 70 2024-02-08

The ASCII Character Code

▶ Definition 2.1. The American Standard Code for Information Interchange
(ASCII) is a character encoding that assigns characters to numbers 0 127.

Code ···0 ···1 ···2 ···3 ···4 ···5 ···6 ···7 ···8 ···9 ···A ···B ···C ···D ···E ···F
0··· NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1··· DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2··· ! ” # $ % & ′ () ∗ + , − . /
3··· 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4··· @ A B C D E F G H I J K L M N O
5··· P Q R S T U V W X Y Z [\] ˆ _
6··· ‘ a b c d e f g h i j k l m n o
7··· p q r s t u v w x y z { | } ˜ DEL

▶ The first 32 characters are control characters for ASCII devices like printers.
▶ Motivated by punch cards: The character 0 (00000002 in binary) carries no

information NUL, (used as dividers)
Character 127 (=̂ 11111112) can be used for deleting (overwriting) last value
(cannot delete holes)

▶ The ASCII code was standardized in 1963 and is still prevalent in computers
today. (but seen as US centric)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 71 2024-02-08

A Punchcard
▶ Definition 2.2. A punch card is a piece of stiff paper that contains digital

information represented by the presence or absence of holes in predefined
positions.

▶ Example 2.3. This punch card encodes the FORTRAN statement
Z(1) = Y + W(1)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 72 2024-02-08

Problems with ASCII encoding

▶ Problem: Many of the control characters are obsolete by now/ (e.g. NUL,BEL,
or DEL)

▶ Problem: Many European characters are not represented. (e.g. è,ñ,ü,ß,. . .)
▶ European ASCII Variants: Exchange less-used characters for national ones.
▶ Example 2.4 (German ASCII). Remap e.g. [7→Ä,]7→Ü in German ASCII

(“Apple][” comes out as “Apple ÜÄ”)
▶ Definition 2.5 (ISO-Latin (ISO/IEC 8859)). 16 Extensions of ASCII to 8-bit

(256 characters) ISO Latin 1 =̂ “Western European”, ISO Latin 6 =̂ “Arabic”, ISO Latin 7
=̂ “Greek”. . .

▶ Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .
▶ Idea: Do something totally different to include all the world’s scripts: For a

scalable architecture, separate
▶ what characters are available, and (character set)
▶ a mapping from bit strings to characters. (character encoding)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 73 2024-02-08

Unicode and the Universal Character Set

▶ Definition 2.6 (Twin Standards). A scalable architecture for representing all
the worlds writing systems:
▶ The universal character set (UCS) defined by the ISO/IEC 10646 International

Standard, is a standard set of characters upon which many character encodings are
based.

▶ The unicode standard defines a set of standard character encodings, rules for
normalization, decomposition, collation, rendering and bidirectional display order.

▶ Definition 2.7. Each UCS character is identified by an unambiguous name and
an natural number called its code point.

▶ The UCS has 1.1 million code points and nearly 100 000 characters.
▶ Definition 2.8. Most (non-Chinese) characters have code points in [1,65536]:

the basic multilingual plane (BMP).
▶ Definition 2.9 (Notation). For code points in the (BMP), four hexadecimal

digits are used, e.g. U+ 0058 for the character LATINCAPITALLETTERX;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 74 2024-02-08

Character Encodings in Unicode
▶ Definition 2.10. A character encoding is a mapping from bit strings to UCS

code points.
▶ Idea: Unicode supports multiple character encodings (but not character sets)

for efficiency.
▶ Definition 2.11 (Unicode Transformation Format).
▶ UTF − 8, 8-bit, variable width character encoding, which maximizes compatibility

with ASCII.
▶ UTF − 16, 16-bit, variable width character encoding (popular in Asia)
▶ UTF − 32, a 32-bit, fixed width character encoding (as a fallback)

▶ Definition 2.12. The UTF− 8 encoding follows the following schema:
Unicode octet 1 octet 2 octet 3 octet 4
U + 000000 − U + 00007F 0xxxxxxx
U + 000080 − U + 0007FF 110xxxxx 10xxxxxx
U + 000800 − U + 00FFFF 1110xxxx 10xxxxxx 10xxxxxx
U + 010000 − U + 10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

▶ Example 2.13. $ = U+ 0024 is encoded as 00100100 (1 byte)
¢ = U+ 00A2 is encoded as 11000010,10100010 (two bytes)
€ = U+ 20AC is encoded as 11100010,10000010,10101100 (three bytes)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 75 2024-02-08

XKCD’s Take on Recent Unicode Extensions

▶ UniCode 6.0 adopted hundreds of emoji characters in 2010 (2666 in July 2017)
▶ Modifying characters (https://xkcd.com/1813/)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 76 2024-02-08

https://xkcd.com/1813/

XKCD’s Take on Recent Unicode Extensions (cont.)

▶ Recent UniCode extensions (https://xkcd.com/1953/)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 77 2024-02-08

https://xkcd.com/1953/

3.3 More on Computing with Strings

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 77 2024-02-08

Playing with Strings and Characters in Python
▶ Definition 3.1. Python strings are sequences of UniCode characters.
▶ In Python, characters are just strings of length 1.
▶ ord gives the UCS code point of the character, chr character for a number.
▶ Example 3.2 (Playing with Characters).

def lc(c) :
return chr(ord(c) + 32)

def uc(c) :
return chr(ord(c) − 32)

>>> uc(’d’)
’D’
>>> lc(’D’)
’d’

▶ Strings can be accessed by ranges [i :j] ([i] =̂ [i :i])
▶ Example 3.3. Taking strings apart and re-assembling them.

def cap(s) :
if s == "":

return "" # base case
else:

return uc(s[0]) + cap(s[1:len(s)])

>>> cap(’iwgs’)
’IWGS’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 78 2024-02-08

String Literals in Python

▶ Problem: How to write strings including special characters?
▶ Definition 3.4. A literal is a notation for representing a fixed value for a data

structure in source code.
▶ Definition 3.5. Python uses string literals, i.e character sequences surrounded

by one, two, or three sets of matched single or double quotes for string input.
The content can contain escape sequences, i.e. the escape character backslash
followed by a code character for problematic characters:

Seq Meaning Seq Meaning
\\ Backslash (\) \’ Single quote (’)
\" Double quote (") \a Bell (BEL)
\b Backspace (BS) \f Form-feed (FF)
\n Linefeed (LF) \r Carriage Return (CR)
\t Horizontal Tab (TAB) \v Vertical Tab (VT)

In triple-quoted string literals, unescaped newlines and quotes are honored,
except that three unescaped quotes in a row terminate the literal.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 79 2024-02-08

Raw String Literals in Python

▶ Definition 3.6. Prefixing a string literal with a r or R turns it into a raw string
literal, in which backslashes have no special meaning.

▶ Note: Using the backslash as an escape character forces us to escape it as well.
▶ Example 3.7. The string "a\nb\nc" has length five and three lines, but the

string r"a\nb\nc" only has length seven and only one line.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 80 2024-02-08

Unicode in Python

▶ Remark 3.8. The Python string data type is UniCode, encoded as UTF− 8.
▶ How to write UniCode characters?: there are five ways
▶ write them in your editor (make sure that it uses UTF − 8)
▶ otherwise use Python escape sequences (try it!)

>>> "\xa3" # Using 8−bit hex value
’\u00A3’
>>> "\u00A3" # Using a 16−bit hex value
’\u00A3’
>>> "\U000000A3" # Using a 32−bit hex value
’\u00A3’
>>> "\N{Pound␣Sign}" # character name
’\u00A3’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 81 2024-02-08

Formatted String Literals (aka. f-strings)

▶ Problem: In a program we often want to build strings from pieces that we
already have lying around interspersed by other strings.

▶ Solution: Use string concatenation:
>>> course="IWGS"
>>> students=6∗11
>>> "The␣" + course + "␣course␣has␣" + str(students) + "␣students"
’The␣IWGS␣course␣has␣66␣students’

▶ We can do better! (mixing blanks and quotes is error-prone)
▶ Definition 3.9. Formatted string literals (aka. f strings) are string literals can

contain Python expressions that will be evaluated – i.e. replaced with their
values at runtime.
F strings are prefixed by f or F, the expressions are delimited by curly braces, and
the characters { and } themselves are represented by {{ and }}.

▶ Example 3.10 (An f-String for IWGS).
>>> course="IWGS"
>>> f"The␣{course}␣course␣has␣{6∗11}␣students"
’The␣IWGS␣course␣has␣66␣students’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 82 2024-02-08

F-String Example with a Dictionary

▶ Example 3.11 (An F-String with a Dictionary).
>>> course = {’name’:"IWGS",’students’:’66’}
>>> f"The␣{course[’name’]}␣course␣has␣{course[’students’]}␣students."
’The␣IWGS␣course␣has␣66␣students.’
Note that we alternated the quotes here to avoid the following problems:
>>> f’The␣course␣{course[’name’]}␣has␣{course[’students’]}␣students.’
File "<stdin>", line 1

f’The␣course␣{course[’name’]}␣has␣{course[’students’]}␣students.’
^

SyntaxError: invalid syntax

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 83 2024-02-08

3.4 More on Functions in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 83 2024-02-08

Anonymous Functions (lambda)

▶ Observation 4.1. A Python function definition combines making a function
object with giving it a name.

▶ Definition 4.2. Python also allows to make anonymous functions via the
function literal lambda for function objects:

lambda p1,. . .,pn: ⟨⟨expr⟩⟩

▶ Example 4.3. The following two Python fragments are equivalent:

def cube (x):
x∗x∗x

cube = lambda x: x∗x∗x

The right one is just a variable assignment that assigns a function object to the
variable cube. (In fact Python uses the right one internally)

▶ Question: Why use anonymous functions?
▶ Answer: We may not want to invent (i.e. waste) a name if the function is only

used once. (examples on the next slide)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 84 2024-02-08

Higher-Order Functions in Python

▶ Definition 4.4. We call a function a higher order function, iff it takes a function
as argument.

▶ Definition 4.5. map and filter are built-in higher order functions in Python.
They take a function and a list as arguments.
▶ map(f ,L) returns the list of f -values of the elements of L.
▶ filter(p,L) returns the sub-list L′ of those l in L, such that p(l)=True.

▶ Example 4.6. Mapping over and filtering a list

>>> li = [5, 7, 22, 97, 54, 62, 77, 23, 73, 61]
>>> list(map(lambda x: x∗2 , li))
[10, 14, 44, 194, 108, 124, 154, 46, 146, 122]
>>> list(filter(lambda x: (x%2 != 0) , li))
[5, 7, 97, 77, 23, 73, 61]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 85 2024-02-08

Argument Passing in Python: Keyword Arguments

▶ Definition 4.7. The last k≤n of n parameters of a function can be keyword
arguments of the form pi=⟨⟨val⟩⟩i : If no argument ai is given in the function
call, the default value ⟨⟨val⟩⟩i is taken.

▶ Example 4.8. The head of the open function is

def open(file, mode=’r’, buffering=−1, encoding=None, errors=None,
newline=None, closefd=True, opener=None)

Even if we only call it with open("foo"), we can use parameters like mode or
opener in the body; they have the corresponding default value.
We can also give more arguments via keywords, even out of order

open("foo", buffering=1, mode="+a")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 86 2024-02-08

Argument Passing in Python: Flexible Arity

▶ Definition 4.9.
Python functions can take a variable number of arguments:
def f (p1, . . ., pk ,∗r) allows n≥k arguments, e. g. f (a1, . . ., ak ,ak+1, . . ., an) and
binds the parameter r the rest argument to the list [ak+1, . . ., an].

▶ Example 4.10. A somewhat construed function that reports the number of
extra arguments

def flexary (a,b,∗c):
return len(c)

>>> flexary (1,2,3,4,5)
>>> 3

▶ Definition 4.11. The star operator unpacks a list into an argument sequence.
▶ Example 4.12 (Passing a starred list).

def test(arg1, arg2, arg3):
...

args = ["two", 3]
test(1, ∗args)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 87 2024-02-08

Argument Passing in Python: Flexible Keyword Arguments

▶ Definition 4.13. Python functions can take keyword arguments:
if k is a sequence of key/value pairs then deff (p1,. . .,pn,∗∗k) binds the keys to
values in the body of f .

▶ Example 4.14.

def kw_args(farg, ∗∗kwargs):
print (f"formal arg: {farg}")
for key in kwargs :

print (f"another keyword arg: {key}: {kwargs[key]}")
>>> kw_args(1, myarg2="two", myarg3=3)
formal arg: 1
another keyword arg: myarg2 : two
another keyword arg: myarg3 : 3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 88 2024-02-08

Argument Passing in Python: Flexible Keyword Arguments
(cont.)

▶ Definition 4.15.3 The double star operator unpacks a dictionary into a
sequence of keyword arguments.

▶ Example 4.16 (Passing around dates as dictionaries).

date_info = {’day’: "01", ’month’: "01", ’year’: "2020"}
def filename (year=’2019’,month=1,day=1)

f"{year}−{month}−{day}.txt"
>>> filename(∗∗date_info)
’2020−01−01.txt’

▶ Example 4.17 (Mixing formal and keyword arguments).

def pdict(a1, a2, a3):
print(’a1: ’,a1,’, a2: ’,a2,’, a3: ’,a3)

dict = {"a3": 3, "a2": "two"}
>>> pdict(1, ∗∗dict)
>>> a1: 1, a2: two, a3: 3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 89 2024-02-08

3.5 Regular Expressions: Patterns in Strings

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 89 2024-02-08

Problem: Text/Data File Manipulation

▶ Problem 1 (Information Extraction): We often want to extract information
from large document collections, e.g.
▶ e-mail addresses or dates from collected correspondencesrtts
▶ dates and places from newsfeeds
▶ links from web pages

▶ Problem 2 (Data Cleaning): The representation in data files is often too
noisy and inconsistent for directly importing into an application; e.g.
▶ standardizing different spellings of e.g. city names, (Nuremberg vs. Nürnberg)
▶ eliminating higher UniCode characters, when the application only accepts ASCII,
▶ separating structured texts into data blocks. (e.g. in x-separated lists)

▶ Enabling Technology: Specifying text/data fragments ; regular expressions.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 90 2024-02-08

Problem: Text/Data File Manipulation

▶ Problem 1 (Information Extraction): We often want to extract information
from large document collections, e.g.
▶ e-mail addresses or dates from collected correspondencesrtts
▶ dates and places from newsfeeds
▶ links from web pages

▶ Problem 2 (Data Cleaning): The representation in data files is often too
noisy and inconsistent for directly importing into an application; e.g.
▶ standardizing different spellings of e.g. city names, (Nuremberg vs. Nürnberg)
▶ eliminating higher UniCode characters, when the application only accepts ASCII,
▶ separating structured texts into data blocks. (e.g. in x-separated lists)

▶ Enabling Technology: Specifying text/data fragments ; regular expressions.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 90 2024-02-08

Problem: Text/Data File Manipulation

▶ Problem 1 (Information Extraction): We often want to extract information
from large document collections, e.g.
▶ e-mail addresses or dates from collected correspondencesrtts
▶ dates and places from newsfeeds
▶ links from web pages

▶ Problem 2 (Data Cleaning): The representation in data files is often too
noisy and inconsistent for directly importing into an application; e.g.
▶ standardizing different spellings of e.g. city names, (Nuremberg vs. Nürnberg)
▶ eliminating higher UniCode characters, when the application only accepts ASCII,
▶ separating structured texts into data blocks. (e.g. in x-separated lists)

▶ Enabling Technology: Specifying text/data fragments ; regular expressions.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 90 2024-02-08

Regular Expressions, see [Pyt]

▶ Definition 5.1. A regular expression (also called regex) is a formal expression
that specifies a set of strings.

▶ Definition 5.2 (Meta-Characters for Regexps).
char denotes
. any single character (except a newline)
ˆ beginning of a string
$ end of a string
[. . .]/[ˆ. . .] any single character in/not in the brackets
[x−y]/[ˆx−y] any single character in/not in range x to y
(. . .) marks a capture group
\n the nth captured group
| disjunction
∗ matches preceding element zero or more times
+ matches preceding element one or more times
? matches preceding element zero or one times
{n,m} matches the preceding element between n and m times
\S/\s non-/whitespace character
\W/\w non-/word character
\D/\d non-/digit (not only 0-9, but also e.g. arabic digits)

All other characters match themselves, to match e.g. a ?, escape with a \: \?.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 91 2024-02-08

Regular Expression Examples

▶ Example 5.3 (Regular Expressions and their Values).
regexp values
car car
.at cat, hat, mat, . . .
[hc]at cat, hat
[^c]at hat, mat, . . . (but not cat)
^[hc]at hat, cat, but only at the beginning of the line
[0−9] Digits
[1−9][0−9]∗ natural numbers
(.∗)\1 mama, papa, wakawaka
cat|dog cat, dog

▶ A regular expression can be interpreted by a regular expression processor (a
program that identifies parts that match the provided specification) or a
compiled by a parser generator.

▶ Example 5.4 (A more complex example). The following regex matches times
in a variety of formats, such as 10:22am, 21:10, 08h55, and 7.15 pm.

^(?:([0]?\d|1[012])|(?:1[3−9]|2[0−3]))[.:h]?[0−5]\d(?:\s?(?(1)(am|AM|pm|PM)))?$

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 92 2024-02-08

Playing with Regular Expressions

▶ If you want to play with regexs, go e.g. to http://regex101.com

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 93 2024-02-08

http://regex101.com

Regular Expressions in Python

▶ We can use regular expressions directly in Python by importing the re module
(just add import re at the beginning)

▶ As Python has UniCode strings, regular expressions support UniCode as well.
▶ Useful Python functions that use regular expressions.
▶ re.findall(⟨⟨pat⟩⟩,⟨⟨str⟩⟩): Return a list of non-overlapping matches of ⟨⟨pat⟩⟩ in ⟨⟨str⟩⟩.

>>> re.findall(r"[h|c|r]at",’the␣cat␣ate␣the␣rat␣on␣the␣mat’)
[’cat’,’rat’]

▶ re.sub(⟨⟨pat⟩⟩,⟨⟨sub⟩⟩,⟨⟨str⟩⟩): Replace substrings that match ⟨⟨pat⟩⟩ in ⟨⟨str⟩⟩ by
⟨⟨sub⟩⟩.

>>> re.sub(r’\sAND|and\s’, ’␣ ’, ’Baked Beans and Spam’)’Baked Beans Spam’

▶ re.split(⟨⟨pat⟩⟩,⟨⟨str⟩⟩): Split ⟨⟨str⟩⟩ into substrings that match pmetavarpat.

>>> re.split(r’\s+’,’When␣shall␣we␣three␣meet␣again?’))
[’When’,’shall’,’we’,’three’,’meet’,’again?’]
>>> re.split(r’\s+|\?|\.|!|,|:|;|’,’When␣shall␣we␣three␣meet␣again?’))
[’When’,’shall’,’we’,’three’,’meet’,’again’]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 94 2024-02-08

Example: Correcting and Anonymizing Documents

▶ Example 5.5 (Document Cleanup).
We write a function that makes simple corrections on documents and also
crosses out all names to anonymize.
▶ The worst president of the US,arguably was George W. Bush, right?
▶ However,are you famILIar with Paul Erdős or Henri Poincaré? (Unicode)
Here is the function
▶ we import the regular expressions library and start the function

import re
def corranon (s)

▶ we first add blanks after commata

s = re.sub(r",(\S)", r",␣\1", s)

▶ capitalize the first letter of a new sentence,

s = re.sub(r"([\.\?!])\w∗(\S)",
lambda m:m.group(1),r"␣".upper()+m.group(2),
s)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 95 2024-02-08

Example: Correcting and Anonymizing Documents (cont.)
▶ Example 5.6 (Document Cleanup (continued)).
▶ next we make abbreviations for regular expressions to save space

c = "[A−Z]"
l = "[a−z]"

▶ remove capital letters in the middle of words

s = re.sub(f"({l})({c}+)({l})",
lambda m:f"{m.group(1)}{m.group(2).lower()}{m.group(3)}",
s) #

▶ and we cross-out for official public versions of government documents,

s = re.sub(f"({c}{l}+␣({c}{l}∗(\.?)␣)?{c}{l}+)", #
lambda m:re.sub("\S", "X", m.group(1)),
s)

▶ finally, we return the result

s

The worst president of the US,arguably was George W. Bush, right?
becomes
The worst president of the US, arguably was XXXXXX XX XXXX, right?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 96 2024-02-08

Example: Correcting and Anonymizing Documents (all)

▶ Example 5.7 (Document Cleanup (overview)).

import re
def corranon (s)

s = re.sub(r",(\S)", r",␣\1", s)
s = re.sub(r"([\.\?!])\w∗(\S)",

lambda m:m.group(1),r"␣".upper()+m.group(2),
s)

c = "[A−Z]"
l = "[a−z]"
s = re.sub(f"({l})({c}+)({l})",

lambda m:f"{m.group(1)}{m.group(2).lower()}{m.group(3)}",
s) #

s = re.sub(f"({c}{l}+␣({c}{l}∗(\.?)␣)?{c}{l}+)", #
lambda m:re.sub("\S", "X", m.group(1)),
s)

s

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 97 2024-02-08

Chapter 4
Documents as Digital Objects

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 97 2024-02-08

4.1 Representing & Manipulating Documents on
a Computer

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 97 2024-02-08

Electronic Documents

▶ Definition 1.1. An electronic document is any media content that is intended
to be used via a document renderer, i.e. a program or computing device that
transforms it into a form that can be directy perceived by the end user.

▶ Example 1.2. PDFs, digital images, videos, audio recordings, web pages, . . .
▶ Definition 1.3. An electronic document that contains a digital encoding of

textual material that can be read by the end user by simply presenting the
encoded characters is called digital text.

▶ Definition 1.4. Digital text is subdivided into plain text, where all characters
carry the textual information and formatted text, which also contains
instructions to the document renderer.

▶ Example 1.5. Python programs are plain text, PDFs are formatted.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 98 2024-02-08

Document Markup
▶ Definition 1.6. Document markup (or just markup) is the process of adding

control words (special character sequences also called markup code) to a plain
text to control the structure, formatting, or the relationship among its parts,
making it a formatted text. All characters of a formatted text that are not
control words constitute its textual content.

▶ Example 1.7. A text with markup codes (for printing)

▶ Definition 1.8. The control words and composition rules for a particular kind of
markup system determine a markup format (also called a markup language).
The markup format used in an electronic document is called its document type.

▶ Remark 1.9. Markup turns plain text into formatted text.
Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 99 2024-02-08

File Types

▶ Observation 1.10. We mostly encounter electronic documents in the form of
files on some storage medium.

▶ Definition 1.11. A text file is a file that contains text data, a binary file one
that contains binary data

▶ Remark 1.12. Text files are usually encoded with ASCII, ISO Latin, or
increasingly UniCode encodings like UTF− 8.

▶ Example 1.13. Python programs are stored in text files.
▶ In practice, text files are often processed as a sequence of text line (or just

lines), i.e. sub strings separated by the line feed character U+ 000A;
LINEFEED(LF). The line number is just the position in the sequence.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 100 2024-02-08

Text Editors

▶ Definition 1.14. A text editor is a program used for rendering and manipulating
text files.

▶ Example 1.15. Popular text editors include
▶ Notepad is a simple editor distributed with Windows.
▶ emacs and vi are powerful editors originating from UNIX and optimized for

programming.
▶ sublime is a sophisticated programming editor for multiple operating systems.
▶ EtherPad is a browser-based real-time collaborative editor.

▶ Example 1.16. Even though it can save documents as text files, MSWord is not
usually considered a text editor, since it is optimized towards formatted text;
such “editors” are called word processors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 101 2024-02-08

Word Processors and Formatted Text

▶ Definition 1.17. A word processor is a software application, that – apart from
being a document renderer – also supports the tasks of composition, editing,
formatting, printing of electronic documents.

▶ Example 1.18. Popular word processors include
▶ MSWord, an elaborated word processor for Windows, whose native format is Office

Open XML (OOXML; file extension .docx).
▶ OpenOffice and LibreOffice are similar word processors using the ODF format

(Open Office Format; file extension .odf) natively, but can also import other
formats..

▶ Pages, a word processors for MacOSX it uses a proprietary format.
▶ OfficeOnline and GoogleDocs are browser-based real-time collaborative word

processors.
▶ Example 1.19. Text editor are usually not considered to be word processors,

even though they can sometimes be used to edit markup based formatted text.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 102 2024-02-08

4.2 Measuring Sizes of Documents/Units of
Information

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 102 2024-02-08

Units for Information

▶ Observation: The smallest unit of information is knowing the state of a system
with only two states.

▶ Definition 2.1. A bit (a contraction of “binary digit”) is the basic unit of
capacity of a data storage device or communication channel. The capacity of a
system which can exist in only two states, is one bit (written as 1b)

▶ Note: In the ASCII encoding, one character is encoded as 8b, so we introduce
another basic unit:

▶ Definition 2.2. The byte is a derived unit for information capacity: 1B = 8b.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 103 2024-02-08

Larger Units of Information via Binary Prefixes
▶ We will see that memory comes naturally in powers to 2, as we address memory

cell by binary numbers, therefore the derived information units are prefixed by
special prefixes that are based on powers of 2.

▶ Definition 2.3 (Binary Prefixes). The following binary unit prefixes are used
for information units because they are similar to the SI unit prefixes.

prefix symbol 2n decimal ~SI prefix Symbol
kibi Ki 210 1024 kilo k
mebi Mi 220 1048576 mega M
gibi Gi 230 1.074×109 giga G
tebi Ti 240 1.1×1012 tera T
pebi Pi 250 1.125×1015 peta P
exbi Ei 260 1.153×1018 exa E
zebi Zi 270 1.181×1021 zetta Z
yobi Yi 280 1.209×1024 yotta Y

▶ Note: The correspondence works better on the smaller prefixes; for yobi vs.
yotta there is a 20% difference in magnitude.

▶ The SI unit prefixes (and their operators) are often used instead of the correct
binary ones defined here.

▶ Example 2.4. You can buy hard-disks that say that their capacity is “one
terabyte”, but they actually have a capacity of one tebibyte.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 104 2024-02-08

How much Information?

Bit (b) binary digit 0/1
Byte (B) 8 bit
2 Bytes A UniCode character in UTF.
10 Bytes your name.
Kilobyte (kB) 1,000 bytes OR 103 bytes
2 Kilobytes A Typewritten page.
100 Kilobytes A low-resolution photograph.
Megabyte (MB) 1,000,000 bytes OR 106 bytes
1 Megabyte A small novel or a 3.5 inch floppy disk.
2 Megabytes A high-resolution photograph.
5 Megabytes The complete works of Shakespeare.
10 Megabytes A minute of high-fidelity sound.
100 Megabytes 1 meter of shelved books.
500 Megabytes A CD-ROM.
Gigabyte (GB) 1,000,000,000 bytes or 109 bytes
1 Gigabyte a pickup truck filled with books.
20 Gigabytes A good collection of the works of Beethoven.
100 Gigabytes A library floor of academic journals.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 105 2024-02-08

How much Information?

Terabyte (TB) 1,000,000,000,000 bytes or 1012 bytes
1 Terabyte 50000 trees made into paper and printed.
2 Terabytes An academic research library.
10 Terabytes The print collections of the U.S. Library of Congress.
400 Terabytes National Climate Data Center (NOAA) database.
Petabyte (PB) 1,000,000,000,000,000 bytes or 1015 bytes
1 Petabyte 3 years of EOS data (2001).
2 Petabytes All U.S. academic research libraries.
20 Petabytes Production of hard-disk drives in 1995.
200 Petabytes All printed material (ever).
Exabyte (EB) 1,000,000,000,000,000,000 bytes or 1018 bytes
2 Exabytes Total volume of information generated in 1999.
5 Exabytes All words ever spoken by human beings ever.
300 Exabytes All data stored digitally in 2007.
Zettabyte (ZB) 1,000,000,000,000,000,000,000 bytes or 1021 bytes
2 Zettabytes Total volume digital data transmitted in 2011
100 Zettabytes Data equivalent to the human Genome in one body.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 106 2024-02-08

4.3 Hypertext Markup Language

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 106 2024-02-08

4.3.1 Introduction

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 106 2024-02-08

HTML: Hypertext Markup Language
▶ Definition 3.1. The HyperText Markup Labnguage (HTML), is a representation

format for web pages [Hic+14].
▶ Definition 3.2 (Main markup elements of HTML). HTML marks up the

structure and appearance of text with tags of the form <el> (begin tag), </el>
(end tag), and <el/> (empty tag), where el is one of the following

structure html,head, body metadata title, link, meta
headings h1, h2, . . . , h6 paragraphs p, br
lists ul, ol, dl, . . . , li hyperlinks a
multimedia img, video, audio tables table, th, tr, td, . . .
styling style, div, span old style b, u, tt, i, . . .
interaction script forms form, input, button
Math MathML (formu-

lae)
interactive
graphics

vector graphics (SVG) and
canvas (2D bitmapped)

▶ Example 3.3. A (very simple) HTML file with a single paragraph.
<html>
<body>
<p>Hello IWGS students!</p>

</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 107 2024-02-08

A very first HTML Example (Source)
<html xmlns="http:www.w3.org/1999/xhtml">
<head>
<title>A first HTML Web Page</title>

</head>
<body>
<h1>Anatomy of a HTML Web Page</h1>
<h3>Michael Kohlhase
FAU Erlangen Nuernberg</h3>
<h2 id="intro">1. Introduction</h2>
<p>This is really easy, just start writing.</p>
<h2>3. Main Part: show off features</h2>
<p>We can can markup text styles inline.</p>
<p> And we can make itemizations:

 with a list item
 and another one

</p>
<h2>4. Conclusion</h2>
<p> As we have seen in the introduction this
was very easy.</p>

</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 108 2024-02-08

A very first HTML Example (Result)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 109 2024-02-08

4.3.2 Interacting with HTML in Web Broswers

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 109 2024-02-08

Web Browsers
▶ Definition 3.4. A web browser is a software application for retrieving (via

HTTP), presenting, and traversing information resources on the WWW,
enabling users to view web pages and to jump from one page to another.
Definition 3.5. A web browser usually supplies user tools like
▶ history that gives the user access to the
▶ an inspector to inspect the DOM
Definition 3.6. A web browser usually supplies developer tools like
▶ the console that logs system-level events in the browser

▶ Practical Browser Tools:
▶ Status Bar: security info, page load progress
▶ Favorites (bookmarks)
▶ View Source: view the code of a web page
▶ Tools/Internet Options, history, temporary Internet files, home page, auto complete,

security settings, programs, etc.
▶ Example 3.7 (Common Browsers).
▶ MSInternetExplorer is an once dominant, now obsolete browser for Windows.
▶ Edge is provided by Microsoft for Windows. (replaces MSInternetExplorer)
▶ FireFox is an open source browser for all platforms, it is known for its standards

compliance.
▶ Safari is provided by Apple for MacOSX and Windows.
▶ Chrome is a lean and mean browser provided by Google Inc. (very common)
▶ WebKit is a library that forms the open source basis for Safari and Chrome.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 110 2024-02-08

Browser Tools for dealing with HTML, e.g. in FireFox
▶ Hit Control-U to see the page source in the browser

▶ go to an element and right-click ; “Inspect element”

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 111 2024-02-08

Browser Tools for dealing with HTML, e.g. in FireFox
▶ Hit Control-U to see the page source in the browser
▶ go to an element and right-click ; “Inspect element”

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 111 2024-02-08

4.3.3 A Worked Example: The Contact Form

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 111 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:

▶ Put the intended text into a file: contact.html:
▶ Load into your browser to check the state:
▶ Add title, paragraph and button markup:
▶ Add input fields and breaks:
▶ Convert into a HTML form with action (message receipt):
▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:
▶ Put the intended text into a file: contact.html:

Contact
Please enter a message:
Your e−mail address: xx @ xx.de
Send message

▶ Load into your browser to check the state:
▶ Add title, paragraph and button markup:
▶ Add input fields and breaks:
▶ Convert into a HTML form with action (message receipt):
▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:
▶ Put the intended text into a file: contact.html:
▶ Load into your browser to check the state:

▶ Add title, paragraph and button markup:
▶ Add input fields and breaks:
▶ Convert into a HTML form with action (message receipt):
▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:
▶ Put the intended text into a file: contact.html:
▶ Load into your browser to check the state:
▶ Add title, paragraph and button markup:

<title>Contact</title>
<h2>Please enter a message:</h2>
<h3>Your e−mail address: xx @ xx.de</h3>
<button>Send message</button>

▶ Add input fields and breaks:
▶ Convert into a HTML form with action (message receipt):
▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:
▶ Put the intended text into a file: contact.html:
▶ Load into your browser to check the state:
▶ Add title, paragraph and button markup:
▶ Add input fields and breaks:

<title>Contact</title>
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>
<h3> Your e−mail address:</h3>
<input name="addr" type="text"

value="xx␣@␣xx.de"/>

<button>Send message</button>

▶ Convert into a HTML form with action (message receipt):
▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:
▶ Put the intended text into a file: contact.html:
▶ Load into your browser to check the state:
▶ Add title, paragraph and button markup:
▶ Add input fields and breaks:
▶ Convert into a HTML form with action (message receipt):

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx␣@␣xx.de"/>

<input type="submit"

value="Send␣message"/>
</form>

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">
<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:
▶ Put the intended text into a file: contact.html:
▶ Load into your browser to check the state:
▶ Add title, paragraph and button markup:
▶ Add input fields and breaks:
▶ Convert into a HTML form with action (message receipt):

▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML in Practice: Worked Example

▶ Make a design and “paper prototype” of the page:
▶ Put the intended text into a file: contact.html:
▶ Load into your browser to check the state:
▶ Add title, paragraph and button markup:
▶ Add input fields and breaks:
▶ Convert into a HTML form with action (message receipt):
▶ That’s as far as we will go, the rest is page layout and interaction. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 112 2024-02-08

HTML Forms

▶ Question: But how does the interaction with the contact form really work?
▶ Definition 3.8. The HTML form tags groups the layout and input elements:
▶ <form action="⟨⟨URI⟩⟩"...> specifies the form action (as a web page address).
▶ the input element <input type="submit".../> triggers the form action: it sends the

form data to web page specified there.
▶ Example 3.9 (In the Contact Form). We send the request

GET contact−after.html?
msg=Hi;addr=foo@bar.de

We current ignore the form data (the part after the ?)
▶ We will come to the full story of processing actions later.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 113 2024-02-08

More useful types of Input fields

▶ Radio buttons: type="radio" (grouped by name attribute)

<input type="radio" name="gender" value="male"/>Male

<input type="radio" name="gender" value="female"/>Female

<input type="radio" name="gender" value="other"/>Other

▶ Check boxes: type="checkbox"
▶ File selector dialogs (interaction is system specific here for MacOS Mojave)
▶ Drop down menus: select and option

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 114 2024-02-08

More useful types of Input fields

▶ Radio buttons: type="radio" (grouped by name attribute)
▶ Check boxes: type="checkbox"

My major is
<input type="checkbox" name="major" value="cs"/>Computer Science
<input type="checkbox" name="major" value="dh"/>Digital Humanities
<input type="checkbox" name="major" value="other"/>Other

▶ File selector dialogs (interaction is system specific here for MacOS Mojave)
▶ Drop down menus: select and option

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 114 2024-02-08

More useful types of Input fields

▶ Radio buttons: type="radio" (grouped by name attribute)
▶ Check boxes: type="checkbox"
▶ File selector dialogs (interaction is system specific here for MacOS Mojave)

<p> Upload your resume <input type="file" name="resume"/></p>

▶ Drop down menus: select and option

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 114 2024-02-08

More useful types of Input fields

▶ Radio buttons: type="radio" (grouped by name attribute)
▶ Check boxes: type="checkbox"
▶ File selector dialogs (interaction is system specific here for MacOS Mojave)
▶ Drop down menus: select and option

Which animal do you like?

<select name="animals">
<option value="bird">Bird</option>
<option value="hamster">Hamster</option>
<option value="cat">Cat</option>
<option value="dog">Dog</option>

</select>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 114 2024-02-08

4.4 Documents as Trees

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 114 2024-02-08

Well-Bracketed Structures in Computer Science

▶ Observation 4.1. We often deal with well-bracketed structures in CS, e.g.

▶ Expressions: e.g.
3 · (a+ 5)
2x + 7

(numerator an denominator in fractions implicitly

bracketed)

▶ Markup languages like HTML:
▶ Programming languages like python:

▶ Idea: Come up with a common data structure that allows to program the same
algorithms for all of them. (common approach to scaling in computer science)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 115 2024-02-08

Well-Bracketed Structures in Computer Science

▶ Observation 4.2. We often deal with well-bracketed structures in CS, e.g.

▶ Expressions: e.g.
3 · (a+ 5)
2x + 7

(numerator an denominator in fractions implicitly

bracketed)
▶ Markup languages like HTML:

<html>
<head><script>.emph {color:red}</script></head>
<body><p>Hello IWGS</p></body>

</html>

▶ Programming languages like python:
▶ Idea: Come up with a common data structure that allows to program the same

algorithms for all of them. (common approach to scaling in computer science)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 115 2024-02-08

Well-Bracketed Structures in Computer Science

▶ Observation 4.3. We often deal with well-bracketed structures in CS, e.g.

▶ Expressions: e.g.
3 · (a+ 5)
2x + 7

(numerator an denominator in fractions implicitly

bracketed)
▶ Markup languages like HTML:
▶ Programming languages like python:

answer = input("Are␣you␣happy?␣")
if answer == ’No’ or answer == ’no’:

print("Have␣a␣chocolate!")
else:

print("Good!")
print("Can␣I␣help␣you␣with␣something␣else?")

▶ Idea: Come up with a common data structure that allows to program the same
algorithms for all of them. (common approach to scaling in computer science)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 115 2024-02-08

Well-Bracketed Structures in Computer Science

▶ Observation 4.4. We often deal with well-bracketed structures in CS, e.g.

▶ Expressions: e.g.
3 · (a+ 5)
2x + 7

(numerator an denominator in fractions implicitly

bracketed)
▶ Markup languages like HTML:
▶ Programming languages like python:

▶ Idea: Come up with a common data structure that allows to program the same
algorithms for all of them. (common approach to scaling in computer science)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 115 2024-02-08

A Common Data Structure for Well Bracketed Structures

▶ Observation 4.5. In well-bracketed strutures, brackets contain two kinds of
objects
▶ bracket-less objects
▶ well-bracketed structures themselves

▶ Idea: Write bracket pairs and bracket-less objects as nodes, connect with an
arrow when contained. (let arrows point downwards)

▶ Example 4.6. Let’s try this for HTML creating nodes top to bottom

<html>
<head>
<script>.emph {color:red}</script>

</head>
<body>
<p>Hello IWGS</p>

</body>
</html>

⟨html⟩

⟨head⟩ ⟨body⟩

⟨script⟩ ⟨p⟩

.emph {color:red}

Hello IWGS

▶ Definition 4.7. We call such structures tree. (more on trees next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 116 2024-02-08

Well-Bracketed Structures: Tree Nomenclature

▶ Definition 4.8. In mathematics and CS, such well-bracketed structures are
called trees (with root, branches, leaves, and height). (but written upside down)

▶ Example 4.9. In a tree, there is only one path from the root to the leaves
▶ Definition 4.10. We speak of parent, child, ancestor, and descendant nodes

(genealogy nomenclature).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 117 2024-02-08

Well-Bracketed Structures: Tree Nomenclature
▶ Definition 4.11. In mathematics and CS, such well-bracketed structures are

called trees (with root, branches, leaves, and height). (but written upside down)
▶ Example 4.12. In a tree, there is only one path from the root to the leaves

⟨html⟩

⟨head⟩ ⟨body⟩

⟨script⟩ ⟨p⟩

.emph {color:red}

Hello IWGS

▶ Definition 4.13. We speak of parent, child, ancestor, and descendant nodes
(genealogy nomenclature).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 117 2024-02-08

Well-Bracketed Structures: Tree Nomenclature

▶ Definition 4.14. In mathematics and CS, such well-bracketed structures are
called trees (with root, branches, leaves, and height). (but written upside down)

▶ Example 4.15. In a tree, there is only one path from the root to the leaves
▶ Definition 4.16. We speak of parent, child, ancestor, and descendant nodes

(genealogy nomenclature).

⟨html⟩

⟨head⟩ ⟨body⟩

⟨script⟩ ⟨p⟩

.emph {color:red}

Hello IWGS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 117 2024-02-08

Upside Down Trees in Nature
▶ Actually, upside down trees exist in nature (though rarely):

This is a fig tree in Bacoli, Italy; see
https://www.atlasobscura.com/places/upside-down-fig-tree

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 118 2024-02-08

https://www.atlasobscura.com/places/upside-down-fig-tree

Computing with Trees in Python

▶ Observation 4.17. All connected substructures of trees are trees themselves.

▶ Idea: operate on the tree by “Divide and Conquer”
▶ operate on the two subtrees
▶ combine results, taking root into account

1

2 3

4 5 6 7
This approach lends itself very well to recursive programming (functions that call
themselves)

▶ Idea: Represent trees as lists of tree labels and lists (of subtrees).
▶ Example 4.18 (The tree above). Represented as [1,[2,[[4],[5]]],[3,[[6],[7]]]]

compute the tree height by the following Python functions:
def height (tree):

return maxh(tree[1:]) + 1

height([1,[2,[[4],[5]]],[3,[[6],[7]]]])
>>> 3

def maxh (l):
if l == []:

return 0
else

return max(height(l[0]),maxh(l[1:]))

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 119 2024-02-08

Computing with Trees in Python (Dictionaries)

▶ That was a bit cryptic: i.e. very difficult to read/debug
▶ Idea: why not use dictionaries? (they are more explicit)
▶ Example 4.19. Compute the tree weight (the sum of all labels) by

t =
{"label": = 1,
"children": = [{

"label": = 2,
"children": = [{

"label": = 4,
"children": = []},
{"label": = 5,
"children": = []}]},

{"label": = 3,
"children": = [{

"label": = 6,
"children": = []},
{"label": = 7,
"children": = []}]}]}

def wsum (tl):
if tl == []:

return 0;
else

return weight(tl[0]) + wsum(tl[1:])

def weight (tree):
return tree["label"] + wsum(tree["children"]);

weight(t);
>>> 28

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 120 2024-02-08

The Document Object Model

▶ Definition 4.20. The document object model (DOM) is a data structure for
storing marked up electronic documents as trees together with a standardized
set of access methods for manipulating them.

▶ Idea: When a web browser loads a HTML page, it directly parses it into a
DOM and then works exclusively on that. In particular, the HTML document is
immediately discarded; documents are rendered from the DOM.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 121 2024-02-08

4.5 An Overview over XML Technologies

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 121 2024-02-08

4.5.1 Introduction to XML

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 121 2024-02-08

XML (EXtensible Markup Language)

▶ Definition 5.1. XML (short for Extensible Markup Language) is a framework for
markup formats for documents and structured data.
▶ Tree representation language (begin/end brackets)
▶ Restrict instances by Doc. Type Def. (DTD) or Schema (Grammar)
▶ Presentation markup by style files (XSL: XML Style Language)

▶ Intuition: XML is extensible HTML
▶ logic annotation (markup) instead of presentation!
▶ many tools available: parsers, compression, data bases, . . .
▶ conceptually: transfer of trees instead of strings.
▶ details at http://w3c.org (XML is standardize by the WWW Consortium)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 122 2024-02-08

http://w3c.org

XML is Everywhere (E.g. Web Pages)

▶ Example 5.2. Open web page file in FireFox, then click on
View ↘PageSource, you get the following text: (showing only a small part and
reformatting)
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Michael Kohlhase</title>
<meta name="generator"

content="Page␣generated␣from␣XML␣sources␣with␣the␣WSML␣package"/>
</head>
<body>. . .
<p>
<i>Professor of Computer Science</i>

Jacobs University

Mailing address - Jacobs (except Thursdays)

School of Engineering amp; Science
. . .</p>. . .</body></html>

▶ Definition 5.3. XHTML is the XML version of HTML.(just make it valid XML)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 123 2024-02-08

XML is Everywhere (E.g. Catalogs)

▶ Example 5.4 (The NYC Galleries Catalog). A public XML file at
https://data.cityofnewyork.us/download/kcrmj9hh/application/xml

<?xml version="1.0" encoding="UTF−8"?>
<museums>
<museum>
<name>American Folk Art Museum</name>
<phone>212−265−1040</phone>
<address>45 W. 53rd St. (at Fifth Ave.)</address>
<closing>Closed: Monday</closing>
<rates>admission: $9; seniors/students, $7; under 12, free</rates>
<specials>
Pay−what−you−wish: Friday after 5:30pm;
refreshments and music available

</specials>
</museum>
<museum>
<name>American Museum of Natural History</name>
<phone>212−769−5200</phone>
<address>Central Park West (at W. 79th St.)</address>
<closing>Closed: Thanksgiving Day and Christmas Day</closing>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 124 2024-02-08

https://data.cityofnewyork.us/download/kcrm j9hh/application/xml

XML is Everywhere (E.g. Office Suites)

▶ Example 5.5 (MS Office uses XML). The MSOffice suite and LibreOffice
use compressed XML as an electronic document format.
1. Save a MSOffice file test.docx, add the extension .zip to obtain test.docx.zip.
2. Uncompress with unzip (UNIX) or open File Explorer, right-click ; “Extract All”

(Windows)
3. You obtain a folder with 15+ files, the content is in word/contents.xml
4. Other files have packaging information, images, and other objects.

This is huge and offensively ugly.
▶ But you have everything you wanted and more
▶ In particular, you can process the contents via a program now.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 125 2024-02-08

XML Documents as Trees

▶ Idea: An XML Document is a Tree

<omtext xml:id="foo"
xmlns=". . ."
xmlns:om=". . .">
<CMP xml:lang=’en’>
The number
<om:OMOBJ>
<om:OMS cd="nums1"

name="pi"/>
</om:OMOBJ>

is irrational.
</CMP>

</omtext>

<omtext>

<CMP>

xml:id; foo

xml:lang; en

The number is irrational.

<om:OMOBJ>

<om:OMS>

cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

▶ Definition 5.6. The XML document tree is made up of element nodes, attribute
nodes, text nodes (and namespace declarations, comments,. . .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 126 2024-02-08

XML Documents as Trees (continued)

▶ Definition 5.7. For communication this tree is serialized into a balanced
bracketing structure, where
▶ an inner element node is represented by the brackets <el> (called the opening tag)

and </el> (called the closing tag),
▶ the leaves of the XML tree are represented by empty element tags (serialized as

<el></el>, which can be abbreviated as <el/>,
▶ and text node (serialized as a sequence of UniCode characters).
▶ An element node can be annotated by further information using attribute nodes

serialized as an attribute in its opening tag.
▶ Note: As a document is a tree, the XML specification mandates that there

must be a unique document root.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 127 2024-02-08

4.5.2 Computing with XML in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 127 2024-02-08

Computing with XML in Python (Elements)

▶ The lxml library [LXMLa] provides Python bindings for the (low-level) LibXML2
library. (install it with pip3 install lxml)

▶ The ElementTree API is the main way to programmatically interact with XML.
Activate it by importing etree from lxml:
>>> from lxml import etree

▶ Elements are easily created, their properties are accessed with special accessor
methods
>>> root = etree.Element("root")
>>> print(root.tag)
root

▶ Elements are organised in an XML tree structure. To create child element nodes
and add them to a parent element node, you can use the append() method:
>>> root.append(etree.Element("child1"))

▶ Abbreviation: create a child element node and add it to a parent.
>>> child2 = etree.SubElement(root, "child2")
>>> child3 = etree.SubElement(root, "child3")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 128 2024-02-08

Computing with XML in Python (Elements)

▶ The lxml library [LXMLa] provides Python bindings for the (low-level) LibXML2
library. (install it with pip3 install lxml)

▶ The ElementTree API is the main way to programmatically interact with XML.
Activate it by importing etree from lxml:
>>> from lxml import etree

▶ Elements are easily created, their properties are accessed with special accessor
methods
>>> root = etree.Element("root")
>>> print(root.tag)
root

▶ Elements are organised in an XML tree structure. To create child element nodes
and add them to a parent element node, you can use the append() method:
>>> root.append(etree.Element("child1"))

▶ Abbreviation: create a child element node and add it to a parent.
>>> child2 = etree.SubElement(root, "child2")
>>> child3 = etree.SubElement(root, "child3")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 128 2024-02-08

Computing with XML in Python (Elements)

▶ The lxml library [LXMLa] provides Python bindings for the (low-level) LibXML2
library. (install it with pip3 install lxml)

▶ The ElementTree API is the main way to programmatically interact with XML.
Activate it by importing etree from lxml:
>>> from lxml import etree

▶ Elements are easily created, their properties are accessed with special accessor
methods
>>> root = etree.Element("root")
>>> print(root.tag)
root

▶ Elements are organised in an XML tree structure. To create child element nodes
and add them to a parent element node, you can use the append() method:
>>> root.append(etree.Element("child1"))

▶ Abbreviation: create a child element node and add it to a parent.
>>> child2 = etree.SubElement(root, "child2")
>>> child3 = etree.SubElement(root, "child3")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 128 2024-02-08

Computing with XML in Python (Elements)

▶ The lxml library [LXMLa] provides Python bindings for the (low-level) LibXML2
library. (install it with pip3 install lxml)

▶ The ElementTree API is the main way to programmatically interact with XML.
Activate it by importing etree from lxml:
>>> from lxml import etree

▶ Elements are easily created, their properties are accessed with special accessor
methods
>>> root = etree.Element("root")
>>> print(root.tag)
root

▶ Elements are organised in an XML tree structure. To create child element nodes
and add them to a parent element node, you can use the append() method:
>>> root.append(etree.Element("child1"))

▶ Abbreviation: create a child element node and add it to a parent.
>>> child2 = etree.SubElement(root, "child2")
>>> child3 = etree.SubElement(root, "child3")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 128 2024-02-08

Computing with XML in Python (Elements)

▶ The lxml library [LXMLa] provides Python bindings for the (low-level) LibXML2
library. (install it with pip3 install lxml)

▶ The ElementTree API is the main way to programmatically interact with XML.
Activate it by importing etree from lxml:
>>> from lxml import etree

▶ Elements are easily created, their properties are accessed with special accessor
methods
>>> root = etree.Element("root")
>>> print(root.tag)
root

▶ Elements are organised in an XML tree structure. To create child element nodes
and add them to a parent element node, you can use the append() method:
>>> root.append(etree.Element("child1"))

▶ Abbreviation: create a child element node and add it to a parent.
>>> child2 = etree.SubElement(root, "child2")
>>> child3 = etree.SubElement(root, "child3")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 128 2024-02-08

Computing with XML in Python (Result)

▶ Here is the resulting XML tree so far; we serialize it via etree.tostring
>>> print(etree.tostring(root, pretty_print=True))
<root>
<child1/>
<child2/>
<child3/>

</root>

▶ BTW, the etree.tostring is highly configurable via default arguments.
tostring(element_or_tree,

encoding=None, method="xml", xml_declaration=None, doctype=None,
pretty_print=False, with_tail=True, standalone=None, exclusive=False,
inclusive_ns_prefixes=None, with_comments=True, strip_text=False)

The lxml API documentation [LXMLb] has the details.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 129 2024-02-08

Computing with XML in Python (Automation)

▶ This may seem trivial and/or tedious, but we have Python power now:
def nchildren (n):

root = etree.Element("root")
for i in range(1,n):

root.append(f"child{i}")
produces a tree with 1000 children without much effort.
>>> t = nchildren(1000)
>>> print(len(t))
>>> 1000
We abstain from printing the XML tree (too large) and only check the length.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 130 2024-02-08

Computing with XML in Python (Attributes)

▶ Attributes can directly be added in the Element function

>>> root = etree.Element("root", interesting="totally")
>>> etree.tostring(root)
b’<root interesting="totally"/>’

▶ The .get method returns attributes in a dictionary-like object:

>>> print(root.get("interesting"))
totally

We can set them with the .set method:
>>> root.set("hello", "Huhu")
>>> print(root.get("hello"))
Huhu

This results in a changed element:

>>> etree.tostring(root)
b’<root interesting="totally" hello="Huhu"/>’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 131 2024-02-08

Computing with XML in Python (Attributes; continued)
▶ We can access attributes by the keys, values, and items methods, known from

dictionaries:
>>> sorted(root.keys())
[’hello’, ’interesting’]

>>> for name, value in sorted(root.items()):
... print(f’{name} = {value}’)
hello = ’Huhu’
interesting = ’totally’

▶ To get a ‘real‘ dictionary, use the attrib method (e.g. to pass around)

>>> attributes = root.attrib

Note that attributes participates in any changes to root and vice versa.
▶ To get an independent snapshot of the attributes that does not depend on

the XML tree, copy it into a dict:

>>> d = dict(root.attrib)
>>> sorted(d.items())
[(’hello’, ’Guten Tag’), (’interesting’, ’totally’)]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 132 2024-02-08

Computing with XML in Python (Text nodes)

▶ Elements can contain text: we use the .text property to access and set it.

>>> root = etree.Element("root")
>>> root.text = "TEXT"
>>> print(root.text)
TEXT
>>> etree.tostring(root)
b’<root>TEXT</root>’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 133 2024-02-08

Case Study: Creating an HTML document
▶ We create nested html and body element

>>> html = etree.Element("html")
>>> body = etree.SubElement(html, "body")

▶ Then we inject a text node into the latter using the .text property.
>>> body.text = "TEXT"

▶ Let’s check the result
>>> etree.tostring(html)
b’<html><body>TEXT</body></html>’

▶ We add another element: a line break and check the result
>>> br = etree.SubElement(body, "br")
>>> etree.tostring(html)
b’<html><body>TEXT
</body></html>’

▶ Finally, we can add trailing text via the .tail property
>>> br.tail = "TAIL"
>>> etree.tostring(html)
b’<html><body>TEXT
TAIL</body></html>’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 134 2024-02-08

Computing with XML in Python (XML Literals)
▶ Definition 5.8. We call any string that is well-formed XML an XML literal.
▶ We can use the XML function to read XML literals.

>>> root = etree.XML("<root>data</root>")

The result is a first-class element tree, which we can use as above
>>> print(root.tag)
root
>>> etree.tostring(root)
b’<root>data</root>’

BTW, the fromstring function does the same.
▶ There is a variant html that also supplies the necessary HTML decoration.

>>> root = etree.HTML("<p>data
more</p>")
>>> etree.tostring(root)
b’<html><body><p>data
more</p></body></html>’

▶ BTW: If you want to read only the text content of an XML element, i.e.
without any intermediate tags, use the method keyword in tostring:
>>> etree.tostring(root, method="text")
b’datamore’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 135 2024-02-08

4.5.3 XML Namespaces

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 135 2024-02-08

XML is Everywhere (E.g. document metadata)
▶ Example 5.9. Open a PDF file in AcrobatReader, then click on

File↘DocumentProperties↘DocumentMetadata↘ViewSource

you get the following text: (showing only a small part)
<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:iX=’http://ns.adobe.com/iX/1.0/’>
<rdf:Description xmlns:pdf=’http://ns.adobe.com/pdf/1.3/’>
<pdf:CreationDate>2004-09-08T16:14:07Z</pdf:CreationDate>
<pdf:ModDate>2004-09-08T16:14:07Z</pdf:ModDate>
<pdf:Producer>Acrobat Distiller 5.0 (Windows)</pdf:Producer>
<pdf:Author>Herbert Jaeger</pdf:Author>
<pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator>
<pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title>

</rdf:Description>
. . .
<rdf:Description xmlns:dc=’http://purl.org/dc/elements/1.1/’>
<dc:creator>Herbert Jaeger</dc:creator>
<dc:title>Exercises for ACS 1, Fall 2003</dc:title>

</rdf:Description>
</rdf:RDF>

▶ Example 5.10. 5.9 mixes elements from three different vocabularies:
▶ RDF: xmlns:rdf for the “Resource Descritpion Format”,
▶ PDF: xmlns:pdf for the “Portable Document Format”, and
▶ DC: xmlns:dc for the “Dublin Core” vocabulary

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 136 2024-02-08

Mixing Vocabularies via XML Namespaces

▶ Problem: We would like to reuse elements from different XML vocabularies
What happens if elements names coincide, but have different meanings?

▶ Idea: Disambiguate them by vocabulary name. (prefix)

▶ Problem: What if vocabulary names are not unique? (e.g. different versions)
▶ Idea: Use a long string for identification and a short prefix for referencing
▶ Definition 5.11. An XML namespace is a string that identifies an XML

vocabulary. Every elements and attribute name in XML consists of a local name
and a namespace.

▶ Definition 5.12. A namespace declaration is an attribute xmlns:prefix|=| whose
value is an XML namespace n on an XML element e. The first associates the
namepsace prefix prefix with the namespace n in e: Then, any XML element in
e with a prefixed name ⟨⟨prefix⟩⟩:⟨⟨name⟩⟩ has namespace n and local name
⟨⟨name⟩⟩.
A default namespace declaration xmlns=d on an element e gives all elements in
e whose name is not prefixed, the namepsace d .
Namespace declarations on subtrees shadow the ones on supertrees.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 137 2024-02-08

Mixing Vocabularies via XML Namespaces

▶ Problem: We would like to reuse elements from different XML vocabularies
What happens if elements names coincide, but have different meanings?

▶ Idea: Disambiguate them by vocabulary name. (prefix)
▶ Problem: What if vocabulary names are not unique? (e.g. different versions)
▶ Idea: Use a long string for identification and a short prefix for referencing

▶ Definition 5.13. An XML namespace is a string that identifies an XML
vocabulary. Every elements and attribute name in XML consists of a local name
and a namespace.

▶ Definition 5.14. A namespace declaration is an attribute xmlns:prefix|=| whose
value is an XML namespace n on an XML element e. The first associates the
namepsace prefix prefix with the namespace n in e: Then, any XML element in
e with a prefixed name ⟨⟨prefix⟩⟩:⟨⟨name⟩⟩ has namespace n and local name
⟨⟨name⟩⟩.
A default namespace declaration xmlns=d on an element e gives all elements in
e whose name is not prefixed, the namepsace d .
Namespace declarations on subtrees shadow the ones on supertrees.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 137 2024-02-08

Mixing Vocabularies via XML Namespaces

▶ Problem: We would like to reuse elements from different XML vocabularies
What happens if elements names coincide, but have different meanings?

▶ Idea: Disambiguate them by vocabulary name. (prefix)
▶ Problem: What if vocabulary names are not unique? (e.g. different versions)
▶ Idea: Use a long string for identification and a short prefix for referencing
▶ Definition 5.15. An XML namespace is a string that identifies an XML

vocabulary. Every elements and attribute name in XML consists of a local name
and a namespace.

▶ Definition 5.16. A namespace declaration is an attribute xmlns:prefix|=| whose
value is an XML namespace n on an XML element e. The first associates the
namepsace prefix prefix with the namespace n in e: Then, any XML element in
e with a prefixed name ⟨⟨prefix⟩⟩:⟨⟨name⟩⟩ has namespace n and local name
⟨⟨name⟩⟩.
A default namespace declaration xmlns=d on an element e gives all elements in
e whose name is not prefixed, the namepsace d .
Namespace declarations on subtrees shadow the ones on supertrees.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 137 2024-02-08

4.5.4 XPath: Specifying XML Subtrees

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 137 2024-02-08

XPath, A Language for talking about XML Tree Fragments
▶ Definition 5.17. The XML path language (XPath) is a language framework for

specifying fragments of XML trees.
▶ Intuition:

XPath is for trees what regular expressions are for strings.
▶ Example 5.18.

<omtext>

<CMP>

xml:id; foo

xml:lang; en

The number is irrational.

<om:OMOBJ>

<om:OMS>

cd; nums1name; pi

xmlns; . . .

xmlns:om; . . .

XPath exp. fragment
/ root
omtext/CMP/∗ all <CMP>

children
//@name the name at-

tribute on the
<OMS> ele-
ment

//CMP/∗[1] the first child of
all <CMP> ele-
ments

//∗[@cd=’nums1’] all elements
whose cd has
value nums1

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 138 2024-02-08

Computing with XML in Python (XPath)

▶ Say we have an XML tree:
>>> f = StringIO(’<foo><bar></bar></foo>’)
>>> tree = etree.parse(f)

▶ Then xpath() selects the list of matching elements for an XPath:
>>> r = tree.xpath(’/foo/bar’)
>>> len(r)
1
>>> r[0].tag
’bar’

▶ And we can do it again, . . .
>>> r = tree.xpath(’bar’)
>>> r[0].tag
’bar’

▶ The xpath() method has support for XPath variables:
>>> expr = "//∗[local−name()␣=␣$name]"
>>> print(root.xpath(expr, name = "foo")[0].tag)
foo
>>> print(root.xpath(expr, name = "bar")[0].tag)
bar

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 139 2024-02-08

Computing with XML in Python (XPath)

▶ Say we have an XML tree:
>>> f = StringIO(’<foo><bar></bar></foo>’)
>>> tree = etree.parse(f)

▶ Then xpath() selects the list of matching elements for an XPath:
>>> r = tree.xpath(’/foo/bar’)
>>> len(r)
1
>>> r[0].tag
’bar’

▶ And we can do it again, . . .
>>> r = tree.xpath(’bar’)
>>> r[0].tag
’bar’

▶ The xpath() method has support for XPath variables:
>>> expr = "//∗[local−name()␣=␣$name]"
>>> print(root.xpath(expr, name = "foo")[0].tag)
foo
>>> print(root.xpath(expr, name = "bar")[0].tag)
bar

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 139 2024-02-08

Computing with XML in Python (XPath)

▶ Say we have an XML tree:
>>> f = StringIO(’<foo><bar></bar></foo>’)
>>> tree = etree.parse(f)

▶ Then xpath() selects the list of matching elements for an XPath:
>>> r = tree.xpath(’/foo/bar’)
>>> len(r)
1
>>> r[0].tag
’bar’

▶ And we can do it again, . . .
>>> r = tree.xpath(’bar’)
>>> r[0].tag
’bar’

▶ The xpath() method has support for XPath variables:
>>> expr = "//∗[local−name()␣=␣$name]"
>>> print(root.xpath(expr, name = "foo")[0].tag)
foo
>>> print(root.xpath(expr, name = "bar")[0].tag)
bar

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 139 2024-02-08

Computing with XML in Python (XPath)

▶ Say we have an XML tree:
>>> f = StringIO(’<foo><bar></bar></foo>’)
>>> tree = etree.parse(f)

▶ Then xpath() selects the list of matching elements for an XPath:
>>> r = tree.xpath(’/foo/bar’)
>>> len(r)
1
>>> r[0].tag
’bar’

▶ And we can do it again, . . .
>>> r = tree.xpath(’bar’)
>>> r[0].tag
’bar’

▶ The xpath() method has support for XPath variables:
>>> expr = "//∗[local−name()␣=␣$name]"
>>> print(root.xpath(expr, name = "foo")[0].tag)
foo
>>> print(root.xpath(expr, name = "bar")[0].tag)
bar

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 139 2024-02-08

XPath Example: Scraping Wikipedia

▶ Example 5.19 (Extracting Information from HTML).
▶ We want a list of all titles of paintings by Leonardo da Vinci.

▶ open https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci
in FireFox. (save it into a file leo.html)

▶ call DOM inspector to get an idea of the XPath of titles. (bottom line)
The path is table > tbody > tr > td > dl > dd > i > b > a
Alternatively: right-click on highlighted line, ; "copy" ; "XPath", gives
/html/body/div[3]/div[3]/div[4]/div/table[4]/tbody/tr[3]/td[2]/dl/dd/i/b/a.

▶ Idea: We want to use the second table cells td[2].
▶ Program it in Python using the lxml library: titles is list of title strings.

from lxml import html

with open(’leo.html’, ’r’) as m:
str = m.read()

tree = html.fromstring(str)
titles=tree.xpath(’//table//td[2]//i/b/a/text()’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 140 2024-02-08

https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

XPath Example: Scraping Wikipedia

▶ Example 5.20 (Extracting Information from HTML).
▶ We want a list of all titles of paintings by Leonardo da Vinci.
▶ open https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

in FireFox. (save it into a file leo.html)

▶ call DOM inspector to get an idea of the XPath of titles. (bottom line)
The path is table > tbody > tr > td > dl > dd > i > b > a
Alternatively: right-click on highlighted line, ; "copy" ; "XPath", gives
/html/body/div[3]/div[3]/div[4]/div/table[4]/tbody/tr[3]/td[2]/dl/dd/i/b/a.

▶ Idea: We want to use the second table cells td[2].
▶ Program it in Python using the lxml library: titles is list of title strings.

from lxml import html

with open(’leo.html’, ’r’) as m:
str = m.read()

tree = html.fromstring(str)
titles=tree.xpath(’//table//td[2]//i/b/a/text()’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 140 2024-02-08

https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

XPath Example: Scraping Wikipedia
▶ Example 5.21 (Extracting Information from HTML).
▶ We want a list of all titles of paintings by Leonardo da Vinci.
▶ open https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

in FireFox. (save it into a file leo.html)
▶ call DOM inspector to get an idea of the XPath of titles. (bottom line)

The path is table > tbody > tr > td > dl > dd > i > b > a
Alternatively: right-click on highlighted line, ; "copy" ; "XPath", gives
/html/body/div[3]/div[3]/div[4]/div/table[4]/tbody/tr[3]/td[2]/dl/dd/i/b/a.

▶ Idea: We want to use the second table cells td[2].
▶ Program it in Python using the lxml library: titles is list of title strings.

from lxml import html

with open(’leo.html’, ’r’) as m:
str = m.read()

tree = html.fromstring(str)
titles=tree.xpath(’//table//td[2]//i/b/a/text()’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 140 2024-02-08

https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

XPath Example: Scraping Wikipedia

▶ Example 5.22 (Extracting Information from HTML).
▶ We want a list of all titles of paintings by Leonardo da Vinci.
▶ open https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

in FireFox. (save it into a file leo.html)
▶ call DOM inspector to get an idea of the XPath of titles. (bottom line)

The path is table > tbody > tr > td > dl > dd > i > b > a
Alternatively: right-click on highlighted line, ; "copy" ; "XPath", gives
/html/body/div[3]/div[3]/div[4]/div/table[4]/tbody/tr[3]/td[2]/dl/dd/i/b/a.

▶ Idea: We want to use the second table cells td[2].
▶ Program it in Python using the lxml library: titles is list of title strings.

from lxml import html

with open(’leo.html’, ’r’) as m:
str = m.read()

tree = html.fromstring(str)
titles=tree.xpath(’//table//td[2]//i/b/a/text()’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 140 2024-02-08

https://en.wikipedia.org/wiki/List_of_works_by_Leonardo_da_Vinci

Chapter 5
Web Applications

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 140 2024-02-08

5.1 Web Applications: The Idea

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 140 2024-02-08

Web Applications: Using Applications without Installing

▶ Definition 1.1. A web application is a program that runs on a web server and
delivers its user interface as a web site consisting of programmatically generated
web pages using a web browser as the client.

▶ Example 1.2. Commonly used web applications include
▶ http://ebay.com; auction pages are generated from databases.
▶ http://www.weather.com; weather information generated from weather feeds.
▶ http://slashdot.org; aggregation of news feeds/discussions.
▶ http://github.com; source code hosting and project management.
▶ http://studon; course/exam management from students records.

▶ Common Traits:
Pages generated from databases and external feeds, content submission via
HTML forms, file upload, dynamic HTML.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 141 2024-02-08

http://ebay.com
http://www.weather.com
http://slashdot.org
http://github.com
http://studon

Anatomy of a Web Application

▶ Definition 1.3. A web application consists of two parts:
▶ A front end that handles the user interaction.
▶ A back end that stores, computes and serves the application content.

Browser Web
Server Database

read

interact HTTP

JavaScript e.g. python

computation

Front End Back End

Both parts rely on (separate) computational facilities.
A database as a persistence layer is optional.

▶ Note: The web browser, web server, and database can
▶ be deployed on different computers, (high throughput)
▶ all run on your laptop (e.g. for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 142 2024-02-08

5.2 Basic Concepts of the World Wide Web

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 142 2024-02-08

5.2.1 Preliminaries

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 142 2024-02-08

The Internet and the Web

▶ Definition 2.1. The Internet is a global computer network that connects
hundreds of thousands of smaller networks.

▶ Definition 2.2. The World Wide Web (WWW) is an open source information
space where documents and other web resources are identified by URLs,
interlinked by hypertext links, and can be accessed via the Internet.

▶ Intuition: The WWW is the multimedia part of the internet, they form critical
infrastructure for modern society and commerce.

▶ The internet/WWW is huge:

Year Web Deep Web eMail
1999 21 TB 100 TB 11TB
2003 167 TB 92 PB 447 PB
2010 ???? ????? ?????

▶ We want to understand how it works. (services and scalability issues)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 143 2024-02-08

Concepts of the World Wide Web

▶ Definition 2.3. A web page is a document on the WWW that can include
multimedia data and hyperlinks.

▶ Note: Web pages are usually marked up in in HTML.
▶ Definition 2.4. A web site is a collection of related web pages usually designed

or controlled by the same individual or organization.
▶ A web site generally shares a common domain name.
▶ Definition 2.5. A hyperlink is a reference to data that can immediately be

followed by the user or that is followed automatically by a user agent.
▶ Definition 2.6. A collection text documents with hyperlinks that point to text

fragments within the collection is called a hypertext. The action of following
hyperlinks in a hypertext is called browsing or navigating the hypertext.

▶ In this sense, the WWW is a multimedia hypertext.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 144 2024-02-08

5.2.2 Addressing on the World Wide Web

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 144 2024-02-08

Uniform Resource Identifier (URI), Plumbing of the Web

▶ Definition 2.7. A uniform resource identifier (URI) is a global identifiers of local
or network-retrievable documents, or media files (web resources). URIs adhere a
uniform syntax (grammar) defined in RFC-3986 [BLFM05].
A URI is made up of the following components:
▶ a scheme that specifies the protocol governing the resource,
▶ an authority: the host (authentication there) that provides the resource,
▶ a path in the hierarchically organized resources on the host,
▶ a query in the non-hierarchically organized part of the host data, and
▶ a fragment identifier in the resource.

▶ Example 2.8. The following are two example URIs and their component parts:
http :// example.com :8042/ over/there?name=ferret#nose
__/ ______________ /\ _________/ _________/ __/
| | | | |

scheme authority path query fragment
|___ _________________|_
/ \ / \

mailto:michael.kohlhase@fau.de
▶ Note: URIs only identify documents, they do not have to provide access to

them (e.g. in a browser).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 145 2024-02-08

Relative URIs

▶ Definition 2.9. URIs can be abbreviated to relative URIs; missing parts are filled
in from the context.

▶ Example 2.10. Relative URIs are more convenient to write
relative URI abbreviates in context
#foo ⟨⟨current− file⟩⟩#foo curent file
bar.txt file:///home/kohlhase/foo/bar.txt file system
../bar/bar.html http://example.org/bar/bar.html on the web

▶ Definition 2.11. To distinguish them from relative URIs, we call URIs absolute
URIs.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 146 2024-02-08

Uniform Resource Names and Locators

▶ Definition 2.12. A uniform resource locator (URL) is a URI that gives access to
a web resource, by specifying an access method or location. All other URIs are
called uniform resource name (URN).

▶ Idea: A URN defines the identity of a resource, a URL provides a method for
finding it.

▶ Example 2.13.
The following URI is a URL (try it in your browser)
http://kwarc.info/kohlhase/index.html

▶ Example 2.14. urn:isbn:978−3−540−37897−6 only identifies [Koh06] (it is in
the library)

▶ URNs can be turned into URLs via a catalog service, e.g.
http://wm-urn.org/urn:isbn:978-3-540-37897-6

▶ Note: URIs are one of the core features of the web infrastructure, they are
considered to be the plumbing of the WWW. (direct the flow of data)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 147 2024-02-08

http://wm-urn.org/urn:isbn:978-3-540-37897-6

Internationalized Resource Identifiers

▶ Remark 2.15. URIs are ASCII strings.
▶ Problem: This is awkward e.g. for France Télécom, worse in Asia.
▶ Solution?: Use unicode! (no, too young/unsafe)
▶ Definition 2.16. Internationalized resource identifiers (IRIs) extend the

ASCII-based URIs to the universal character set.
▶ Definition 2.17. URI encoding maps non-ASCII characters to ASCII strings:

1. Map each character to its UTF − 8 representation.
2. Represent each byte of the UTF − 8 representation by three characters.
3. The first character is the percent sign (%),
4. and the other two characters are the hexadecimal representation of the byte.

URI decoding is the dual operation.
▶ Example 2.18. The letter “ł” (U+ 142) would be represented as %C5%82.
▶ Example 2.19. http://www.Übergrößen.de becomes

http://www.%C3%9Cbergr%C3%B6%C3%9Fen.de
▶ Remark 2.20. Your browser can still show the URI decoded version (so you can

read it)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 148 2024-02-08

5.2.3 Running the World Wide Web

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 148 2024-02-08

The World Wide Web as a Client/Server System

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 149 2024-02-08

HTTP: Hypertext Transfer Protocol
▶ Definition 2.21. The Hypertext Transfer Protocol (HTTP) is an application

layer protocol for distributed, collaborative, hypermedia information systems.
▶ June 1999: HTTP/1.1 is defined in RFC 2616 [Fie+99].
▶ Preview/Recap: HTTP is used by a client (called user agent) to access web

web resources (addressed by uniform resource locators (URLs)) via a HTTP
request. The web server answers by supplying the web resource (and metadata).

▶ Definition 2.22. Most important HTTP request methods. (5 more less
prominent)

GET Requests a representation of the specified resource. safe
PUT Uploads a representation of the specified resource. idempotent
DELETE Deletes the specified resource. idempotent
POST Submits data to be processed (e.g., from a web

form) to the identified resource.
▶ Definition 2.23. We call a HTTP request safe, iff it does not change the state

in the web server. (except for server logs, counters,. . . ; no side effects)
▶ Definition 2.24. We call a HTTP request idempotent, iff executing it twice has

the same effect as executing it once.
▶ HTTP is a stateless protocol. (very memory efficient for the server.)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 150 2024-02-08

Web Servers

▶ Definition 2.25. Ein Web Server ist ein Netzwerk Programm (ein Server in der
Client/Server Architektur des WWW) das über das Hypertext Transfer Protocol
(HTTP) Web Resourcen an den Client ausliefert und Inhalte von ihm from
erhält.

▶ Example 2.26 (Common Web Servers).
▶ apache is an open source web server that serves about 50% of the WWW.
▶ nginx is a lightweight open source web server. (ca. 35%)
▶ IIS is a proprietary web server provided by Microsoft Inc.

▶ Definition 2.27. A web server can host – i.e serve web resources for multiple
domains (via configurable hostnames) that can be addressed in the authority
components of URLs. This usually includes the special hostname localhost
which is interpreted as “this computer”.

▶ Even though web servers are very complex software systems, they come
preinstalled on most UNIX systems and can be downloaded for Windows [Xam].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 151 2024-02-08

Example: An HTTP request in real life
▶ Send off a GET request for http://www.nowhere123.com/doc/index.html

GET /docs/index.html HTTP/1.1
Host: www.nowhere123.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(blank line)

▶ The response from the server
HTTP/1.1 200 OK
Date: Sun, 18 Oct 2009 08:56:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
ETag: "10000000565a5-2c-3e94b66c2e680"
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: text/html
X-Pad: avoid browser bug

<html><body><h1>It works!</h1></body></html>

▶ Note: As you can seen, these are clear-text messages that go over an
unprotected network. A consequence is that everyone on this network can
intercept this communication and see what you are doing/reading/watching.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 152 2024-02-08

http://www.nowhere123.com/doc/index.html

5.3 Recap: HTML Forms Data Transmission

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 152 2024-02-08

Recap HTML Forms: Submitting Data to the Web Server

▶ Recall: HTML forms collect data via named input elements, the submit event
triggers a HTTP request to the URL specified in the action attribute.

▶ Example 3.1. Forms contain input fields and explanations.

<form name="input" action="login.html" method="get">
Username: <input type="text" name="user"/>
Password: <input type="password" name="pass"/>
<input type="submit" value="Submit"/>

</form>

yields the following in a web browser:

Pressing the submit button activates a HTTP GET request to the URL
login.html?user=⟨⟨name⟩⟩&pass=⟨⟨passwd⟩⟩

▶ Never use the GET method for submitting passwords (see below)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 153 2024-02-08

Checking up on the Transmission
▶ Let’s verify the claims above using browser tools (here the web console)
▶ Loading the file and filling in the form: (console logs file URI)

▶ After submitting the form: (console logs the HTTP request)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 154 2024-02-08

Checking up on the Transmission
▶ Let’s verify the claims above using browser tools (here the web console)
▶ Loading the file and filling in the form: (console logs file URI)
▶ After submitting the form: (console logs the HTTP request)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 154 2024-02-08

HTML Forms and Form Data Transmission

▶ We specify the HTTP communication of HTML forms in detail.
▶ Definition 3.2. The HTML form element groups the layout and input elements:
▶ <form action="⟨⟨URI⟩⟩" method="⟨⟨req⟩⟩"> specifies the form action in terms of a

HTTP request ⟨⟨req⟩⟩ to the URI ⟨⟨URI⟩⟩.
▶ The form data consists of a string ⟨⟨data⟩⟩ of the form n1=v1&· · ·&nk=vk , where
▶ ni are the values of the name attributes of the input fields
▶ and vi are their values at the time of submission.

▶ <input type="submit" .../> triggers the form action: it composes a HTTP request
▶ If ⟨⟨req⟩⟩ is get (the default), then the browser issues a GET request ⟨⟨URI⟩⟩?⟨⟨data⟩⟩.
▶ If ⟨⟨req⟩⟩ is post, then the browser issues a POST request to ⟨⟨URI⟩⟩ with document

content ⟨⟨data⟩⟩.

▶ We now also understand the form action, but should we use GET or POST.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 155 2024-02-08

Practical Differences between HTTP GET and POST

▶ Using GET vs. POST in HTML Forms:

GET POST
Caching possible never
Browser History Yes never
Bookmarking Yes No
Change Server Data No Yes
Size Restrictions ≤ 2KB No
Encryption No HTTPS

▶ Upshot: HTTP GET is more convenient, but less potent.
▶ Always use POST for sensitive data! (passwords, personal data, etc.)

GET data is part of the URI and thus unencrypted, POST data via HTTPS is.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 156 2024-02-08

5.4 Generating HTML on the Server

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 156 2024-02-08

Server-Side Scripting: Programming Web pages

▶ Idea: Why write HTML pages if we can also program them! (easy to do)
▶ Definition 4.1. A server-side scripting framework is a web server extension that

generates web pages upon HTTP requests.
▶ Example 4.2. perl is a scripting language with good string manipulation

facilities. PERL CGI is an early server-side scripting framework based on this.
▶ Example 4.3. Python is a scripting language with good string manipulation

facilities. And bottle WSGI is a simple but powerful server-side scripting
framework based on this.

▶ Observation: Server-side scripting frameworks allow to make use of external
resources (e.g. databases or data feeds) and computational services during web
page generation.

▶ Observation: A server-side scripting framework solves two problems:
1. making the development of functionality that generates HTML pages convenient

and efficient, usually via a template engine, and
2. binding such functionality to URLs the routes, we call this routing.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 157 2024-02-08

5.4.1 Routing and Argument Passing in Bottle

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 157 2024-02-08

The Web Server and Routing in Bottle WSGI
▶ Definition 4.4. Serverside routing (or simply routing) is the process by which a

web server connects a HTTP request to a function (called the route function)
that provides a web resource. A single URI path/route function pair is called a
route.

▶ The bottle WSGI library supplies a simple Python web server and routing.
▶ The run(⟨⟨keys⟩⟩) function starts the web server with the configuration given in

⟨⟨keys⟩⟩.
▶ The @route decorator connects path components to Python function that return

strings.
▶ Example 4.5 (A Hello World route). . . . for localhost on port 8080

from bottle import route, run

@route(’/hello’)
def hello():

return "Hello␣IWGS!"

run(host=’localhost’, port=8080, debug=True)

This web server answers to HTTP GET requests for the URL
http://localhost:8080/hello

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 158 2024-02-08

http://localhost:8080/hello

Dynamic Routes in Bottle

▶ Definition 4.6. A dynamic route is a route annotation that contains named
wildcards, which can be picked up in the route function.

▶ Example 4.7. Multiple @route annotations per route function f are allowed ;
the web application uses f to answer multiple URLs.

@route(’/’)
@route(’/hello/<name>’)
def greet(name=’Stranger’):

return (f’Hello␣{name},␣how␣are␣you?’)

With the wildcard <name> we can bind the route function greet to all paths
and via its argument name and customize the greeting.
Concretely: A HTTP GET request to
▶ http://localhost is answered with Hello Stranger, how are you?.
▶ http://localhost/hello/MiKo is answered with Hello MiKo, how are you?.

Requests to e.g http://localhost/hello or
http://localhost/hello/prof/kohlhase lead to errors. (404: not found)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 159 2024-02-08

http://localhost
http://localhost/hello/MiKo
http://localhost/hello
http://localhost/hello/prof/kohlhase

Restricting Dynamic Routes

▶ Definition 4.8. A dynamic route can be restricted by a route filter to make it
more selective.

▶ Example 4.9 (Concrete Filters). We use :int for integers and :re:⟨⟨regex⟩⟩ for
regular expressions

@route(’/tel/<id:int>’) # local number
@route(’/tel/<num:re:^\+[1−9]{1}[0−9]{3,14}$>’) # international

Different route filters allow to classify paths and treat them differently.
▶ Note: Multiple named wildcards are also possible, in a dynamic route; with and

without filters
▶ Example 4.10 (A route with two wildcards).

@route(’/<action>/<user:re:[a−z]+>’) # matches /follow/miko
def user_api(action, user):

...

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 160 2024-02-08

Method-Specific Routes: HTTP GET and POST
▶ Definition 4.11. The @route decorator takes a method keyword to specify the

HTTP request method to be answered. (HTTP GET is the default)
▶ @get(⟨⟨path⟩⟩) abbreviates @route(⟨⟨path⟩⟩,method="GET")
▶ @post(⟨⟨path⟩⟩) abbreviates @route(⟨⟨path⟩⟩,method="POST")

▶ Example 4.12 (Login 1). Managing logins with HTTP GET and POST.

from bottle import get, post, request # or route

@get(’/login’) # or @route(’/login’)
def login():

return ’’’
<form action="/login" method="post">

Username: <input name="username" type="text" />
Password: <input name="password" type="password" />
<input value="Login" type="submit" />

</form>
’’’

▶ Note: We can also have a POST request to the same path; we use that for
handling the form data transmitted by the POST action on submit. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 161 2024-02-08

Bottle Request: Dealing with POST Data

▶ Recall: from a HTML form we get a GET or POST request with form data
n1=v1&· · ·&nk=vk (here user=mkohlhase&login=noneofyourbusiness)

▶ Bottle WSGI provides the request object for dealing with HTTP request data.
▶ Example 4.13 (Login 2).

Continuing from 4.12: we parse the request transmitted request and check
password information:

@post(’/login’) # or @route(’/login’, method=’POST’)
def do_login():

username = request.forms.get(’username’)
password = request.forms.get(’password’)
if check_login(username, password):

return "<p>Your␣login␣information␣was␣correct.</p>"
else:

return "<p>Login␣failed.</p>"

We assume a Python function check_login that checks authentication credential
and authenticator, and keeps a list of logged in users.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 162 2024-02-08

5.4.2 Templating in Python via STPL

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 162 2024-02-08

What would we do in Python

▶ Example 4.14 (HTML Hello World in Python).
print("<html>")
print("<body>Hello␣world</body>")
print("</html>")

▶ Problem 1: Most web page content is static (page head, text blocks, etc.)
▶ Example 4.15 (Python Solution). . . . use Python functions:

def htmlpage (t,b):
f"<html><head><title>{t}</title></head><body>{b}</body></html>"

htmlpage("Hello","Hello␣IWGS")
▶ Problem 2: If HTML markup dominates, want to use a HTML editor (mode),
▶ e.g. for HTML syntax highlighting/indentation/completion/checking

▶ Idea: Embed program snippets into HTML. (only execute these, copy rest)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 163 2024-02-08

Template Processing for HTML

▶ Definition 4.16. A template engine (or template processor) for a document
format F is a program that transforms templates, i.e. strings or files (a template
file) ith a mixture of program constructs and F markup, into a F strings or F
documents by executing the program constructs in the template (template
processing).

▶ Note: No program code is left in the resulting web page after generation.
(important security concern)

▶ Remark: We will be most interested in HTML template engines.
▶ Observation: We can turn a template engine into a server-side scripting

framework by employing the URIs of template files on a server as routes and
extending the web server by template processing.

▶ Example 4.17. PHP (originally “Programmable Home Page Tools”) is a very
successful server-side scripting framework following this model.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 164 2024-02-08

stpl: the “Simple Template Engine” from Bottle

▶ Definition 4.18. Bottle WSGI supplies the template engine stpl (Simple
Template Engine). (documentation at [STPL])

▶ Definition 4.19. A template engine for a document format F is a program that
transforms templates, i.e. strings or files with a mixture of program constructs
and F markup, into a F -strings or F -documents by executing the program
constructs in the template (template processing).

▶ stpl uses the template function for template processing and {{. . . }} to embed
program objects into a template; it returns a formatted unicode string.

>>> template(’Hello␣{{name}}!’, name=’World’)
u’Hello␣World!’

>>> my_dict={’number’: ’123’, ’street’: ’Fake␣St.’, ’city’: ’Fakeville’}
>>> template(’I␣live␣at␣{{number}}␣{{street}},␣{{city}}’, ∗∗my_dict)
u’I␣live␣at␣123␣Fake␣St.,␣Fakeville’

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 165 2024-02-08

stpl Syntax and Template Files

▶ But what about. . . : HTML files with embedded Python?
▶ stpl uses template files (extension .tpl) for that.
▶ Definition 4.20. A stpl template file mixes HTML with stpl python:
▶ stpl python is exactly like Python but ignores indentation and closes bodies with end

instead.
▶ stpl python can be embedded into the HTML as
▶ a code lines starting with a %,
▶ a code blocks surrounded with <% and %>, and
▶ an expressions {{⟨⟨exp⟩⟩}} as long as ⟨⟨exp⟩⟩ evaluates to a string.

▶ Example 4.21. Two template files

<!−− next: a line of python code −−>
% course = "Informatische werkzeuge ..."
<p>Some plain text in between</p>
<%
A block of python code
course = name.title().strip()

%>
<p>More plain text</p>

% for item in basket:
{{item}}

% end

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 166 2024-02-08

Template Functions
▶ Definition 4.22. stpl python supplies the template functions

1. include(⟨⟨tpl⟩⟩,⟨⟨vars⟩⟩), where ⟨⟨tpl⟩⟩ is another template file and ⟨⟨vars⟩⟩ a set of
variable declarations (for ⟨⟨tpl⟩⟩).

2. defined(⟨⟨var⟩⟩) for checking definedness ⟨⟨var⟩⟩
3. get(⟨⟨var⟩⟩,⟨⟨default⟩⟩): return the value of ⟨⟨var⟩⟩, or ⟨⟨default⟩⟩.
4. setdefault(⟨⟨name⟩⟩,⟨⟨val⟩⟩)

▶ Example 4.23 (Including Header and Footer in a template). In a coherent
web site, the web pages often share common header and footer parts. Realize
this via the following page template:
% include(’header.tpl’, title=’Page Title’)
... Page Content ...
% include(’footer.tpl’)

▶ Example 4.24 (Dealing with Variables and Defaults).
% setdefault(’text’, ’No Text’)
<h1>{{get(’title’, ’No Title’)}}</h1>
<p> {{ text }} </p>
% if defined(’author’):
<p>By {{ author }}</p>

% end

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 167 2024-02-08

Template Functions
▶ Definition 4.25. stpl python supplies the template functions

1. include(⟨⟨tpl⟩⟩,⟨⟨vars⟩⟩), where ⟨⟨tpl⟩⟩ is another template file and ⟨⟨vars⟩⟩ a set of
variable declarations (for ⟨⟨tpl⟩⟩).

2. defined(⟨⟨var⟩⟩) for checking definedness ⟨⟨var⟩⟩
3. get(⟨⟨var⟩⟩,⟨⟨default⟩⟩): return the value of ⟨⟨var⟩⟩, or ⟨⟨default⟩⟩.
4. setdefault(⟨⟨name⟩⟩,⟨⟨val⟩⟩)

▶ Example 4.26 (Including Header and Footer in a template). In a coherent
web site, the web pages often share common header and footer parts. Realize
this via the following page template:
% include(’header.tpl’, title=’Page Title’)
... Page Content ...
% include(’footer.tpl’)

▶ Example 4.27 (Dealing with Variables and Defaults).
% setdefault(’text’, ’No Text’)
<h1>{{get(’title’, ’No Title’)}}</h1>
<p> {{ text }} </p>
% if defined(’author’):
<p>By {{ author }}</p>

% end

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 167 2024-02-08

Template Functions
▶ Definition 4.28. stpl python supplies the template functions

1. include(⟨⟨tpl⟩⟩,⟨⟨vars⟩⟩), where ⟨⟨tpl⟩⟩ is another template file and ⟨⟨vars⟩⟩ a set of
variable declarations (for ⟨⟨tpl⟩⟩).

2. defined(⟨⟨var⟩⟩) for checking definedness ⟨⟨var⟩⟩
3. get(⟨⟨var⟩⟩,⟨⟨default⟩⟩): return the value of ⟨⟨var⟩⟩, or ⟨⟨default⟩⟩.
4. setdefault(⟨⟨name⟩⟩,⟨⟨val⟩⟩)

▶ Example 4.29 (Including Header and Footer in a template). In a coherent
web site, the web pages often share common header and footer parts. Realize
this via the following page template:
% include(’header.tpl’, title=’Page Title’)
... Page Content ...
% include(’footer.tpl’)

▶ Example 4.30 (Dealing with Variables and Defaults).
% setdefault(’text’, ’No Text’)
<h1>{{get(’title’, ’No Title’)}}</h1>
<p> {{ text }} </p>
% if defined(’author’):
<p>By {{ author }}</p>

% end

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 167 2024-02-08

State in Web Applications and Cookies

▶ Recall: Web applications contain multiple pages, HTTP is a stateless protocol.
▶ Problem: How do we pass state between pages? (e.g. username, password)

▶ Simple Solution: Pass information along in query part of page URLs.
▶ Example 4.31 (HTTP GET for Single Login). Since we are generating pages

we can generated augmented links
▶ Problem: Only works for limited amounts of information and for a single

session.
▶ Other Solution: Store state persistently on the client hard disk.
▶ Definition 4.32. A cookie is a text file stored on the client hard disk by the web

browser. Web servers can request the browser to store and send cookies.
▶ Note: Cookies are data, not programs, they do not generate pop ups or behave

like viruses, but they can include your log-in name and browser preferences.
▶ Note: Cookies can be convenient, but they can be used to gather information

about you and your browsing habits.
▶ Definition 4.33. Third-party cookies are used by advertising companies to track

users across multiple sites. (but you can turn off, and even delete cookies)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 168 2024-02-08

State in Web Applications and Cookies
▶ Recall: Web applications contain multiple pages, HTTP is a stateless protocol.
▶ Problem: How do we pass state between pages? (e.g. username, password)
▶ Simple Solution: Pass information along in query part of page URLs.
▶ Example 4.34 (HTTP GET for Single Login). Since we are generating pages

we can generated augmented links
... more

▶ Problem: Only works for limited amounts of information and for a single
session.

▶ Other Solution: Store state persistently on the client hard disk.
▶ Definition 4.35. A cookie is a text file stored on the client hard disk by the web

browser. Web servers can request the browser to store and send cookies.
▶ Note: Cookies are data, not programs, they do not generate pop ups or behave

like viruses, but they can include your log-in name and browser preferences.
▶ Note: Cookies can be convenient, but they can be used to gather information

about you and your browsing habits.
▶ Definition 4.36. Third-party cookies are used by advertising companies to track

users across multiple sites. (but you can turn off, and even delete cookies)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 168 2024-02-08

State in Web Applications and Cookies

▶ Recall: Web applications contain multiple pages, HTTP is a stateless protocol.
▶ Problem: How do we pass state between pages? (e.g. username, password)
▶ Simple Solution: Pass information along in query part of page URLs.
▶ Example 4.37 (HTTP GET for Single Login). Since we are generating pages

we can generated augmented links
▶ Problem: Only works for limited amounts of information and for a single

session.
▶ Other Solution: Store state persistently on the client hard disk.
▶ Definition 4.38. A cookie is a text file stored on the client hard disk by the web

browser. Web servers can request the browser to store and send cookies.

▶ Note: Cookies are data, not programs, they do not generate pop ups or behave
like viruses, but they can include your log-in name and browser preferences.

▶ Note: Cookies can be convenient, but they can be used to gather information
about you and your browsing habits.

▶ Definition 4.39. Third-party cookies are used by advertising companies to track
users across multiple sites. (but you can turn off, and even delete cookies)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 168 2024-02-08

State in Web Applications and Cookies

▶ Recall: Web applications contain multiple pages, HTTP is a stateless protocol.
▶ Problem: How do we pass state between pages? (e.g. username, password)
▶ Simple Solution: Pass information along in query part of page URLs.
▶ Example 4.40 (HTTP GET for Single Login). Since we are generating pages

we can generated augmented links
▶ Problem: Only works for limited amounts of information and for a single

session.
▶ Other Solution: Store state persistently on the client hard disk.
▶ Definition 4.41. A cookie is a text file stored on the client hard disk by the web

browser. Web servers can request the browser to store and send cookies.
▶ Note: Cookies are data, not programs, they do not generate pop ups or behave

like viruses, but they can include your log-in name and browser preferences.
▶ Note: Cookies can be convenient, but they can be used to gather information

about you and your browsing habits.
▶ Definition 4.42. Third-party cookies are used by advertising companies to track

users across multiple sites. (but you can turn off, and even delete cookies)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 168 2024-02-08

5.4.3 Completing the Contact Form

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 168 2024-02-08

Back to our Contact Form (Current State)

▶ A contact form and message receipt (communicate via HTTP requests)
contact4.html

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

contact−after.html

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">
<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

▶ Problem: The answer is a static HTML document independent of form data.
▶ Solution: Generate the answer programmatically using the form data.(up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 169 2024-02-08

Back to our Contact Form (Current State)

▶ A contact form and message receipt (communicate via HTTP requests)
contact4.html

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

GET contact−after.html?
msg=Hi;addr=foo@bar.de

contact−after.html

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">
<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

GET contact.html

▶ Problem: The answer is a static HTML document independent of form data.
▶ Solution: Generate the answer programmatically using the form data.(up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 169 2024-02-08

Back to our Contact Form (Current State)
▶ A contact form and message receipt (communicate via HTTP requests)

contact4.html

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

contact−after.html

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">
<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

▶ Problem: The answer is a static HTML document independent of form data.
▶ Solution: Generate the answer programmatically using the form data.(up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 169 2024-02-08

Back to our Contact Form (Current State)

▶ A contact form and message receipt (communicate via HTTP requests)
contact4.html

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx @ xx.de"/>

<input type="submit"

value="Send message"/>
</form>

contact−after.html

<title>
Contact − Message Confirmed

</title>
<form action="contact4.html">
<h2>
Your message has been submitted!

</h2>
<input type="submit"

value="Continue"/>
</form>

▶ Problem: The answer is a static HTML document independent of form data.
▶ Solution: Generate the answer programmatically using the form data.(up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 169 2024-02-08

Completing the Contact Form

▶ bottle WSGI has functionality (request.GET and request.POST) to decode the
form data from a HTTP request. (so we do not have to worry about the details)

▶ Example 4.43 (Submitting a Contact Form). We use a new route for
contact−form−after.html with a corresponding template file:

contact.py contact−after.tpl

from bottle import route, run, debug,
template, request, get

@get(’/contact−after.html’)
def new_item():

data = {’msg’: request.GET.msg.strip(),
’addr’: request.GET.addr.strip()}

send−contact−email(addr,msg)
return template(’contact−after’,∗∗data)

run(host="localhost", port=8080)

<p>Message submitted!</p>
<table>
<tr>
<td>Return Address:</td>
<td>{{addr}}</td>

</tr>
<tr>
<td>Message Sent:</td>
<td>{{msg}}</td>

</tr>
</table>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 170 2024-02-08

Sending off the e-mail

▶ We still need to implement the send−contact−email function, . . .
▶ Fortunately, there is a Python package for that: smtplib, which makes this

relatively easy. (SMTP =̂ Simple Mail Transfer Protocol”)
▶ Example 4.44 (Continuing).

import smtplib
from email.message import EmailMessage

def send−contact−email (addr, text)
msg = EmailMessage()
msg.set_content(text)
msg[’Subject’] = ’Contact Form Result’
msg[’From’] = info@example.org
msg[’To’] = addr
s = smtplib.SMTP(’smtp.gmail.com’, 587)
s.send_message(msg)
s.quit()

Actually, this does not quite work yet as google requires authentication and
encryption, . . . ; (google for “python smtplib gmail”)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 171 2024-02-08

Chapter 6
Frontend Technologies

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 171 2024-02-08

6.1 Dynamic HTML: Client-side Manipulation of
HTML Documents

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 171 2024-02-08

Background: Rendering Pipeline in browsers

▶ Observation: The nested markup codes turn HTML documents into trees.
▶ Definition 1.1. The document object model (DOM) is a data structure for the

HTML document tree together with a standardized set of access methods.
▶ Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,
2. parses it into an internal data structure, the DOM,
3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser
<html>
<head>
<title>Welcome</title>

</head>
<body>
<p>Hello World!</p>

</body>
</html>

html

head body

title p

Welcome
Hello World!

Welcome

Hello World!
parse

The DOM is notified of any user events (resizing, clicks, hover,. . .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 172 2024-02-08

6.1.1 JavaScript in HTML

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 172 2024-02-08

Dynamic HTML

▶ Idea: generate parts of the web page dynamically by manipulating the DOM.
▶ Definition 1.2. JavaScript is an object-oriented scripting language mostly used

to enable programmatic access to the DOM in a web browser.
▶ JavaScript is standardized by ECMA in [Ecm].
▶ Example 1.3. We write the some text into a HTML document object (the

document API)
<html>
<head>
<script type="text/javascript">document.write("Dynamic␣HTML!");</script>
</head>
<body><!-- nothing here; will be added by the script later --></body>
</html>

▶ Application: Write “gmail” or “google docs” as JavaScript enhanced web
applications. (client-side computation for immediate reaction)

▶ Current Megatrend: Computation in the “cloud”, browsers (or “apps”) as user
interfaces

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 173 2024-02-08

Browser-level JavaScript functions: 1

▶ Example 1.4 (Logging to the browser console).

console.log("hello IWGS")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 174 2024-02-08

Browser-level JavaScript functions: 2

▶ Example 1.6 (Raising a Popup).

alert("Dynamic HTML for IWGS!")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 175 2024-02-08

Browser-level JavaScript functions: 3

▶ Example 1.7 (Asking for Confirmation).

var returnvalue = confirm("Dynamic HTML for IWGS!")

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 176 2024-02-08

Embedding JavaScript into HTML

▶ In a <script> element in HTML, e.g.

<script type="text/javascript">
function sayHello() { console.log(’Hello IWGS!’); }

</script>

▶ External JavaScript file via a <script> element with src

<script type="text/javascript" src="../js/foo.js"/>

Advantage: HTML and JavaScript code are clearly separated
▶ In event attributes of various HTML elements, e.g.

<input type="button" value="Hallo" onclick="alert(’Hello␣IWGS’)"/>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 177 2024-02-08

Execution of JavaScript Code

▶ Question: When and how is JavaScript code executed?
▶ Answer: While loading the HTML page or afterwards triggered by events
▶ JavaScript in a script element: during page load (not in a function)

<script type="text/javascript">alert(’Huhu’);</script>

▶ JavaScript in an event handler attribute onclick, ondblclick, onmouseover, . . . ”
whenever the corresponding event occurs.

▶ JavaScript in a “special link”: when the anchor is clicked

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 178 2024-02-08

Example: Changing Web Pages Programmatically

▶ Example 1.9 (Stupid but Fun).

<body>
<h2>A Pyramid</h2>
<div id="pyramid"/>

<script type="text/javascript">
var char = "#";
var triangle = "";
var str = "";
for(var i=0;i<=10;i++){

str = str + char;
triangle = triangle + str + "
"
}

var elem = document.getElementById("pyramid");
elem.innerHTML=triangle;

</script>
</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 179 2024-02-08

6.2 Cascading Stylesheets

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 179 2024-02-08

6.2.1 Separating Content from Layout

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 179 2024-02-08

CSS: Cascading Style Sheets

▶ Idea: Separate structure/function from appearance.
▶ Definition 2.1. Cascading Style Sheets (CSS) is a style sheet language that

allows authors and users to attach style (e.g., fonts, colors, and spacing) to
HTML and XML documents.

▶ Example 2.2. Our text file from 3.3 with embedded CSS:

<html>
<head>
<style type="text/css">

body {background−color:#d0e4fe;}
h1 {color:orange;

text−align:center;}
p {font−family:"Verdana";

font−size:20px;}
</style>
</head>
<body>
<h1>CSS example</h1>
<p>Hello IWGS!.</p>

</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 180 2024-02-08

CSS: Rules, Selectors, and Declarations

▶ Definition 2.3. A CSS style sheet consists of a sequence of rules that in turn
consist of a set of selectors that determine which XML elements the rule applies
to and a declaration block that specifies intended presentation.

▶ Definition 2.4. A CSS declaration block consists of a semicolon separated list of
declarations in curly braces. Each declaration itself consists of a property, a
colon, and a value.

▶ Example 2.5. In 2.2 we have three rules, they address color and font properties:

body {background−color:#d0e4fe;}
h1 {color:orange;

text−align:center;}
p {font−family:"Verdana";

▶ Observation: In modern web sites, CSS contributes as much – if not more – to
the appearance as the choice of HTML elements.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 181 2024-02-08

A Styled HTML Title Box (Source)

▶ Example 2.6 (A style Title Box). The HTML source:
<head>
<title>A Styled HTML Title</title>
<link rel="stylesheet" type="text/css" href="style.css"/>

</head>
<body>
<div class="titlebox">
<div class="title">Anatomy of a HTML Web Page</div>
<div class="author">
Michael Kohlhase
FAU Erlangen−Nuernberg

</div>
</div>
...

And the CSS file referenced in the <link> element in line 3:
.titlebox {border: 1px solid black;padding: 10px;

text−align: center
font−family: verdana;}

.title {font−size: 300%;font−weight: bold}

.author {font−size: 160%;font−style: italic;}

.affil {font−variant: small−caps;}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 182 2024-02-08

A Styled HTML Title Box (Result)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 183 2024-02-08

6.2.2 A small but useful Fragment of CSS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 183 2024-02-08

CSS Selectors

▶ Question: Which elements are affected by a CSS rule?
▶ Elements of a given name (optionally with given attributes)
▶ Selectors: name =̂ ⟨⟨elname⟩⟩, attributes =̂ [⟨⟨attname⟩⟩=⟨⟨attval⟩⟩]

▶ Example 2.7. p[xml:lang=’de’] applies to <p xml:lang="de">. . .</p>
▶ Any elements with a given class attributes
▶ Selector: .⟨⟨classname⟩⟩

▶ Example 2.8. .important applies to <⟨⟨el⟩⟩ class=’important’>. . .</⟨⟨el⟩⟩>
▶ The element with a given id attribute
▶ Selector: #⟨⟨id⟩⟩

▶ Example 2.9. #myRoot applies to <⟨⟨el⟩⟩ id=’myRoot’>. . .</⟨⟨el⟩⟩>
▶ Note: Multiple selectors can be combined in a comma separated list.
▶ For a full list see https://www.w3schools.com/cssref/css_selectors.asp.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 184 2024-02-08

https://www.w3schools.com/cssref/css_selectors.asp

The CSS Box Model

▶ Definition 2.10. For layout, CSS considers all HTML elements as boxes, i.e.
document areas with a given width and height. A CSS box has four parts:
▶ content: the content of the box, where text and images appear.
▶ padding: clears an area around the content. The padding is transparent.
▶ border a border that goes around the padding and content.
▶ margin clears an area outside the border. The margin is transparent.

The latter three wrap around the content and add to its size.
▶ All parts of a box can be customized with suitable CSS properties:

div {
background−color: lightgrey;
width: 300px;
border: 25px solid green;
padding: 25px;
margin: 25px;

}

Note that the overall width of the CSS box is 300+ 2 · 3 · 25 = 450 pixels.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 185 2024-02-08

The CSS Box Model: Diagram

▶ The following diagram summarizes the CSS box model

margin

border

padding

height

width

content

top

bottom

left right

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 186 2024-02-08

Cascading of selectors in CSS: Prioritization

▶ Multiple CSS selectors apply with the following priorities:
1. important (i.e. marked with !important) before unimportant
2. inline (specified via the style attribute)
3. media-specific rules before general ones
4. user-defined CSS stylesheet (e.g. in the FireFox profile)
5. specialized before general selectors (complicated; see e.g. [CSS])
6. rule order: later before earlier selectors
7. parent inheritance: unspecified properties are inherited from the parent.
8. style sheet included or referenced in the HTML document.
9. browser default

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 187 2024-02-08

Cascading of selectors in CSS: Prioritization Example

▶ Example 2.11. Can you explain the colors in the web browsers below?

<h1>Layout with CSS</h1>
<div id="important" class="blue">
I am very important

</div>

.markedimportant {background−color:red !important}
#important {background−color:green}
.blue {background−color:blue}
#important {background−color:yellow}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 188 2024-02-08

Cascading in CSS: Inheritance

▶ Definition 2.12. If an element is fully contained in another, the inner inherits
some properties (called inheritable) of the outer. In a nutshell
▶ text-related properties are inheritable; e.g. color, font, letter−spacing, line−height,

list−style, and text−align
▶ box-related properties are not; e.g. background, border, display, float, clear, height,

width, margin, padding, position, and text−align.
▶ Note: Inheritance is integrated into prioritization (recall case 7. above)
▶ Inheritance makes for consistent text properties and smaller CSS stylesheets.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 189 2024-02-08

CSS-Flow: How Boxes Flow to their Place

▶ CSS Flow describes how different elements are distributed in the visible area
(how they flow; hence the name)

▶ Example 2.13. Block-level Boxes (here divs) flow to the left

<div class="square">1</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.square {font−size:200%;
height:100px;
width:100px;
border:1px solid black;
margin:2px;
background−color:orange;}

=

▶ Example 2.14. float:left floats boxes as far as they will go (without overlap)
▶ Example 2.15. float:right in a div will float inside the corresponding box
▶ Example 2.16. float:left will let contents flow around an obstacle

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 190 2024-02-08

CSS-Flow: How Boxes Flow to their Place

▶ CSS Flow describes how different elements are distributed in the visible area
(how they flow; hence the name)

▶ Example 2.17. Block-level Boxes (here divs) flow to the left
▶ Example 2.18. float:left floats boxes as far as they will go (without overlap)

<div class="square">1</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.square {font−size:200%;
height:100px;
width:100px;
border:1px solid black;
margin:2px;
background−color:orange;
float:left}

=

▶ Example 2.19. float:right in a div will float inside the corresponding box
▶ Example 2.20. float:left will let contents flow around an obstacle

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 190 2024-02-08

CSS-Flow: How Boxes Flow to their Place

▶ CSS Flow describes how different elements are distributed in the visible area
(how they flow; hence the name)

▶ Example 2.21. Block-level Boxes (here divs) flow to the left
▶ Example 2.22. float:left floats boxes as far as they will go (without overlap)
▶ Example 2.23. float:right in a div will float inside the corresponding box

<div class="square">1
<div class="smallsq">A</div>

</div>
<div class="square">2</div>
<div class="square">3</div>
<div class="square">4</div>

+

.smallsq {color:white;
height: 40px;width: 40px;
border: 1px solid black;
margin: 2px;
background−color: blue;
float: right}

=

▶ Example 2.24. float:left will let contents flow around an obstacle

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 190 2024-02-08

CSS-Flow: How Boxes Flow to their Place

▶ CSS Flow describes how different elements are distributed in the visible area
(how they flow; hence the name)

▶ Example 2.25. Block-level Boxes (here divs) flow to the left
▶ Example 2.26. float:left floats boxes as far as they will go (without overlap)
▶ Example 2.27. float:right in a div will float inside the corresponding box
▶ Example 2.28. float:left will let contents flow around an obstacle

<div class="square"
style="font−size:small">
<div class="smallsq">A</div>
flow, flow, flow, flow, flow,
flow, flow, flow, flow, flow.

</div>

+

.smallsq {color:white;
height: 40px;width: 40px;
border: 1px solid black;
margin: 2px;
background−color: blue;
float: right}

=

The large space (>2px) is caused because there is no linebreaking

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 190 2024-02-08

CSS Application: Responsive Design
▶ Problem: What is the screen size/resolution of my device?
▶ Definition 2.29. Responsive web design (RWD) designs web documents so that

they can be viewed with a minimum of resizing, panning, and scrolling – across
a wide range of devices (from desktop monitors to mobile phones)

▶ Example 2.30. A web page with content blocks
Desktop Tablet Phone

▶ Implementation: CSS based layout with relative sizes and media queries– CSS
conditionals based on client screen size/resolution/. . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 191 2024-02-08

6.2.3 CSS Tools

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 191 2024-02-08

But how to find out what the browser really sees?
▶ CSS has many interesting inheritance rules
▶ Definition 2.31. The page inspector tool gives you an overview over the

internal state of the browser.
▶ Example 2.32.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 192 2024-02-08

Picking CSS Colors
▶ Problem: Colors in CSS are specified by funny names (e.g. CornflowerBlue) or

hexadecimal numbers, (e.g. #6495ED).
▶ Solution: Use an online color picker, e.g.

https://www.w3schools.com/colors/colors_picker.asp

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 193 2024-02-08

https://www.w3schools.com/colors/colors_picker.asp

6.2.4 Worked Example: The Contact Form

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 193 2024-02-08

CSS in Practice: The Contact Form Example (Continued)

▶ Recap: The unstyled contact form –

<title>Contact</title>
<form action="contact−after.html">
<h2>Please enter a message:</h2>
<input name="msg" type="text"/>

<h3>Your e−mail address:</h3>
<input name="addr" type="text"

value="xx␣@␣xx.de"/>

<input type="submit"

value="Send␣message"/>
</form>

▶ Add a CSS file with font information
▶ Add lots of color (ooops, what about the size)
▶ Add size information and a dotted frame
▶ Add a cat that plays with the submit button (because we can)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 194 2024-02-08

CSS in Practice: The Contact Form Example (Continued)

▶ Recap: The unstyled contact form – Dream vs. Reality

▶ Add a CSS file with font information
▶ Add lots of color (ooops, what about the size)
▶ Add size information and a dotted frame
▶ Add a cat that plays with the submit button (because we can)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 194 2024-02-08

CSS in Practice: The Contact Form Example (Continued)

▶ Recap: The unstyled contact form – Dream vs. Reality
▶ Add a CSS file with font information

<link rel="stylesheet" type="text/css"
href="csscontact1.css" />

<input class="important" type="submit"
value="Send␣Message"/>

body {font−size: 62.5%;
font−family: "Trebuchet␣MS",

"Arial", "Helvetica",
"Verdana", "sans−serif"}

.important{font−style: italic;}
input[type="submit"]{font−weight: bold;}

▶ Add lots of color (ooops, what about the size)
▶ Add size information and a dotted frame
▶ Add a cat that plays with the submit button (because we can)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 194 2024-02-08

CSS in Practice: The Contact Form Example (Continued)

▶ Recap: The unstyled contact form – Dream vs. Reality
▶ Add a CSS file with font information
▶ Add lots of color (ooops, what about the size)

<h2>Please enter a message:</h2>
<h3>Your e−mail address:</h3>
<input class="important" name="addr"

style="background−color:#cce6ff"
type="text" value="xx@xx.de"/>

h2 {background−color: #e600e6;}
h3 {background−color: #3399ff;

color: white;}
input{background−color:yellow}

▶ Add size information and a dotted frame
▶ Add a cat that plays with the submit button (because we can)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 194 2024-02-08

CSS in Practice: The Contact Form Example (Continued)

▶ Recap: The unstyled contact form – Dream vs. Reality
▶ Add a CSS file with font information
▶ Add lots of color (ooops, what about the size)
▶ Add size information and a dotted frame

<form action="contact−after.html"
style="width:8cm;border:dotted;padding:5px">

<h2>Please enter a message:</h2>
<input name="msg" type="text"

style="height:4cm;width:8cm;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣background−color:#ffccff"/>

<h3>Your e−mail address:</h3>
<input class="important" name="addr"

type="text"
value="xx@xx.de" style="width:8cm;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣background−color:#cce6ff"/>

▶ Add a cat that plays with the submit button (because we can)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 194 2024-02-08

CSS in Practice: The Contact Form Example (Continued)

▶ Recap: The unstyled contact form – Dream vs. Reality
▶ Add a CSS file with font information
▶ Add lots of color (ooops, what about the size)
▶ Add size information and a dotted frame
▶ Add a cat that plays with the submit button (because we can)

<img id="cat" src="cat.png"
style="position:absolute;

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣left:170px;top:␣15px;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣width=300px"/>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 194 2024-02-08

6.3 JQuery: Write Less, Do More

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 194 2024-02-08

JQuery: Write Less, Do More

▶ Definition 3.1. JQuery is a feature-rich JavaScript library that simplifies tasks
like HTML document traversal and manipulation, event handling, animation,
and Ajax.

▶ Using:
▶ Download from https://jquery.com/download/, save on your system (remember

where)
▶ integrate into your HTML (usually in the <head>)

<script type="text/javascript" src="client−js/jquery−3.2.1.min.js"/>

or from the internet directly (only works if you are online)

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js" />

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 195 2024-02-08

https://jquery.com/download/

JQuery Philosophy and Layers

▶ JQuery Philosophy: Select an object from the DOM, and operate on it.
▶ Syntax Convention: JQuery instructions start with a $ to distinguish it from

JavaScript.
▶ Example 3.2. The following JQuery command achieves a lot in four steps:

$("#myId").show().css("color", "green").slideDown();

1. Find elements in the DOM by CSS selectors, e.g. $("#myId")
2. do something to them, here show() (chaining of methods)
3. change their layout by changing CSS attributes, e.g. css("color","green")
4. change their behavior, e.g. slideDown()

▶ Good News: JQuery selectors =̂ CSS selectors

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 196 2024-02-08

Inserting Material into the DOM

▶ Inserting before the first child:

$(’#content’).prepend(function(){return ’in front’;});

▶ Inserting after the last child:

$(’#content’).append(’<p>Hello</p>’);
$(’#content’).append(function(){ return ’in the back’; });

▶ Inserting before/after an element:

$(’#price’).before(’Price:’);
$(’#price’).after(’ EUR’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 197 2024-02-08

Applications and useful tricks in Dynamic HTML

▶ Observation: JQuery is not limited to adding material to the DOM.
▶ Idea: Use JQuery to change CSS properties in the DOM as well.
▶ Example 3.3 (Visibility). Hide document parts by setting CSS style attributes

to display:none
<html>
<head>
<title>Toggling</title>
<style type="text/css">#dropper { display: none; }</style>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js" />
<script language="JavaScript" type="text/javascript">
$("button").click(function(){$("#dropper").toggle();});
</script>

</head>
<body>
<h2>Toggling the visibility of material</h2>
<button>...more </button>
<div id="dropper"><p>Now you see it!</p></div>

</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 198 2024-02-08

Fun with Buttons (Three easy Interactions)

▶ Example 3.4 (A Button that Changes Color on Hover).
<div id="hoverPoint">
<button id="hover">hover</button>
<script type="text/javascript">
$("#hover").hover(function () {$(this).css("background−color", "red");},

function () {$(this).css("background−color", "blue");});
</script>

</div>

▶ The HTML has a button with text “hover”.
▶ The JQuery code selects it via its id and
▶ catches its hover event via the hover() method
▶ This takes two functions as arguments:
▶ the first is called when the mouse moves into the button, the second when it leaves.
▶ the first changes changes the button color to red, the second reverts this.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 199 2024-02-08

Fun with Buttons (Three easy Interactions)

▶ Example 3.5 (A Button that Uncovers Text).
<div id="readPoint">
<button class="read" style="display:block">Read More</button>
<button class="read" style="display:none">Read Less</button>
<div id="rText" style="display:none;␣width:200px;␣clear:left">
A read−more button is not only a call−to−action, but it also organizes
the screen area management in a non−wasteful way. If and only if users are interested,
they will use the button.

</div>
<script type="text/javascript">
$(".read").click(function() {$("#rText").toggle("slow",function(){$(".read").toggle()});});

</script>
</div>

▶ The HTML has two buttons (one of them visible) and a text.
▶ The JQuery code selects both buttons via their read class.
▶ A click event activates the .click() method taking an event handler function:
▶ This selects the text via its id attribute rTeX and
▶ uses the toggle() method which changes the display between none and block.
▶ first parameter of toggle() is a duration for the animation.
▶ The second a completion function to be run after animation finishes.
▶ here complection function makes the respective other button visible (read more/less) .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 200 2024-02-08

Fun with Buttons (Three easy Interactions)

▶ Example 3.6 (A Button that Plays a Sound).
<div id="soundPoint">
<button id="sound" onclick="playSound(’laugh.mp3’)">Sound</button>
<script type="text/javascript">
function playSound(url) {
console.log("Call␣playSound␣with␣" + url);
const a = new Audio(url);
a.play();
}

</script>
</div>

▶ The HTML has a button with text “sound” and an onclick attribute.
▶ That activates the playSound function on a URL:
▶ The playSound function is defined in the script element: it
▶ logs the action and URL in the browser console
▶ makes a new audio object a
▶ plays it via the play() method.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 201 2024-02-08

6.4 Web Applications: Recap

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 201 2024-02-08

What Tools have we seen so far?

▶ HTML (Hypertext Markup Language)
▶ Text-based markup language for the web
▶ tree structure (realized as the DOM in the browser)
▶ easy search&find ⇝Selection
▶ DOM changes easy by clear dependencies.

▶ CSS (Cascading Stylesheets)
▶ Language for specifying layout of HTML/DOM
▶ CSS selection ties layout specifications into HTML/DOM

▶ Bottle (Server-Side web page generation via Python)
▶ full programming language for comprehensive functionality
▶ routes for complex but coherent web sites
▶ template engine for HTML-centered web page design

▶ JavaScript (client-side scripting)
▶ full programming language (Turing complete)
▶ programmatic changes to the DOM ; dynamic HTML
▶ navigating the DOM via JS-selection (relatively clumsy, but sufficient)
▶ jQuery navigate the DOM via CSS-selection (reuses successful concepts)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 202 2024-02-08

What Tools have we seen so far?

▶ HTML (Hypertext Markup Language)
▶ Text-based markup language for the web
▶ tree structure (realized as the DOM in the browser)
▶ easy search&find ⇝Selection
▶ DOM changes easy by clear dependencies.

▶ CSS (Cascading Stylesheets)
▶ Language for specifying layout of HTML/DOM
▶ CSS selection ties layout specifications into HTML/DOM

▶ Bottle (Server-Side web page generation via Python)
▶ full programming language for comprehensive functionality
▶ routes for complex but coherent web sites
▶ template engine for HTML-centered web page design

▶ JavaScript (client-side scripting)
▶ full programming language (Turing complete)
▶ programmatic changes to the DOM ; dynamic HTML
▶ navigating the DOM via JS-selection (relatively clumsy, but sufficient)
▶ jQuery navigate the DOM via CSS-selection (reuses successful concepts)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 202 2024-02-08

What Tools have we seen so far?

▶ HTML (Hypertext Markup Language)
▶ Text-based markup language for the web
▶ tree structure (realized as the DOM in the browser)
▶ easy search&find ⇝Selection
▶ DOM changes easy by clear dependencies.

▶ CSS (Cascading Stylesheets)
▶ Language for specifying layout of HTML/DOM
▶ CSS selection ties layout specifications into HTML/DOM

▶ Bottle (Server-Side web page generation via Python)
▶ full programming language for comprehensive functionality
▶ routes for complex but coherent web sites
▶ template engine for HTML-centered web page design

▶ JavaScript (client-side scripting)
▶ full programming language (Turing complete)
▶ programmatic changes to the DOM ; dynamic HTML
▶ navigating the DOM via JS-selection (relatively clumsy, but sufficient)
▶ jQuery navigate the DOM via CSS-selection (reuses successful concepts)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 202 2024-02-08

What Tools have we seen so far?

▶ HTML (Hypertext Markup Language)
▶ Text-based markup language for the web
▶ tree structure (realized as the DOM in the browser)
▶ easy search&find ⇝Selection
▶ DOM changes easy by clear dependencies.

▶ CSS (Cascading Stylesheets)
▶ Language for specifying layout of HTML/DOM
▶ CSS selection ties layout specifications into HTML/DOM

▶ Bottle (Server-Side web page generation via Python)
▶ full programming language for comprehensive functionality
▶ routes for complex but coherent web sites
▶ template engine for HTML-centered web page design

▶ JavaScript (client-side scripting)
▶ full programming language (Turing complete)
▶ programmatic changes to the DOM ; dynamic HTML
▶ navigating the DOM via JS-selection (relatively clumsy, but sufficient)
▶ jQuery navigate the DOM via CSS-selection (reuses successful concepts)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 202 2024-02-08

Recap: Web Application Frontend

▶ Recap: Web Application Frontend:
Web pages are just HTML files.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 203 2024-02-08

Recap: Web Application Frontend

▶ Recap: Web Application Frontend:
Layout is specified by CSS instructions and selectors

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 203 2024-02-08

Recap: Web Application Frontend

▶ Recap: Web Application Frontend:
Javascript specifies behavior

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 203 2024-02-08

Recap: Web Application Frontend
▶ Recap: Web Application Frontend:

for interacting with the user

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 203 2024-02-08

Recap: Web Application Frontend
▶ Recap: Web Application Frontend:

JQuery =̂ more succinct Javascript

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 203 2024-02-08

Recap: Web Application Frontend
▶ Recap: Web Application Frontend:

JQuery attaches behaviors to DOM elements via CSS selectors

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 203 2024-02-08

Chapter 7
What did we learn in IWGS-1?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 203 2024-02-08

Outline of IWGS 1:

▶ Programming in Python: (main tool in IWGS)
▶ Systematics and culture of programming
▶ Program and control structures
▶ Basic data strutures like numbers and strings, character encodings, unicode, and

regular expressions
▶ Digital documents and document processing:
▶ text files
▶ markup systems, HTML, and CSS
▶ XML: Documents are trees.

▶ Web technologies for interactive documents and web applications
▶ internet infrastructure: web browsers and servers
▶ serverside computing: bottle routing and
▶ client-side interaction: dynamic HTML, JavaScript, HTML forms

▶ Web application project (fill in the blanks to obtain a working web app)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 204 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 205 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage

▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 205 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 205 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 205 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 1/2 205 2024-02-08

Informatische Werkzeuge in den Geistes- und
Sozialwissenschaften 2

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2024-02-08

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 206 2024-02-08

Michael.Kohlhase@FAU.de

Part 2
IWGS-II: DH Project Tools

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 206 2024-02-08

Chapter 8
Semester Change-Over

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 206 2024-02-08

8.1 Administrativa

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 206 2024-02-08

Prerequisites

▶ Formal Prerequisite: IWGS-1 (If you did not take it, read the notes)
▶ General Prerequisites: Motivation, interest, curiosity, hard work.

nothing else! (apart from IWGS-1)
We will teach you all you need to know

▶ You can do this course if you want! (we will help)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 207 2024-02-08

Assessment, Grades

▶ Grading Background/Theory: Only modules are graded! (by the law)
▶ Module “DH-Einführung” (DHE) =̂ courses IWGS1/2, DH-Einführung.
▶ DHE module grade ; pass/fail determined by “portfolio” =̂ collection of

contributions/assessments.
▶ Assessment Practice: The IWGS assessments in the “portfolio” consist of
▶ weekly homework assignments, (practice IWGS concepts and tools)
▶ 60 minutes exam directly after lectures end: July 27. 2024.

▶ Retake Exam: 60 min exam at the end of the exam break.(October. 12. 2024)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 208 2024-02-08

IWGS Homework Assignments

▶ Homeworks: will be small individual problem/programming/system
assignments
▶ but take time to solve (at least read them directly ; questions)
▶ group submission if and only if explicitly permitted.

▶ Without trying the homework assignments you are unlikely to pass the exam.
▶ Admin: To keep things running smoothly
▶ Homeworks will be posted on StudOn.
▶ Sign up for IWGS under https://www.studon.fau.de/frm5075965.html.
▶ Homeworks are handed in electronically there. (plain text, program files, PDF)
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

▶ Homework Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study group help)
▶ Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 209 2024-02-08

https://www.studon.fau.de/studon
https://www.studon.fau.de/frm5075965.html

IWGS Tutorials

▶ Weekly tutorials and homework assignments (first one in week two)

Tutor: (Doctoral Student in CS)
▶ ▶ Jonas Betzendahl: jonas.betzendahl@fau.de

They know what they are doing and really want to
help you learn! (dedicated to DH)

▶ Goal 1: Reinforce what was taught in class (important pillar of the IWGS
concept)

▶ Goal 2: Let you experiment with Python (think of them as Programming Labs)
▶ Life-saving Advice: go to your tutorial, and prepare it by having looked at the

slides and the homework assignments
▶ Inverted Classroom: the latest craze in didactics (works well if done right)

in IWGS: Lecture + Homework assignments + Tutorials =̂ inverted classroom

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 210 2024-02-08

jonas.betzendahl@fau.de

Textbook, Handouts and Information, Forums, Videos

▶ No Textbook: but lots of online python tutorials on the web.
▶ Course notes will be posted at http://kwarc.info/teaching/IWGS (see

references)
▶ I mostly prepare/adapt/correct them as we go along.
▶ please e-mail me any errors/shortcomings you notice. (improve for the group)

▶ The lecture videos of WS 2020/21 are at https://www.fau.tv/course/id/2350
(not much changed)

▶ Matrix chat at #iwgs:fau.de (via IDM) (instructions)
▶ StudOn Forum: https://www.studon.fau.de/frm5075965.html for
▶ announcements, homeworks (my view on the forum)
▶ questions, discussion among your fellow students (your forum too, use it!)

▶ If you become an active discussion group, the forum turns into a valuable
resource!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 211 2024-02-08

http://kwarc.info/teaching/IWGS
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/
https://www.studon.fau.de/frm5075965.html

Experiment: Learning Support with KWARC Technologies

▶ My research area: Deep representation formats for (mathematical) knowledge
▶ One Application: Learning support systems (represent knowledge to transport

it)
▶ Experiment: Start with this course (Drink my own medicine)

1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)
2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)
3. Try it on you all (to get feedback from you)

▶ Research tasks
▶ help me complete the material on the slides (what is missing/would help?)
▶ I need to remember “what I say”, examples on the board. (take notes)

▶ Benefits for you (so why should you help?)
▶ you will be mentioned in the acknowledgements (for all that is worth)
▶ you will help build better course materials (think of next-year’s students)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 212 2024-02-08

http://courses.voll-ki.fau.de

VoLL-KI Portal at https://courses.voll-ki.fau.de

▶ Portal for ALeA Courses: https://courses.voll-ki.fau.de

▶ AI-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1
▶ All details for the course.
▶ recorded syllabus (keep track of material covered in course)
▶ syllabus of the last semester (for over/preview)

▶ ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking six courses
▶ (some) students use the system actively (our logs tell us)
▶ reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 213 2024-02-08

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

New Feature: Drilling with Flashcards
▶ Flashcards challenge you with a task (term/problem) on the front. . .

. . . and the definition/answer is on the back.
▶ Self-assessment updates the learner model (before/after)
▶ Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until

the learner model eliminates all.
▶ Bonus: Flashcards can be generated from existing semantic markup

(educational equivalent to free beer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 214 2024-02-08

Practical recommendations on Lecture Videos

▶ Excellent Guide: [Nor+18a] (german Version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

▶ Normally intended for “offline students” =̂ everyone during Corona times.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 215 2024-02-08

Software/Hardware tools

▶ You will need computer access for this course
▶ we recommend the use of standard software tools
▶ find a text editor you are comfortable with (get good with it) A text editor is a

program you can use to write text files. (not MSWord)
▶ any operating system you like (I can only help with UNIX)
▶ Any browser you like (I use FireFox: less spying)

▶ Advice: learn how to touch-type NOW (reap the benefits earlier, not later)
▶ you will be typing multiple hours/week in the next decades
▶ touch-typing is about twice as fast as “system eagle”.
▶ you can learn it in two weeks (good programs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 216 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage

▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 217 2024-02-08

IWGS-II Project
▶ Idea: Consolidate the techniques from IWGS-I and IWGS-II into a prototypical

information system for Art History @ FAU. (Practical Digital Humanities)
▶ A Running Example: Research image + metadata collection “Bauernkirmes”

provided by Prof. Peter Bell

▶ What will you do?: Build a web-based image/data manager, test image
algorithms, annotate ontologically, . . .

▶ How will we organize this: Mostly via the group homework assignments
(together they will make the project)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

IWGS-II Project

▶ Idea: Consolidate the techniques from IWGS-I and IWGS-II into a prototypical
information system for Art History @ FAU. (Practical Digital Humanities)

▶ A Running Example: Research image + metadata collection “Bauernkirmes”
provided by Prof. Peter Bell

▶ What will you do?: Build a web-based image/data manager, test image
algorithms, annotate ontologically, . . .

▶ How will we organize this: Mostly via the group homework assignments
(together they will make the project)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Chapter 9
Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

9.1 Introduction

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 218 2024-02-08

Databases, Data, Information, and Knowledge

▶ Definition 1.1. Discrete, objective facts or observations, which are unorganized
and uninterpreted are called data (singular datum).

▶ According to Probst/Raub/Romhardt [PRR97]

▶ Example 1.2. The height of Mt. Everest (8.848 meters) is a datum.
Definition 1.3. A database is an organized collection of data, stored and
accessed electronically from a computer system.

▶

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 219 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))

▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())

▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))

▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))
▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

Storing Data Electronically

▶ Four conventional ways of storing data: (mileage varies)
▶ In the computer’s memory (RAM) (very fast (+), random access (+), but not

persistent (-))
▶ In a text file (persistent (+), fast (+), sequential access (), unstructured ())
▶ In a spreadsheet (persistent (+), 2D-structured (+-), relations (+), slow (-))
▶ In a database (persistent (+), scalable (+), relations(+), managed (+), slow (-))

▶ Databases constitute the most scalable, persistent solution.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

9.2 Relational Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 220 2024-02-08

(Relational) Database Management Systems
▶ Definition 2.1. A database management system (DBMS) is program that

interacts with end users, applications, and a database to capture and analyze the
data and provides facilities to administer the database.

▶ There are different types of DBMS, we will concentrate on relational ones.
▶ Definition 2.2. In a relational database management system (RDBMS), data are

represented as tables: every datum is represented by a row (also called database
record), which has a value for all columns (also called an column attribute) or
field). A null value is a special “value” used to denote a missing value.

▶ Remark: Mathematically, each row is an n tuple of values, and thus a table an
n-ary relation. (useful for standardizing RDBMS operations)

▶ Example 2.3 (Bibliographic Data).
LastN FirstN YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

▶ Definition 2.4. Tables are identified by table name and individual components
of records by column name.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 221 2024-02-08

Open-Source Relational Database Management Systems

Definition 2.5. MySQL is an open source RDBMS.
For simple data sets and web applications MySQL is a
fast and stable multi user system featuring an SQL
database server that can be accessed by multiple
clients.
▶

Definition 2.6. PostgreSQL is an open source RDBMS with an
emphasis on extensibility, standards compliance, and scalability.
▶

Definition 2.7. SQLite is an embeddable RDBMS.
Instead of a database server, SQLite uses a single
database file, therefore no server configuration is
necessary.
▶

▶ Remark: At the level we use SQL in IWGS, all are equivalent.
▶ We will use SQLite in IWGS, since it is easiest to install and configure.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 222 2024-02-08

Working with SQLite (via the SQLite shell)

▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.

▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.

▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.
▶ If you have a database file books.db from 3.8, use that.
▶ .tables shows the available tables

select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 223 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)

▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.

▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.
▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.

> sqlite3
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
Connected to a transient in−memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .help
.archive ... Manage SQL archives: ".archive −−help" for details
.auth ON|OFF Show authorizer callbacks
[...]

▶ If you have a database file books.db from 3.8, use that.
▶ .tables shows the available tables

select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 223 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)
▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but

feature complete, and widely used.
▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.
▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.
▶ If you have a database file books.db from 3.8, use that.

> sqlite3 books.db
SQLite version 3.24.0 2018−06−04 19:24:41
Enter ".help" for usage hints.
> .tables
Books
>select ∗ from Books;
Twain|Mark|1835|1910|Huckleberry Finn|1986|Penguin USA|NY
Twain|Mark|1835|1910|Tom Sawyer|1987|Viking|NY
Cather|Willa|1873|1947|My Antonia|1995|Library of America|NY
Hemingway|Ernest|1899|1961|The Sun Also Rises|1995|Scribner|NY
Wolfe|Thomas|1900|1938|Look Homeward, Angel|1995|Scribner|NY
Faulkner|William|1897|1962|The Sound and the Furry|1990|Random House |NY
Tolkien|John Ronald Reuel|1892|1973|The Hobbit|1937|George Allen Unwin|UK

▶ .tables shows the available tables
select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 223 2024-02-08

https://www.sqlite.org/download.html

Working with SQLite (via the SQLite shell)

▶ In IWGS we will use SQLite, since it is very lightweight, easy to install, but
feature complete, and widely used.

▶ Download SQLite at https://www.sqlite.org/download.html,
▶ e.g. sqlite−dll−win64−x64−3280000.zip for windows.
▶ unzip it into a suitable location, start sqlite3.exe there
▶ this opens a command line interpreter: the SQLite shell. (all DBs have one)

test it with .help that tells you about more “dot commands”.
▶ If you have a database file books.db from 3.8, use that.
▶ .tables shows the available tables

select ∗ from Books is SQL (see below); it shows all entries of the Books table.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 223 2024-02-08

https://www.sqlite.org/download.html

A Graphical User Interface for SQLite

▶ Definition 2.8. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

▶ I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)
▶ download from https://sqlitestudio.pl

▶ Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://sqlitestudio.pl

A Graphical User Interface for SQLite
▶ Definition 2.9. A database browser is a graphical user interface for a RDBMS

that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

▶ I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)
▶ download from https://sqlitestudio.pl

▶ Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://sqlitestudio.pl

A Graphical User Interface for SQLite

▶ Definition 2.10. A database browser is a graphical user interface for a RDBMS
that (typically) bundles an SQL instruction editor with displays for query results
and the database schema in separate windows.

▶ I will sometimes use one for SQLite in the slides: SQLite Studio (lots of others)
▶ download from https://sqlitestudio.pl

▶ Everything we can do with this, we can do with the database shell as well. (just
looks nicer)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

https://sqlitestudio.pl

9.3 SQL – A Standardized Interface to RDBMS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 224 2024-02-08

SQL: The Structured Query Language

▶ Idea: We need a language for describing all operations of a RDBMSs.
▶ basics: creating, reading, updating, deleting database components (CRUD)
▶ querying: selecting from and inserting into the database
▶ access control: who can do what in a database
▶ transactions: ensuring a consistent database state.

Definition 3.1. SQL, the structured query language is a domain-specific
language for managing data held in a RDBMS. SQL instructions are directly
executed by the RDBMS to change the database state or compute answers to
SQL queries.

▶

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 225 2024-02-08

DDL: Data Definition Language

▶ Definition 3.2. The data definition language (DDL) is a subset of SQL
instructions that address the creation and deletion of database objects.

▶ Definition 3.3. The SQL statement CREATE TABLE⟨⟨name⟩⟩ (⟨⟨coldefs⟩⟩)
creates a table with name ⟨⟨name⟩⟩. ⟨⟨coldefs⟩⟩ are column specifications that
specify the columns: it is a comma-separated list of column names and SQL
data type. The totality of all column specifications of all tables in a database is
called the database schema.

▶ Example 3.4 (Creating a Table). The following SQL statement creates the
table from 2.3
CREATE TABLE Books (

LastN varchar(128), FirstN varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);

▶ Other CREATE statements exist, e.g. CREATE DATABASE ⟨⟨name⟩⟩.
▶ Definition 3.5. The SQL statement DROP ⟨⟨obj⟩⟩ ⟨⟨name⟩⟩ deletes the

database object of class ⟨⟨obj⟩⟩ with name ⟨⟨name⟩⟩.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 226 2024-02-08

SQL Data Types (for Column Specifications)

▶ Definition 3.6. SQL specifies data type for values including:
▶ VARCHAR (⟨⟨length⟩⟩): character strings, including Unicode, of a variable length is

up to the maximum length of ⟨⟨length⟩⟩.
▶ BOOL truth values: true, false and case variants.
▶ INT: Integers
▶ FLOAT: floating point numbers
▶ DATE: dates, e.g. DATE ’1999−01−01’ or DATE ’2000−2−2’
▶ TIME: time points in ISO format, e.g. TIME ’00:00:00’ or time ’23:59:59.99’
▶ TIMESTAMP: a combination of DATE and TIME (separated by a blank).
▶ CLOB (⟨⟨length⟩⟩) (character large object) up to (typically) 2GiB
▶ BLOB (⟨⟨length⟩⟩) (binary large object) up to (typically) 2GiB

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 227 2024-02-08

SQL: Adding Records to Tables
▶ Definition 3.7. SQL provides the INSERT INTO command for inserting

records into a table. This comes in two forms:
1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated list

of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a
comma-separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all
other fields are filled with NULL

▶ Example 3.8 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books
VALUES (’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,

’George␣Allen␣ Unwin’, ’UK’);

▶ Example 3.9 (Inserting Partial Data). Using the second form of the INSERT
instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS␣Course␣Notes’, ’2018’);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 228 2024-02-08

SQL: Adding Records to Tables
▶ Definition 3.10. SQL provides the INSERT INTO command for inserting

records into a table. This comes in two forms:
1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated list

of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a
comma-separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all
other fields are filled with NULL

▶ Example 3.11 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books
VALUES (’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,

’George␣Allen␣ Unwin’, ’UK’);

▶ Example 3.12 (Inserting Partial Data). Using the second form of the
INSERT instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS␣Course␣Notes’, ’2018’);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 228 2024-02-08

SQL: Adding Records to Tables
▶ Definition 3.13. SQL provides the INSERT INTO command for inserting

records into a table. This comes in two forms:
1. INSERT INTO ⟨⟨table⟩⟩ VALUES (⟨⟨vals⟩⟩); where ⟨⟨vals⟩⟩ is a comma-separated list

of values given in the order the columns were declared in the CREATE TABLE
instruction.

2. INSERT INTO ⟨⟨table⟩⟩ (⟨⟨cols⟩⟩) VALUES (⟨⟨vals⟩⟩) where ⟨⟨vals⟩⟩ is a
comma-separated list of values given in the order of ⟨⟨cols⟩⟩ (a subset of columns) all
other fields are filled with NULL

▶ Example 3.14 (Inserting into the Books Table). The given the table Books
from 3.4 we can add a record with
INSERT INTO Books
VALUES (’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,

’George␣Allen␣ Unwin’, ’UK’);

▶ Example 3.15 (Inserting Partial Data). Using the second form of the
INSERT instruction, we can insert partial data. (all we have)

INSERT INTO Books (FirstN, LastN, YOB, title, YOP)
VALUES (’Michael’, ’Kohlhase’, ’1964’, ’IWGS␣Course␣Notes’, ’2018’);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 228 2024-02-08

SQL: Deleting Records from Tables

▶ Definition 3.16. The SQL delete statement allows to change existing records.

DELETE FROM ⟨⟨table⟩⟩ WHERE ⟨⟨condition⟩⟩;

▶ Example 3.17. Deleting the record for “Huckleberry Finn”.

DELETE FROM Works WHERE Title = ’Huckleberry␣Finn’

▶ If we leave out the WHERE clause, all rows are deleted.
▶ Note: There is much more to the WHERE clause, we will get to that when we

come to SQL querying. (see)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 229 2024-02-08

SQL: Updating Records in Tables

▶ Definition 3.18. The SQL update statement allows to change existing records.

UPDATE ⟨⟨table⟩⟩
SET ⟨⟨column⟩⟩1 = ⟨⟨value⟩⟩1, ⟨⟨column⟩⟩2 = ⟨⟨value⟩⟩2, . . .
WHERE ⟨⟨condition⟩⟩;

▶ Example 3.19. Updating the publisher in “Huckleberry Finn”.

UPDATE Books
SET Publisher = ’Chatto/Windus’, YOP = 1884, City = ’London’
WHERE Title = ’Huckleberry␣Finn’

▶ If we leave out the WHERE clause, all rows are updated.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 230 2024-02-08

9.4 ER-Diagrams and Complex Database
Schemata

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 230 2024-02-08

Avoiding Redundancy in Databases

▶ Recall the books table from 2.3:
LastN FirstN YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

▶ Observation: Some of the fields appear multiple times, e.g. “Mark Twain”.
▶ When the database grows this can lead to scalability problems:
▶ in querying: e.g. if we look for all works by Mark Twain
▶ in maintenance: e.g. if we want to replace the pen name “Mark Twain” by the real

name “Samuel Langhorne Clemens”.
▶ Idea: Separate concerns (here Authors, Works, and Publishers) into separate

entities, mark their relations.
▶ Develop a graphical notation for planning
▶ Implement that into the database

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 231 2024-02-08

Entity Relationship Diagrams

▶ Definition 4.1. An entity relationship diagram (ERD) illustrates the logical
structure of a database. It consists of entities that characterize (sets of) objects
by their attributes and relations between them.

▶ Example 4.2 (An ERD for Books). Recall the Books table from 2.3:
LastN FirstN YOB YOD Title YOP Publisher City
Twain Mark 1835 1910 Huckleberry Finn 1986 Penguin USA NY
Twain Mark 1835 1910 Tom Sawyer 1987 Viking NY
Cather Willa 1873 1947 My Antonia 1995 Library of America NY
Hemingway Ernest 1899 1961 The Sun Also Rises 1995 Scribner NY
Wolfe Thomas 1900 1938 Look Homeward, Angel 1995 Scribner NY
Faulkner William 1897 1962 The Sound and the Furry 1990 Random House NY

▶ Problem: We have duplicate information in the authors and publishers
▶ Idea: Spread the Books information over multiple tables.

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 232 2024-02-08

Linking Tables via Primary and Foreign Keys

▶ Definition 4.3. A column in a table can be designated as a primary key, if its
values are non-null and unique i.e. all distinct.

▶ In DDL, we just add the keyword PRIMARY KEY to the column specification.
▶ Definition 4.4. A foreign key is a column (or collection of columns) in one table

(called the child table) that refers to the primary key in another table (called the
reference table or parent table).

▶ Intuition: Together primary keys and foreign keys can be used to link tables or
(dually) to spread information over multiple tables.

ERD Implementation

A
. . .

B
. . .

Parent
ID : primary
. . .

Child
fID : foreign
. . .

references

▶ BTW: Primary keys are great for identification in the WHERE clauses of SQL
instructions.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 233 2024-02-08

Linking Tables via Primary and Foreign Keys (Example)
▶ Example 4.5. Continuing 4.2, we now implement

Authors
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate

Publ
Name
Citywrit. by

wrote *
1 publ. by 1

publ.*

by introducing primary keys in the Authors and Publishers tables and referencing
them by foreign keys in the Works table.

CREATE TABLE Authors (AuthorID int PRIMARY KEY,
LastN varchar(128), FirstN varchar(128), YOB int, YOD int);

CREATE TABLE Publishers (PublisherID int PRIMARY KEY,
Name varchar(128), City varchar(128));

CREATE TABLE Works (
Title varchar(255), YOP int, AuthorID int, PublisherID int,
FOREIGN KEY(AuthorID) REFERENCES Authors(AuthorID),
FOREIGN KEY(PublisherID) REFERENCES Publishers(PublisherID));

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 234 2024-02-08

Linking Tables via Primary and Foreign Keys (continued)

▶ Example 4.6 (Inserting into the Works Table). The given the tables Works
Authors, and Publishers from 4.5 we can add a record with
INSERT INTO Authors VALUES (1, ’Twain’, ’Mark’, 1835, 1910);
INSERT INTO Publishers VALUES (1, ’Penguin USA’, ’NY’);
INSERT INTO Works VALUES (’Huckleberry Finn’, 1986, 1, 1);

INSERT INTO Publishers VALUES (2,’Viking’, ’NY’);
INSERT INTO Works VALUES (’Tom Sawyer’, 1987, 1, 2);

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 235 2024-02-08

9.5 RDBMS in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 235 2024-02-08

Using SQLite from Python

▶ We will use the PySQLite package
▶ install it locally with pip install pysqlite for Python 3.
▶ use import sqlite3 to import the library in your programs.

▶ Typical Python program with sqlite3:

import sqlite3
Open database connection
db = sqlite3.connect(⟨⟨host⟩⟩,⟨⟨user⟩⟩,⟨⟨pass⟩⟩,⟨⟨DBname⟩⟩)
prepare a cursor object using cursor() method
cursor = db.cursor()
execute SQL commands using the execute() method.
cursor.execute("⟨⟨SQL⟩⟩")
⟨⟨dataprocessingcode⟩⟩
make sure data reaches disk
db.commit()
disconnect from server
db.close()

We will assume this as a wrapper for all code examples below.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 236 2024-02-08

Creating Tables in Python
▶ Example 5.1. Creating the table of 3.4

import sqlite3
our database file
database = "C:\\sqlite\db\books.db"
a string with the SQL instruction to create a table
create = """CREATE TABLE Books (

LastN varchar(128), FirstN varchar(128), YOB int, YOD int,
Title varchar(255), YOP int,Publisher varchar(128), City varchar(128));"""

insert1 = """INSERT INTO Books
VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Huckleberry Finn’, ’1986’,

’Penguin USA’, ’NY’);"""
insert2 = """INSERT INTO Books

VALUES (’Twain’, ’Mark’, ’1835’, ’1910’, ’Tom Sawyer’, ’1987’,
’Viking’, ’NY’);"""

connect to the SQLIte DB and make a cursor
db = sqlite3.connect(database)
cursor = db.cursor()
create Books table by executing the cursor
cursor.execute("DROP␣TABLE␣Books;")
cursor.execute(create)
cursor.execute(insert1)
cursor.execute(insert2)
db.commit() # commit to disk
db.close() # clean up by closing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 237 2024-02-08

To commit or not to commit?

▶ Recall: SQLite computes with tables in memory but uses files for persistence.
▶ Also Recall: Memory access is 100-10.000 times as fast as file access.
▶ Idea 1: Keep tables in memory, write to file only when necessary.
▶ Idea 2: Give the user/programmer control over when to write to file
▶ db = sqlite3.connect(⟨⟨file⟩⟩) connects to ⟨⟨file⟩⟩, but computes in memory,
▶ db.commit() writes in-memory changes to ⟨⟨file⟩⟩.

▶ Problem: We can have multiple database connections to the same database
file in parallel, there may be race conditions and conflicts.

▶ Our Solution: Commit often enough! (your responsibility/fault)
▶ General Solution: RDBMS offer database transactions. (not covered in IWGS)
▶ Lazy Solution: Set the connection to autocommit mode: (system decides)

sqlite3.connect(⟨⟨file⟩⟩,isolation_level = None)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 238 2024-02-08

9.6 Excursion: Programming with Exceptions in
Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 238 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.1 (Kohlhase’s Law).

▶ Corollary 6.2. Programming languages need a good way to deal with all kinds
of errors!

▶ Definition 6.3. An exception is a special Python object. Raising an exception e
terminates computation and passes e to the next higher level.

▶ Example 6.4 (Division by Zero). The Python interpreter reports unhandled
exceptions.

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.5 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.6. Programming languages need a good way to deal with all kinds

of errors!

▶ Definition 6.7. An exception is a special Python object. Raising an exception e
terminates computation and passes e to the next higher level.

▶ Example 6.8 (Division by Zero). The Python interpreter reports unhandled
exceptions.

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.9 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.10. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.11. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.

▶ Example 6.12 (Division by Zero). The Python interpreter reports unhandled
exceptions.

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.13 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.14. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.15. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.16 (Division by Zero). The Python interpreter reports unhandled

exceptions.

>>> −3 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Zerodivisionerror: division by zero

▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.17 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.18. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.19. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.20 (Division by Zero). The Python interpreter reports unhandled

exceptions.
▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)

class DivByZero (Exception)
pass

▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

How to deal with Errors in Python

▶ Theorem 6.21 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.22. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.23. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.24 (Division by Zero). The Python interpreter reports unhandled

exceptions.
▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)
▶ can be raised when an abnormal condition appears

if denominator == 0 :
raise DivByZero

else
⟨⟨computation⟩⟩

▶ can be handled in a try/except block (there can be multiple)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

How to deal with Errors in Python
▶ Theorem 6.25 (Kohlhase’s Law). I can be an idiot, and I do make mistakes!
▶ Corollary 6.26. Programming languages need a good way to deal with all kinds

of errors!
▶ Definition 6.27. An exception is a special Python object. Raising an exception

e terminates computation and passes e to the next higher level.
▶ Example 6.28 (Division by Zero). The Python interpreter reports unhandled

exceptions.
▶ Exceptions are first class citizens in Python, in particular they
▶ are classified by their classes in a hierarchy.
▶ exception classes can be defined by the user (they inherit from the Exception class)
▶ can be raised when an abnormal condition appears
▶ can be handled in a try/except block (there can be multiple)

try:
⟨⟨tentativecomputation⟩⟩

except : ⟨⟨err⟩⟩1, . . ., ⟨⟨err⟩⟩n :
⟨⟨errorhandling⟩⟩

finally :
⟨⟨cleanup⟩⟩

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 239 2024-02-08

Playing it Safe with Databases

▶ Observation 6.29. Things can go wrong when connecting to a database! (e.g.
missing file)

▶ Idea: Raise exceptions and handle them.
▶ Example 6.30. we encapsulate a try/except block into a function for

convenience
import sqlite3
from sqlite3 import Error
def sql_connection():

try:
db = sqlite3.connect(’:memory:’)
print("Connection␣is␣established:␣Database␣is␣created␣in␣memory")

except Error :
print(Error)

finally:
db.close()

The sqlite3 package provides its own exceptions, which we import separately.
Other errors can be handled in additional except clauses.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

9.7 Querying and Views in SQL

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 240 2024-02-08

SQL Querying: The SELECT Statement
▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.1. We call a SELECT instruction a query.

▶ Example 7.2. SELECT Title, YOP FROM Books;
Huckleberry Finn|1986
Tom Sawyer|1987
My Antonia|1995
The Sun Also Rises|1995
Look Homeward, Angel|1995
The Sound and the Furry|1990
The Hobbit|1937

▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.3. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩
▶ Example 7.4. Ordering can be ascending (ASC) or descending (DESC)

SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

SQL Querying: The SELECT Statement

▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.5. We call a SELECT instruction a query.
▶ Example 7.6. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.

▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that
match condition ⟨⟨cond⟩⟩

▶ Example 7.7. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩
▶ Example 7.8. Ordering can be ascending (ASC) or descending (DESC)

SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

SQL Querying: The SELECT Statement
▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.9. We call a SELECT instruction a query.
▶ Example 7.10. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.11. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;

Willa|Cather
Ernest|Hemingway
Thomas|Wolfe

▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the
results by ⟨⟨columns⟩⟩

▶ Example 7.12. Ordering can be ascending (ASC) or descending (DESC)
SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

SQL Querying: The SELECT Statement

▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.13. We call a SELECT instruction a query.
▶ Example 7.14. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.15. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩

▶ Example 7.16. Ordering can be ascending (ASC) or descending (DESC)
SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

SQL Querying: The SELECT Statement

▶ SQL uses the SELECT instruction for retrieving data from a database.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩

restricted to the fields from ⟨⟨columns⟩⟩.
▶ Definition 7.17. We call a SELECT instruction a query.
▶ Example 7.18. SELECT Title, YOP FROM Books;
▶ SELECT DISTINCT removes duplicate values
▶ SELECT ∗ FROM ⟨⟨table⟩⟩ returns all records from ⟨⟨table⟩⟩.
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ WHERE ⟨⟨cond⟩⟩ returns all records that

match condition ⟨⟨cond⟩⟩
▶ Example 7.19. SELECT FirstN, LastN FROM Books WHERE YOP = 1995;
▶ SELECT ⟨⟨columns⟩⟩ FROM ⟨⟨table⟩⟩ ORDER BY ⟨⟨colums⟩⟩ orders the

results by ⟨⟨columns⟩⟩
▶ Example 7.20. Ordering can be ascending (ASC) or descending (DESC)

SELECT FirstN, LastN FROM Books ORDER BY LastN ASC, YOP DESC;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 241 2024-02-08

Joining Tables in Queries
▶ Problem: We can query single tables, how cross-table queries? E.g. in

Authors
AuthorID
Last Name
First Name
Birth Date
Death Date

Works
Title
PubDate
AuthorID
PublisherID

Publishers
PublisherID
Name
City

▶ Idea: Virtually join tables for the query! (as if we had the large books table)
▶ Definition 7.21. A table join (or simply join) is a means for combining columns

from one (self join) or more tables by using values common to each.
▶ Example 7.22. Joining all three tables from 4.2.

SELECT
Authors.LastN, Authors.FirstN, Authors.YOB, Authors.YOD,
Title, YOP, Publishers.Name, Publishers.City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 242 2024-02-08

Joining Tables in Queries (Result)

▶ Example 7.23.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 243 2024-02-08

Database Views: Persisting Queries

▶ Observation: Via the join in 7.22, the Works table queries like the original
Books table.

▶ Wouldn’t it be nice If we could also insert/update into that?
▶ Definition 7.24. A database view (or simply view) is a virtual table based on

the result set of a query. A view contains rows and columns, just like a real
table. The field in a view are fields from one or more real tables in the database.

▶ Remark 7.25. In many RDBMS we can even insert, delete, and update records
in a view, just as in any other table of the database.
The RDBMS achieves this by automatically translating any change to the view
into a set of changes to the underlying physical tables.

▶ but not in SQLite. (this is an omission due to simplicity)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 244 2024-02-08

Database Views: Persisting Queries (Books Example)

▶ Example 7.26. Use the query from 7.22 to define a view
CREATE VIEW Books AS
SELECT
Authors.LastN AS LastN, Authors.FirstN AS FirstN,
Authors.YOB AS YOB, Authors.YOD AS YOD,
Title, YOP,
Publishers.Name AS Publisher, Publishers.City AS City

FROM
Works

INNER JOIN Authors ON Authors.AuthorID = Works.AuthorID
INNER JOIN Publishers ON Publishers.PublisherID = Works.PublisherID

Use AS clauses in SELECT to specify column names.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 245 2024-02-08

Database Views: Persisting Queries (Books Example)

▶ Example 7.27.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 246 2024-02-08

9.8 Querying via Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 246 2024-02-08

Working with Cursors

▶ Definition 8.1. A cursor is a named object that encapsulates a set of query
results in a (virtual) database table.

▶ To work with a cursor in sqlite3,
▶ create a cursor object via the cursor method of your database object.
▶ Open the cursor to establish the result set via its execute method
▶ Fetch the data into local variables as needed from the cursor.

▶ The cursor class in sqlite3 provides additional methods:
▶ fetchone(): return one row as an array/list
▶ fetchall(): return all rows a list of lists.
▶ fetchsome(⟨⟨n⟩⟩): return ⟨⟨n⟩⟩ rows a list of lists.
▶ rowcount(): the number of rows in the cursor

▶ Intuition: Cursors allow programmers to repeatedly use a database query.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 247 2024-02-08

Extended Example: Listing Authors from the Books Table

▶ Example 8.2.
sql = ’SELECT␣FirstN,␣LastN,␣YOB␣FROM␣Books␣WHERE␣YOD␣<␣1950;’
cursor.execute(sql)
print (’There␣are␣’,cursor.rowcount,’␣books,␣whose␣authors␣died␣before␣1950:\n’)
for row in cursor.fetchall() :

print (row[0],’␣␣’,row[1], ’;␣␣born␣’,row[3],’\n’)
print(’That␣is␣all;␣if␣you␣want␣more,␣add␣more␣to␣the␣database!’)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 248 2024-02-08

Inserting Multiple Records (Example)

▶ The cursor.executemany method takes an SQL instruction with parameters and
a list of suitable tuples and executes them.

▶ Example 8.3. So the final form of insertion in 5.1 would be to define variable
with a list of book tuples:
booklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

and then insert it via a call of cursor.executemany:
cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,booklist)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 249 2024-02-08

Beware of the Python/SQLite Interaction
▶ What have we learned?: At least you now understand the following web

comic: (https://xkcd.com/327/)

▶ Definition 8.4. We call this an SQL injection attack.

▶ Hint: Imagine a web application where you add student names for enrolment.
name = input("Please␣enter␣student␣name:␣")
cursor.execute(f"INSERT␣INTO␣Students␣VALUES␣(...␣,{Name},␣...);")

For the input Robert’);␣DROP␣TABLE␣Students; this has a Python line
generates and executes the SQL instructions
INSERT INTO Students VALUES (..., ’Robert’); DROP TABLE Students;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 250 2024-02-08

https://xkcd.com/327/

Beware of the Python/SQLite Interaction
▶ What have we learned?: At least you now understand the following web

comic: (https://xkcd.com/327/)

▶ Definition 8.5. We call this an SQL injection attack.
▶ Hint: Imagine a web application where you add student names for enrolment.

name = input("Please␣enter␣student␣name:␣")
cursor.execute(f"INSERT␣INTO␣Students␣VALUES␣(...␣,{Name},␣...);")

For the input Robert’);␣DROP␣TABLE␣Students; this has a Python line
generates and executes the SQL instructions
INSERT INTO Students VALUES (..., ’Robert’); DROP TABLE Students;

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 250 2024-02-08

https://xkcd.com/327/

SQLite3 Parameter Substitution
▶ Observation 8.6. We often need variables as parameters in cursor.execute.
▶ Example 8.7. In 8.2 we can ask the user for a year.
▶ The python way would be to use f strings

year = input(’Books,␣whose␣author␣died␣before␣what␣year?’)
sql = f’SELECT␣FirstN,␣LastN,␣YOB␣FROM␣Books␣WHERE␣YOD␣<␣{year}’
cursor.execute(sql) # never use f−strings here −−> insecure

But this leads to vulnerability by SQL injection attacks. (; Bobby Tables)
▶ Definition 8.8. sqlite3 supplies a parameter substitution that SQL sanitizes

parameters (removes problematic SQL instructions).
▶ The sqlite3 way uses parameter substitution (multiple ? possible ; tuple)

year = input(’Books,␣whose␣author␣died␣before’)
select = ’SELECT␣Title␣FROM␣Books␣WHERE␣YOD␣<␣?’
cursor.execute(select,(year,))

or in the “named style” ; order-independent (argument is a dictionary)

century = input(’Century␣of␣the␣books?’)
select = ’SELECT␣Title,␣YOP␣FROM␣Books␣WHERE␣YOP␣<=␣:start␣AND␣YOP␣>␣:end’
datadict = {’start’: (century − 1) ∗ 100, ’end’: century ∗ 100}
cursor.execute(select,datadict)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 251 2024-02-08

9.9 Real-Life Input/Output: XML and JSON

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 251 2024-02-08

Filling a DB from via XML (Specification)
▶ Idea: We want to make a database based web application for NYC museums.
▶ Recall the public catalog from 5.4, the XML file is online at

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml
<?xml version="1.0" encoding="UTF−8"?>
<museums>
<museum>
<name>American Folk Art Museum</name>
<phone>212−265−1040</phone>
<address>45 W. 53rd St. (at Fifth Ave.)</address>
<closing>Closed: Monday</closing>
<rates>admission: $9; seniors/students, $7; under 12, free</rates>
<specials>
Pay−what−you−wish: Friday after 5:30pm;
refreshments and music available

</specials>
</museum>
<museum>
<name>American Museum of Natural History</name>
<phone>212−769−5200</phone>
<address>Central Park West (at W. 79th St.)</address>
<closing>Closed: Thanksgiving Day and Christmas Day</closing>

▶ Idea: We need Python program that
▶ provides a SQLite database with a table ’museum’ with columns ’name’, ’phone’,

. . . , ’specials’ of appropriate type
▶ reads the XML file from the URL above and fills the table.

▶ Possible Enhancement: Encapsulate the functionality into a function, then we
could run this program each night and keep the database up to date.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 252 2024-02-08

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

Filling a DB from via XML (Specification)

▶ Idea: We want to make a database based web application for NYC museums.
▶ Recall the public catalog from 5.4, the XML file is online at

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml
▶ Idea: We need Python program that
▶ provides a SQLite database with a table ’museum’ with columns ’name’, ’phone’,

. . . , ’specials’ of appropriate type
▶ reads the XML file from the URL above and fills the table.

▶ Possible Enhancement: Encapsulate the functionality into a function, then we
could run this program each night and keep the database up to date.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 252 2024-02-08

https://data.cityofnewyork.us/download/kcrm-j9hh/application/xml

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXMLa] to parse it.

from lxml import etree
from urllib.request import urlopen
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)
We now have a (large) XML tree in tree!

▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 237.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 237.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXMLa] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)

tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)
▶ We create the SQLite database as discussed in slide 237.

▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 237.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXMLa] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 237.
▶ Then we assemble a table specification in a string columns:

columns = ""
for cn in tags:

All columns have their name and type TEXT
columns += f",␣{cn}␣TEXT"

▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 237.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXMLa] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 237.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns

cursor.execute("DROP␣TABLE␣IF␣EXISTS␣Museums;")
cursor.execute(f"""CREATE TABLE Museums

(Id INTEGER PRIMARY KEY {columns});""")

▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 237.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

Filling a DB from via XML (Implementation)
▶ Libraries: urllib [UL] to retrieve the file and lxml [LXMLa] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 237.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database

for museum in tree:
Find and sanitise the contents of all child nodes of this museum.
values = []
for tag in tags:

if museum.find(tag) != None:
values.append(str(museum.find(tag).text).strip())

else:
values.append("−")

Insert the data for this museum into the database.
cols = str(tuple(tags))

We need a tuple of one ? for each column.
vals = "(" + ("?,␣" ∗ len(tags))[:−2] + ")"

insert = f"INSERT␣INTO␣Museums␣{cols}␣VALUES␣{vals}"
cursor.execute(insert, tuple(values))

▶ We finalize the transaction as discussed in slide 237.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

Filling a DB from via XML (Implementation)

▶ Libraries: urllib [UL] to retrieve the file and lxml [LXMLa] to parse it.
▶ Collect all the XML tags in all the museums (for the column names)
▶ We create the SQLite database as discussed in slide 237.
▶ Then we assemble a table specification in a string columns:
▶ Create the Museums table from the specification in columns
▶ Now the most important part: We fill the database
▶ We finalize the transaction as discussed in slide 237.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 253 2024-02-08

The complete code in one block – a mere 51 lines
import sqlite3
from lxml import etree
from urllib.request import urlopen

Download the XML file and Parse it
url = ’https://data.cityofnewyork.us/download/kcrm−j9hh/application/xml’
document = urlopen(url).read()
tree = etree.fromstring(document)

First run−through of the XML: Collect the info types there,
tags = []
for museum in tree:

for info in museum:
if info.tag not in tags:

tags.append(info.tag)

Next, create database accordingly. First assemble a columns string.
columns = ""
for cn in tags:

All columns have their name and type TEXT

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 254 2024-02-08

JSON — JavaScript Object Notation

▶ Definition 9.1. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute–value pairs and sequences.

▶ JSON is very flexible, there need not be a regularizing schema.

▶ Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.
▶ The browser can directly read JSON and use it via JavaScript.
▶ ; AJAX =̂ JavaScript can query the backend for JSON data to update parts of the

DOM. (lightweight interaction)
▶ Consequence:

JSON is the dominant interchange format for web applications.
▶ Another Intuition: JSON objects are like database records, but less rigid.
▶ Idea: Build a special JSON database. (JSON I/O; efficient storage)
▶ Definition 9.2. mongoDB is the most popular NoSQL database system. (no

SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 255 2024-02-08

JSON — JavaScript Object Notation

▶ Definition 9.3. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute–value pairs and sequences.

▶ JSON is very flexible, there need not be a regularizing schema.
▶ Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.
▶ The browser can directly read JSON and use it via JavaScript.
▶ ; AJAX =̂ JavaScript can query the backend for JSON data to update parts of the

DOM. (lightweight interaction)
▶ Consequence:

JSON is the dominant interchange format for web applications.

▶ Another Intuition: JSON objects are like database records, but less rigid.
▶ Idea: Build a special JSON database. (JSON I/O; efficient storage)
▶ Definition 9.4. mongoDB is the most popular NoSQL database system. (no

SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 255 2024-02-08

JSON — JavaScript Object Notation

▶ Definition 9.5. JSON (JavaScript Object Notation) is an open standard file
format for interchange of structured data. JSON uses human readable text to
store and transmit data objects consisting of attribute–value pairs and sequences.

▶ JSON is very flexible, there need not be a regularizing schema.
▶ Intuition: JSON is for JavaScript as (nested) dictionaries are for Python.
▶ The browser can directly read JSON and use it via JavaScript.
▶ ; AJAX =̂ JavaScript can query the backend for JSON data to update parts of the

DOM. (lightweight interaction)
▶ Consequence:

JSON is the dominant interchange format for web applications.
▶ Another Intuition: JSON objects are like database records, but less rigid.
▶ Idea: Build a special JSON database. (JSON I/O; efficient storage)
▶ Definition 9.6. mongoDB is the most popular NoSQL database system. (no

SQL inside)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 255 2024-02-08

Dealing with JSON in Python

▶ Even though JSON concepts and syntax are similar to Python dictionaries,
there are (subtle) differences.

▶ Concretely: Python allows more data types in dictionaries, e.g.
Python JSON equivalent
True true
False false
float Number
int Number
None null
dict Object
list Array
tuple Array

▶ But these differences are systematic and can be overcome via the json
library [JS].
▶ json.dumps(⟨⟨dict⟩⟩) takes a Python dictionary dict, produces a JSON string.
▶ json.loads(⟨⟨json⟩⟩) takes a JSON string json, produces a Python dictionary.

There are many ways to control the output (pretty-printing), see [JS].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 256 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.

import json
import sqlite3

▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 257 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything

db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT␣∗␣FROM␣Museums;")

▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 257 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names

data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 257 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary

for row in cursor.fetchall():
Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

▶ Dump the data dictionary as JSON into a file
▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 257 2024-02-08

JSON Output for the NYC Museums DB

▶ Libraries: json for JSON [JS] and sqlite3 for the database.
▶ Connect to the SQLite database as usual and query the database for everything
▶ Initialize a dictionary and the list of Museums column names
▶ For each of the rows in the Museums table build a row dictionary
▶ Dump the data dictionary as JSON into a file

with open(’museums.json’, ’w’) as outfile:
json.dump(data, outfile)

▶ Close the database as usual.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 257 2024-02-08

JSON Output for the NYC Museums DB I
import json
import sqlite3

Connect to database and query database for everything.
db = sqlite3.connect("./museums.sqlite")
cursor = db.cursor()
cursor.execute("SELECT␣∗␣FROM␣Museums;")

Setup soon−to−be−JSON dictionary and the necessary columns
data = {}
data[’museums’] = []
columns = [’name’, ’phone’, ’address’, ’closing’, ’rates’, ’specials’]

For every row in the result, do the following:
for row in cursor.fetchall():

Generate a dictionary with columns as keys and entrys as values.
rowdict = { columns[n] : row[n] for n in range(6) }

Add that dictionary to the JSON data structure.
data[’museums’].append(rowdict)

Write collected JSON data to file.
with open(’museums.json’, ’w’) as outfile:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 258 2024-02-08

JSON Output for the NYC Museums DB II

json.dump(data, outfile)

Close database
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 259 2024-02-08

JSON Example (NYC Museums)
▶ Example 9.7. The NYC museums data from 5.4 as JSON:

We represent the data as a “sequence” of (nested) “dictionaries”
[

{"name": "American Folk Art Museum",
"phone": "212−265−1040",
"address": "45 W. 53rd St. (at Fifth Ave.)",
"closing": "Closed: Monday",
"rates": {

"admission": "$9",
"seniors/students": "$7",
"under 12": "free",

}
"specials": "Pay−what−you−wish: Friday after 5:30pm;

refreshments and music available"
}
{"name": "American Museum of Natural History",
"phone": "212−769−5200",
"address": "Central Park West (at W. 79th St.)"
"closing": "Closed: Thanksgiving Day and Christmas Day"
"rates": {

"admission": "$16",
"seniors/students": "$12",
"kids 2−12": "$9",
"under 2": "free"

}
}
...
]

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 260 2024-02-08

Chapter 10
Project: A Web GUI for a Books Database

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 260 2024-02-08

10.1 A Basic Web Application

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 260 2024-02-08

Building a full Web Application with Database Backend

▶ Observation 1.1. With the technology in and we can build a full web
application in less than
▶ 100 lines of Python code and (back-end/routes)
▶ less than 70 lines of HTML template files. (front end)

▶ Functionality: Manage a database of books, in particular: (e.g. your library at
home)
▶ add a new book to the database
▶ delete a book from the database
▶ update (i.e. change) an existing book

▶ The source is at https://gl.mathhub.info/MiKoMH/IWGS/blob/master/
source/booksapp/code/books-app.py.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 261 2024-02-08

https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py
https://gl.mathhub.info/MiKoMH/IWGS/blob/master/source/booksapp/code/books-app.py

The Books Application: Setup
▶ We have already seen how to set up the database in slide 249.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

▶ But we want to receive result rows as dictionaries, not as tuples, so we add
db.row_factory = sqlite3.Row

▶ We give ourselves a cursor to work with
cursor = db.cursor()

▶ We start the bottle server
run(host=’localhost’, port=8080, debug=True)

▶ And of course, we eventually commit and close the database in the end
db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 262 2024-02-08

The Books Application: Setup
▶ We have already seen how to set up the database in slide 249.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

▶ But we want to receive result rows as dictionaries, not as tuples, so we add
db.row_factory = sqlite3.Row

▶ We give ourselves a cursor to work with
cursor = db.cursor()

▶ We start the bottle server
run(host=’localhost’, port=8080, debug=True)

▶ And of course, we eventually commit and close the database in the end
db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 262 2024-02-08

The Books Application: Setup
▶ We have already seen how to set up the database in slide 249.

import sqlite3
from sqlite3 import Error
from bottle import route, run, debug, template, request, get, post

our database file
database = "books.db"
db = sqlite3.connect(database)

▶ But we want to receive result rows as dictionaries, not as tuples, so we add
db.row_factory = sqlite3.Row

▶ We give ourselves a cursor to work with
cursor = db.cursor()

▶ We start the bottle server
run(host=’localhost’, port=8080, debug=True)

▶ And of course, we eventually commit and close the database in the end
db.commit()
db.close()

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 262 2024-02-08

The Books Application: Backend

▶ We specify the database schema and create the Books table

bookstable = """
CREATE TABLE IF NOT EXISTS Books (

Last varchar(128), First varchar(128),
YOB int, YOD int, Title varchar(255), YOP int,
Publisher varchar(128), City varchar(128)

);
"""

cursor.execute(bookstable)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 263 2024-02-08

The Books Application: Books to Play With

▶ Data about books as a Python list of 8-tuples:
initialbooklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

▶ If the Books table is empty, we fill it with the tuples in initialbooklist:

row = cursor.execute(’SELECT␣∗␣FROM␣Books␣LIMIT␣1’).fetchall()
if not row:

cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,initialbooklist)

▶ Idea: To find out if the table is empty (surprisingly clumsy)
▶ we fetch a list with at most one row (LIMIT 1);
▶ if Books is empty, row is the empty list which evaluates to false in a conditional.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 264 2024-02-08

The Books Application: Books to Play With

▶ Data about books as a Python list of 8-tuples:
initialbooklist = [

(’Twain’, ’Mark’, 1835, 1910, ’Huckleberry␣Finn’, 1986, ’Penguin␣USA’, ’NY’),
(’Twain’, ’Mark’, 1835, 1910, ’Tom␣Sawyer’, 1987, ’Viking’, ’NY’),
(’Cather’, ’Willa’, 1873, 1947, ’My␣Antonia’, 1995, ’Library␣of␣America’, ’NY’),
(’Hemingway’, ’Ernest’, 1899, 1961, ’The␣Sun␣Also␣Rises’, 1995, ’Scribner’, ’NY’),
(’Wolfe’, ’Thomas’, 1900, 1938, ’Look␣Homeward,␣Angel’, 1995, ’Scribner’, ’NY’),
(’Faulkner’, ’William’, 1897, 1962, ’The␣Sound␣and␣the␣Furry’, 1990, ’Random␣House␣’, ’NY’),
(’Tolkien’, ’John␣Ronald␣Reuel’, 1892, 1973, ’The␣Hobbit’, 1937,’George␣Allen␣ Unwin’, ’UK’)]

▶ If the Books table is empty, we fill it with the tuples in initialbooklist:

row = cursor.execute(’SELECT␣∗␣FROM␣Books␣LIMIT␣1’).fetchall()
if not row:

cursor.executemany(’INSERT␣INTO␣Books␣VALUES␣(?,?,?,?,?,?,?,?)’,initialbooklist)

▶ Idea: To find out if the table is empty (surprisingly clumsy)
▶ we fetch a list with at most one row (LIMIT 1);
▶ if Books is empty, row is the empty list which evaluates to false in a conditional.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 264 2024-02-08

The Books Application Routes: The Application Root

▶ We only need to add the bottle routes for the various sub pages.
▶ The main page: Listing the book records in the database

@route(’/’)
def books():

query = ’SELECT␣rowid,Last,First,YOB,YOD,Title,YOP,Publisher,City␣FROM␣Books’
cursor.execute(query)
booklist = cursor.fetchall()
return template(’books’,books=booklist,num=len(booklist),cols=cols)

▶ This uses the following templates: the first generates a table of books from the
template file books.tpl

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 265 2024-02-08

The Books Application Root: Result

▶ Here is the page of the books application in its initial state.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 266 2024-02-08

The Books Application Root: More Templates
▶ Recall: The books.tpl template file

<p>There are {{num}} books in the database</p>
<table>

% include(’th.tpl’, cols=cols)
% for book in books : include(’book.tpl’,∗∗book,cols=cols) end
<tr><th><button>add a book</button></th></tr>

</table>
that generates this result via the following two templates:

▶ It inserts the table header via th.tpl:
% for col in cols:
<th>{{col}}</th>

% end
<th rowspan="2">Action</th>

▶ and iterates over the list of books, using the template file book.tpl:
<tr>
<td>{{Last}}</td><td>{{First}}</td><td>{{YOB}}</td><td>{{YOD}}</td>
<td>{{Title}}</td><td>{{YOP}}</td><td>{{Publisher}}</td><td>{{City}}</td>
<td><button>edit</button></td>
<td><button >delete</button></td>

</tr>
▶ Row Id Trick: Note the slightly subtle use of the rowid column in this template.

It is (only) used in the two action buttons to specify which book to add/edit.
Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 267 2024-02-08

The Books Application Routes: Adding Book Records

▶ We add a route for adding a books record (for the add button)

@get(’/add’)
def add():

return template(’add’,cols=cols)

Note that this is the route for the GET method on the path /add.
▶ This uses the template file add.tpl:

<form action="/add" method="post">
<table>
% include(’th.tpl’, cols=cols)
<tr>

% for td in cols:
<td><input type="text" name="{{td}}"/></td>
% end

</tr>
</table>
<input type="submit" value="Submit"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 268 2024-02-08

The Books Application Routes: Adding Book Records
▶ The result is

▶ The action in the HTML form is to POST to the path /add. Thus we need
POST route for /add as well:

@post(’/add’)
def addResponse():

data = parseResponse()
ins = ’’’INSERT INTO Books VALUES

(:Last,:First,:YOB,:YOD,:Title,:YOP,:Publisher,:City)’’’
cursor.execute(ins,data)
return template(’response’, data = data, cols=cols,

rowid = cursor.lastrowid,
text = ’New␣book␣record␣received’)

Note the use of sqlite3 parameter substitution in addResponse!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 269 2024-02-08

The Books Application Routes: Adding Book Records
▶ This uses the function parseResponse, which we will reuse later.

def parseResponse ():
data = {’Last’: request.forms.get(’Last’),

’First’: request.forms.get(’First’),
’YOB’: request.forms.get(’YOB’),
’YOD’: request.forms.get(’YOD’),
’Title’: request.forms.get(’Title’),
’YOP’: request.forms.get(’YOP’),
’Publisher’: request.forms.get(’Publisher’),
’City’: request.forms.get(’City’)}

return data

▶ and the template repsonse.tpl:
<form action=’/’>
<p>{{text}}; Thank you!</p>
<table>
% include(’th.tpl’,cols=cols)
% include(’book.tpl’,∗∗data,cols=cols)

</table>
<input type="submit" value="Continue"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 270 2024-02-08

The Books Application Routes: Adding Book Records

▶ Here is the result after filling in Tolkien’s “Lord of the Rings”:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 271 2024-02-08

The Books Application Routes: Deleting Book Records

▶ We add a route for deleting book records (for the delete button)

@get(’/delete/<id:int>’)
def delete(id):

cursor.execute(’DELETE␣FROM␣Books␣WHERE␣rowid␣=␣?’,(id,))
return template(’delete’)

Note that we have a dynamic route here: We use the named wildcard <id:int>
to obtain the rowid of the record to be deleted.

▶ The template file delete.tpl does the obvious:

<form action=’/’>
<p>Book record deleted; Thank you!</p>
<input type="submit" value="Continue"/>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 272 2024-02-08

The Books Application Routes: Editing Book Records

▶ Idea: Combine techniques from the add and delete routes

@get(’/edit/<id:int>’)
def edit(id):

cursor.execute(’SELECT␣∗␣FROM␣Books␣WHERE␣rowid␣=␣?’,(id,))
return template(’edit’,cursor.fetchone(),id = id,cols=cols)

@post(’/edit/<id:int>’)
def editResponse(id):

data = parseResponse()
up = """UPDATE Books

SET Last = :Last, First = :First, YOB = :YOB, YOD = :YOD,
Title = :Title, YOP = :YOP, Publisher = :Publisher,
City = :City

WHERE rowid = :rowid"""
data.update({’rowid’: id})
cursor.execute(up,data)
return template(’response’,data=data,text=’Updated␣book␣record’,cols=cols)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 273 2024-02-08

Books Application Routes: Editing Book Records (cont.)

▶ The template file edit.tpl is similar to add.tpl above, but pre-fills the input fields
with the database record values.
<form action="/edit/{{id}}" method="post">
<table>
% include(’th.tpl’, cols=cols)
<tr>
<td><input type="text" name="Last" value="{{Last}}"/></td>
<td><input type="text" name="First" value="{{First}}"/></td>
<td><input type="text" name="YOB" value="{{YOB}}"/></td>
<td><input type="text" name="YOD" value="{{YOD}}"/></td>
<td><input type="text" name="Title" value="{{Title}}"/></td>
<td><input type="text" name="YOP" value="{{YOP}}"/></td>
<td><input type="text" name="Publisher" value="{{Publisher}}"/></td>
<td><input type="text" name="City" value="{{City}}"/></td>
<td><input type="submit" value="Submit"/></td>

</tr>
</table>

</form>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 274 2024-02-08

Books Application Routes: Editing Book Records (cont.)

▶ The result is

▶ Again, we use the template response.tpl, which we fill with a different message.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 275 2024-02-08

10.2 Access Control and Management

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 275 2024-02-08

Access Control and Management

▶ Problem: Anyone can write, edit, and delete records from the books database.
▶ Solution: Implement a password-based log in procedure and restrict

write/edit/delete access to logged-in agents.
▶ Let’s fix some terminology before we continue

▶ Definition 2.1. Access control is the selective restriction of access to a resource,
access management describes the corresponding process.

▶ Access management usually comprises both authentication and authorization.
▶ Definition 2.2. Authorization refers to a set of rules that determine who is

allowed to do what with a collection of resources.
▶ For our books application we need four things

1. a browser interaction to query the user for username and password
2. a way to transport them to the web application program
3. a method for checking the username/password (authentication)
4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

Access Control and Management

▶ Problem: Anyone can write, edit, and delete records from the books database.
▶ Solution: Implement a password-based log in procedure and restrict

write/edit/delete access to logged-in agents.
▶ Let’s fix some terminology before we continue
▶ Definition 2.3. Access control is the selective restriction of access to a resource,

access management describes the corresponding process.
▶ Access management usually comprises both authentication and authorization.
▶ Definition 2.4. Authorization refers to a set of rules that determine who is

allowed to do what with a collection of resources.

▶ For our books application we need four things
1. a browser interaction to query the user for username and password
2. a way to transport them to the web application program
3. a method for checking the username/password (authentication)
4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

Access Control and Management

▶ Problem: Anyone can write, edit, and delete records from the books database.
▶ Solution: Implement a password-based log in procedure and restrict

write/edit/delete access to logged-in agents.
▶ Let’s fix some terminology before we continue
▶ Definition 2.5. Access control is the selective restriction of access to a resource,

access management describes the corresponding process.
▶ Access management usually comprises both authentication and authorization.
▶ Definition 2.6. Authorization refers to a set of rules that determine who is

allowed to do what with a collection of resources.
▶ For our books application we need four things

1. a browser interaction to query the user for username and password
2. a way to transport them to the web application program
3. a method for checking the username/password (authentication)
4. a way the specify who can do what. (authorization)

Realization: 1./2. via HTTP, 4. via bottle basic auth, implement 3. directly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 276 2024-02-08

HTTP Basic Authentication

▶ Recall that HTTP is a plain text protocol that passes around headers like this
GET /docs/index.html HTTP/1.1
Host: www.nowhere123.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(blank line)

▶ Idea: For authentication extend the HTTP headers with support for
username/password pairs.

▶ Definition 2.7. HTTP basic authentication introduces a HTTP header
Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

HTTP Basic Authentication
▶ Recall that HTTP is a plain text protocol that passes around headers like this
▶ Idea: For authentication extend the HTTP headers with support for

username/password pairs.
▶ Definition 2.8. HTTP basic authentication introduces a HTTP header

Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

HTTP Basic Authentication
▶ Recall that HTTP is a plain text protocol that passes around headers like this
▶ Idea: For authentication extend the HTTP headers with support for

username/password pairs.
▶ Definition 2.9. HTTP basic authentication introduces a HTTP header

Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

HTTP Basic Authentication

▶ Recall that HTTP is a plain text protocol that passes around headers like this
▶ Idea: For authentication extend the HTTP headers with support for

username/password pairs.
▶ Definition 2.10. HTTP basic authentication introduces a HTTP header

Authorization for base64 encoded pairs ⟨⟨username⟩⟩:⟨⟨password⟩⟩ and a couple
of challenge/response messages.

▶ Problem: Base64 is very easy to decode, so usernames and passwords are
communicated in the clear (very unsafe)

▶ Passwords are “binary data” (think special characters), encoding just keeps them
unchanged over the network. (no encryption)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 277 2024-02-08

Basic Auth in Bottle

▶ Idea: Support the server side of HTTP basic authentication in bottle web-apps.
▶ Implementation: New decorator @auth_basic(⟨⟨function⟩⟩) to mark a route as

password-protected.
▶ Usage: Decorate every route we want to restrict access of with

@auth_basic(⟨⟨function⟩⟩), where ⟨⟨function⟩⟩ is a function that takes two string
arguments (user name and password) and returns a Boolean for the
authorization decision.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 278 2024-02-08

Basic Auth in Bottle: Minimal Viable Example

▶ Example 2.11. A web application with restricted route.

from bottle import run, get, auth_basic

def check(user, password):
return user == "miko" and password == "test"

@get("/")
@auth_basic(check)
def protected():

return "Authorized␣access␣granted!"

run(host="localhost", port=8000)

▶ Idea: Mix restricted and open routes in a partially restricted application.
▶ Extension: Use different check functions for different levels of restriction (user

roles)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 279 2024-02-08

HTTPS: HTTP over TLS
▶ Definition 2.12. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.
▶ Problem: Where to get the certificate file cert.pem and private key key.pem?
▶ One Solution: Self-sign one, e.g. using

https://www.selfsignedcertificate.com/ (adapt file names)
▶ Remaining Problem: Your browser forces you to specify an exception for

https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 280 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS
▶ Definition 2.13. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.

▶ Problem: Where to get the certificate file cert.pem and private key key.pem?
▶ One Solution: Self-sign one, e.g. using

https://www.selfsignedcertificate.com/ (adapt file names)
▶ Remaining Problem: Your browser forces you to specify an exception for

https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 280 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS
▶ Definition 2.14. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.
▶ Problem: Where to get the certificate file cert.pem and private key key.pem?

▶ One Solution: Self-sign one, e.g. using
https://www.selfsignedcertificate.com/ (adapt file names)

▶ Remaining Problem: Your browser forces you to specify an exception for
https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 280 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

HTTPS: HTTP over TLS
▶ Definition 2.15. Hypertext Transfer Protocol Secure (HTTPS) is an extension

of the Hypertext Transfer Protocol (HTTP) for secure communication over a
computer network. HTTPS achieves this by running HTTP over a TLS
connection.

▶ Consequences for Web Applications: We can use HTTP as usual, except
▶ we gain communication privacy and server authentication,
▶ server and browser need to speak HTTPS, (most do)
▶ the server needs a public key certificate and a private key.

▶ In bottle, we can just swap out the HTTP server to one that can do HTTPS:

run(host=’localhost’,port=’8888’,
server=’gunicorn’,keyfile=’key.pem’,certfile=’cert.pem’)

install it first with pip install gunicorn.
▶ Problem: Where to get the certificate file cert.pem and private key key.pem?
▶ One Solution: Self-sign one, e.g. using

https://www.selfsignedcertificate.com/ (adapt file names)
▶ Remaining Problem: Your browser forces you to specify an exception for

https://localhost:8888 (probably OK for development)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 280 2024-02-08

https://www.selfsignedcertificate.com/
https://localhost:8888

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.16. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.

▶ Definition 2.17. In a public key infrastructure, the TLS certificate is issued by a
certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.18. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.19. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.
▶ Definition 2.20. In a public key infrastructure, the TLS certificate is issued by a

certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.21. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.22. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.
▶ Definition 2.23. In a public key infrastructure, the TLS certificate is issued by a

certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.24. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://bmw.com
https://letsencrypt.org

Getting a Real TLS Certificate via Let’s-Encrypt
▶ Intuition: HTTPS is the new “regular HTTP” on the web!
▶ Observation 2.25. A self-signed certificate gives communication privacy but not

authentication ⇝only you yourself vouch for the authenticity of the web site.
▶ Definition 2.26. In a public key infrastructure, the TLS certificate is issued by a

certificate authority, an organization chartered to verify identity and issue TLS
certificates.

▶ Commercial certificate authorities sell trust. (for a lot of money)
They certify e.g. that the https://bmw.com is under control of BMW AG.

▶ Idea: Finding out that you have control over a particular web site on the web
can be automated, if you run a program on the server host.

▶ Definition 2.27. Let’s Encrypt is a not for profit certificate authority that does
this and issues free TLS certificates. (to encourage HTTPS adoption)

▶ Concretely: on a linux server you need two steps
1. install certbot (usually via your package manager)
2. then sudo /usr/local/bin/certbot certonly −−standalone will generate certs.

Details at https://letsencrypt.org.
▶ Success: ≥ 1.000.000.000 TLS certificates, 200.000.000 sites since 2016

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

https://bmw.com
https://letsencrypt.org

10.3 Asynchronous Loading in Modern Web
Apps

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 281 2024-02-08

AJAX for more responsive Web Pages

▶ Definition 3.1. Ajax, (also AJAX; short for “Asynchronous JavaScript and
XML”) is a set of client side techniques for creating asynchronous web
applications.

▶ Definition 3.2. A process p is called asynchronous, iff the parent process (i.e.
the one that spawned p) continues processing without waiting for p to terminate.

▶ Intuition: With Ajax, web applications can send and retrieve data from a server
without interfering with the display and behaviour of the existing page.

▶ Application: By decoupling the data interchange layer from the presentation
layer, Ajax allows web pages and, by extension, web applications, to change
content dynamically without the need to reload the entire page.

▶ Observation: Almost all modern web application extensively utilize Ajax.
▶ Note: In practice, modern implementations commonly use JSON instead of

XML.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 282 2024-02-08

Background: Rendering Pipeline in browsers

▶ Observation: The nested markup codes turn HTML documents into trees.
▶ Definition 3.3. The document object model (DOM) is a data structure for the

HTML document tree together with a standardized set of access methods.
▶ Rendering Pipeline: Rendering a web page proceeds in three steps

1. the browser receives a HTML document,
2. parses it into an internal data structure, the DOM,
3. which is then painted to the screen. (repaint whenever DOM changes)

HTML Document DOM Browser
<html>
<head>
<title>Welcome</title>

</head>
<body>
<p>Hello World!</p>

</body>
</html>

html

head body

title p

Welcome
Hello World!

Welcome

Hello World!
parse

The DOM is notified of any user events (resizing, clicks, hover,. . .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 283 2024-02-08

Example: Details on Request via AJAX

▶ Idea: Use Ajax in a web application for the books application
▶ The start page just has a list of book titles, and
▶ details are fetched by an Ajax request and presented in line.

▶ Planning the Program: We need a bottle server with
1. a dynamic route that returns JSON-encoded data for a given book,
2. a route for the main page that lists the book titles,
3. stpl template files for list items with an Ajax request, and
4. a JavaScript function that reads the JSON and inserts it into the DOM.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 284 2024-02-08

The finished product (initial state)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 285 2024-02-08

The finished product (with details loaded)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 286 2024-02-08

The Routes (Serving HTML and JSON)

▶ After setting up the database and co, we have a standard route:

@route(’/’)
def books():

cursor.execute(’SELECT␣rowid,␣Title,␣YoP␣FROM␣Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

▶ JSON routes and APIs are very easy in bottle: we just return a dictionary.

@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT␣∗␣FROM␣Books␣WHERE␣rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

▶ Dictionaries and JSON in Bottle: Bottle automatically transforms Python
dictionaries into JSON strings; sets the Content Type header to application/json.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 287 2024-02-08

The Basic Templates
▶ The template titles.tpl is also standard

<html>
% include(’bookshead.tpl’)
<body>
<h1>Books by Title</h1>

% for bk in books: include(’title.tpl’,Id=bk[0], title=bk[1]) end

</body>
</html>

▶ The template title.tpl presents a single book title

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

The empty span will be filled by an Ajax call later!
▶ The interesting things happen in bookshead.tpl (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 288 2024-02-08

The Script load_details

▶ bookshead.tpl starts supplying JQuery and a JQuery templating library:
<script type="application/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script type="application/javascript"

src="https://cdn.jsdelivr.net/gh/codepb/jquery−template@1.5.10/dist/jquery.loadTemplate.min.js"></script>

▶ The main contribution of bookshead.tpl is the JQuery function load_details

async function load_details (numb) {
/∗ Request Info via JSON, feed it to template, update "show␣details" span ∗/
await $.getJSON("/json/" + numb,

function (data) {$("#content" + numb).loadTemplate($("#open"), data)});

which uses the JQuery Ajax call $.getJSON. This takes two arguments:
1. the URL for the HTTP GET request
2. a JavaScript function that is called if the GET request was successful.

The function (in argument 2) is then used to extend the result of
$("#content"+ numb), i.e. that element in the DOM whose id attribute is contenti
where i is the value of the numb variable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 289 2024-02-08

The Script load_details Continued
▶ We also use JQuery to change the onlick behaviour of the span element (from

load_details to toggle_details, explained below) and the text contained therein.
interact = $("#interact" + numb)

/∗ change click behaviour of interaction span from show to toggle ∗/
interact.removeAttr(’onclick’);
interact.attr(’onClick’, ’toggle_details(’ + numb + ’);’);

/∗ also change included text appropriately ∗/
interact.html("(hide␣details)");

}

▶ Recall the structure of title.tpl: For every book we have a title, a content
element that starts out empty and gets filled when load_details is called, and a
clickable interaction element that triggers load_details.

▶ The toggle_details-function used above does nothing but setting the content
element to hidden or visible and changing the text of the interaction element.
function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 290 2024-02-08

The Script load_details Continued
▶ We also use JQuery to change the onlick behaviour of the span element (from

load_details to toggle_details, explained below) and the text contained therein.
▶ Recall the structure of title.tpl: For every book we have a title, a content

element that starts out empty and gets filled when load_details is called, and a
clickable interaction element that triggers load_details.

{{title}}

<span class="interact" id="interact{{Id}}"

onclick="load_details({{Id}})">(show details)

▶ The toggle_details-function used above does nothing but setting the content
element to hidden or visible and changing the text of the interaction element.
function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 290 2024-02-08

The Script load_details Continued
▶ We also use JQuery to change the onlick behaviour of the span element (from

load_details to toggle_details, explained below) and the text contained therein.
▶ Recall the structure of title.tpl: For every book we have a title, a content

element that starts out empty and gets filled when load_details is called, and a
clickable interaction element that triggers load_details.

▶ The toggle_details-function used above does nothing but setting the content
element to hidden or visible and changing the text of the interaction element.
function toggle_details (numb) {
/∗ hide or show appropriate content element ∗/

content = $("#content" + numb);
interact = $("#interact" + numb);

if(content.css(’display’) == ’none’) {
content.show();
interact.html("(hide␣details)");

} else {
content.hide();
interact.html("(show␣details)");

}
}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 290 2024-02-08

JQuery Template Processing

▶ Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments

1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id
attribute is open (note the type attribute that makes it HTML)

2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

▶ The JQuery template processing places the value of the data−content attribute
into the . The resulting table constitutes the generated “detail view”:

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

JQuery Template Processing
▶ Recall: We are still trying to understand

$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)

<script type="text/html" id="open">
<table>

<tr>
<th>Author:</th>
<td>

(− −)

</td>
</tr>
<tr>

<th>Publisher:</th>
<td>, </td>

</tr>
</table>

</script>

2. a JavaScript data object: here the argument of the success function: the JSON
record provided by the server under route /json/i

▶ The JQuery template processing places the value of the data−content attribute
into the . The resulting table constitutes the generated “detail view”:

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

JQuery Template Processing
▶ Recall: We are still trying to understand

$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON

record provided by the server under route /json/i

{"Last": ’Twain’,
"First": ’Mark’,
"YoB": 1835,
"YoD": 1910,
"Title": ’Huckleberry␣Finn’,
"YoP": 1986,
"Publisher": ’Penguin␣USA’,
"City": ’NY’}

▶ The JQuery template processing places the value of the data−content attribute
into the . The resulting table constitutes the generated “detail view”:

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

JQuery Template Processing
▶ Recall: We are still trying to understand

$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON

record provided by the server under route /json/i
▶ The JQuery template processing places the value of the data−content attribute

into the . The resulting table constitutes the generated “detail view”:
<table>
<tr>
<th>Author:</th>
<td>
Mark Twain
(1835−1910)

</td>
</tr>
<tr>
<th>Publisher:</th>
<td>Penguin USA, NY</td>

</tr>
</table>

▶ Note: Both the JavaScript object in step 2. as well as the result of the
template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

JQuery Template Processing

▶ Recall: We are still trying to understand
$("#content" + numb).loadTemplate($("#open’’),data)
It extends the empty in title.tpl with a details table:

▶ The loadTemplate method takes two arguments
1. a template; here the result of $(#open),i.e. the element in bookshead.tpl whose id

attribute is open (note the type attribute that makes it HTML)
2. a JavaScript data object: here the argument of the success function: the JSON

record provided by the server under route /json/i
▶ The JQuery template processing places the value of the data−content attribute

into the . The resulting table constitutes the generated “detail view”:
▶ Note: Both the JavaScript object in step 2. as well as the result of the

template processing show afterwards are virtual objects that exist only in
memory. In particular, we do not have to write them explicitly.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 291 2024-02-08

Code: An AJAX-based Frontend for the Books App

▶ booksapp−ajax.py: the web server with two routes
import sqlite3
from bottle import route, run, template, static_file

Connect to database
db = sqlite3.connect("./books.db")
Row factory so we can have column names as keys.
db.row_factory = sqlite3.Row
cursor = db.cursor()

@route(’/’)
def books():

cursor.execute(’SELECT␣rowid,␣Title,␣YoP␣FROM␣Books’)
rv = cursor.fetchall()
return template(’titles’, books=rv)

JSON interfaces are very easy in bottle, just return a dictionary
@route(’/json/<id:int>’)
def book(id):

cursor.execute(f’SELECT␣∗␣FROM␣Books␣WHERE␣rowid={id}’)
row = cursor.fetchone() # Only one result, rowid is a primary key.
return dict(zip(row.keys(), row)) # Pair up column names with values.

run(host=’0.0.0.0’, port=32500, debug=True)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 292 2024-02-08

10.4 Deploying the Books Application as a
Program

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 292 2024-02-08

Deploying The Books Application as a Program

▶ Note: Having a Python script booksapp.py you start with python3 booksapp.py
is sufficient for development.

▶ If you want to deploy it on a web server, you want more: The sysadmin you
deliver your web application to wants to start and manage it like any other UNIX
command.

▶ After all, your web server will most likely be a UNIX (e.g. linux) computer.
▶ In particular behavioural variants should be available via command line options.
▶ Example 4.1. To run the books application without output (−q or −−quiet)

and initialized with the seven book records we want to run
booksapp −q −−initbooks

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 293 2024-02-08

Deploying The Books Application as a Program

▶ Example 4.2. If we forget the options, we need help:

> booksapp −−help
Usage: <yourscript> [options]

Options:
−h, −−help show this help message and exit
−q, −−quiet don’t␣print␣status␣messages␣to␣stdout

␣␣−l␣FILE,␣−−log=FILE␣write␣log␣reports␣to␣FILE
␣␣−−initbooks␣␣␣␣␣␣␣␣␣initialize␣with␣seven␣book␣records

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 294 2024-02-08

Deploying a Python Script as a Shell Command/Executable

▶ We can make our a Python script behave like a native shell command.
▶ The file extension .py is only used by convention, we can leave it out and simply

call the file booksapp.
▶ Then we can add a special Python comments in the first line

#!/usr/bin/python3

which the shell interprets as “call the program python3 on me”.
▶ Finally, we make the file hello executable, i.e. tell the shell the file should behave

like a shell command by issuing

chmod u+x booksapp

in the directory where the file booksapp is stored.
▶ We add the line

export PATH="./:${PATH}"

to the file .bashrc. This tells the shell where to look for programs (here the
respective current directory called .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 295 2024-02-08

Working with Options in Python

▶ We have the optparse library for dealing with command line options (install with
pip3)

▶ Example 4.3 (Options in the Books Application).

from optparse import OptionParser
parser = OptionParser()
parser.add_option("−l", "−−log", dest="logfile",

help="write␣logs␣to␣FILE", metavar="FILE")
parser.add_option("−q", "−−quiet",

action="store_false", dest="verbose", default=True,
help="don’t␣print␣status␣messages␣to␣stdout")

parser.add_option(’−−version’,dest="version",default=1.0,type="float",
help="the␣version␣of␣the␣books␣application")

options, args = parser.parse_args()
do something with the options and their args.
print (’VERSION␣␣␣:’, options.version)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 296 2024-02-08

Chapter 11
Image Processing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 296 2024-02-08

11.1 Basics of Image Processing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 296 2024-02-08

11.1.1 Image Representations

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 296 2024-02-08

Images

▶ Example 1.1 (Zooming in on Augustus). A digital image taken by a
standard DSLR camera. Let’s zoom in on it!Images

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

Images

▶ Example 1.2 (Zooming in on Augustus). And a bit moreImages

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

Images

▶ Example 1.3 (Zooming in on Augustus). When zooming in on an image,
we start to see blocks of colors, which are organized in a regular grid.Images

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 297 2024-02-08

Images as Rasters of Pixels

▶ If we zoom in quite a bit more, we see
▶ Observation: The colors are arranged in a

two- dimensional grid (raster).

▶ Definition 1.4. We call the grid raster and each entry in it pixel (from “picture
element”).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 298 2024-02-08

Colors
Colors

Colors are usually stored in (R,G,B) format.
(3 channels)

R,G,B ∈ [0, 255] -> One Byte per channel per
pixel.

Images in this format can store
256 x 256 x 256 = 256³ Ƴ 16 million colors.

▶ Definition 1.5. Colors are usually
represented in RGB format, i.e. as
triples ⟨R,G ,B⟩ with three channels
(also called bands).

▶ R,G ,B∈[0,255] ; One Byte per
channel per pixel.

▶ Images in this format can store
256 · 256 · 256 = 2563 (about 16
million) colors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 299 2024-02-08

Color Examples

▶ Example 1.6. A color can be represented by three numbers.

Color Examples

(255, 0, 0)
Red

(0, 255, 0)
Green

(0, 0, 255)
Blue

(255, 255, 255)
White

(255, 0, 255)
Magenta

(0, 255, 255)
Cyan

(255, 255, 0)
Yellow

(128, 128, 128)
Gray

R = G = B
Grayscale colors

▶ Definition 1.7. A color is called grayscale, iff R = G = B

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 300 2024-02-08

Normalized Color Values
▶ Observation 1.8. For color representations, only the relative contribution of the

band is imporant.
▶ Definition 1.9. Normalized colors use pixel values between 0 and 1.
▶ Idea: Values are still stored as Bytes, but normalized before use: v ′ = v/255
▶ Example 1.10.

Normalized Color Values

(1, 0, 0)
Red

(0, 1, 0)
Green

(0, 0, 1)
Blue

(1, 1, 1)
White

(1, 0, 1)
Magenta

(0, 1, 1)
Cyan

(1, 1, 0)
Yellow

(0.5, 0.5, 0.5)
Gray

Rather than thinking of a pixel value of being between 0 and 255, it
is beneficial to think in terms of normalized color values, between
0 and 1.
Values are still stored as Bytes, but normalized before use:
v' = v / 255

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 301 2024-02-08

HTML Color Codes

▶ HTML uses a shorthand notation for colors using hexadecimal numbers.
▶ Example 1.11.

HTML Color Codes
Shorthand notation for colors.
Encode (R,G,B) as hexadecimal numbers.

#FF0000
Red

#00FF00
Green

#0000FF
Blue

#FFFFFF
White

#FF00FF
Magenta

#00FFFF
Cyan

#FFFF00
Yellow

#808080
Gray

Kohlhase: Inf. Werkzeuge @ G/SW 2 299 June 21, 2020

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 302 2024-02-08

The Human Eye

▶ Definition 1.12 (The Human Eye). Light from our surroundings enters our
eye through the lens and then hits the retina on the back of our eye.

The retina has cones and rods, which are responsible for color and brightness
vision, respectively.

▶ Since we are interested in colors here, we will ignore the rods for the purpose of
this lecture.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 303 2024-02-08

The Human Eye – Three Types of Cones

▶ Sensitivity of the Three Cones:

210 CHAPTER 12. IMAGE PROCESSING

The Human Eye – Three Types of Cones

C. Abraham, ƈA Beginnerƅs GYide to (CIE) Colorimetr],Ɖ Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 305

Light is an electromagnetic radiation. Only a small part of this radiation is visible to the human
visual system (wavelengths around 380 to 740 nanometers).

There are three types of cones, which react to different areas in this spectrum. They roughly
correspond to the wavelengths, which we perceive as red, green, and blue (or rather long, middle,
and short wavelengths).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 304 2024-02-08

The Human Eye – Three Types of Cones

▶ Example 1.13 (We see Yellow).

211

The Human Eye – Three Types of Cones

Example: Yellow
Both ƈredƉ and ƈgreenƉ cone are stimulated.

Eye cannot distinguish between yellow light and mixture
of red and green! (both look yellow)

C. Abraham, ƈA Beginnerƅs GYide to (CIE) Colorimetr],Ɖ Hipster Color
Science, 10-Sep-2016. Available: https://medium.com/hipster-color-
science/a-beginners-guide-to-colorimetry-401f1830b65a.
[Accessed: 13-May-2019].

Slide 306

When we now see yellow light for example, the two cones responsible for long and medium length
wavelengths are stimulated. Our brain converts this stimulus to yellow.

However, let’s imagine we perceive a mixture from red and green light. In this case these two
cones will be stimulated, too! Our brain is incapable of distinguishing between these two scenarios,
since the physical stimulus on our eye is the exact same!

It turns out that we can create all colors as a mixture of red, green, and blue light.

▶ Observation 1.14. We can create all (human-visible) colors as a mixture of red,
green, and blue light.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 305 2024-02-08

Monitors

▶ Definition 1.15. A computer monitor (or just monitor)is an output device for
visual information.

▶ Monitors (usually) have pixels, too!
▶ Definition 1.16. In color monitors, pixels typically consist not of a single light

source, but three distinct subpixels.
▶ If these subpixels are small enough and close together, our eye cannot see that

the light actually comes from different points and thus perceives the mixture
color.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 306 2024-02-08

Image Size

▶ Example 1.17 (Augustus again).

Image: 1440× 746 pixels
Expected file size:
Width ·Height · Channels
1440 · 746 · 3 = 3, 222, 720B ≊ 3MiB

▶ But if we look onto our disk we see somthing completely different:

▶ On disk, images are usually compressed (JPEG, PNG, GIF,WebP etc). JPEG file
size is smaller than PNG, but image quality is lost.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 307 2024-02-08

JPEG Compression Artefacts
▶ Example 1.18 (Augustus again). Here, the Augustus image is saved with a

very high jpeg compression. The file size is tiny (27 KB, compare to 440 KB on
previous slide). However, the image quality suffers.
JPEG creates blocks of pixels, and approximates the colors in this block with as
few bits as possible (according to compression ratio).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 308 2024-02-08

11.1.2 Basic Image Processing in Python

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 308 2024-02-08

The Pillow Library for Image Processing in Python

▶ We will use the Pillow library in IWGS.
▶ Definition 1.19. Pillow is a fork (a version) of the old Python library PIL

(Python Image Library). (hence the name)
▶ Details at https://pillow.readthedocs.io/slides/stable/
▶ Install: pip install Pillow
▶ Example 1.20. Determine the color of a particular pixel

from PIL import Image
load image
im = Image.open(’image.jpg’)
im.show()
access color at pixel (x, y)
x = 15
y = 300
r, g, b = im.getpixel((x, y))

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 309 2024-02-08

https://pillow.readthedocs.io/slides/stable/

The Pillow Library for Image Processing in Python

▶ We will use the Pillow library in IWGS.
▶ Definition 1.22. Pillow is a fork (a version) of the old Python library PIL

(Python Image Library). (hence the name)
▶ Details at https://pillow.readthedocs.io/slides/stable/
▶ Install: pip install Pillow
▶ Example 1.24. Directly use the image object in jupyter notebooks:

from PIL import Image
load image
im = Image.open(’image.jpg’)
im # in Jupyter Notebooks, we can directly use the variable

The notebooks shows the image in a new cell.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 309 2024-02-08

https://pillow.readthedocs.io/slides/stable/

Grayscale Images

▶ Recall: A color is grayscale, iff R=G=B.

216 CHAPTER 12. IMAGE PROCESSING

Grayscale Images

(1, 1, 1)
White

(0.5, 0.5, 0.5)
Gray

(0, 0, 0)
Black

R = G = B

If all channels have the same value, why store all three?
Grayscale images usually have only one channel.

Slide 312

We said before that in colors, which represent shades of gray, all channels have the same value. If
this is true for all colors in an image, we call them grayscale images.

Since it is pointless to store each value three times, grayscale images usually only store one
value per pixel, which is then tripled before display.

▶ Idea: If all channels have the same value, why store all three?
▶ Grayscale images usually have only one channel.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 310 2024-02-08

Grayscale Conversion

▶ Observation 1.25. Humans are very sensitive to green, less to red, and least to
blue.

▶ Definition 1.26. To convert an image to an grayscale image (grayscale
conversion), we compute Gray = 0.21R + 0.71G + 0.08B

▶ Example 1.27 (Grayscale Conversion).

217

Color to Grayscale Conversion

Gray = 0.21 x R + 0.71 x G + 0.08 x B

Humans are very sensitive to green.
Green is therefore weighted higher than red and blue.

Slide 313

Conversion from color to grayscale images is a common operation, which most image processing
tools (Photoshop etc.) support. It serves as a first example of what we can do with images.

Grayscale conversion is a weighted sum of the three channel values. This means, each channel
value is multiplied with a factor and then the values are added to form a single value. Since
humans are very sensitive to green, the G channel has the highest weight.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 311 2024-02-08

More Image Operations
▶ Example 1.28 (More Image Operations).

218 CHAPTER 12. IMAGE PROCESSING

Some more Image Operations

Original SepiaGrayscale Inverse

Threshold Red Channel
Extraction

Each pixel is
processed separately!

Slide 314

Displayed here are some more image operations. All of these process each pixel separately. Im-
plementation of these operations is very simple in Python. Since we store all our pixels in a large
list, we can simply create a for-loop over this list, do our calculation and store the result in a new
image at the same pixel coordinate.

▶ As for grayscale conversion of these process each pixel separately.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 312 2024-02-08

Image Operations in Pillow

▶ The pillow library supports many image operations out of the box.
▶ Example 1.29 (Grayscale Conversion and Inversion in Pillow).

from PIL import Image, ImageOps
im = Image.open (’image.jpg’)
convert to grayscale
gray = ImageOps.grayscale(im)
invert image
inverse = ImageOps.invert(im)

▶ Complete List:
https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 313 2024-02-08

https://pillow.readthedocs.io/en/stable/reference/ImageOps.html

Transparency and Image Composition

▶ Sometimes we want to overlay images ; layers.
▶ We need a notion of how transparent a pixel is.
▶ Definition 1.30. We introduce a fourth channel: A (for alpha). Alpha is the

opacity (inverse of transparency). A pixel is now ⟨R,G ,B,A⟩.
▶ Example 1.31 (Combining Images).

219

Slide 315

Pillow supports many image operations. This slide displays two examples. Refer to the docu-
mentation for a complete list.

Transparency
Sometimes we want to overlay images -> Layers
We need a notion of how transparent a pixel is.

We introduce a fourth channel: A (for alpha).
Alpha is the Opacity (inverse of transparency).
A pixel is now (R,G,B,A).

Order of layers is important here! The Augustus image is below the other image!
The Augustus image has NO transparency, the second image does!

+ =

▶ Note: The order of layers is important here: The Augustus image is below the
other image! The Augustus image has no transparency, the second image does!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 314 2024-02-08

Transparency (continued)

▶ Example 1.32 (Combining Images).

220 CHAPTER 12. IMAGE PROCESSING

Slide 316

Transparency is an important operation. In this example we want to layer two images on top of
each other. We thus need to store for each pixel a measure of how transparent it is.

We expand our RGB notion to RGBA, by introducing a fourth channel A. A stands for alpha
and corresponds to the opacity of a pixel, i.e. a value of 0 means zero opacity (fully transparent),
a value of 1 (normalized) means fully opaque (no transparency).

Transparency

(R,G,B,A) = (1, 1, 0, 1)
Full yellow

(R,G,B,A) = (0, 0, 0, 0)
Full transparent

+ =

(R,G,B,A) = (0.6, 0.0, 1.0, 0.5)
Half transparent purple

Rtarget = (1-A) x Raugustus + A x Rpurple,yellow

Gtarget = (1-A) x Gaugustus + A x Gpurple,yellow

Btarget = (1-A) x Baugustus + A x Bpurple,yellow

Slide 317

See examples for the opacity here. Fully transparent regions (visualized by the checkerboard),
have an alpha value of 0. Fully opaque regions have a value of 1. Intermediate values are possible
which correspond to partial transparency.

The final image is then composed by deciding for each pixel how much color from each source
image should contribute.

Note that this is again a per-pixel operation, which can easily be implemented with a simple
for-loop.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 315 2024-02-08

11.1.3 Edge Detection

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 315 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).

▶ Example 1.33 (Edge Detection). Find edges, i.e. image sections, where color
changes rapidly.

221

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Slide 318

We will now look at more interesting image operations. A typical example especially important
for object recognition in images is to find features. Features are areas in the image, which are
recognizable.

For example, let’s say we want to find so-called edges in our image, i.e. areas where the color
changes rapidly. Edges often correspond to object outlines. We will see an example later.

▶ Definition 1.34. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).
▶ Example 1.35 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.

222 CHAPTER 12. IMAGE PROCESSING

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Clearly there is an edge in this image.
How do we detect it automatically?

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Clearly there is an edge in this image. How do we detect it automatically?

▶ Definition 1.36. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).
▶ Example 1.37 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Decide for each pixel, whether it is on an edge. Here: Is marked pixel an edge
pixel?

▶ Definition 1.38. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

Edge Detection
▶ Goal: Find interesting parts of image (features).
▶ Example 1.39 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.

222 CHAPTER 12. IMAGE PROCESSING

Slide 319

In this (admittedly simple) example image, we can clearly see, that there is an edge present,
where the color shifts fast from dark to light. We will now explore, how we can detect such an
edge automatically.

Edge Detection

Goal: Find interesting parts of image (features).

Example: Find edges, i.e. sections, where color changes rapidly.

Example Image:

Decide for each pixel, if it is an edge.
Here: Is marked pixel an edge pixel?

Inspect neighbor pixels.

▶ Definition 1.40. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

Edge Detection

▶ Goal: Find interesting parts of image (features).
▶ Example 1.41 (Edge Detection). Find edges, i.e. image sections, where color

changes rapidly.
▶ Definition 1.42. We call a pixel a horizontal edge pixel, iff

lB − IT + IBL − ITL + IBR − ITR>τ

for some threshold τ and a vertical edge pixel, iff

lR − IL + ITR − ITL + IBR − IBL>τ

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 316 2024-02-08

Algorithm: Sobel Filter

▶ Idea: There is a general algorithm that computes this.
▶ Definition 1.43. Given a 3×3 matrix M, the Sobel filter computes a new pixel

value by getting the pixel value of each neighbor in 3x3 window, multiply with
the components in M and adding everything up.

▶ Observation 1.44. Given a suitable matrix M, the Sobel filter computes the
quantities from 1.34.

▶ Example 1.45 (Edge Tests via Sobel Filters).

225

Edge Detection

Usually the center row or column is more important and is thus
higher weighted.

Algorithm: Get pixel value of each neighbor in 3x3 window,
multiply with following weights and add everything up.

-1 -2 -1

0 0

1 2 1

0

Horizontal edge test:

-1 0 1

-2 2

-1 0 1

0

Vertical edge test:

Slide 323

The operation we described here is called Sobel filter 2, named after Irwin Sobel.

Usually the direct neighbors are deemed more important than the diagonal neighbors. The
pixel values of the neighbor pixels are thus weighted, such that the direct neighbors contribute
more.

2https://en.wikipedia.org/wiki/Sobel_operator

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 317 2024-02-08

Edge-Detection in Pillow
▶ Example 1.46 (Augustus and his Edges).

▶ Example 1.47 (Edge Detection in Pillow).
from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 318 2024-02-08

Edge-Detection in Pillow
▶ Example 1.48 (Augustus and his Edges).

▶ Example 1.49 (Edge Detection in Pillow).
from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 318 2024-02-08

Edge-Detection in Pillow
▶ Example 1.50 (Augustus and his Edges).

▶ Example 1.51 (Edge Detection in Pillow).
from PIL import Image, ImageFilter
im = Image.open(’augustus.jpg’)
edges = im.filter(ImageFilter.FIND_EDGES)
edges.show() # or just edges in Jupyter

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 318 2024-02-08

11.1.4 Scalable Vector Graphics

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 318 2024-02-08

Vector Graphics

▶ Problem: Raster images store colors in pixel grid. Quality deteriorates when
image is zoomed into.

▶ Vector Graphics solve this problem!
Original Zoomed In

Raster Graphics

Vector Graphics

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 319 2024-02-08

Vector Graphics (Definition)

▶ Definition 1.52. Image representation formats that store shape information
instead of individual pixels, are refered to as vector graphics.

▶ Example 1.53. For a circle, just store
▶ center
▶ radius
▶ line width
▶ line color
▶ fill color

▶ Example 1.54. For a line, store
▶ start and end point
▶ line width
▶ line color

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 320 2024-02-08

Vector Graphics Display
▶ There are devices that directly display vector graphics.
▶ Example 1.55.

▶ Definition 1.56. For monitors, vector graphics must be rasterized – i.e.
converted into a raster image before display.

▶ Example 1.57.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 321 2024-02-08

Vector Graphics Display

▶ There are devices that directly display vector graphics.
▶ Example 1.58.
▶ Definition 1.59. For monitors, vector graphics must be rasterized – i.e.

converted into a raster image before display.
▶ Example 1.60.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 321 2024-02-08

Scalable Vector Graphics (SVG)

▶ Definition 1.61. Scalable Vector Graphics (SVG) is an XML-based markup
format for vector graphics.

▶ Example 1.62.

<svg xmlns="http://www.w3.org/2000/svg"
width="100" height="100" >

<circle cx="50" cy="50" r="50"
style="fill:#1cffff;␣stroke:#000000;␣stroke−width:0.1" />

</svg>

▶ The <svg> tag starts the SVG document, width, height declare its size.
▶ The <circle> tag starts a circle. cx, cy is the center point, r is the radius. style

describes how the circle looks.

As the SVG size is 100x100 and the circle is at (50,50) with radius 50, it is
centered and fills the whole region.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 322 2024-02-08

More SVG Primitives

▶ Example 1.63 (Rectangle).

<rect x="..." y="..." width="..." height="..." style="..." />

▶ Example 1.64 (Ellipse).

<ellipse cx="..." cy="..." rx="..." ry="..." style="..." />

▶ Example 1.65 (Line).

<line x1="..." y1="..." x2="..." y2="..." style="..." />

▶ Example 1.66 (Text).

<text x="..." y="..." style="...">This is my text!</text>

▶ Example 1.67 (Image).

<image xlink:href="..." x="..." y="..." width="..." height="..." />

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 323 2024-02-08

SVG Polygons
▶ Example 1.68 (An SVG Triangle).

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210"

style="fill:lime;stroke:purple;stroke−width:1"/>
</svg>

▶ Example 1.69 (An SVG Pentagram).
<svg height="210" width="210" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198"

style="fill:lime;stroke:purple;stroke−width:5;fill−rule:nonzero;"/>
</svg>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 324 2024-02-08

SVG Polygons
▶ Example 1.70 (An SVG Triangle).

<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10 250,190 160,210"

style="fill:lime;stroke:purple;stroke−width:1"/>
</svg>

▶ Example 1.71 (An SVG Pentagram).
<svg height="210" width="210" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,10 40,198 190,78 10,78 160,198"

style="fill:lime;stroke:purple;stroke−width:5;fill−rule:nonzero;"/>
</svg>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 324 2024-02-08

SVG in HTML

▶ SVG can be used in dedicated files (file ending .svg)
and referenced in a tag.

▶ It can however also be written directly in HTML files.
▶ Example 1.72. Triangle from 1.68 embedded in HTML file

<html>
<body>
<svg height="210" width="500" xmlns="http://www.w3.org/2000/svg">
<polygon points="200,10␣250,190␣160,210"

style="fill:lime;stroke:purple;stroke−width:1" />
</svg>

</body>
</html>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 325 2024-02-08

The SVG viewBox Attribute

▶ Idea: The SVG viewBox attribute allows us to zoom into an image.
▶ Example 1.73.

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

Here, the width and height are scaled by a factor of 2
to give us a little more room. Sometimes we want to
specify a larger image, but only display a section of it.

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

▶ Example 1.74.
<svg width="200" height="200" xmlns="..."

viewBox="0␣0␣100␣100" >
<circle cx="50" cy="50" r="50" style="..." />

</svg>

viewBox specifies a region inside our canvas. Only
things inside that are drawn. The resulting image is
then stretched to the canvas size (zoom effect).

232 CHAPTER 12. IMAGE PROCESSING

Slide 331

SVG can directly be embedded in HTML!

The SVG viewBox Attribute

<svg width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

In this example the width and height are scaled by a
factor of 2 to give us a little more room.
Sometimes we want to specify a larger image, but
only display a section of it.

Introducing viewBox:

viewBox specifies a region inside our canvas. Only
things inside this region are drawn. The resulting
image is then stretched to the canvas size (zoom
effect).
https://www.sarasoueidan.com/blog/svg-coordinate-systems/

<svg viewBox="0 0 100 100" width="200" height="200" xmlns="...">
<circle cx="50" cy="50" r="50" style="..." />

</svg>

200

20
0

(50,50)
50

100

10
0 50

(50,50)

Slide 332

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 326 2024-02-08

11.2 Project: An Image Annotation Tool

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 326 2024-02-08

Project: Kirmes Image Annotation Tool

▶ Problem: Our Books-App project was a fully functional web application, but
does not do anything useful for DigiHumS.

▶ Idea: Extend/Adapt it to a database for image annotation like LabelMe [LM].
▶ Setting: Prof. Peter Bell (formerly at FAU) conducts research on baroque

paintings on parish fairs (Kirmes) and the iconography in these paintings. We
want to build an annotation system for this research.

▶ Project Goals:
1. Collect kirmes images in a database and display them,
2. mark interesting areas and provide meta data,
3. display/edit/search annotated information.

1. is analogous to Books-App, for 2/3. we need to know more
▶ Plan: Lern the necessary technologies in class, build the system in exercises

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 327 2024-02-08

HTML Image Maps

▶ Definition 2.1. HTML image maps mark areas in an digital image and assign
names and links to them.

▶ Example 2.2. An image map adds hover and on click behavior

Clicking on the pupil leads to: Clicking on the vitreous body leads to:
https://en.wikipedia.org/wiki/Pupil https://en.wikipedia.org/wiki/

Vitreous_body

▶ Easy creation of image maps: https://www.image-map.net/

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 328 2024-02-08

https://en.wikipedia.org/wiki/Pupil
https://en.wikipedia.org/wiki/Vitreous_body
https://en.wikipedia.org/wiki/Vitreous_body
https://www.image-map.net/

HTML Image Maps

▶ Definition 2.3. HTML image maps mark areas in an digital image and assign
names and links to them.

▶ Example 2.4. An image map adds hover and on click behavior

<html>
<body>

<map name="image−map">
<area title="Pupil"

href="https://en.wikipedia.org/wiki/Pupil"
coords="102,117,143,219" shape="rect"/>

<area title="Vitreous␣Body"
href="https://en.wikipedia.org/wiki/Vitreous_body"
coords="242,166,107" shape="circle"/>

</map>
</body>

</html>

▶ Easy creation of image maps: https://www.image-map.net/

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 328 2024-02-08

https://www.image-map.net/

Problems of HTML Image Maps

▶ Problem: Image maps do not allow interaction:
▶ the name attribute can only contain unstructured information.
▶ no integrated highlight for image maps area,
▶ no onclick or onmouseover attributes.

But the whole point is to have (arbitrarily) complex metadata for image regions.
▶ New Plan: Use a newer technology: SVG and CSS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 329 2024-02-08

Handcrafting better Image Annotations with SVG and CSS

▶ Idea: Integrate the image and the areas into one SVG and make areas
interactive via CSS.

▶ Example 2.5 (Paper Prototype). Highlight regions and display information on
hover.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 330 2024-02-08

SVG Annotation Implementation Areas

▶ Implementing Areas as Rectangles:
<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects. −−>
<rect x="300" y="125" width="250" height="300"/>
<rect x="550" y="225" width="200" height="300"/>
<rect x="750" y="375" width="200" height="300"/>
<rect x="999" y="375" width="200"height="300"/>

</svg>

Add four <rect>s (one for each president).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 331 2024-02-08

SVG Annotation Implementation Result

▶ Areas as Rectangles – Result: Now the rectangles are visible

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 332 2024-02-08

Adding CSS for the Areas
▶ Example 2.6 (Adding CSS).

rect {fill−opacity:0; stroke:white; stroke−opacity:1; stroke−width:5px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 333 2024-02-08

Selectively Highlighting Areas
▶ Problem: Now the rectangles are always visible.
▶ Idea: make the rectangles invisible by default only show them on hover.
▶ CSS: We set the stroke opacity to zero by default and add a hover selector.

rect {fill−opacity:0; stroke:white; stroke−opacity:0; stroke−width:5px}
rect:hover {stroke−opacity:1}

243

SVG Annotation Implementation – Hover Effect

Michael MSll, ƈDie Präsidenten am Mount Rushmore,Ɖ https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 346

The rectangles are now invisible, expect when hovered over by the mouse.

Slide 347

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 334 2024-02-08

Adding Annotation Text

▶ Adding Annotation Text and making space for it.

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1224" >
<!−− Image −−>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Areas in image as rects, text below −−>
<rect x="300" y="125" width="250" height="300" />
<text x="100" y="1200">George Washington</text>
<rect x="550" y="225" width="200" height="300" />
<text x="100" y="1200">Thomas Jefferson</text>
<rect x="750" y="375" width="200" height="300" />
<text x="100" y="1200">Theodore Roosevelt</text>
<rect x="999" y="375" width="200" height="300" />
<text x="100" y="1200">Abraham Lincoln</text>

</svg>

and we add some CSS:
text {fill:black; opacity:1; font−size:100px}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 335 2024-02-08

Adding Annotation Text – Result

▶ Adding Annotation Text – Result:

245

SVG Annotation Implementation – Annotation Text

Michael MSll, ƈDie Präsidenten am Mount Rushmore,Ɖ https://www.dieweltenbummler.de/, 2017.
Available: https://www.dieweltenbummler.de/wp-content/uploads/2017/05/Mount-Rushmore-von-unten-1536x1024.jpg.
[Accessed: 11-June-2019].

Slide 349

We have text! It is not particularly pretty, mainly because all texts are right above each other,
but this is expected so far, since we specified all text tags to have the same position. Our main
problem is, that the text does not react to our mouse input yet. Remember: Our goal is that each
text element is only displayed, when the corresponding rectangle in the image is hovered by the
mouse.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 336 2024-02-08

Selectively Showing Annotations

▶ Problem: Now the annotations are always visible.
▶ Idea: Add CSS hover effect for <rect>s, which effects the |<text>|.
▶ Definition 2.7. The CSS sibling operator + modifies a selector so that it (only)

affects following sibling elements (same level).
▶ Example 2.8. In the CSS directive

246 CHAPTER 12. IMAGE PROCESSING

SVG Annotation Implementation – Hover Annotation

rect {
fill-opacity: 0;
stroke: white;
stroke-opacity: 0;
stroke-width: 5px;

}

rect:hover {
stroke-opacity: 1;

}

text {
fill: black;
opacity: 0;
font-size: 100px;

}

rect:hover + text {
opacity: 1;

}

Add CSS hover effect for <rect>s,
which effects the <text>.

Syntax:
rect:hover + text {<rules>}

Sibling operatorSelector Target

Note, that the + operator only affects
siblings (same level), which are
directly after the selector element.
The order of elements in the HTML is
therefore important!

Slide 350

Our approach is analogous to the hovering of the rectangles we did previously. Let’s give our text
a default opacity of zero, and a hover opacity of one.

Remember though, that the hover selector always influences the element it is specified on, i.e.
when writing text:hover, and then changing the opacity, this changes the opacity when we hover
over the text, not when we hover the rectangle. We thus introduce the CSS sibling operator, +.

Using the sibling operator, it is possible to change another element’s style when a certain
element is hovered (or interacted with in a different way). In this case, we give the rectangle a
hover selector, which then influences the text.

The sibling operator influences the next element of the specified type (in our case text) in the
HTML/SVG. This is why earlier we put the text elements always directly after the rectangle.

This way, when a rectangle is hovered over, the next text element is always the corresponding
description and will thus become visible.

the rules affect the SVG <text> directly after the <rect> element.
▶ Again: the order of elements in the HTML is important!
▶ CSS: We set the opacity to zero by default and add a hover selector for the

following <text> sibling.

text {fill:black; opacity:0; font−size:100px}
rect:hover + text {opacity: 1}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 337 2024-02-08

Image Annotation Tool – Final Result

▶ Now our annotation tool works as expected!
▶ Example 2.9 (Final Result). Highlight regions and display information on

hover.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 338 2024-02-08

11.3 Fun with Image Operations: CSS Filters

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 338 2024-02-08

CSS Image Filters

▶ Goal: Apply image filters (grayscale etc.) directly in CSS.
▶ Example 3.1 (Image Effects via inline CSS).

▶ Disadvantage: The original image is delivered to client. When user saves the
image, they get the original!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 339 2024-02-08

Some more CSS Filters

▶ Example 3.2 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Some more CSS Filters

▶ Example 3.3 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Some more CSS Filters

▶ Example 3.4 (Image Effects via CSS Style sheets).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 340 2024-02-08

Combining CSS Filters
▶ Idea: We can also combine image filters flexibly. The easist way is when we

define CSS classes for that.
▶ Example 3.5 (Tie CSS Filters to Classes).

<html>
<head>
<style type="text/css">
.blur { filter: blur(4px); }
.brightness { filter: brightness(0.30); }
.contrast { filter: contrast(180%); }
.grayscale { filter: grayscale(100%); }
.huerotate { filter: hue−rotate(180deg); }
.invert { filter: invert(100%); }
.opacity { filter: opacity(50%); }
.saturate { filter: saturate(7); }
.sepia { filter: sepia(100%); }
.shadow { filter: drop−shadow(8px 8px 10px green); }

</style>
</head>
<body>

</body>
</html>

▶ Note: The order is important: Changing the order of filters yields different
results.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 341 2024-02-08

Filtering Everyghing Else

▶ Note: CSS filters don’t just apply to images! (Almost) everything can be
filtered.

▶ Example 3.6 (Filtering Text (Blurring)).

<p style="filter:␣blur(3px)">A severely blurred Text</p>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 342 2024-02-08

CSS Animations

▶ Definition 3.7. CSS animations change state of an object over time.
▶ Example 3.8 (Inverting an image).

img {animation: invertAnimation 1s forwards}

@keyframes invertAnimation {
from {filter: none}
to {filter: invert(100%)}

}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 343 2024-02-08

SVG Filters

▶ Note: Unfortunately in SVG the filtering works differently from CSS.
▶ Example 3.9 (Blurring Mt. Rushmore in SVG).

<svg xmlns="http://www.w3.org/2000/svg" width="1536" height="1024">
<style> image {filter: url(#myCustomFilter)}</style>
<image width="1536" height="1024" xlink:href="mount_rushmore.jpg" />
<!−− Image filter −−>
<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />

</filter>
</svg>

▶ Example 3.10 (SVG Filters can be combined).

<filter id="myCustomFilter">
<feGaussianBlur stdDeviation="5" />
<feColorMatrix type="saturate" values="0.1" />

</filter>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 344 2024-02-08

Chapter 12
Ontologies, Semantic Web for Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 344 2024-02-08

12.1 Documenting our Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 344 2024-02-08

Documenting our Cultural Heritage

▶ Definition 1.1. Cultural heritage is the legacy of physical artifacts cultural
artefacts and practices, representations, expressions, knowledge, or skills –
intangible cultural heritage (ICH) of a group or society that is inherited from
past generations.

▶ Problem: How can we understand, conserve, and learn from our cultural
heritage?

▶ Traditional Answer: We collect cultural artefacts, study them carefully, relate
them to other artefacts, discuss the findings, and publish the results. We display
the artefacts in museums and galleries, and educate the next generation.

▶ DigHumS Answer: In “Digital Humanities and Social Sciences”, we want to
represent our cultural heritage digitally, and utilize computational tools to do so.

▶ Practical Question: What are the best representation formats and tools?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 345 2024-02-08

Research Data in a Nutshell

▶ Definition 1.2. Research data is any information that has been collected,
observed, generated or created to validate original research findings. Although
usually digital, research data also includes non-digital formats such as laboratory
notebooks and diaries.

▶ Types of research data:
▶ documents, spreadsheets, laboratory notebooks, field notebooks, diaries,
▶ questionnaires, transcripts, codebooks, test responses,
▶ audiotapes, videotapes, photographs, films,
▶ cultural artefacts, specimens, samples,
▶ data files, database contents (video, audio, text, images), digital outputs,
▶ models, algorithms, scripts,
▶ contents of an application (input, output, logfiles, schemata),
▶ methodologies and workflows, standard operating procedures, and protocols,

▶ Non-digital Research Data such as cultural artefacts, laboratory notebooks,
ice-core samples, or sketchbooks is often unique. Materials could be digitized,
but this may not be possible for all types of data.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 346 2024-02-08

FAIR Research Data: The Next Big Thing
▶ Principle: Scientific experiments must be replicated, and derivations must be

checkable to be trustworthy. (consensus of scientific community)
▶ Intuition: Research data must be retained for justification, shared for synergies!
▶ Consequence: Virtually all scientific funding agencies now require some kind of

research data strategy in proposals. (tendency: getting stricter)

▶ Problem: Not all forms of data are actually useable in practice.
▶ Definition 1.3 (Gold Standard Criteria). Research data should be FAIR:
▶ Findable: easy to identify and find for both humans and computers, e.g. with

metadata that facilitate searching for specific datasets,
▶ Accessible: stored for long term so that they can easily be accessed and/or

downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

▶ Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

▶ Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].
▶ Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 347 2024-02-08

FAIR Research Data: The Next Big Thing
▶ Principle: Scientific experiments must be replicated, and derivations must be

checkable to be trustworthy. (consensus of scientific community)
▶ Intuition: Research data must be retained for justification, shared for synergies!
▶ Consequence: Virtually all scientific funding agencies now require some kind of

research data strategy in proposals. (tendency: getting stricter)
▶ Problem: Not all forms of data are actually useable in practice.
▶ Definition 1.4 (Gold Standard Criteria). Research data should be FAIR:
▶ Findable: easy to identify and find for both humans and computers, e.g. with

metadata that facilitate searching for specific datasets,
▶ Accessible: stored for long term so that they can easily be accessed and/or

downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

▶ Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

▶ Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].

▶ Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 347 2024-02-08

FAIR Research Data: The Next Big Thing
▶ Principle: Scientific experiments must be replicated, and derivations must be

checkable to be trustworthy. (consensus of scientific community)
▶ Intuition: Research data must be retained for justification, shared for synergies!
▶ Consequence: Virtually all scientific funding agencies now require some kind of

research data strategy in proposals. (tendency: getting stricter)
▶ Problem: Not all forms of data are actually useable in practice.
▶ Definition 1.5 (Gold Standard Criteria). Research data should be FAIR:
▶ Findable: easy to identify and find for both humans and computers, e.g. with

metadata that facilitate searching for specific datasets,
▶ Accessible: stored for long term so that they can easily be accessed and/or

downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

▶ Interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

▶ Reusable: ready to be used for future research and to be further processed using
computational methods.

Consensus in the research data community; for details see [FAIR18; Wil+16].
▶ Open Question: How can we achieve FAIR-ness in a discipline in practice?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 347 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.6. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.7. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see)

▶ Definition 1.8. Symbolic data: descriptions of object and facts in a formal
language
▶ e.g. 3+5 in Python (see)

▶ Definition 1.9. Metadata: “data about data”, e.g. who has created these facts,
images, or documents, how do they relate to each other? (not covered yet)

▶ Observation 1.10. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.11. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.12. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.13. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see)

▶ Definition 1.14. Symbolic data: descriptions of object and facts in a formal
language
▶ e.g. 3+5 in Python (see)

▶ Definition 1.15. Metadata: “data about data”, e.g. who has created these
facts, images, or documents, how do they relate to each other?(not covered yet)

▶ Observation 1.16. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.17. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.18. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.19. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see)

▶ Definition 1.20. Symbolic data: descriptions of object and facts in a formal
language
▶ e.g. 3+5 in Python (see)

▶ Definition 1.21. Metadata: “data about data”, e.g. who has created these
facts, images, or documents, how do they relate to each other?(not covered yet)

▶ Observation 1.22. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.23. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.24. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.25. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see)

▶ Definition 1.26. Symbolic data: descriptions of object and facts in a formal
language
▶ e.g. 3+5 in Python (see)

▶ Definition 1.27. Metadata: “data about data”, e.g. who has created these
facts, images, or documents, how do they relate to each other?(not covered yet)

▶ Observation 1.28. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.29. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

Categories of Data in DigiHumS and their Formats
▶ We distinguish four broad categories of data in DigiHumS.
▶ Definition 1.30. Concrete data: digital representations of artefacts in terms of

simple data,
▶ e.g. raster images as pixel arrays in JPEG. (see)
▶ e.g. books identified by author/title/publisher/pubyear. (see)

▶ Definition 1.31. Narrative data: documents and text fragments used for
communicating knowledge to humans.
▶ e.g. plain text and formatted text with markup code (see)

▶ Definition 1.32. Symbolic data: descriptions of object and facts in a formal
language
▶ e.g. 3+5 in Python (see)

▶ Definition 1.33. Metadata: “data about data”, e.g. who has created these
facts, images, or documents, how do they relate to each other?(not covered yet)

▶ Observation 1.34. Metadata are the resources, DigiHumS results are made of
(; support that)
The other categories digitize artefacts and auxiliary data.

▶ Observation 1.35. We will need all of these – and their combinations – to do
DigiHumS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 348 2024-02-08

WissKI: a Virtual Research Env. for Cultural Heritage

▶ Definition 1.36. WissKI is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

▶ Requirements: For a virtual research environment for cultural heritage, we
need
▶ scientific communication about and documentation of the cultural heritage
▶ networking knowledge from different disciplines (transdisciplinarity)
▶ high-quality data acquisition and analysis
▶ safeguarding authorship, authenticity, persistence
▶ support of scientific publication

▶ WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

▶ FAU supports cultural heritage research by providing hosted WissKI instances.
▶ See https://wisski.data.fau.de for details
▶ We will use an instance for the Kirmes paintings in the homework assignments

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 349 2024-02-08

https://wisski.data.fau.de

Documenting Cultural Heritage: Current State/Preview

▶ Pre-DH State of cultural heritage documentation:
▶ scientific communication/documentation by journal articles/books
▶ persistence: paper records, file cards, databases (like our KirmesDB)
▶ Analysis: manual examination of artefacts in museums/archives.

▶ Idea: Use more technology to do better.
▶ Preview: WissKI uses semantic web technologies to do just that. We will now
▶ Motivate the semantic web (why do we need more than the WWW)
▶ introduce ontologies, linked open data and their technology stacks
▶ show off WissKI and offer a little project based on Kirmes corpus.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 350 2024-02-08

12.2 Systems for Documenting the Cultural
Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 350 2024-02-08

Documenting Cultural Artefacts: Inventory Books
▶ Definition 2.1. An inventory book is a ledger that identifies, describes, and

records provenance of the artefacts in the collection of a museum.
▶ Example 2.2 (An Inventory Book).

▶ Problems: non-digital, only single-user access, institution-local, no querying,
. . .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 351 2024-02-08

Cultural Artefacts in Databases: Example

▶ Example 2.3. A typical database for cultural artefacts: (HiDa/MIDAS)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 352 2024-02-08

Cultural Artefacts in Databases: Pro/Con

▶ Databases of Cultural Artefacts – Advantages:
▶ persistence, multi-user access, structured data,
▶ web/catalog publication, standardized exports,
▶ standardized performant query language.

▶ Databases of Cultural Artefacts – Problems:
▶ identifiers are database local ; no trans database relations,
▶ database schemata are inflexible ⇝we need extensions in practice,
▶ free text as an un-structured, untapped resource.

▶ Idea: Relational databases impose structure, let’s try something very
unstructured: the world wide web. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 353 2024-02-08

Cultural Artefacts in Databases II

▶ Example 2.4. Another database for cultural artefacts:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 354 2024-02-08

Using the Web for the Cultural Heritage

▶ Idea: Why not use the world wide web as a tool?
▶ it is inherently distributed and networked,
▶ the data formats HTML and XML are highly flexible,
▶ gives us instantaneous access to information/images/. . . ,
▶ allows collaboration and discussion. (wikis, fora, blogs)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 355 2024-02-08

Cultural Artefacts on the Web

▶ Example 2.5. A text about a cultural artefact (an etching by Dürer)

▶ Question: Just how does the etching discussed here relate to Albrecht Dürer?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 356 2024-02-08

Using the Web for Cultural Heritage

▶ Problems: with using the Web as a resource
▶ Information is often of dubious quality (imprecise, typos, incomplete, . . .)
▶ Information is primarily written for human consumption
▶ ; not machine-actionable, but full text search works (e.g. Google)
▶ sometimes we can use established structures (e.g. Infobox in Wikipedia)

▶ Evaluation: The web is complementary to databases on the
structure-vs-flexibility tradeoff scale for cultural heritage systems. (we need
both)

▶ Idea: Use the semantic web for cultural heritage
▶ Goal: Make information accessible for humans and machines
▶ meaning capture by reference to real-world objects
▶ globally unique identifiers of cultural artefacts (=̂ URIs)
▶ inference (get out more than you put in!)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 357 2024-02-08

12.3 The Semantic Web

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 357 2024-02-08

The Semantic Web

▶ Definition 3.1. The semantic web is the result including of semantic content in
web pages with the aim of converting the WWW into a machine-understandable
“web of data”, where inference based services can add value to the ecosystem.

▶ Idea: Move web content up the ladder, use inference to make connections.

▶ Example 3.2. Information not explicitly represented (in one place)
Query: Who was US president when Barak Obama was born?
Google: . . . BIRTH DATE: August 04, 1961. . .
Query: Who was US president in 1961?
Google: President: Dwight D. Eisenhower [. . .] John F. Kennedy (starting Jan. 20.)

Humans understand the text and combine the information to get the answer.
Machines need more than just text ; semantic web technology.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 358 2024-02-08

What is the Information a User sees?

▶ Example 3.3. Take the following web-site with a conference announcement
WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002
Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation internet.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 359 2024-02-08

What the machine sees

▶ Example 3.4. Here is what the machine “sees” from the conference
announcement:

WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉
S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕
H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA
7↖∞∞M⊣†∈′′∈
R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨

I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙

S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊⇔
I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔↙

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 360 2024-02-08

Solution: XML markup with “meaningful” Tags
▶ Example 3.5. Let’s annotate (parts of) the meaning via XML markup

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</title>
<place>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</place>
<date>7↖∞∞M⊣†∈′′∈</date>
<participants>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</participants>
<introduction>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\↖

⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</introduction>
<program>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<speaker>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</speaker>
<speaker>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇↖

\⌉⊔<speaker>
</program>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 361 2024-02-08

What can we do with this?

▶ Example 3.6. Consider the following fragments:
ℜ⊔⟩⊔↕⌉⊤WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉ℜ∝⊔⟩⊔↕⌉⊤
ℜ√↕⊣⌋⌉⊤S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USAℜ∝√↕⊣⌋⌉⊤

ℜ⌈⊣⊔⌉⊤7↖∞∞M⊣†∈′′∈ℜ∝⌈⊣⊔⌉⊤

Given the markup above, a machine agent can
▶ parse 7∞∞M⊣†∈′′∈ as the date May 7 11 2002 and add this to the user’s calendar,
▶ parse S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA as a destination and find

flights.
▶ But: do not be deceived by your ability to understand English!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 362 2024-02-08

What the machine sees of the XML
▶ Example 3.7. Here is what the machine sees of the XML

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</⊔⟩⊔↕⌉>
<√↕⊣⌋⌉>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</√↕⊣⌋⌉>

<⌈⊣⊔⌉>7↖∞∞M⊣†∈′′∈</⌈⊣⊔⌉>
<√⊣∇⊔⟩⌋⟩√⊣\⊔∫>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕

A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔

S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</√⊣∇⊔⟩⌋⟩√⊣\⊔∫>

<⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇↖

\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>
<√∇≀}∇⊣⇕>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<∫√⌉⊣∥⌉∇>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</∫√⌉⊣∥⌉∇>

<∫√⌉⊣∥⌉∇>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇↖

\⌉⊔<∫√⌉⊣∥⌉∇>

</√∇≀}∇⊣⇕>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 363 2024-02-08

The Current Web

▶ Resources: identified by
URIs, untyped

▶ Links: href, src, . . . limited,
non-descriptive

▶ User: Exciting world -
semantics of the resource,
however, gleaned from content

▶ Machine: Very little
information available -
significance of the links only
evident from the context
around the anchor.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 364 2024-02-08

The Semantic Web

▶ Resources: Globally identified
by URIs or Locally scoped
(Blank), Extensible, Relational.

▶ Links: Identified by URIs,
Extensible, Relational.

▶ User: Even more exciting
world, richer user experience.

▶ Machine: More processable
information is available (Data
Web).

▶ Computers and
people: Work, learn and
exchange knowledge effectively.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 365 2024-02-08

Towards a “Machine-Actionable Web”

▶ Recall: We need external agreement on meaning of annotation tags.
▶ Idea: standardize them in a community process (e.g. DIN or ISO)
▶ Problem: Inflexible, Limited number of things can be expressed

▶ Better: Use ontologies to specify meaning of annotations
▶ Ontologies provide a vocabulary of terms
▶ New terms can be formed by combining existing ones
▶ Meaning (semantics) of such terms is formally specified
▶ Can also specify relationships between terms in multiple ontologies

▶ Inference with annotations and ontologies (get out more than you put in!)
▶ Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on

OWL [OWL09]
▶ Harvest RDF and RDFa in to a triplestore or OWL reasoner.
▶ Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 366 2024-02-08

Towards a “Machine-Actionable Web”

▶ Recall: We need external agreement on meaning of annotation tags.
▶ Idea: standardize them in a community process (e.g. DIN or ISO)
▶ Problem: Inflexible, Limited number of things can be expressed
▶ Better: Use ontologies to specify meaning of annotations
▶ Ontologies provide a vocabulary of terms
▶ New terms can be formed by combining existing ones
▶ Meaning (semantics) of such terms is formally specified
▶ Can also specify relationships between terms in multiple ontologies

▶ Inference with annotations and ontologies (get out more than you put in!)
▶ Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on

OWL [OWL09]
▶ Harvest RDF and RDFa in to a triplestore or OWL reasoner.
▶ Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 366 2024-02-08

Towards a “Machine-Actionable Web”

▶ Recall: We need external agreement on meaning of annotation tags.
▶ Idea: standardize them in a community process (e.g. DIN or ISO)
▶ Problem: Inflexible, Limited number of things can be expressed
▶ Better: Use ontologies to specify meaning of annotations
▶ Ontologies provide a vocabulary of terms
▶ New terms can be formed by combining existing ones
▶ Meaning (semantics) of such terms is formally specified
▶ Can also specify relationships between terms in multiple ontologies

▶ Inference with annotations and ontologies (get out more than you put in!)
▶ Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on

OWL [OWL09]
▶ Harvest RDF and RDFa in to a triplestore or OWL reasoner.
▶ Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 366 2024-02-08

12.4 Semantic Networks and Ontologies

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 366 2024-02-08

Semantic Networks [CQ69]

▶ Definition 4.1. A semantic network is a directed graph for representing
knowledge:
▶ nodes represent objects and concepts (classes of objects)

(e.g. John (object) and bird (concept))
▶ edges (called links) represent relations between these (isa, father_of, belongs_to)

▶ Example 4.2. A semantic network for birds and persons:

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ Problem: How do we derive new information from such a network?
▶ Idea: Encode taxonomic information about objects and concepts in special

links (“isa” and “inst”) and specify property inheritance along them in the
process model.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 367 2024-02-08

Deriving Knowledge Implicit in Semantic Networks

▶ Observation 4.3. There is more knowledge in a semantic network than is
explicitly written down.

▶ Example 4.4. In the network below, we “know” that robins have wings and in
particular, Jack has wings.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ Idea: Links labeled with “isa” and “inst” are special: they propagate properties
encoded by other links.

▶ Definition 4.5. We call links labeled by
▶ “isa” an inclusion or isa link (inclusion of concepts)
▶ “inst” instance or inst link (concept membership)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 368 2024-02-08

Deriving Knowledge Semantic Networks

▶ Definition 4.6 (Inference in Semantic Networks). We call all link labels
except “inst” and “isa” in a semantic network relations.
Let N be a semantic network and R a relation in N such that A isa−→ B

R−→ C or
A

inst−→ B
R−→ C , then we can derive a relation A

R−→ C in N.
The process of deriving new concepts and relations from existing ones is called
inference and concepts/relations that are only available via inference implicit (in
a semantic network).

▶ Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

▶ Example 4.7. Derived relations in 4.4

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

has_part
has_part

isa/

▶ Slogan: Get out more knowledge from a semantic networks than you put in.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 369 2024-02-08

Terminologies and Assertions

▶ Remark 4.8. We should distinguish concepts from objects.
▶ Definition 4.9. We call the subgraph of a semantic network N spanned by the

isa links and relations between concepts the terminology (or TBox, or the
famous Isa Hierarchy) and the subgraph spanned by the inst links and relations
between objects, the assertions (or ABox) of N.

▶ Example 4.10. In this semantic network we keep objects concept apart
notationally:

ABox ClydeRexRoy

TBox

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

color

In particular we have objects “Rex”, “Roy”, and “Clyde”, which have (derived)
relations (e.g. Clyde is gray).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 370 2024-02-08

Limitations of Semantic Networks

▶ What is the meaning of a link?
▶ link labels are very suggestive (misleading for humans)
▶ meaning of link types defined in the process model (no denotational semantics)

▶ Problem: No distinction of optional and defining traits!
▶ Example 4.11. Consider a robin that has lost its wings in an accident:

wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

“Cancel-links” have been proposed, but their status and process model are
debatable.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 371 2024-02-08

Another Notation for Semantic Networks

▶ Definition 4.12. Function/argument notation for semantic networks
▶ interprets nodes as arguments (reification to individuals)
▶ interprets links as functions (predicates actually)

▶ Example 4.13.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

▶ Evaluation:
+ linear notation (equivalent, but better to implement on a computer)
+ easy to give process model by deduction (e.g. in Prolog)
– worse locality properties (networks are associative)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 372 2024-02-08

A Denotational Semantics for Semantic Networks

▶ Observation: If we handle isa and inst links specially in function/argument
notation

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

robin ⊆ bird
haspart(bird,wings)
Jack∈robin
owner_of(John, Jack)
loves(John,Mary)

it looks like first-order logic, if we take
▶ a∈S to mean S(a) for an object a and a concept S .
▶ A ⊆ B to mean ∀X A(X)⇒ B(X) and concepts A and B
▶ R(A,B) to mean ∀X A(X)⇒ (∃Y B(Y) ∧ R(X ,Y)) for a relation R.

▶ Idea: Take first-order deduction as process model (gives inheritance for free)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 373 2024-02-08

What is an Ontology

▶ Definition 4.14. An ontology is a formal model of (an aspect of) the world. It
▶ introduces a vocabulary for the objects, concepts, and relations of a given domain,
▶ specifies intended meaning of vocabulary in a description logic using
▶ a set of axioms describing structure of the model
▶ a set of facts describing some particular concrete situation

The vocabulary together with the collection of axioms is often called a
terminology (or TBox) and the collection of facts an ABox (assertions).
In addition to the represented axioms and facts, the description logic determines
a number of derived ones.

▶ Definition 4.15. A vocabulary often includes names for classes and relationship
(also called concepts, and properties).

▶ Remark 4.16. If the description logic has a reasoner, we can automatically
▶ detect inconsistent axiom systems
▶ compute class membership and taxonomies.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 374 2024-02-08

Semantic Web Technology in a Nutshell

▶ Ontologies have become one of the standard devices for representing information
about the Web and the world.

▶ Definition 4.17. This is facilitated and standardized by the :
▶ URIs for representing objects,
▶ RDF triples for representing facts,
▶ RDFa for annotating RDF triples in XML documents,
▶ OWL for representing TBoxes,
▶ triplestores for storing (lots of) RDF triples,
▶ SPARQL for querying ontologies,
▶ description logic reasoners for deciding ontology consistency and concept

subsumption,
▶ Protg for authoring and maintaining ontologies,

▶ Details .

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 375 2024-02-08

12.5 CIDOC CRM: An Ontology for Cultural
Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 375 2024-02-08

Ontologies for Cultural Artefacts

▶ Idea: Use ontologies for documenting
cultural heritage.
▶ flexible schemata (OWL)
▶ easy data sharing
▶ open standards, free tools
▶ semantic querying via SPARQL

▶ Idea: We can use RDF like a Mindmap:
RDF can
▶ represent relations between objects
▶ classify objects (web resources)

RDFa for document annotation

Formate: RDF

(Resource Description Framework)

● RDF ist ein Framework zur Repräsentation

von Metadaten

● RDF ist ähnlich einer Mindmap

– Beziehungen zwischen

Dingen (Web Resources)

– Adhoc Verknüpfungen

erstellen

– Dinge klassifizieren

● RDF Datenbank:

Triple Store

Martin Scholz, FAU, Informatik 8 17▶ Reference ontologies for interoperability:
▶ SUMO (Suggested Upper Model Ontology) [SUMO] for common knowledge,
▶ FOAF (Friend-of-a-Friend) [FOAF14] for persons and relations,
▶ CIDOC CRM for documentation of cultural heritage. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 376 2024-02-08

CIDOC CRM (Conceptual Reference Model)

▶ Definition 5.1. CIDOC CRM provides an extensible ontology for concepts and
information in cultural heritage and museum documentation. It is the
international standard (ISO 21127:2014) for the controlled exchange of cultural
heritage information. The central classes include
▶ space time specified by title/identifier, place, era/period, time-span, and relationship

to persistent items
▶ events specified by title/identifier, beginning/ending of existence, participants

(people, either individually or in groups), creation/modification of things (physical or
conceptional), and relationship to persistent items

▶ material things specified by title/identifier, place, the information object the material
thing carries, part-of relationships, and relationship to persistent items

▶ immaterial things specified by title/identifier, information objects (propositional or
symbolic), conceptional things, and part-of relationships

▶ Definition 5.2. OWL implements CIDOC CRM in OWL
▶ Details about CIDOC CRM can be found at [CC] and about OWL at [ECRMb;

ECRMa].

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 377 2024-02-08

Protege, an IDE for Ontology Development
▶ Definition 5.3. Protg [Pro] is an integrated development environment for

ontologies represented in the OWL family. It comprises
▶ a visual user interface for exploring and editing ontologies,
▶ a inference component to ensure ontology consistency and minimality,
▶ a facility for querying the loaded ontologies.

▶ Example 5.4 (CIDOCCRM in Protege).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 378 2024-02-08

CIDOC CRM Explored (Classes)
▶ Idea: Use semantic web technology to explore OWL.
▶ CIDOC CRM Classes: concept =̂ OWL “Class” (shown in Protege)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 379 2024-02-08

CIDOC CRM Explored (Relations)
▶ CIDOC CRM Relations: relation =̂ OWL “Object Property” (shown in

Protege)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 380 2024-02-08

CIDOC CRM Structure (Overview)

participate in

Actors Conceptual Objects

Physical Entities

Temporal Entities

affect

Types

refine

A
pp

el
la

tio
ns

id
en

tif
y/

na
m

e

location

occur at within

Time-Spans
Places

CIDOC CRM$
Top Level Classes$

© T. Gill$
G. Goerz, FAU, Inf. 8$

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 381 2024-02-08

CIDOC-CRM Modeling
▶ This is all good and dandy but how do I concretely model cultural artefacts?
▶ Answer: CIDOC CRM is only a TBox, we add an ABox of objects and facts.
▶ Example 5.5. Albrecht Dürer painted Melencolia 1 in Nürnberg

We have two units of information here:
1. Albrecht Dürer painted Melencolia 1
2. this happened in the city of Nürnberg

▶ CIDOC CRM modeling decisions; we start with 1. AD painted M 1
1. A painting m is an “Information Carrier” (E84)
2. It was created in an “Production Event” q (E12)
3. m is related to q via the “was produced by” relation (P108i)
4. q was “carried out by” a “person” d (P14 E21)
5. d “is identified by” an “actor appellation” a (P131 E82)
6. a “has note” the string "Albrecht Dürer”. (P3)

▶ CIDOC CRM modeling decisions; continuing with 2. this happened in N
1. A painting m is an “Information Carrier” (E84)
2. It was created in an “Production Event” q (E12)
3. m is related to q via the “ produced by” relation (P108i)
4. q “took place at” a “place” p (P7 E53)
5. p “is identified by” a “place name” n (P48 E3)
6. n “has note” the string "Nürnberg”. (P3)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 382 2024-02-08

CIDOC CRM Modelling (Ontology Paths)

▶ Modeling Albrecht Dürer painted Melencolia 1 in Nürnberg
in CIDOC CRM

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

Note that we need to create the intermediary objects q, d , a, and n.
▶ Problem: That is a lot of work for something very simple.
▶ Definition 5.6. We call sequence of facts si

pi−→ oi , where si = oi−1 an ontology
path and any subtree an ontology group.

▶ Problem Reformulated: A simple statement like Albrecht Dürer painted
Melencolia 1 becomes a whole ontology path in CIDOC CRM.

▶ But: we can reuse intermediary objects and facts, and need fine grained models
for flexibility.

▶ Idea: Maybe systems can take some of the pain out of modeling. (; WissKI)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 383 2024-02-08

Event-Oriented Modeling in CIDOC CRM

▶ Observation 5.7. Ontologies make it easy to model facts with transitive verbs,
e.g. Albrecht Dürer created Melencolia 1 (binary relation)

▶ Problem: What about more complex situations with more arguments? E.g.
1. Albrecht Dürer created Melencolia 1 with an etching needle (ternary)
2. Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg (four

arguments)
3. Albrecht Dürer created Melencolia 1 with an etching needle in Nürnberg out of

boredom (five)
▶ Standard Solution: Introduce “events” tied to the verb and describe those
▶ Example 5.8. There was a creation event e with

1. Albrecht Dürer as the agent,
2. Melencolia 1 as the product,
3. an etching needle as the means,
4. boredom as the reason,

▶ Consequence: More than 1/3 of CIDOC CRM classes are events of some kind.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 384 2024-02-08

12.6 The Semantic Web Technology Stack

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 384 2024-02-08

Resource Description Framework

▶ Definition 6.1. The Resource Description Framework (RDF) is a framework for
describing resources on the web. It is an XML vocabulary developed by the W3C.

▶ Note: RDF is designed to be read and understood by computers, not to be
displayed to people. (it shows)

▶ Example 6.2. RDF can be used for describing (all “objects on the WWW”)
▶ properties for shopping items, such as price and availability
▶ time schedules for web events
▶ information about web pages (content, author, created and modified date)
▶ content and rating for web pictures
▶ content for search engines
▶ electronic libraries

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 385 2024-02-08

Resources and URIs

▶ RDF describes resources with properties and property values.
▶ RDF uses Web identifiers (URIs) to identify resources.
▶ Definition 6.3. A resource is anything that can have a URI, such as

http://www.fau.de.
▶ Definition 6.4. A property is a resource that has a name, such as author or

homepage, and a property value is the value of a property, such as Michael
Kohlhase or http://kwarc.info/kohlhase. (a property value can be another
resource)

▶ Definition 6.5. A RDF statement s (also known as a triple) consists of a
resource (the subject of s), a property (the predicate of s), and a property value
(the object of s). A set of RDF triples is called an RDF graph.

▶ Example 6.6. Statements: [This slide]subj has been [author]preded by [Michael
Kohlhase]obj

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 386 2024-02-08

http://www.fau.de
http://kwarc.info/kohlhase

XML Syntax for RDF

▶ RDF is a concrete XML vocabulary for writing statements
▶ Example 6.7. The following RDF document could describe the slides as a

resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">
<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

This RDF document makes two statements:
▶ The subject of both is given in the about attribute of the rdf:Description element
▶ The predicates are given by the element names of its children
▶ The objects are given in the elements as URIs or literal content.

▶ Intuitively: RDF is a web-scalable way to write down ABox information.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 387 2024-02-08

RDFa as an Inline RDF Markup Format

▶ Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)
Definition 6.8. RDFa (RDF annotations) is a markup scheme for inline
annotation (as XML attributes) of RDF triples.

▶ Example 6.9.
<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">

<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="2009−11−11">November 11., 2009
</div>

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex

RDFa as an Inline RDF Markup Format

2009−11−11 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 388 2024-02-08

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator

RDF as an ABox Language for the Semantic Web

▶ Idea: RDF triples are ABox entries h R s or h:φ.
▶ Example 6.10. h is the resource for Ian Horrocks, s is the resource for Ulrike

Sattler, R is the relation “hasColleague”, and φ is the class foaf:Person

<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>
▶ Idea: Now, we need an similar language for TBoxes (based on ALC)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 389 2024-02-08

OWL as an Ontology Language for the Semantic Web

▶ Task: Complement RDF (ABox) with a TBox language.
▶ Idea: Make use of resources that are values in rdf:type. (called Classes)
▶ Definition 6.11. OWL (the ontology web language) is a language for encoding

TBox information about RDF classes.
▶ Example 6.12 (A concept definition for “Mother”).

Mother=Woman ⊓ Parent is represented as
XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>
<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(
:Woman
:Parent

)
)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 390 2024-02-08

Extended OWL Example in Functional Syntax

▶ Example 6.13. The semantic network from 4.4 can be expressed in OWL (in
functional syntax)

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ ClassAssertion formalizes the “inst” relation,
▶ ObjectPropertyAssertion formalizes relations,
▶ SubClassOf formalizes the “isa” relation,
▶ for the “has_part” relation, we have to specify that all birds have a part that is a

wing or equivalently the class of birds is a subclass of all objects that have some
wing.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 391 2024-02-08

Extended OWL Example in Functional Syntax

▶ Example 6.14. The semantic network from 4.4 can be expressed in OWL (in
functional syntax)

ClassAssertion (:Jack :robin)
ClassAssertion(:John :person)
ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)
SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

▶ ClassAssertion formalizes the “inst” relation,
▶ ObjectPropertyAssertion formalizes relations,
▶ SubClassOf formalizes the “isa” relation,
▶ for the “has_part” relation, we have to specify that all birds have a part that is a

wing or equivalently the class of birds is a subclass of all objects that have some
wing.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 391 2024-02-08

SPARQL an RDF Query language

▶ Definition 6.15. SPARQL, the “SPARQL Protocol and RDF Query Language”
is an RDF query language, able to retrieve and manipulate data stored in RDF.
The SPARQL language was standardized by the World Wide Web Consortium in
2008 [PS08].

▶ SPARQL is pronounced like the word “sparkle”.
▶ Definition 6.16. A system is called a SPARQL endpoint, iff it answers SPARQL

queries.
▶ Example 6.17. Query for person names and their e-mails from a triplestore with

FOAF data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 392 2024-02-08

SPARQL Applications: DBPedia

▶ Typical Application: DBPedia screen-scrapes
Wikipedia fact boxes for RDF triples and uses SPARQL
for querying the induced triplestore.

▶ Example 6.18 (DBPedia Query). People who were
born in Erlangen before 1900
(http://dbpedia.org/snorql)

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Erlangen .
?person dbo:birthDate ?birth .
?person foaf:name ?name .
?person dbo:deathDate ?death .
FILTER (?birth < "1900−01−01"^^xsd:date) .

}
ORDER BY ?name

▶ The answers include Emmy Noether and Georg Simon
Ohm.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 393 2024-02-08

http://dbpedia.org/snorql

A more complex DBPedia Query
▶ Demo: DBPedia http://dbpedia.org/snorql/

Query: Soccer players born in a country with more than 10 M inhabitants, who
play as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 394 2024-02-08

http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

Triple Stores: the Semantic Web Databases

▶ Definition 6.19. A triplestore or RDF store is a purpose-built database for the
storage RDF graphs and retrieval of RDF triples usually through variants of
SPARQL.

▶ Common triplestores include
▶ Virtuoso: https://virtuoso.openlinksw.com/ (used in DBpedia)
▶ GraphDB: http://graphdb.ontotext.com/ (often used in WissKI)
▶ blazegraph: https://blazegraph.com/ (open source; used in WikiData)

▶ Definition 6.20. A description logic reasoner implements of reaonsing services
based on a satisfiabiltiy test for description logics.

▶ Common description logic reasoners include
▶ FACT++: http://owl.man.ac.uk/factplusplus/
▶ HermiT: http://www.hermit-reasoner.com/

▶ Intuition: Triplestores concentrate on querying very large ABoxes with partial
consideration of the TBox, while DL reasoners concentrate on the full set of
ontology inference services, but fail on large ABoxes.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 395 2024-02-08

https://virtuoso.openlinksw.com/
http://graphdb.ontotext.com/
https://blazegraph.com/
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/

12.7 Ontologies vs. Databases

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 395 2024-02-08

Example: Hogwarts Ontology

▶ Example 7.1. Axioms describe the structure of the world,

Class HogwartsStudent = Student and attendsSchool Hogwarts
Class: HogwartsStudent ⊑ hasPet only (Owl or Cat or Toad)
ObjectProperty: hasPet Inverses: isPetOf
Class: Phoenix ⊑ isPetOf only Wizard

▶ Example 7.2. Facts describe some particular concrete situation,

Individual: Hedwig
Types: Owl

Individual: HarryPotter
Types: HogwartsStudent
Facts: hasPet Hedwig

Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 396 2024-02-08

Ontologies vs. Databases

▶ Obvious Analogy: In an ontology:
▶ axioms analogous to DB schema (structure and constraints on data)
▶ facts analogous to DB data
▶ data instantiates schema, is consistent with schema constraints

▶ But there are also important differences:
Database:
▶ Closed world assumption (CWA)
▶ Missing information treated as false

▶ Unique name assumption (UNA)
▶ Each individual has a single, unique

name
▶ Schema behaves as constraints on

structure of data
▶ Define legal database states.

Ontology:
▶ Open world assumption (OWA)
▶ Missing information treated as

unknown
▶ No UNA
▶ Individuals may have more than one

name
▶ Ontology axioms behave like

implications (inference rules)
▶ Entail implicit information

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 397 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?

▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ DB: No
▶ Ontology: Don’t Know (OWA: didn’t say Draco was not Harry’s friend)

▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?

▶ How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ DB: 2
▶ Ontology: at least 1 (No UNA: Ron and Hermione may be 2 names for same person)

▶ How about: if we add
DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ DB: 2
▶ Ontology: at least 2 (OWA: Harry may have more friends we didn’t mention yet)

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Querying)

▶ Given the Ontology:

Individual: HarryPotter
Facts: hasFriend RonWeasley

hasFriend HermioneGranger
hasPet Hedwig

Individual: Draco Malfoy

▶ Query: Is Draco Malfoy a friend of HarryPotter?
▶ Counting Query: How many friends does Harry Potter have?
▶ How about: if we add

DifferentIndividuals: RonWeasley HermioneGranger

▶ And: if we also add
Individual: HarryPotter
Types: hasFriend only RonWeasley or HermioneGranger

▶ DB: 2
▶ Ontology: 2

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 398 2024-02-08

DB vs. Ontology by Example (Insertion)

▶ Given: the ontology from 7.1 and 7.2 insert

Individual: Dumbledore
Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

▶ System Response:

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example (Insertion)

▶ Given: the ontology from 7.1 and 7.2 insert

Individual: Dumbledore
Individual: Fawkes
Types: Phoenix
Facts: isPetOf Dumbledore

▶ System Response:
▶ DB: Update rejected: constraint violation
▶ Range of hasPet is Human; Dumbledore is not (CWA)

▶ Ontology Reasoner:
▶ Infer that Dumbledore is Human
▶ Also infer that Dumbledore is a Wizard (only a Wizard can have a phoenix as a pet)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 399 2024-02-08

DB vs. Ontology by Example: Query Answering

▶ DB schema plays no role in query answering (efficiently implementable)
▶ Ontology axioms play a powerful and crucial role in QA
▶ Answer may include implicitly derived facts
▶ Can answer conceptual as well as extensional queries

E.g., Can a Muggle have a Phoenix for a pet?
▶ May have very high worst case complexity (=̂ terrible running time)

Implementations may still behave well in typical cases.
▶ Definition 7.3. We call a query language semantic, iff query answering involves

derived axioms and facts.
▶ Observation 7.4. Ontology queries are semantic, while database queries are

not.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 400 2024-02-08

Summary: Ontology Based Information Systems

▶ Analogous to relational database management systems
Ontology =̂ schema; instances =̂ data

▶ Some important (dis)advantages
+ (Relatively) easy to maintain and update schema.
▶ Schema plus data are integrated in a logical theory.

+ Query results reflect both schema and data
+ Can deal with incomplete information
+ Able to answer both intensional and extensional queries
– Semantics may be counter-intuitive or even inappropriate
▶ Open -vs- closed world; axioms -vs- constraints.

– Query answering much more difficult. (based on logical entailment)
▶ Can lead to scalability problems.

▶ In a nutshell they deliver more valuable answers at cost of efficiency.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 401 2024-02-08

Chapter 13
The WissKI System: A Virtual Research

Environment for Cultural Heritage

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 401 2024-02-08

WissKI: a Virtual Research Env. for Cultural Heritage

▶ Definition 0.1. WissKI is a virtual research environment (VRE) for managing
scholarly data and documenting cultural heritage.

▶ Requirements: For a virtual research environment for cultural heritage, we
need
▶ scientific communication about and documentation of the cultural heritage
▶ networking knowledge from different disciplines (transdisciplinarity)
▶ high-quality data acquisition and analysis
▶ safeguarding authorship, authenticity, persistence
▶ support of scientific publication

▶ WissKI was developed by the research group of Prof. Günther Görtz at FAU
Erlangen-Nürnberg and is now used in hundreds of DH projects across Germany.

▶ FAU supports cultural heritage research by providing hosted WissKI instances.
▶ See https://wisski.data.fau.de for details
▶ We will use an instance for the Kirmes paintings in the homework assignments

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 402 2024-02-08

https://wisski.data.fau.de

13.1 WissKI extends Drupal

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 402 2024-02-08

WissKI System Architecture

▶ Software basis: drupal CMS (content management system)
▶ large, active community, extensible by drupal modules
▶ provides much of the functionality of a VRE out of the box.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 403 2024-02-08

Drupal: A Web Content Managemt Framework

▶ Definition 1.1. Drupal is an open source web content management application.
It combines CMS functionality with knowledge management via RDF.

▶ Definition 1.2. Drupal allows to configure web pages modularly from content
blocks, which can be
▶ static content, i.e. supplied by a module,
▶ user supplied content, or
▶ views, i.e. listings of content fragments from other blocks.

These can be assembled into web pages via a visual interface: the config bar.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 404 2024-02-08

Assembling a Web Site via Drupal Blocks (Example)
▶ Example 1.3 (Greenpeace via Drupal). Can you find the blocks?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 405 2024-02-08

Drupal Modules and Themes

▶ Idea: Drupal is designed to be modular and extensible (so it can adapt to the
ever-changing web)

▶ Definition 1.4 (Modular Design). Drupal functionality is structured into
▶ drupal core – the basic CMS functionality
▶ modules which contribute e.g. new block types (∼ 45.000)
▶ themes which contribute new UI layouts (∼ 2800)

Drupal core is the vanilla system as downloaded, modules and themes must be
installed and configured separately via the config bar.

▶ The drupal core functionalities include
▶ user/account management
▶ menu management,
▶ RSS feeds,
▶ taxonomy,
▶ page layout customization (via blocks and views),
▶ system administration

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 406 2024-02-08

Bundles and Fields in Drupal (Data Entry)

▶ Definition 1.5. Drupal has a special data
type called a bundle, which is essentially
a dictionary: it contains key/value pairs
called fields.
▶ bundles can be nested ; sub bundles.
▶ fields also have data type information, etc.

to support editing.
▶ drupal presents bundles as
▶ HTML lists for reading
▶ HTML forms for data entry/editing

▶ Drupal bundles induce blocks that can be
used for data entry and presentation.

Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
ĺ P108i was produced by ĺ
E12 Production
ĺ P14 carried out by ĺ
E21 Person
ĺ P131 is identified by ĺ
E82 Actor Appellation
ĺ P3 has note ĺ
ÄAlbrecht Dürer³

E84 Information Carrier
ĺ P108i was produced by ĺ
E12 Production
ĺ P7 took place at ĺ
E53 Place
ĺ P87 is identified by ĺ
E48 Place Name
ĺ P3 has note ĺ
ÄNürnberg ³

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 407 2024-02-08

WissKI System Architecture (Recap)

▶ WissKI = drupal + CIDOC CRM + triplestore + WissKI modules

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 4

Drupal

Modules

Third-Party

Database

WissKI

Triple Store

Import/Export API

OWL/RDF System

Core

WikiTools

WysiwygAPI

Views

CCK

...

ImageAPI

...

Authority Files Management

Automatic Text Annotator

Discussion System

All software used is available under free software licences.

▶ Note: Much of WissKI functionality is configurable via the drupal config bar.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 408 2024-02-08

13.2 Dealing with Ontology Paths: The WissKI
Pathbuilder

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 408 2024-02-08

The WissKI Path Builder (Idea)

▶ Recall: Albrecht Dürer painted Melencolia 1 in Nürnberg

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

▶ Idea: Hide the complexity induced by the ontology from the user
▶ Form-based interaction with categories and fields (as in a RDBMS UI)

▶ Definition 2.1. The WissKI path builder maps ontology groups and ontology
paths to drupal bundles and fields.
▶ ontology groups become data entry forms (bundles) for the root entities,
▶ their fields are mapped to ontology paths.
▶ subtrees in the ontology become sub-bundles. (shared objects)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 409 2024-02-08

The WissKI Path Builder (Example)

▶ Example 2.2 (A WissKI Group).Semantified Data Entry Form

06.09.2011 Georg Hohmann: WissKI - CIDOC 2011 - Sibiu, Romania 12

Albrecht Dürer

Nürnberg

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P14 carried out by →
E21 Person
→ P131 is identified by →
E82 Actor Appellation
→ P3 has note →
„Albrecht Dürer“

E84 Information Carrier
→ P108i was produced by →
E12 Production
→ P7 took place at →
E53 Place
→ P87 is identified by →
E48 Place Name
→ P3 has note →
„Nürnberg “

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 410 2024-02-08

Sharing and Disambiguation in Path Builders
▶ Observation 2.3. Sometimes we want to refer to existing entities in WissKI.
▶ Example 2.4 (Referring to Nürnberg). (We love tab completion)

▶ Example 2.5 (To What). Albrecht Dürer created all his etchings in Nürnberg.
▶ Problem: (In paths) we are creating lots of objects, which ones to offer?
▶ Idea: Mark the entities we might want to reuse on paths while specifying them.
▶ Definition 2.6. A disambiguation point in a path marks an entity that can be re

used in data acquisition.
▶ Example 2.7. Disambiguation points are highlighted in red on paths.

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 411 2024-02-08

Sharing and Disambiguation in Path Builders

▶ Observation 2.8. Sometimes we want to refer to existing entities in WissKI.
▶ Example 2.9 (Referring to Nürnberg). (We love tab completion)
▶ Example 2.10 (To What). Albrecht Dürer created all his etchings in Nürnberg.
▶ Problem: (In paths) we are creating lots of objects, which ones to offer?
▶ Idea: Mark the entities we might want to reuse on paths while specifying them.
▶ Definition 2.11. A disambiguation point in a path marks an entity that can be

re used in data acquisition.
▶ Example 2.12. Disambiguation points are highlighted in red on paths.

m : E84 q : E12P108i
d : E21P14 a : E82

P131
"A. Dürer"

P3

p : E53
P7

n : E48
P87 "Nürnberg"P3

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 411 2024-02-08

Specifying/Maintaining WissKI Path Builders

▶ Recall: A WissKI path builder maps ontology groups and ontology paths to
drupal bundles and fields.

▶ Example 2.13 (Specifying a WissKI Path Builder).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 412 2024-02-08

WissKI Path Builders as Graphs

▶ Example 2.14 (A WissKI Path Construtor as a Graph).

Graph-Ansicht

▶ Very nice and helpful, but does not work currently!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 413 2024-02-08

WissKI Path Builders as Triples

▶ Of course we can view path builders as sets of triples.
▶ Example 2.15 (A WissKI Path Construtor as Triples).

Triples-Ansicht

▶ Such an export also allows standardized communication.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 414 2024-02-08

Data Presentation using Path Builders in WissKI

▶ Path builders can be used as drupal blocks for data presentation.
▶ For every object o, aggregate the values of the paths starting in o.

▶ Example 2.16 (Compressed View).

Komprimierte

Ansicht

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 415 2024-02-08

13.3 The WissKI Link Block

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 415 2024-02-08

The WissKI Link Block (Idea)

▶ Observation 3.1. For an entity in a RDF graph, both the outgoing and the
incoming relations are important for understanding.

▶ Example 3.2. This view only shows the outgoing edges!

Komprimierte

Ansicht

▶ Idea: Add a block with “incoming links” to the page, use the path builder.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 416 2024-02-08

Link Blocks (Definition)

▶ Definition 3.3. Let p be a drupal page for an ontology group g , then a WissKI
link block is a special drupal block with associated path builder, whose ontology
paths all end in g .

▶ Example 3.4 (A link block for Images).

Note the difference between
▶ a “work” – the original painting Pieter Brueghel created in 1628
▶ and an “image of the work” – a b/w photograph of the “work”.

This particular link block mediates between these two.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 417 2024-02-08

A Link Block in the Wild (the full Picture)

▶ Example 3.5 (A link block for Images).

▶ outgoing relations below
the image,

▶ incoming ones in the link
block

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 418 2024-02-08

Making Link Blocks via the Path Builder

▶ How to make a link block in page p for group g? (Details at [WH])
1. create a block via the config bar and place it on p.
2. associate it with a link block path builder
3. model paths into g in the path builder (various source groups)

▶ Idea: You essentially know link block paths already: If you have already
modeled a path g , r1, . . ., rn, s for a group s, then you have a path
s, r−1

n , . . ., r−1
1 , g , where r−1

i are the inverse roles of r i (exist in CIDOC CRM)

m : E84 q : E12
P108i

P108

d : E21P14

P14i

a : E82
P131

"A. Dürer"
P3

p : E53

P7

P7i n : E48
P87 "Nürnberg"P3

▶ Note: With this setup, you never have to fill out the link block paths!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 419 2024-02-08

13.4 Cultural Heritage Research: Querying
WissKI Resources

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 419 2024-02-08

Research in WissKI

▶ So far we have seen how to acquire complex knowledge about cultural artefacts
using CIDOC CRM ABoxes.

▶ Question: But how do we do research using WissKI?
▶ Answer: Finding patterns, inherent connections, . . . in the data.
▶ But how?: That depends on the kind of research you want to do. Here are

some WissKI research tools
1. we can use drupal search on the data.
2. We can formulate our own queries in SPARQL
3. We can pre-configure various queries in drupal views.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 420 2024-02-08

Drupal Search in WissKI
▶ Example 4.1.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 421 2024-02-08

SPARQL Endpoint in WissKI

▶ Example 4.2. Find kirmes paintings and their painters and count them

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 422 2024-02-08

SPARQL Endpoint in WissKI

▶ Example 4.3. Find kirmes paintings and their painters and count them

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 422 2024-02-08

Data Presentation via Views in WissKI

▶ Example 4.4 (Configuring a View). This makes a drupal block.

Drupal generates a SPARQL query, aggregates results into a block.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 423 2024-02-08

This Research is WissKI-instance-local

▶ Observation 4.5. All these research queries only work in the current WissKI
instance.

▶ Observation 4.6. There is probably much more about the entities you are
interested in outside your particular WissKI instance.

▶ Problem: How to make use of this?
▶ Solution: We need to do two things

1. Make use of other people’s ABoxes
2. Provide your ABox to other people.

This practice is called linked open data. (up next)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 424 2024-02-08

13.5 Application Ontologies in WissKI

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 424 2024-02-08

WissKI Information Architecture (Ontologies)
▶ Ontologies, instances, and export formats

Martin Scholz, FAU, Informatik 8 33Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 425 2024-02-08

Application Ontologies extend CIDOC CRM
▶ Observation 5.1. Sometimes we need more than CIDOC CRM.
▶ Definition 5.2. A WissKI application ontology is one that extends CIDOC

CRM, without changing it.
▶ Example 5.3 (Behaim Application Ontology).

Referenzontologie:

Erlangen CRM

Applikationsontologie:

Behaim-Globus

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 426 2024-02-08

Making an Application Ontology

▶ The “current ontology” of a WissKI instance can be configured via the config bar
via the “WissKI ontology” module.

▶ The application ontology should import CIDOC CRM.
▶ Idea: Use Protg for that.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 427 2024-02-08

13.6 The Linked Open Data Cloud

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 427 2024-02-08

Linked Open Data

▶ Definition 6.1. Linked data is structured data in which classified objects are
interlinked via relations with other objects so that the data becomes more useful
through semantic queries and access methods.

▶ Definition 6.2. Linked open data (LOD) is linked data which is released under
an open license, which does not impede its reuse by the community.

▶ Definition 6.3. Given the semantic web technology stack, we can create
interoperable ontologies and interlinked data sets, we call their totality the .

▶ Recall the LOD Incentives:
▶ incentivize other authors to extend/improve the LOD

; more/better data can be generated at a lower cost.
▶ generate attention to the LOD and recognition for authors

; this gives alternative revenue models for authors.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 428 2024-02-08

The Linked Open Data Cloud

▶ The linked open data cloud in 2014 (today much bigger, but unreadable)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 429 2024-02-08

The Linked Open Data Cloud

▶ Zooming in (data sets and their – interlinked – ontologies)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 430 2024-02-08

Using the LOD-Cloud in WissKI

▶ Idea: Do not re-model entities that already exist (in the LOD Cloud)
▶ Problem: Most of the LOD Cloud is about things we do not want.
▶ But there are some sources that are useful
▶ the GND (Gemeinsame Normdatei [GND]), an authority file for personal/corporate

names and keywords from literary catalogs,
▶ geonames[GN], a geographical database with more than 25M names and locations
▶ Wikipedia

▶ Observation 6.4. All of them provide URIs for real world entities, which is just
what we need for objects in RDF triples.

▶ Definition 6.5. WissKI provides special modules called adapters for GND and
geonames.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 431 2024-02-08

Using Geonames in WissKI (Example)

1. Example 6.6. We want to use the “Meilwald” (Erlangen) in WissKI.

2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)

1. Example 6.7. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:

4. We enter https://geodata.org for “Normdatei” and go there to find out the
URI for “Meilwald” which goes into “Normdatum URI”.

5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)
1. Example 6.8. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.

5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)

1. Example 6.9. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)

6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)
1. Example 6.10. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)
6. Select/click the intended one, check the details

7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

https://geodata.org

Using Geonames in WissKI (Example)

1. Example 6.11. We want to use the “Meilwald” (Erlangen) in WissKI.
2. make a sub-ontology groups “norm data” in the WissKI path builder
3. The induced sub-bundle looks like this:
4. We enter https://geodata.org for “Normdatei” and go there to find out the

URI for “Meilwald” which goes into “Normdatum URI”.
5. there may be multiple results (here only one)
6. Select/click the intended one, check the details
7. Enter the URL from the URL bar into “Normdatum URI”.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 432 2024-02-08

https://geodata.org

Towards a WissKI Commons in the LOD Cloud

▶ Recap: We can directly refer to (URIs of) external objects in WissKI.
▶ Observation 6.12. The most interesting source for references to cultural

artefacts are other WissKI instances.
▶ Problem: A WissKI is an island, unless it exports its data! (few do)
▶ Idea: We need a LOD cloud of cultural heritage research data under to foster

object centric research in the humanities.
▶ Definition 6.13. We call the part of this resource that can be created by

aggregating WissKI exports the WissKI commons.
▶ Observation 6.14. WissKI exports meet the FAIR principles quite nicely already.
▶ We will be working on a FAU WissKI commons in the next years. (help wanted)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

Chapter 14
Legal Foundations of Information Technology

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

14.1 Intellectual Property

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 433 2024-02-08

Intellectual Property: Concept

▶ Question: Intellectual labour creates (intangible) objects, can they be owned?
▶ Answer: Yes: in certain circumstances they are property like tangible objects.
▶ Definition 1.1. The concept of intellectual property motivates a set of laws that

regulate property rights rights on intangible objects, in particular
▶ Patents grant exploitation rights on original ideas.
▶ Copyrights grant personal and exploitation rights on expressions of ideas.
▶ Industrial design rights protect the visual design of objects beyond their function.
▶ Trademarks protect the signs that identify a legal entity or its products to establish

brand recognition.
▶ Intent: Property like treatment of intangibles will foster innovation by giving

individuals and organizations material incentives.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 434 2024-02-08

Background: Property and Ownership in General

▶ Definition 1.2. Ownership is the state or fact of exclusive rights and control
over property, which may be a physical object, land/real estate or intangible
object.

▶ Definition 1.3. Ownership involves multiple rights (the property rights), which
may be separated and held by different parties.

▶ Definition 1.4. There are various legal entities (e.g. persons, states, companies,
associations, . . .) that can have ownership over a property p. We call them the
owners of p.

▶ Remark 1.5. Depending on the nature of the property, an owner of property has
the right to consume, alter, share, redefine, rent, mortgage, pawn, sell,
exchange, transfer, give away or destroy it, or to exclude others from doing these
things, as well as to perhaps abandon it.

▶ Remark 1.6. The process and mechanics of ownership are fairly complex: one
can gain, transfer, and lose ownership of property in a number of ways.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 435 2024-02-08

Intellectual Property: Problems

▶ Delineation Problems: How can we distinguish the product of human work,
from “discoveries”, of e.g. algorithms, facts, genome, algorithms. (not property)

▶ Philosophical Problems: The implied analogy with physical property (like land
or an automobile) fails because physical property is generally rivalrous while
intellectual works are non-rivalrous (the enjoyment of the copy does not prevent
enjoyment of the original).

▶ Practical Problems: There is widespread criticism of the concept of
intellectual property in general and the respective laws in particular.
▶ (Software) patents are often used to stifle innovation in practice. (patent trolls)
▶ Copyright is seen to help big corporations and to hurt the innovating individuals.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 436 2024-02-08

Legal Traditions

▶ The various legal systems of the world can be grouped into “traditions”.
▶ Definition 1.7. Legal systems in the common law tradition are usually based on

case law, they are often derived from the British system.
▶ Definition 1.8. Legal systems in the civil law tradition are usually based on

explicitly codified laws (civil codes).
▶ As a rule of thumb all English-speaking countries have systems in the common

law tradition, whereas the rest of the world follows a civil law tradition.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 437 2024-02-08

Historic/International Aspects of Intellectual Property Law
▶ Early History: In late antiquity and the middle ages IP matters were regulated

by royal privileges
▶ History of Patent Laws: First in Venice 1474, Statutes of Monopolies in

England 1624, US/France 1790/1. . .
▶ History of Copyright Laws: Statue of Anne 1762, France: 1793, . . .
▶ Problem: In an increasingly globalized world, national IP laws are not enough.
▶ Definition 1.9. The Berne convention process is a series of international treaties

that try to harmonize international IP laws. It started with the original Berne
convention 1886 and went through revision in 1896, 1908, 1914, 1928, 1948,
1967, 1971, and 1979.

▶ The World Intellectual Property Organization Copyright Treaty was adopted in
1996 to address the issues raised by information technology and the internet,
which were not addressed by the Berne Convention.

▶ Definition 1.10. The Anti Counterfeiting Trade Agreement (ACTA) is a
multinational treaty on international standards for intellectual property rights
enforcement.

▶ With its focus on enforcement ACTA is seen my many to break fundamental
human information rights, criminalize FLOSS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 438 2024-02-08

14.2 Copyright

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 438 2024-02-08

Copyrightable Works

▶ Definition 2.1. A copyrightable work is any artefact of human labor that fits
into one of the following eight categories:
▶ Literary works: Any work expressed in letters, numbers, or symbols, regardless of

medium. (computer source code is also considered to be a literary work.)
▶ Musical works: Original musical compositions.
▶ Sound recordings of musical works. (different licensing)
▶ Dramatic works: literary works that direct a performance through written

instructions.
▶ Choreographic works must be “fixed,” either through notation or video recording.
▶ Pictorial, graphic and sculptural work (PGS works): Any two dimensional or three

dimensional art work
▶ Audiovisual works: work that combines audio and visual components. (e.g. films,

television programs)
▶ Architectural works. (copyright only extends to aesthetics)

▶ The categories are interpreted quite liberally (e.g. for computer code).
▶ There are various requirements to make a work copyrightable: it has to
▶ exhibit a certain originality. (“Schöpfungshöhe”)
▶ require a certain amount of labor and diligence. (“sweat of the brow” doctrine)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 439 2024-02-08

Limitations of Copyrightabilitiy: The Public Domain
▶ Definition 2.2. A work is said to be in the public domain, if no copyright

applies, otherwise it is called copyrighted.
▶ Example 2.3. Works made by US government employees (in their work time)

are in the public domain directly. (Rationale: taxpayer already paid for them)
▶ Copyright expires: usually 70 years after the death of the creator.
▶ Example 2.4 (US Copyright Terms). Some people claim that US copyright

terms are extended, whenever Disney’s Mickey Mouse would become public
domain.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 440 2024-02-08

Rights under Copyright Law

▶ Definition 2.5. The copyright is a collection of rights on a copyrighted work;
▶ Personal rights: the owner of the copyright may
▶ determine whether and how the work is published (right to publish)
▶ determine whether and how her authorship is acknowledged. (right of attribution)
▶ to object to any distortion, mutilation or other modification of the work, which would be

prejudicial to his honor or reputation. (droit de respect)
▶ Exploitation rights: the owner of a copyright has the exclusive right to do, or

authorize to do any of the following:
▶ to reproduce the copyrighted work in copies (or phonorecords);
▶ to prepare derivative works based upon the copyrighted work;
▶ to distribute copies of the work to the public by sale, rental, lease, or lending;
▶ to perform the copyrighted work publicly;
▶ to display the copyrighted work publicly; and
▶ to perform the copyrighted work publicly by means of a digital-audio transmission.

▶ Remark 2.6. Formally, it is not the copyrightable work that can be owned itself,
but the copyright.

▶ Definition 2.7. The use of a copyrighted material, by anyone other than the
owner of the copyright, amounts to copyright infringement only when the use is
such that it conflicts with any one or more of the exclusive rights conferred to
the owner of the copyright.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 441 2024-02-08

Copyright Holder

▶ Definition 2.8. The copyright holder is the legal entity that owns the copyright
to a copyrighted work.

▶ By default, the original creator of a copyrightable work holds the copyright.
▶ In most jurisdictions, no registration or declaration is necessary. (but copyright

ownership may be difficult to prove in court)
▶ Copyright is considered intellectual property, and can be transferred to others.

(e.g. sold to a publisher or bequeathed)
▶ Definition 2.9 (Work for Hire). A work made for hire (WFH) is a work

created by an employee as part of his or her job, or under the explicit guidance
or under the terms of a contract.

▶ Observation 2.10. In jurisdictions from the common law tradition, the
copyright holder of a WFH is the employer, in jurisdictions from the civil law
tradition, the author, unless the respective contract regulates it otherwise.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 442 2024-02-08

Limitations of Copyright (Citation/Fair Use)

▶ There are limitations to the exclusivity of rights of the copyright holder. (some
things cannot be forbidden)

▶ Citation Rights: Civil law jurisdictions allow citations of (extracts of)
copyrighted works for scientific or artistic discussions. (note that the right of
attribution still applies)

▶ In the civil law tradition, there are similar rights:
▶ Definition 2.11 (Fair Use/Fair Dealing Doctrines). Case law in common law

traditions has established a fair use doctrine, which allows e.g.
▶ making safety copies of software and audiovisual data,
▶ lending of books in public libraries,
▶ citing for scientific and educational purposes, or
▶ excerpts in search engine.

Fair use is established in court on a case-by-case taking into account the
purpose (commercial/educational), the nature of the work the amount of the
excerpt, the effect on the marketability of the work.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 443 2024-02-08

14.3 Licensing

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 443 2024-02-08

Licensing: the Transfer of Rights

▶ Remember: The copyright holder has exclusive rights to a copyrighted work.
▶ In particular: All others have only fair use rights. (but we can transfer rights)
▶ Definition 3.1. A license is an authorization (by the licensor) to use the licensed

material (by the licensee).
▶ Note: a license is a regular contract (about intellectual property) that is

handled just like any other contract. (it can stipulate anything the licensor and
licensees agree on) in particular a license may
▶ involve term, territory, or renewal provisions,
▶ require paying a fee and/or proving a capability, or
▶ require to keep the licensor informed on a type of activity, and to give them the

opportunity to set conditions and limitations.
▶ Mass Licensing of Computer Software: Software vendors usually license

software under extensive end user license agreement (EULA) entered into upon
the installation of that software on a computer. The license authorizes the user
to install the software on a limited number of computers.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 444 2024-02-08

Free/Libre/Open-Source Licenses
▶ Recall: Software is treated as literary works wrt. copyright law.
▶ But: Software is different from literary works wrt. distribution channels. (and

that is what copyright law regulates)
▶ In particular: When literary works are distributed, you get all there is, software

is usually distributed in binary format, you cannot understand/cite/modify/fix it.
▶ So: Compilation can be seen as a technical means to enforce copyright. (seen

as an impediment to freedom of fair use)
▶ Recall: IP laws (in particular patent law) was introduced explicitly for two

things:
▶ incentivize innovation, (by granting exclusive exploitation rights)
▶ spread innovation. (by publishing ideas and processes)
Compilation breaks the second tenet! (and may thus stifle innovation)

▶ Idea: We should create a public domain of source code.
▶ Definition 3.2. Free/Libre/Open Source Software (FLOSS or just open source)

is software that is and licensed via licenses that ensure that its source code is
available.

▶ Almost all of the internet infrastructure is (now) FLOSS; so are the Linux and
Android operating systems and applications like OpenOffice and The GIMP.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 445 2024-02-08

GPL/Copyleft: Creating a FLOSS Public Domain?

▶ Problem: How do we get people to contribute source code to the FLOSS
public domain?

▶ Idea: Use special licenses to:
▶ allow others to use/fix/modify our source code and (derivative works)
▶ require them to release modifications to the FLOSS public domain if they do.

▶ Definition 3.3. A copyleft license is a license which requires that allows
derivative works, but requires that they be licensed with the same license.

▶ Definition 3.4. The General Public License (GPL) is a copyleft license for
FLOSS software originally written by Richard Stallman in 1989. It requires that
the source code of GPL-licensed software be made available.

▶ The GPL was the first copyleft license to see extensive use, and continues to
dominate the licensing of FLOSS software.

▶ FLOSS based development can reduce development and testing costs. (but
community involvement must be managed)

▶ Various software companies have developed successful business models based on
FLOSS licensing models. (e.g. Red Hat, Mozilla, IBM, . . .)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 446 2024-02-08

Open Content/Data via Open Licenses

▶ Recall: FLOSS licenses have created a vibrant public domain for software.
▶ How about: (not so different from software)
▶ other copyrightable works: musics, videos, literatures, technical documents.
▶ data (including research data).

▶ Idea: Adapt the FLOSS license ideas to the particular domain X ; open X .
▶ Open content: pictures, music, video, documents, . . . ; Creative Commons
▶ Open data: data from science, government, and organizations, . . .

; Open Data Commons [ODC].
▶ Open licenses for many other domains X .

▶ Why open communities grow: Open X licenses give strong incentives to join:
they
▶ incentivize other authors to extend/improve the X

; more/better X can be generate at a lower cost.
▶ generate attention to the X andrecognition for authors

; this gives alternative revenue models for authors.
▶ Open X Slogan: Publish X early, publish X often!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 447 2024-02-08

Creative Commons a System of Open Content Licenses

Definition 3.5. The Creative Commons license are
▶ ▶ a common legal vocabulary for sharing content
▶ to create a kind of “public domain” using licensing
▶ presented in three layers (human/lawyer/machine)-readable

▶ Definition 3.6. The CC licenses stipulate that (cf.
http://www.creativecommons.org)
▶ Creators retain the copyright on their works.
▶ Creators license their works to the world with under the CC provisions:
+/- attribuition (must reference the author)
+/- commercial use (can be restricted)
+/- derivative works (can allow modification)
+/- share alike (copyleft) (modifications must be donated back)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 448 2024-02-08

http://www.creativecommons.org

14.4 Information Privacy

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 448 2024-02-08

Information/Data Privacy
▶ Definition 4.1. The principle of information privacy comprises the idea that

humans have the right to control who can access their personal data.
▶ Information privacy concerns exist wherever personal data is collected and stored

– in digital form or otherwise. In particular in the following contexts:
▶ healthcare records,
▶ criminal justice investigations and proceedings,
▶ financial institutions and transactions,
▶ biological traits, such as ethnicity or genetic material, and
▶ residence and geographic records.

▶ Information privacy is becoming a growing concern with the advent of the
internet and web search engines that make access to information easy and
efficient.

▶ The “reasonable expectation of privacy” is regulated by special laws.
▶ These laws differ considerably by jurisdiction; The EU has particularly stringent

regulations. (and you are subject to these.)
▶ Intuition: Acquisition and storage of personal data is only legal for the

purposes of the respective transaction, must be minimized, and distribution of
personal data is generally forbidden with few exceptions. Users have to be
informed about collection of personal data.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 449 2024-02-08

The General Data Protection Regulation (GDPR)

▶ Definition 4.2. The General Data Protection Regulation (GDPR) is a EU
regulation created in 2016 to harmonize information privacy regulations within
Europe.
The GDPR applies to data controllers, i.e organizations that process personal
data of EU citizens (the data subjects).

▶ Remark: The GDPR sanctions violations to its mandates with substantial
punishments up to 20€ or 4% of annual worldwide turnover.

▶ Remark 4.3. As an EU regulation, the GDPR is directly effective in all EU
member countries. (enforced since 2018)

▶ Axiom 4.4. The GDPR applies to data controllers outside the EU, iff they
1. offer goods or services to EU citizens, or
2. monitor their behavior.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 450 2024-02-08

Organizational Measures for Information Privacy (GDPR)

▶ Definition 4.5. Physical access control: Unauthorized persons may not be
granted physical access to data processing equipment that process personal
data. (; locks, access control systems)

▶ Definition 4.6. System access control: Unauthorized users may not use systems
that process personal data. (; passwords, firewalls, . . .)

▶ Definition 4.7. Information access control: Users may only access those data
they are authorized to access. (; access control lists, safe boxes for storage
media, encryption)

▶ Definition 4.8. Data transfer control: Personal data may not be copied during
transmission between systems. (; encryption)

▶ Definition 4.9. Input control: It must be possible to review retroactively who
entered, changed, or deleted personal data. (; authentication, journaling)

▶ Definition 4.10. Availability control: Personal data have to be protected
against loss and accidental destruction. (; physical/building safety, backups)

▶ Definition 4.11. Obligation of separation: Personal data that was acquired for
separate purposes has to be processed separately.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 451 2024-02-08

Personally Data (GDPR)
▶ Definition 4.12. A person is called identifiable if it can be identified by a direct

identifier (e.g., passport information) that can identify a person uniquely, or a
combination of one or more quasi-identifiers, i.e. factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that allow
to recognize that person; we call such a combination identifying.

▶ Definition 4.13. We collectively call direct identifiers and identifying collections
of quasi-identifiers personally identifying information (PII).

▶ Example 4.14. Quasi-identifiers include name, date of birth, race, location, . . .
▶ Definition 4.15. Personal data (also called personal information) is any

information relating to an identified or identifiable person.
▶ Example 4.16. The color name “red” by itself is not personal data, but stored

as part of a data subject’s record as their “favorite color” is personal data; it is
the connection to the person that makes it personal data, not the value itself.

▶ Axiom 4.17. Under the GDPR, any personal data a site collects must be either
anonymized, i.e. PII deleted, or pseudonymized (with the data subject’s PII
consistently replaced with aliases).

▶ Intuition: With pseudonymization data controllers can still do data analysis
that would be impossible with anonymization.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 452 2024-02-08

Customer-Service Requirements (GDPR)

▶ Visitors must be notified of data the site collects from them and explicitly
consent to that information-gathering. (This site uses cookies ; Agree)

▶ Data controllers must notify data subjects in a timely way (72h) if any of their
personal data held by the site is breached.

▶ The data controller needs to specify a data-protection officer (DPO).
▶ Data subjects have the right to have their presence on the site erased.
▶ Data subjects can request the disclosure all data the data controller collected on

them. (if the request is in writing, the answer must be on paper)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 453 2024-02-08

Chapter 15
Collaboration and Project Management

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 453 2024-02-08

15.1 Revision Control Systems

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 453 2024-02-08

15.1.1 Dealing with Large/Distributed Projects
and Document Collections

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 453 2024-02-08

Web Development Scenario

▶ Example 1.1.
1. Your boss told you to develop an interactive website.
2. You already have an early prototype.
3. You have a great idea for a new feature and you want to surprise your boss with an

even better prototype, so you have worked on it for two days.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 454 2024-02-08

Web Development Scenario

▶ Example 1.2.
1. Your boss told you to develop an interactive website.
2. You already have an early prototype.
3. You have a great idea for a new feature and you want to surprise your boss with an

even better prototype, so you have worked on it for two days.
▶ Problem 1: when you present it to your boss, she only wants the basics done.

What do you do? Idea 1: You make a copy of your file, store it away and
delete the feature from your current document.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 454 2024-02-08

Web Development Scenario

▶ Example 1.3.
1. Your boss told you to develop an interactive website.
2. You already have an early prototype.
3. You have a great idea for a new feature and you want to surprise your boss with an

even better prototype, so you have worked on it for two days.

Problem 2: What if you worked on the html, css and the .js files for the new
feature? Idea 2: You make a copy of your folder, store it away and delete the
feature from all your current documents.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 454 2024-02-08

Web Development Scenario

▶ Example 1.4.
1. Your boss told you to develop an interactive website.
2. You already have an early prototype.
3. You have a great idea for a new feature and you want to surprise your boss with an

even better prototype, so you have worked on it for two days.

Problem 3: What if you finished the basics and now your boss wants the cool
feature? Idea 3: You go to the stored-away folder, search for the code
fragments of the feature and you copy them over to the newest version of your
files.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 454 2024-02-08

Web Development Scenario

▶ Example 1.5.
1. Your boss told you to develop an interactive website.
2. You already have an early prototype.
3. You have a great idea for a new feature and you want to surprise your boss with an

even better prototype, so you have worked on it for two days.

Problem 4:
What if your boss notices that you need help programming and employs
someone? Idea 4: Your colleague will get a copy of your latest folder and
both of you work on the project. At some point you will join the most current
files and the most current code fragments.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 454 2024-02-08

Web Development Scenario

▶ Example 1.6.
1. Your boss told you to develop an interactive website.
2. You already have an early prototype.
3. You have a great idea for a new feature and you want to surprise your boss with an

even better prototype, so you have worked on it for two days.

Problem 5: Let‘s say that you use dropbox for collaboration.
▶ What if your colleague introduced a bug?
▶ What if your colleague deleted a file by accident?

Intuition: Sharing is fine, (bug) tracking not, backup is also not possible on a
broad scale.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 454 2024-02-08

How do we collaborate?

▶ Direct collaboration (the human-to-human aspect)
▶ meetings for brainstorming/conflict management
▶ calls for current hot problem solving

▶ Indirect, artefact-based collaboration (the system aspect)
▶ mails, messages, reports, links, . . . , code fragments

▶ Idea: Support by artefact-based collaboration by a computer system:
▶ Communication management
▶ Project management via issue tracking
▶ Local and distributed change management

▶ Such systems are called revision control systems a.k.a. RCS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 455 2024-02-08

Collaboration Support by RCS

▶ Revisions: A revision control system (RCS) copies snapshots of all project
changes in files/subfolders for you.

▶ Control: A RCS helps you control all collaborators’s revisions over time.
▶ Complexity is hidden
▶ Tools for browsing your project history
▶ Tools for collaborating in a project

▶ System:
▶ Repository =̂ collection of all revisions + special information (order, what, who) for

a project.
▶ You decide on which changes count toward a version e.g. code fragments in

index.html and style.css for one feature, but not your list of passwords.
▶ Committing =̂ the act of telling the RCS that you are finished (for now).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 456 2024-02-08

Architecture of Revision Control Systems

▶ Observation: We distinguish three large classes of RCS.

▶ In local RCS, a working copy uses a repository on the same machine.

▶ In a centralized RCS, the repository is on a central repository server.
▶ In a distributed RCS, working copy, use local repositories, which can

communicate change to the web server or other local repositories.

▶ We will go through these in explaining the respective features as we go along.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 457 2024-02-08

Architecture of Revision Control Systems

▶ Observation: We distinguish three large classes of RCS.

▶ In local RCS, a working copy uses a repository on the same machine.
▶ In a centralized RCS, the repository is on a central repository server.

▶ In a distributed RCS, working copy, use local repositories, which can
communicate change to the web server or other local repositories.

▶ We will go through these in explaining the respective features as we go along.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 457 2024-02-08

Architecture of Revision Control Systems

▶ Observation: We distinguish three large classes of RCS.

▶ In local RCS, a working copy uses a repository on the same machine.
▶ In a centralized RCS, the repository is on a central repository server.
▶ In a distributed RCS, working copy, use local repositories, which can

communicate change to the web server or other local repositories.

▶ We will go through these in explaining the respective features as we go along.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 457 2024-02-08

GIT as a Revision Control System for IWGS

▶ GIT is a powerful distributed revision control system.
▶ GIT is the current dominant RCS, exceeding 90% adoption in open source

projects and high utilization in industry.
▶ GIT features a well-designed set of primitive revision control actions, from

which complex behaviours can be composed.
▶ In particular,

the GIT revision control actions can implement local, centralized, and
distributed revision control.

▶ We use GIT as the model for revision control systems in IWGS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 458 2024-02-08

15.1.2 Local Revision Control: Versioning

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 458 2024-02-08

Revision Control Systems

▶ Definition 1.7. A revision control system (RCS) a software system that tracks
the change process of a document collection via a federation of repositories.
Each step in the development history is called a revision.

▶ Definition 1.8. In a RCS, users do not directly work on the repository, but on a
working copy that is synchronized with the repository.

▶ Definition 1.9. A local RCS supports the following revision control actions:

1. initialize: creates a new repository with empty head revision
(a.k.a. head).

2. checkout: given a revision identifier – by default the head
creates a new working copy from the repository.

3. add: places a file in the working copy under control of the RCS.

4. commit: transmits the differences between the head and the
working copy to the repository, which patches the head.

▶ Observation 1.10. The user’s commits determine the revisions in a RCS.
▶ Remark: Revision control systems usually store the head revision explicitly and

can compute development histories via reverse diffs.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 459 2024-02-08

Computing and Managing Differences with diff & patch
▶ Definition 1.11. diff is a file comparison utility that computes differences

between two strings or text files: the source f 1 and the target f 2. Differences
are output linewise in a diff δ(f 1, f 2).

▶ Definition 1.12. patch is a sister utility that applies a diff δ:=δ(f 1, f 2) to f 1 –
resulting in f 2; we say it patches f 1 with δ.

▶ Example 1.13. We compare two simple text files:

The quick brown
fox jumps over
the lazy dog

The quack brown

fox jumps over
the loozy dog

1c1,2
< The quick brown
−−−
> The quack brown
>
3c4
< the lazy dog
−−−
> the loozy dog

▶ Definition 1.14. A diff consists of a sequence of hunks that in turn consist of a
locator which indicates the source line number followed by the lines deleted in
the source and added in the target.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 460 2024-02-08

15.1.3 GIT as a local Revision Control System

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 460 2024-02-08

Working with GIT

▶ Observation: GIT can be used in many situations.
▶ On your Laptop: for software development
▶ Download GIT from https://git-scm.com/downloads, install (you want to use it

on your local machine)
▶ We will use GIT from the shell on your system (MacOSX or linux) or GitBash, a

shell that comes with your GIT download (Windows). (graphical front ends exist but
often hinder understanding)

▶ Test whether your installation works: git version
▶ In jupyterLab: For the IWGS homeworks.
▶ You can use the JupyterLab terminal (the resident shell)
▶ There is a visual GIT integration into JupyterLab, see the GIT logo on the left.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 461 2024-02-08

https://git-scm.com/downloads

Working with GIT (Initializing a Local Repository)

▶ Download GIT from https://qgit-scm.com/downloads, install (you want to
use it on your local machine)

▶ We will use git from the shell on your system (MacOSX or linux) or GitBash
that comes with your GIT download (Windows). (graphical front ends exist but
hinder understanding)

▶ Test whether your installation works: git version (should be ≥ 2.30)
▶ Definition 1.15. git init initializes a local repository:
▶ git init turns the current directory into a GIT working copy by adding a local

repository as a hidden .git folder.
▶ git init ⟨⟨name⟩⟩ makes working copy + local repository in the ⟨⟨name⟩⟩ subdirectory.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 462 2024-02-08

https://qgit-scm.com/downloads

Working with GIT (Staging and Committing)

▶ Overview: GIT local workflow: staging files for commit using git add

Working
Copy

Staging
Area

.git directory
(repository)

Your work here
normal file system

You collect/stage
changes locally

You commit
changes locally

add
commit

checkout

commits acts only on staged files ; git add foo.tex (GIT must know about
them)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 463 2024-02-08

Working with GIT (Staging and Committing)

▶ Basic GIT commands: (many variants and options ; study them)

git add ⟨⟨file/dir⟩⟩ stages a file or directory ⟨⟨file/dir⟩⟩
git add −−all stages all changes in the current folder
git reset HEAD ⟨⟨file/dir⟩⟩ unstages ⟨⟨file/dir⟩⟩
git commit −m’⟨⟨msg⟩⟩’ commits staged files with commit message ⟨⟨msg⟩⟩
git status gives information about the working copy.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 464 2024-02-08

An Example Git Workflow

▶ Example 1.16. A typical, elementary workflow in GIT in a shell.
> git init
Initialized empty Git repository in /tmp
> echo "1,2,3" > test.txt
> git add test.txt
> git commit −m’initializing’

> echo "1,3" > test.txt
> git status
On branch master
Changes not staged for commit:
(use "git␣add␣<file>..." to update ...
(use "git␣checkout␣−−␣<file>..." to...

modified: test.txt
no changes added to commit
(use "git␣add" and/or "git␣commit␣−a")

> git add test.txt
> git commit −m’bla’ test.txt
> echo "1,3,4" > test.txt
> git add test.txt 1,3,4 1,3,4 1,3

1,3,4 1,3

1,3 1,3 1,3

1,3 1,3 1,2.3

1,3 1,2,3

1,2,3 1,2,3 1,2,3

1,2,3 1,2,3

1,2,3

Workspace Stage Repository

change

add

change

commit

add

add

commit

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 465 2024-02-08

15.1.4 Centralized Revision Control:
Collaboration

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 465 2024-02-08

Collaboration via Centralized RCS
▶ Definition 1.17. A centralized revision control system features
▶ a single, central repository server (for current revision and reverse diffs)
▶ local working copies (asynchronous checkouts, updates, commits)

They are kept synchronized by passing around diffs and patching the repository
and working copies. Conflicts are resolved by (three-way) merge.
The revision control actions are those of a local RCS plus
▶ clone: fetch the current revision from repository server and checkout a new working

copy.
▶ pull: fetch the pending differences between the revision of the working copy and the

revision of the repository server and merges them into the working copy.
▶ push: if the working copy and the repository are based on the same revision, then

transmit the differences to the repository server and update the revision there.

fetch and push are dual operations. Just as fetch is integrated into the pull,
push is usually integrated into commit for centralized RCS.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 466 2024-02-08

Merging Differences

▶ There are basically two ways of merging the differences of files into one.
▶ Definition 1.18. In two way merge, an automated procedure tries to combine

two different files by copying over differences by guessing or asking the user.
▶ Definition 1.19. In a three way merge the files are f 1 and f 2 are assumed to be

created by changing a joint original (the parent) p by editing.
If there are hunks h1 in δ(f 1, p) and h1 in δ(f 2, p) that affect the same line in p,
then we call the pair (h1,h2) a conflict.
The result of a three way merge are two diffs µ3

i (f 1, f 2, p), which contain the
non-conflicting differences of δ(f i , p) and (representations called conflict markers
of) the conflicts.

▶ Note: In revision control systems conflicts must be resolved by choosing one of
the alternatives or creating a manually merged revision before changes can be
commited.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 467 2024-02-08

Merging Differences with merge3

▶ Definition 1.20. The merge3 tool computes a three way merge.
▶ Example 1.21. We compare two simple text files with a parent:

mine.txt your.txt parent.txt conflict marker

This is the file.
Hello

This is the file.
hello

This is the file.
hi

This is the file.
<<<<<<< mine.txt
Hello
||||||| parent.txt
hi
=======
hello
>>>>>>> your.txt

▶ Remark: The conflict markers in actual RCSs are similar, but may vary.
▶ Note: There are good visual merge3 tools that help you cope with merges.

Some text editors also have support for resolving conflict markers.
▶ Remark: There are analoga to diff and patch for other file formats, but in

practice, revision control is mostly restricted to text files.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 468 2024-02-08

Collaboration via Centralized RCS (Example)

▶ Example 1.22 (A Workflow with three Working Copies).

repository

LC1(∅) LC2(O) LC3(O + δ2)

clone O commit δ1 pull δ1 pull δ1

commit cr(δ1, δ2)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 469 2024-02-08

Collaboration via Revision Control

▶ Idea: We can use revision control for collaboration with multiple working copies.
▶ Diff-Based Collaboration: Centralized RCS takes care of the synchronization:

R19

WC 1(O17) . . .

up

ci

WC n(O19)

up
ci

▶ you can only commit, if your revision is the head (otherwise update)
▶ update merges the changes into your working copy.
▶ If there are changes on the same line, you have a conflict, which must be resolved.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 470 2024-02-08

15.1.5 GIT as a centralized RCS

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 470 2024-02-08

Recap: Centralized RCS

▶ Idea: In a centralized RCS, the repository resides on a repository server.

▶ Problem: We need some generalizations over local RCS:
▶ Identifying the repository server.
▶ Pushing and fetching over the network.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 471 2024-02-08

Working with Remote Repositories: Pushing and Pulling

▶ GIT commands for working with remote repositories
git clone ⟨⟨URI⟩⟩ clones the repos at ⟨⟨URI⟩⟩
git push ⟨⟨repos⟩⟩ ⟨⟨branch⟩⟩ pushes all commits to branch ⟨⟨branch⟩⟩ on ⟨⟨repos⟩⟩
git pull ⟨⟨repos⟩⟩ ⟨⟨branch⟩⟩ fetches and merges branch ⟨⟨branch⟩⟩ from ⟨⟨repos⟩⟩

▶ Overview: GIT centralized workflow: pushing and pulling to a remote
repository

Working
Copy

Staging
Area

.git directory
(repository)

GitLab Repository
= remote repos

Your work here
normal file system

You collect/stage
changes locally

You commit
changes locally

You push
changes remotely

add
commit push

fetchmerge

pull

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 472 2024-02-08

Working with GIT (Cloning a Remote Repository)

▶ Alternative: Clone a remote repository, i.e. git init + git pull

git clone https://gitlab.cs.fau.de/iwgs−ss19/collaboration.git
Cloning into ’collaboration’...
Username for ’https://gitlab.cs.fau.de’: yp70uzyj
Password for ’https://yp70uzyj@gitlab.cs.fau.de’:
...

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 473 2024-02-08

15.1.6 Distributed Revision Control

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 473 2024-02-08

Distributed Version Control

▶ Problems with Centralized Revision Control:
1. We can only commit when online! (but we work on the train)
2. All collaboration goes via one, central repository. (prescribes workflow)

▶ Idea: Distribute the repositories and move patches between them.
▶ Definition 1.23. We call a revision control system distributed, iff it allows

multiple repositories that can exchanged patches.
▶ Definition 1.24. We call a repository headless (or bare), if used without a

working copy.
▶ Observation: Putting a headless repository onto a web server, yields a

repository server.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 474 2024-02-08

Distributed Version Control
▶ Problems with Centralized Revision Control:

1. We can only commit when online! (but we work on the train)
2. All collaboration goes via one, central repository. (prescribes workflow)

▶ Idea: Distribute the repositories and move patches between them.

R19 headless

WC 1(Oδ
17) R1(O17)

merge

commit

. . .
fetch

push

WC n(Oδ′

19)Rn(O19)

merge

commitfetch push

merge

1. local commits to local repositories
2. all repositories created equal (flexible organization)

▶ Definition 1.25. We call a revision control system distributed, iff it allows
multiple repositories that can exchanged patches.

▶ Definition 1.26. We call a repository headless (or bare), if used without a
working copy.

▶ Observation: Putting a headless repository onto a web server, yields a
repository server.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 474 2024-02-08

Distributed Version Control
▶ Problems with Centralized Revision Control:

1. We can only commit when online! (but we work on the train)
2. All collaboration goes via one, central repository. (prescribes workflow)

▶ Idea: Distribute the repositories and move patches between them.

R19 headless

WC 1(Oδ
17) R1(O17)

merge

commit

. . .
fetch

push

WC n(Oδ′

19)Rn(O19)

merge

commitfetch push

merge

1. local commits to local repositories
2. all repositories created equal (flexible organization)

▶ Definition 1.27. We call a revision control system distributed, iff it allows
multiple repositories that can exchanged patches.

▶ Definition 1.28. We call a repository headless (or bare), if used without a
working copy.

▶ Observation: Putting a headless repository onto a web server, yields a
repository server.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 474 2024-02-08

Distributed Version Control
▶ Problems with Centralized Revision Control:

1. We can only commit when online! (but we work on the train)
2. All collaboration goes via one, central repository. (prescribes workflow)

▶ Idea: Distribute the repositories and move patches between them.

▶ Definition 1.29. We call a revision control system distributed, iff it allows
multiple repositories that can exchanged patches.

▶ Definition 1.30. We call a repository headless (or bare), if used without a
working copy.

▶ Observation: Putting a headless repository onto a web server, yields a
repository server.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 474 2024-02-08

Distributed Version Control with GIT

▶ Definition 1.31. GIT is a distributed revision control system that features
▶ local repositories for each working copy.
▶ multiple remote repositories connected to a local repository
▶ clone a remote repository ; make local repository+working copy
▶ local repository changes can be fetched from and pushed to a remote repository (the

upstream/downstream repositories).
▶ branches and forks (remote upstream repository)

▶ Software Support: Facilitates working with GIT:
▶ GitHub, a repository hosting service at http://GitHub.com (free public/private

repositories)
▶ GitLab, an open source repository management system and repository hosting

service at http://GitLab.com (free public/private repositories)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 475 2024-02-08

http://GitHub.com
http://GitLab.com

15.1.7 Working with GIT in large Projects

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 475 2024-02-08

GIT Branches and Forks

▶ GIT special commands for making, switching, and merging branches.
git branch ⟨⟨branch⟩⟩ makes a branch with name ⟨⟨name⟩⟩
git checkout ⟨⟨branch⟩⟩ switches a working copy to branch ⟨⟨branch⟩⟩
git branch −v shows all branches
git branch −d ⟨⟨branch⟩⟩ deletes branch ⟨⟨branch⟩⟩

▶ Intuition: In GIT branches are very similar to repositories, but more lightweight.
Repositories can have different permissions; branches inhert these.

▶ Fork-based Collaboration: If you want to contribute to a repository R you
have no push-rights on,
1. clone R to a new repository R′ you own (i.e. fork it; R′ is a fork of R)
2. develop your contribution on R′.
3. ask Rs owners to pull from R′ (pull request)

GIT repository management systems like GitHub and GitLab support this.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 476 2024-02-08

GitFlow: An Elaborate Development Model based on GIT

▶ Definition 1.32 (Development Model).
[Dri10] suggests GIT flow, which includes:
▶ A main branch called main that all other

branches merge into.
▶ New functionality is developed

“feature-by-feature” on feature branches.
▶ A development branch (usually called devel)

that integrates all feature branches and is
merged into master once the integrated
functionality is stable.

▶ (possibly) release branches for every release;
they collect bugfixes, but no new features.

▶ Most large software development projects
adopt aspects of GIT flow.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 477 2024-02-08

15.2 Working with GIT and GitLab/GitHub

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 477 2024-02-08

Working with GitLab/GitHub

▶ GIT it sufficient to set up a remote repository. (but tedious [CS14, chapter 4])
▶ Idea: Use a GIT repository manager like GitLab/GitHub (we use GitLab)
▶ Definition 2.1. A repository management system is an web application that

supports the administration of a repository server and manages authentication
and authorization.

▶ Example 2.2. GitLab is an open source repository management system and
repository hosting service at http://GitLab.com. (free public/private
repositories)

▶ Definition 2.3. A repository hosting service is a web based repository
management system that also offers storage space for repositories.

▶ Example 2.4. GitHub is a repository hosting service at http://GitHub.com
(free public repositories)
GitHub is now the default hosting service for open source software development,
it hosts more than 190 Million repositories (March 2020).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 478 2024-02-08

http://GitLab.com
http://GitHub.com

Working with GitLab/GitHub (continued)

▶ Definition 2.5. Often, repository management systems organize repositories
(called projects in GitLab) hierarchically into groups (also called namespace)
and provide a personal group to all users.

▶ Concretely: we use the FAU GitLab: https://gitlab.cs.fau.de
1. sign in with the FAU Single Sign On (aka. IDM account)
2. this makes an account there and gives you a personal group

https://gitlab.cs.fau.de/⟨⟨SSID⟩⟩
3. IWGS has a course group https://gitlab.cs.fau.de/iwgs-ss19 (the course

project goes there)
4. Note that the SSO credentials are only for log in! You will have to set a

password (or upload an SSH Key, see below) seperately to push. Using the SSO
credentials for authentication during push will not work!

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 479 2024-02-08

https://gitlab.cs.fau.de
https://gitlab.cs.fau.de/users/auth/saml
https://gitlab.cs.fau.de/
https://gitlab.cs.fau.de/iwgs-ss19
https://gitlab.cs.fau.de/users/auth/saml

Making Repositories on GitLab

▶ Make a new project with , play with it (you can always delete it)
▶ Definition 2.6. Group/project visibility can be one of three states:
▶ Private: Project access must be granted explicitly to each user.
▶ Internal: The project can be accessed by any authenticated user.
▶ Public: The project can be accessed without any authentication.

Private and public make most sense in our setting.
▶ Exercise: Make a repository, clone it locally, add a file to it, commit that, let

your friends clone/change/commit it, merge their changes, . . . (see the
homework)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 480 2024-02-08

Using GitLab for the IWGS Project

▶ Make a in a member

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 481 2024-02-08

Authorization in GitLab: Managing Access Permissions

▶ Definition 2.7. Authorization refers to a set of rules that determine who is
allowed to do what.

▶ Definition 2.8. Authorization is often operationalized by assigning permission
levels and binding the authorization to execute particular interactions to
permission levels.

▶ Definition 2.9. GitLab has five permission levels for repositories:
1. guests can clone and see/report issues . . .
2. reporters can also assign issues . . .
3. developers can also push, create branches . . .
4. maintainers can also assign permission levels . . .
5. owners can also delete repository . . .

▶ Intuition: In a public repository, everyone is guest, in a internal one, logged in
users are.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 482 2024-02-08

15.3 Excursion: Authentication with SSH

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 482 2024-02-08

Authentication

▶ Definition 3.1. Authentication is the process of ascertaining that somebody
really is who they claim to be.

▶ Definition 3.2. Authentication can be performed by assertaining an
authentication factor, i.e. testing for something the user
▶ knows, e.g. a password or answer to a security question – kwowledge factor
▶ has, e.g. an ID card, key, implanted device, software token, – ownership factorx
▶ is or does, e.g. a fingerprint, retinal pattern, DNA sequence, or voice – inheritance

factor.
▶ Note: Password authentication is known to be problematic. (and you have to

remember/type it)
▶ One Problem: Server and user must both know the password to authenticate

passwords are symmetric keys: the server can leak them.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 483 2024-02-08

Authentication by Cryptographic Public Keys

▶ Definition 3.3. Cryptography is the practice of transmitting a plain text t by
encoding it into a cipher text t ′, to hide its content from anyone but the
legitimate reciever who can decode t ′ to t.

▶ Definition 3.4. Public key cryptography split the key into an encode key e and
a decode key d
▶ key e can encode a text t to t′, but only d can decode t′ to t.

▶ Definition 3.5 (Public Key Authentication). built into the SSH
communication protocol.
1. user generates key pair (e,d), deposits d on server as certificate, keeps e secret.
2. user encodes a text t with e to t′ send t + t′ to server
3. server decodes t′ to t′′ with d and verifies t = t′′ ; OK, iff t = t′′.

▶ Advantage: Passwords canot be leaked, need not be transmitted, retyped.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 484 2024-02-08

Working with GIT (Cloning a Remote Repository with SSH)

▶ Alternative: Clone a remote repository via SSH URL

kohlhase$ git clone git@gitlab.cs.fau.de:iwgs−ss19/collaboration.git
Cloning into ’collaboration’...
remote: Enumerating objects: 12, done.
remote: Counting objects: 100% (12/12), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 12 (delta 1), reused 0 (delta 0)
Receiving objects: 100% (12/12), done.
Resolving deltas: 100% (1/1), done.

▶ But we need a key pair for this to work.
Go to https://gitlab.cs.fau.de/profile/keys and follow the instructions
there
▶ essentially: generate a key pair, copy one into GitLab.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 485 2024-02-08

https://gitlab.cs.fau.de/profile/keys

15.4 Bug/Issue Tracking Systems

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 485 2024-02-08

Bug/Issue Tracking Systems

▶ Definition 4.1. An issue tracker (also called issue tracking system simply
bugtracker) is a software application that keeps track of reported issues i.e.
software bugs, tasks, and feature requests – in software development projects.

▶ Example 4.2. There are many open-source and commercial bugtrackers
▶ bugzilla: http://bugzilla.org (Mozilla’s bugtracker)
▶ TRAC: http://trac.edgewall.org (mostly for Subversion)
▶ GitHub: http://github.com (probably the most used)
▶ GitLab: http://gitlab.com (open source version of GitHub)
▶ JIRA: https://www.atlassian.com/software/jira (proprietary)

▶ Most bugtrackers are web applications and also integrate a wiki and integrate a
revision control system via extended markdown.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 486 2024-02-08

http://bugzilla.org
http://trac.edgewall.org
http://github.com
http://gitlab.com
https://www.atlassian.com/software/jira

The Anatomy of an Issue

▶ Definition 4.3. An issue (or bug report) specifies
▶ title: a short and descriptive overview (one line)
▶ description: a precise description of the expected and actual behavior, giving exact

reference to the component, version, and environment in which the bug occurs.(bugs
must be reproducible and localizable)

▶ issue metadata: who, when, what, why, state, . . . (see below)
▶ conversation: a forum like facility for disussing an issue.
▶ attachment: e.g. a screen shot, set of inputs, etc.

▶ Definition 4.4. A feature request is an issue that only specifies the expected
behavior and proposes ways of implementing that.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 487 2024-02-08

Markdown a simple Markup Format Generating HTML

.
▶ Idea: We can translate between markup formats.
▶ Definition 4.5. Markdown is a family of markup formats whose control words

are unobtrusive and easy to write in a text editor. It is intended to be converted
to HTML and other formats for display.

▶ Example 4.6. Markdown is used in applications that want to make user input
easy and efficient, e.g. wikis and issue tracking systems.

▶ Workflow: Users write markdown, which is formatted to HTML and then
served for display.

▶ A good cheet-sheet for markdown control words can be found at https:
//github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 488 2024-02-08

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Markdown a simple Markup Language Generating HTML

▶ Example 4.7. We show the most important Markdown commands.
Markdown syntax Generated HTML
Heading
Sub−heading
Another deeper heading

Paragraphs are separated
by a blank line.

Two spaces at the end of a
line leave a line break.

Text attributes _italic_,
∗∗bold∗∗, ‘monospace‘.

Bullet list:
∗ apples
∗ oranges
∗ pears

Numbered list:
1. apples
2. oranges
3. pears

A [link](http://example.com).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 489 2024-02-08

Markdown a simple Markup Language Generating HTML

▶ Example 4.8. We show the most important Markdown commands.
Markdown syntax Generated HTML
Heading
Sub−heading
Another deeper heading

Paragraphs are separated
by a blank line.

Two spaces at the end of a
line leave a line break.

Text attributes _italic_,
∗∗bold∗∗, ‘monospace‘.

Bullet list:
∗ apples
∗ oranges
∗ pears

Numbered list:
1. apples
2. oranges
3. pears

A [link](http://example.com).

<h1>Heading</h1>
<h2>Sub−heading</h2>
<h3>Another deeper heading</h3>
<p>Paragraphs are separated by a blank line.</p>
<p>Two spaces at the end of a

line leave a
 line break.</p>
<p>Text attributes italic,
bold,
<code>monospace</code>.</p>
<p>Bullet list:</p>

apples
oranges
pears

<p>Numbered list:</p>

apples
oranges
pears

<p>A link.</p>

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 489 2024-02-08

GitHub flavored markdown: Tracker Specific Extensions

▶ Remark 4.9. Source code hosting systems offer special extensions for referencing
their components.

▶ Definition 4.10. GitHub flavored markdown (GFM) is a markdown dialect
extended for the use in GIT-based issue tracking systems; see [Gfm] for the
specification.

▶ Example 4.11. GitHub/GitLab recognize most of GFM, most usefully
▶ @foo for team members (@all for all project members), e.g. cc: @miko
▶ #123 for issues, e.g. depends on #4711
▶ !123 for merge requests, e.g. but merge #19 first
▶ $123 for code snippets, e.g. see $123 for an example usage
▶ 1234567 for commits, e.g. fixed by 4c0decb yesterday.
▶ [file](path/to/file) for file references,

e.g. as we see in [pre.tex](../lib/pre.tex)
▶ Observation 4.12. Very useful for project planning and reporting in GitLab

and GitHub.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 490 2024-02-08

Issues – How to Write a Good One

▶ The descriptions or issues should be concise, but describe all pertinent aspects
of the situation leading to the unexpected behavior.

▶ Example 4.13 (A bad bug report description).My browser crashed. I think I
was on foo.com. I think that this is a really bad problem and you should fix it or
else nobody will use your browser.

▶ Example 4.14 (A good one).I crash each time I go to foo.com (Mozilla build
20000609, Win NT 4.0SP5). This link will crash Firefox reproducibly unless you
remove the border=0 attribute:

▶ Remember: Developers are also human (try to minimize their work)
Think about what would help you understand and reproduce the problem.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 491 2024-02-08

Bugtracker Workflow

▶ Definition 4.15 (Typical Workflow). supported by all bugtrackers
▶ user reports issue (files report in the system)
▶ other users extend/discuss/up/downvote issue
▶ QA engineer triages issues by classification, remove duplicates, identify

dependencies, tie to component, . . . and assign to developer.
▶ developer accept or reassigns issue (fixes who is responsible primarily)
▶ project planning by identification of sub-issues, dependencies (new issues)
▶ bug fixing (design, implementation, testing)
▶ issue landing (sign-off, integration into code base)
▶ release of the fix (in the next revision)
▶ QA engineer or developer closes issue

▶ Observation 4.16. An issue tracker can serve as a full blown project planning
system, if used accordingly.

▶ Definition 4.17. For timing work plans, most issue trackers provide milestones
that issues can be targeted to.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 492 2024-02-08

Administrative Metadata for Issues

▶ To make the issue based workflows work we need data.
▶ Definition 4.18 (Administrative Metadata). Issue metadata can specify
▶ issue number: for referencing with e.g. #15
▶ an assignee: a developer currently responsible
▶ participants: people who get notified of changes/comments
▶ labels: for specializing bug search
▶ a state: e.g. one of new, assigned, fixed/closed, reopened.
▶ a resolution for fixed bugs, e.g.
▶ FIXED: source updated and tested
▶ INVALID: not a bug in the code
▶ WONTFIX: “feature”, not a bug
▶ DUPLICATE: already reported elsewhere; include reference
▶ WORKSFORME: couldn’t reproduce issue

▶ dependencies: which issues does this one depend on/block?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 493 2024-02-08

Chapter 16
What did we learn in IWGS?

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 493 2024-02-08

Outline of IWGS 1:

▶ Programming in Python: (main tool in IWGS)
▶ Systematics and culture of programming
▶ Program and control structures
▶ Basic data strutures like numbers and strings, character encodings, unicode, and

regular expressions
▶ Digital documents and document processing:
▶ text files
▶ markup systems, HTML, and CSS
▶ XML: Documents are trees.

▶ Web technologies for interactive documents and web applications
▶ internet infrastructure: web browsers and servers
▶ serverside computing: bottle routing and
▶ client-side interaction: dynamic HTML, JavaScript, HTML forms

▶ Web application project (fill in the blanks to obtain a working web app)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 494 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage

▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

Outline of IWGS-II:

▶ Databases
▶ CRUD operations, querying, and python embedding
▶ XML and JSON for file based data storage

▶ BooksApp: a Books Application with persistent storage
▶ Image processing
▶ Basics
▶ Image transformations, Image Understanding

▶ Ontologies, semantic web, and WissKI
▶ Ontologies (inference ; get out more than you put in)
▶ semantic web Technologies (standardize ontology formats and inference)
▶ Using semantic web Tech for cultural heritage research data ; the WissKI System

▶ Legal Foundations of Information Systems
▶ Copyright & Licensing
▶ Data Protection (GDPR)

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

References I

[All18] Jay Allen. New User Tutorial: Basic Shell Commands. 2018. url:
https://www.liquidweb.com/kb/new-user-tutorial-basic-
shell-commands/ (visited on 10/22/2018).

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform
Resource Identifier (URI): Generic Syntax. RFC 3986. Internet
Engineering Task Force (IETF), 2005. url:
http://www.ietf.org/rfc/rfc3986.txt.

[CC] CIDOC CRM - The CIDOC Conceptual Reference Model. url:
http://www.cidoc-crm.org/ (visited on 07/13/2020).

[CQ69] Allan M. Collins and M. Ross Quillian. “Retrieval time from semantic
memory”. In: Journal of verbal learning and verbal behavior 8.2
(1969), pp. 240–247. doi: 10.1016/S0022-5371(69)80069-1.

[CS14] Scott Chacon and Ben Straub. Pro Git. 2nd Edition. APress, 2014.
isbn: 978-1484200773. url: https://git-scm.com/book/en/v2.

[CSS] CSS Specificity. url: https://en.wikipedia.org/wiki/
Cascading_Style_Sheets#Specificity (visited on 12/03/2018).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

https://www.liquidweb.com/kb/new-user-tutorial-basic-shell-commands/
https://www.liquidweb.com/kb/new-user-tutorial-basic-shell-commands/
http://www.ietf.org/rfc/rfc3986.txt
http://www.cidoc-crm.org/
https://doi.org/10.1016/S0022-5371(69)80069-1
https://git-scm.com/book/en/v2
https://en.wikipedia.org/wiki/Cascading_Style_Sheets#Specificity
https://en.wikipedia.org/wiki/Cascading_Style_Sheets#Specificity

References II

[Dri10] Vincent Driessen. A successful Git branching model. online at http:
//nvie.com/posts/a-successful-git-branching-model/. 2010.
url:
http://nvie.com/posts/a-successful-git-branching-model/
(visited on 03/19/2015).

[Ecm] ECMAScript Language Specification. ECMA Standard. 5th Edition.
Dec. 2009.

[ECRMa] erlangen-crm. url: https://github.com/erlangen-crm (visited on
07/13/2020).

[ECRMb] Erlangen CRM/OWL - An OWL DL 1.0 implementation of the
CIDOC Conceptual Reference Model (CIDOC CRM). url:
http://erlangen-crm.org/ (visited on 07/13/2020).

[FAIR18] European Commission Expert Group on FAIR Data. Turning FAIR
into reality. 2018. doi: 10.2777/1524.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/erlangen-crm
http://erlangen-crm.org/
https://doi.org/10.2777/1524

References III

[Fie+99] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616. Internet Engineering Task Force (IETF), 1999. url:
http://www.ietf.org/rfc/rfc2616.txt.

[FOAF14] FOAF Vocabulary Specification 0.99. Namespace Document. The
FOAF Project, Jan. 14, 2014. url: http://xmlns.com/foaf/spec/.

[Gfm] GitHub Flavored Markdown Spec. url:
https://github.github.com/gfm/ (visited on 05/10/2020).

[GN] Geonames. url: https://www.geonames.org/ (visited on
07/29/2020).

[GND] DNB – The Integrated Authority File (GND). url: https://www.dnb.
de/EN/Professionell/Standardisierung/GND/gnd_node.html
(visited on 07/29/2020).

[Her+13] Ivan Herman et al. RDFa 1.1 Primer – Second Edition. Rich
Structured Data Markup for Web Documents. W3C Working Goup
Note. World Wide Web Consortium (W3C), Apr. 19, 2013. url:
http://www.w3.org/TR/xhtml-rdfa-primer/.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

http://www.ietf.org/rfc/rfc2616.txt
http://xmlns.com/foaf/spec/
https://github.github.com/gfm/
https://www.geonames.org/
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
https://www.dnb.de/EN/Professionell/Standardisierung/GND/gnd_node.html
http://www.w3.org/TR/xhtml-rdfa-primer/

References IV

[Hic+14] Ian Hickson et al. HTML5. A Vocabulary and Associated APIs for
HTML and XHTML. W3C Recommentation. World Wide Web
Consortium (W3C), Oct. 28, 2014. url:
http://www.w3.org/TR/html5/.

[JS] json – JSON encoder and decoder. url:
https://docs.python.org/3/library/json.html (visited on
04/16/2021).

[Kar] Folgert Karsdorp. Python Programming for the Humanities. url:
http://www.karsdorp.io/python-course/ (visited on
10/14/2018).

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C Recommendation. World
Wide Web Consortium (W3C), Feb. 10, 2004. url:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for
mathematical documents [Version 1.2]. LNAI 4180. Springer Verlag,
Aug. 2006. url: http://omdoc.org/pubs/omdoc1.2.pdf.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

http://www.w3.org/TR/html5/
https://docs.python.org/3/library/json.html
http://www.karsdorp.io/python-course/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://omdoc.org/pubs/omdoc1.2.pdf

References V

[LM] LabelMe: the open annotation tool. url:
http://labelme.csail.mit.edu (visited on 08/28/2020).

[LP] Learn Python – Free Interactive Python Tutorial. url:
https://www.learnpython.org/ (visited on 10/24/2018).

[LXMLa] lxml – XML and HTML with Python. url: https://lxml.de (visited
on 12/09/2019).

[LXMLb] lxml API. url: https://lxml.de/api/ (visited on 12/09/2019).

[Nor+18a] Emily Nordmann et al. Lecture capture: Practical recommendations
for students and lecturers. 2018. url:
https://osf.io/huydx/download.

[Nor+18b] Emily Nordmann et al. Vorlesungsaufzeichnungen nutzen: Eine
Anleitung für Studierende. 2018. url:
https://osf.io/e6r7a/download.

[ODC] Open Data Commons – Legal Tools For Open Data. url:
https://opendatacommons.org/ (visited on 07/29/2020).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

http://labelme.csail.mit.edu
https://www.learnpython.org/
https://lxml.de
https://lxml.de/api/
https://osf.io/huydx/download
https://osf.io/e6r7a/download
https://opendatacommons.org/

References VI

[OWL09] OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation. World Wide Web Consortium
(W3C), Oct. 27, 2009. url:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

[P3D] Python 3 Documentation. url: https://docs.python.org/3/
(visited on 09/02/2014).

[Pro] Protégé. Project Home page at http://protege.stanford.edu.
url: http://protege.stanford.edu.

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. 4 (2003).
Gabler Verlag, 1997.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. W3C Recommendation. World Wide Web Consortium
(W3C), Jan. 15, 2008. url: http://www.w3.org/TR/2008/REC-
rdf-sparql-query-20080115/.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
https://docs.python.org/3/
http://protege.stanford.edu
http://protege.stanford.edu
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

References VII

[Pyt] re – Regular expression operations. online manual at
https://docs.python.org/2/library/re.html. url:
https://docs.python.org/2/library/re.html.

[Sth] A Beginner’s Python Tutorial. http://www.sthurlow.com/python/.
seen 2014-09-02. url: http://www.sthurlow.com/python/.

[STPL] Simple Template Engine. url:
https://bottlepy.org/docs/dev/stpl.html (visited on
12/08/2018).

[SUMO] Suggested Upper Merged Ontology. url:
http://www.adampease.org/OP/ (visited on 01/25/2019).

[Swe13] Al Sweigart. Invent with Python: Learn to program by making
computer games. 2nd ed. online at http://inventwithpython.com.
2013. isbn: 978-0-9821060-1-3. url: http://inventwithpython.com.

[UL] urllib – URL handling modules. url:
https://docs.python.org/3/library/urllib.html (visited on
04/15/2021).

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
http://www.sthurlow.com/python/
http://www.sthurlow.com/python/
https://bottlepy.org/docs/dev/stpl.html
http://www.adampease.org/OP/
http://inventwithpython.com
http://inventwithpython.com
https://docs.python.org/3/library/urllib.html

References VIII

[WH] WissKI Handbuch. url:
http://wiss-ki.eu/documentation/wisski_handbuch (visited
on 07/23/2020).

[Wil+16] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific
data management and stewardship”. In: Scientific Data 3 (2016). doi:
10.1038/sdata.2016.18.

[Xam] apache friends - Xampp.
http://www.apachefriends.org/en/xampp.html. url:
http://www.apachefriends.org/en/xampp.html.

Michael Kohlhase: Inf. Werkzeuge @ G/SW 2 495 2024-02-08

http://wiss-ki.eu/documentation/wisski_handbuch
https://doi.org/10.1038/sdata.2016.18
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

	1 Preliminaries
	1.1 Administrativa
	1.2 Goals, Culture, & Outline of the Course

	1 IWGS-1: Programming, Documents, Web Applications
	2 Introduction to Programming
	2.1 What is Programming?
	2.2 Programming in courseacronym
	2.3 Programming in Python
	2.3.1 Hello courseacronym
	2.3.2 JupyterLab, a Python Web IDE for IWGS
	2.3.3 Variables and Types
	2.3.4 Python Control Structures

	2.4 Some Thoughts about Computers and Programs
	2.5 More about Python
	2.5.1 Sequences and Iteration
	2.5.2 Input and Output
	2.5.3 Functions and Libraries in Python
	2.5.4 A Final word on Programming in courseacronym

	3 Numbers, Characters, and Strings
	3.1 Representing and Manipulating Numbers
	3.2 Characters and their Encodings: ASCII and UniCode
	3.3 More on Computing with Strings
	3.4 More on Functions in Python
	3.5 Regular Expressions: Patterns in Strings

	4 Documents as Digital Objects
	4.1 Representing & Manipulating Documents on a Computer
	4.2 Measuring Sizes of Documents/Units of Information
	4.3 Hypertext Markup Language
	4.3.1 Introduction
	4.3.2 Interacting with HTML in Web Broswers
	4.3.3 A Worked Example: The Contact Form

	4.4 Documents as Trees
	4.5 An Overview over XML Technologies
	4.5.1 Introduction to XML
	4.5.2 Computing with XML in Python
	4.5.3 XML Namespaces
	4.5.4 XPath: Specifying XML Subtrees

	5 Web Applications
	5.1 Web Applications: The Idea
	5.2 Basic Concepts of the World Wide Web
	5.2.1 Preliminaries
	5.2.2 Addressing on the World Wide Web
	5.2.3 Running the World Wide Web

	5.3 Recap: HTML Forms Data Transmission
	5.4 Generating HTML on the Server
	5.4.1 Routing and Argument Passing in Bottle
	5.4.2 Templating in Python via STPL
	5.4.3 Completing the Contact Form

	6 Frontend Technologies
	6.1 Dynamic HTML: Client-side Manipulation of HTML Documents
	6.1.1 JavaScript in HTML

	6.2 Cascading Stylesheets
	6.2.1 Separating Content from Layout
	6.2.2 A small but useful Fragment of CSS
	6.2.3 CSS Tools
	6.2.4 Worked Example: The Contact Form

	6.3 JQuery: Write Less, Do More
	6.4 Web Applications: Recap

	7 What did we learn in IWGS-1?

	2 IWGS-II: DH Project Tools
	8 Semester Change-Over
	8.1 Administrativa

	9 Databases
	9.1 Introduction
	9.2 Relational Databases
	9.3 SQL – A Standardized Interface to RDBMS
	9.4 ER-Diagrams and Complex Database Schemata
	9.5 RDBMS in Python
	9.6 Excursion: Programming with Exceptions in Python
	9.7 Querying and Views in SQL
	9.8 Querying via Python
	9.9 Real-Life Input/Output: XML and JSON

	10 Project: A Web GUI for a Books Database
	10.1 A Basic Web Application
	10.2 Access Control and Management
	10.3 Asynchronous Loading in Modern Web Apps
	10.4 Deploying the Books Application as a Program

	11 Image Processing
	11.1 Basics of Image Processing
	11.1.1 Image Representations
	11.1.2 Basic Image Processing in Python
	11.1.3 Edge Detection
	11.1.4 Scalable Vector Graphics

	11.2 Project: An Image Annotation Tool
	11.3 Fun with Image Operations: CSS Filters

	12 Ontologies, Semantic Web for Cultural Heritage
	12.1 Documenting our Cultural Heritage
	12.2 Systems for Documenting the Cultural Heritage
	12.3 The Semantic Web
	12.4 Semantic Networks and Ontologies
	12.5 CIDOC CRM: An Ontology for Cultural Heritage
	12.6 The Semantic Web Technology Stack
	12.7 Ontologies vs. Databases

	13 The WissKI System: A Virtual Research Environment for Cultural Heritage
	13.1 WissKI extends Drupal
	13.2 Dealing with Ontology Paths: The WissKI Pathbuilder
	13.3 The WissKI Link Block
	13.4 Cultural Heritage Research: Querying WissKI Resources
	13.5 Application Ontologies in WissKI
	13.6 The Linked Open Data Cloud

	14 Legal Foundations of Information Technology
	14.1 Intellectual Property
	14.2 Copyright
	14.3 Licensing
	14.4 Information Privacy

	15 Collaboration and Project Management
	15.1 Revision Control Systems
	15.1.1 Dealing with Large/Distributed Projects and Document Collections
	15.1.2 Local Revision Control: Versioning
	15.1.3 GIT as a local Revision Control System
	15.1.4 Centralized Revision Control: Collaboration
	15.1.5 GIT as a centralized RCS
	15.1.6 Distributed Revision Control
	15.1.7 Working with GIT in large Projects

	15.2 Working with GIT and GitLab/GitHub
	15.3 Excursion: Authentication with SSH
	15.4 Bug/Issue Tracking Systems

	16 What did we learn in IWGS?
	References

