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Preface

This document contains selected homework and self-study problems for the course General Com-
puter Science I/II held at Jacobs University Bremen1 in the academic years 2003-2012. It is meant
as a supplement to the course notes [Koh11a, Koh11b]. We try to keep the numbering consistent
between the documents.

This document contains the solutions to the problems, it should only be used for checking one’s
own solutions or to learn proper formulations. There is also a version without solutions [Koh11c,
Koh11d], which is intended for self-study and practicing the concepts introduced in class.

This document is made available for the students of this course only. It is still a draft, and will
develop over the course of the course. It will be developed further in coming academic years.
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Zholudev have acted as lead teaching assistants for the course, have contributed many of the initial
problems and organized them consistently. Throughout the time I have tought the course, the
teaching assistants (most of them Jacobs University undergraduates; see below) have contributed
new problems and sample solutions, have commented on existing problems and refined them.

GenCS Teaching Assistants: The following Jacobs University students have contributed prob-
lems while serving as teaching assiatants over the years: Darko Pesikan, Nikolaus Rath, Flo-
rian Rabe, Andrei Aiordachioaie, Dimitar Asenov, Alen Stojanov, Felix Schlesinger, Ştefan Anca,
Anca Dragan, Vladislav Perelman, Josip Djolonga, Lucia Ambrošová, Flavia Grosan, Christoph
Lange, Ankur Modi, Gordan Ristovski, Darko Makreshanski, Teodora Chitiboj, Cristina Stancu-
Mara, Alin Iacob, Vladislav Perelman, Victor Savu, Mihai Cotizo Sima, Radu Cimpeanu, Mihai
Cr̂lǎnaru, Maria Alexandra Alecu, Miroslava Georgieva Slavcheva, Corneliu-Claudiu Prodescu,
Flavia Adelina Grosan, Felix Gabriel Mance, Anton Antonov, Alexandra Zayets, Ivaylo Enchev.
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0.1 Getting Started with “General Computer Science”

0.1.1 Overview over the Course

This should pose no problems

0.1.2 Administrativa

Neither should the administrativa

0.1.3 Motivation and Introduction

Problem 0.1 (Algorithms)
One of the most essential concepts in computer science is the Algorithm.

• What is the intuition behind the term “algorithm”.

• What determines the quality of an algorithm?

• Give an everyday example of an algorithm.

Solution:

• An algorithm is a series of instructions to control a (computation) process.

• Termination, correctness, performance

• e. g. a recipe

Problem 0.2 (Keywords of General Computer Science)
Our course started with a motivation of ”General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a
short explanation.

Solution:

• Algorithms are abstract representations of computation instructions

• Data are representations of the objects the computations act on

• Machines are representations of the devices the computations run on

Problem 0.3 (Representations)
An essential concept in computer science is the Representation.

• What is the intuition behind the term “representation”?

• Why do we need representations?

• Give an everyday example of a representation.

Solution:

• A representation is the realization of real or abstract persons, objects, circumstances, Events, or
emotions in concrete symbols or models. This can be by diverse methods, e.g. visual, aural, or
written; as three-dimensional model, or even by dance.

• we should always be aware, whether we are talking about the real thing or a representation of it.
Allows us to abstract away from unnecessary details. Easy for computer to operate with

• e.g. graph is a representation of a maze from the lecture notes
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0.2 Motivation and Introduction

Problem 0.4 (Algorithms)
One of the most essential concepts in computer science is the Algorithm.

• What is the intuition behind the term “algorithm”.

• What determines the quality of an algorithm?

• Give an everyday example of an algorithm.

Solution:

• An algorithm is a series of instructions to control a (computation) process.

• Termination, correctness, performance

• e. g. a recipe

Problem 0.5 (Keywords of General Computer Science)
Our course started with a motivation of ”General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a
short explanation.

Solution:

• Algorithms are abstract representations of computation instructions

• Data are representations of the objects the computations act on

• Machines are representations of the devices the computations run on

Problem 0.6 (Representations)
An essential concept in computer science is the Representation.

• What is the intuition behind the term “representation”?

• Why do we need representations?

• Give an everyday example of a representation.

Solution:

• A representation is the realization of real or abstract persons, objects, circumstances, Events, or
emotions in concrete symbols or models. This can be by diverse methods, e.g. visual, aural, or
written; as three-dimensional model, or even by dance.

• we should always be aware, whether we are talking about the real thing or a representation of it.
Allows us to abstract away from unnecessary details. Easy for computer to operate with

• e.g. graph is a representation of a maze from the lecture notes

1 Representation and Computation

1.1 Elementary Discrete Math

1.1.1 Mathematical Foundations: Natural Numbers
25pt

Problem 1.1 (A wrong induction proof)
What is wrong with the following “proof by induction”?

Theorem: All students of Jacobs University have the same hair color.

Proof: We prove the assertion by induction over the number n of students at Jacobs
University.

base case: n = 1. If there is only one student at Jacobs University, then the assertion is
obviously true.
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step case: n > 1. We assume that the assertion is true for all sets of n students and
show that it holds for sets of n+ 1 students. So let us take a set S of n+ 1 students. As
n > 1, we can choose students s ∈ S and t ∈ S with s 6= t and consider sets Ss = S\{s}
and St := S\{t}. Clearly, #(Ss) = #(St) = n, so all students in Ss and have the same
hair-color by inductive hypothesis, and the same holds for St. But S = Ss ∪ St, so any
u ∈ S has the same hair color as the students in Ss ∩ St, which have the same hair color
as s and t, and thus all students in S have the same hair color

Solution:

The problem with the proof is that the inductive step should also cover the case when n = 1, which
it doesn’t. The argument relies on the fact that there intersection of Ss and St is non-empty, giving a
mediating element that has the same hair color as s and t. But for n = 1, S = {s, t}, and Ss = {t}, and
St = {s}, so Ss ∩ St = ∅.
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Problem 1.2 (Natural numbers)
Prove or refute that s(s(o)) and s(s(s(o))) are unary natural numbers and that their successors
are different.

Solution:
Proof : We will prove the statement using the Peano axioms:

P.1 o is a unary natural number (axiom P1)

P.2 s(o) is a unary natural number (axiom P2 and 1.)

P.3 s(s(o)) is a unary natural number (axiom P2 and 2.)

P.4 s(s(s(o))) is a unary natural number (axiom P2 and 3.)

P.5 Since s(s(s(o))) is the successor of s(s(o)) they are different unary natural numbers (axiom P2)

P.6 Since s(s(s(o))) and s(s(o)) are different unary natural numbers their successors are also different
(axiom P4 and 5.)

4



Problem 1.3 (Peano’s induction axiom)
State Peano’s induction axiom and discuss what it can be used for.

Solution: Peano’s induction axiom: Every unary natural number possesses property P , if

• the zero has property P and

• the successor of every unary natural number that has property P also possesses property P

Peano’s induction axiom is useful to prove that all natural numbers possess some property. In practice
we often use the axiom to prove useful equalities that hold for all natural numbers (e.g. binomial theorem,
geometric progression).
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1.1.2 Naive Set Theory
25pt

Problem 1.4: Let A be a set with n elements (i.e #(A) = n). What is the cardinality of the
power set of A, (i.e. what is #(P(A)))?

Solution: Let #(A) = n, the power set P(A) = {S | S ⊆ A} is the set of all the possible subsets of
A. The number of possible subsets having r ≤ n elements can be given by(

n

r

)
=

(n)!

(r)! · ((n− r))!

r takes values from 0 to n, so the total number of subsets of A is

#(P(A)) =

n∑
r=0

(
n

r

)

and we have

#(P(A)) =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ . . .+

(
n

n

)
Consider,

a+ bn =

(
n

0

)
an · b0 +

(
n

1

)
an−1 · b1 +

(
n

2

)
an−2 · b2 + . . .+

(
n

n

)
a0 · bn

If we choose a = 1 and b = 1 then 2n =
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ . . .+

(
n
n

)
. Combing this with the equation above,

we get #(P(A)) = 2n.
Thus the cardinality of the power set of A it is 2n. This is also the number of subsets of a set with n

elements.
Solution: We can obtain this result in a simpler way if we consider representing a subset S of a

given finite set A with cardinality n := #(A) under the form of a binary number. First, associate to each
element of A an index between 1 and n. Then write an n-bit binary number NS putting a 1 in the i-th
position if the element with index i is included in the set S and a 0 otherwise. In is evident that between
the n-bit binary numbers and the elements of the power set P(A) exists a one-to-one relation (a bijection)
and therefore we conclude that the number of elements in P(A) is equal to that of n-bit representable
numbers, that is 2n.

Solution: The simplest way to obtain this result is by induction on the number n. If n = 0, then
A is a singleton, wlog. A = {a}. So P(A) = {∅, A} and #(P(A)) = 2 = 21. For the step case let us
assume that #(P(A)) = 2n for all sets A with #(A) = n. We can write any set B with #(B) = n + 1
as B = A ∪ {c} for some set A with #(A) = n and B\A = {c}. Now, each subset C of B can either
contain c (then it is of the form C ∪ {c} for some D ∈ P(A)) or not (then C ∈ P(A)). Thus we have
P(B) = P(A) ∪ {D ∪ {c} | D ∈ P(A)}, and hence

#(P(B)) = #(P(A)) + #(P(A)) = 2#(P(A)) = 2 · 2n = 2n+1

by inductive hypothesis.
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15ptProblem 1.5: Let A := {5, 23, 7, 17, 6} and B := {3, 4, 8, 23}. Which of the relations are
reflexive, antireflexive, symmetric, antisymmetric, and transitive?

Note: Please justify the answers.

R1 ⊆ A×A,R1 = {〈23, 7〉, 〈7, 23〉, 〈5, 5〉, 〈17, 6〉, 〈6, 17〉}
R2 ⊆ B ×B,R2 = {〈3, 3〉, 〈3, 23〉, 〈4, 4〉, 〈8, 23〉, 〈8, 8〉, 〈3, 4〉, 〈23, 23〉, 〈4, 23〉}
R3 ⊆ B ×B,R3 = {〈3, 3〉, 〈3, 23〉, 〈8, 3〉, 〈4, 23〉, 〈8, 4〉, 〈23, 23〉}

Solution: R1 is not reflexive since there are not all elements of A are in R1 as pairs like 〈a, a〉 where
a ∈ A. R1 is not antireflexive either, because there is one of those pairs present. R1 is symmetric, because
all pairs in R1 are ”turnable”, specifically, 〈23, 7〉 exists and 〈7, 23〉 exists. This holds for all pairs in R1.
Since R1 is symmetric, it is therefore not antisymmetric. R1 is also not transitive since there are no pair
”triangles”.

R2 is reflexive, it holds all elements of B in pairs like 〈b, b〉 where b ∈ B. Therefore, it is not
antireflexive. R2 is not symmetric, because for a given pair 〈a, b〉 where a, b ∈ B there does not exist a
pair 〈b, a〉. R2 is, however, antisymmetric since for any ”turnable” pair (like 〈3, 3〉) the two elements in
the pair are equal. Also, R2 is transitive since such a triangle (the only one in the set) exists. Namely,
that is 〈3, 23〉, 〈3, 4〉and〈4, 23〉.

R3 is neither reflexive nor antireflexive. Also, it is not symmetric or transitive. It is, however,
antisymmetric.

20pt
Problem 1.6: Given two relations R ⊆ C ×B and Q ⊆ C ×A, we define a relation P ⊆
C × (B ∩A) such that for every x ∈ C and every y ∈ (B ∩A), 〈x, y〉 ∈ P ⇔ 〈x, y〉 ∈ R ∨ 〈x, y〉 ∈ Q.
Prove or refute (by giving a counterexample) the following statement: If Q and P are total func-
tions, then P is a partial function.

Solution: The statement is false. A counterexample is C = {c}, A = B = {a, b}, R = {〈c, a〉}, Q =
{〈c, b〉}. Then P = {〈c, a〉, 〈c, b〉} is not a partial function.
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1.1.3 Naive Set Theory
3pt
3minProblem 1.7: Fill in the blanks in the table of Greek letters. Note that capitalized names

denote capital Greek letters.

Symbol γ Σ π Φ
Name alpha eta lambda iota

Solution:

Symbol α η λ ι γ Σ π Φ
Name alpha eta lambda iota gamma Sigma pi Phi

8



1.1.4 Relations and Functions

Problem 1.8 (Associativity of Relation Composition)

Let R, S, and T be relations on a set M . Prove or refute that the composition operation for
relations is associative, i. e. that

(T ◦ S) ◦R = T ◦ (S ◦R)

Solution:
Proof :

P.1 Let 〈x, y〉 ∈ ((T ◦ S) ◦R).

P.2 ∃z1 ∈M.〈x, z1〉 ∈ R ∧ 〈z1, y〉 ∈ (T ◦ S)

P.3 ∃z1, z2 ∈M.〈x, z1〉 ∈ R ∧ (〈z1, z2〉 ∈ S ∧ 〈z2, y〉 ∈ T )

P.4 ∃z2 ∈M.〈x, z2〉 ∈ (S ◦R) ∧ 〈z2, y〉 ∈ T
P.5 〈x, y〉 ∈ (T ◦ (S ◦R)).

9



1.2 Computing with Functions over Inductively Defined Sets

1.2.1 Standard ML: Functions as First-Class Objects

Problem 1.9: Define the member relation which checks whether an integer is member of a list
of integers. The solution should be a function of type int * int list -> bool, which evaluates
to true on arguments n and l, iff n is an element of the list l.

Solution: The simplest solution is the following

fun member(n,nil) = false
| member(n,h::r) = if n=h then true else member(n,r);

The intuition here is that a is a member of a list l, iff it is the first element, or it is a member of the rest
list.

Note that we cannot just use member(n,n::r) to eliminate the conditional, since SML does not allow
duplicate variables in matching. But we can simplify the conditional after all: we can make use of SML’s
orelse function which acts as a logical “or” and get the slightly more elegant program

fun member(n,nil) = false
| member(n,h::r) = (n=h) orelse member(n,r);

10



Problem 1.10: Define the subset relation. Set T is a subset of S iff all elements of T are also
elements of S. The empty set is subset of any set.

Hint: Use the member function from ??

Solution: Here we make use of SML’s andalso operator, which acts as a logical “and”

fun subset(nil,_) = true
| subset(x::xs,m) = member(x,m) andalso subset(xs,m);

The intuition here is that S ⊆ T , iff for some s ∈ S we have s ∈ T and S\{s} ⊆ T .
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20ptProblem 1.11: Define functions to zip and unzip lists. zip will take two lists as input and create
pairs of elements, one from each list, as follows: zip [1,2,3] [0,2,4] ; [[1,0],[2,2],[3,4]].
unzip is the inverse function, taking one list of tuples as argument and outputing two separate
lists. unzip [[1,4],[2,5],[3,6]] ; [1,2,3] [4,5,6].

Solution: Zipping is relatively simple, we will just define a recursive function by considering 4 cases:

fun zip nil nil = nil
| zip nil l = l
| zip l nil = l
| zip (h::t) (k::l) = [h,k]::(zip t l)

Unzipping is slightly more difficult. We need map functions that select the first and second elements of a
two-element list over the zipped list. Since the problem is somewhat under-specified by the example, we
will put the rest of the longer list into the first list. To avoid problems with the empty tails for the shorter
list, we use the mapcan function that appends the tail lists.

fun mapcan(f,nil) = nil | mapcan(f,h::t) = (f h)@(mapcan(f,t))
fun unzip (l) = if (l = nil) then nil

else [(map head l),(mapcan tail l)]

12



Problem 1.12 (Compressing binary lists)
Define a data type of binary digits. Write a function that takes a list of binary digits and returns
an int list that is a compressed version of it and the first binary digit of the list (needed for
reconversion). For example,

ZIPit([zero,zero,zero, one,one,one,one,
zero,zero,zero, one, zero,zero]) -> (0,[3,4,3,1,2]),

because the binary list begins with 3 zeros, followed by 4 ones etc.
Solution:

datatype bin = zero | one;
local fun ZIP(nil,_,cnt) = [cnt] |

ZIP(hd::tl, last, cnt) =
if hd=last then ZIP(tl, hd, cnt+1)
else cnt::ZIP(tl, hd, 1);

in
fun ZIPit(hd::tl) = (hd, ZIP(tl, hd, 1))

end;

13



Problem 1.13 (Decompressing binary lists)
Write an inverse function UNZIPit of the one written in ??.

Solution:

local fun pump(a,0) = nil |
pump(a,n) = a::pump(a,n-1);

fun not zero = one |
not one = zero;

in
fun UNZIPit(a,nil) = nil |

UNZIPit(a, hd::tl) = pump(a,hd)@UNZIPit(not(a),tl);
end;

14



15ptProblem 1.14: Program the function f with f(x) = x2 on unary natural numbers without
using the multiplication function.

Solution: We will use the abstract data type mynat

datatype mynat = zero | s of mynat
fun add(n,zero) = n | add(n,s(m))=s(add(n,m))
fun sq(zero)=zero|sq(s(n))=s(add(add(sq(n),n),n))

15



20ptProblem 1.15 (Translating between Integers and Strings)
SML has pre-defined types int and string, write two conversion functions:

• int2string converts an integer to a string, i.e. int2string(~317) ; "~317":string

• string2int converts a suitable string to an integer, i.e. string2int("444") ; 444:int.
For the moment, we do not care what happens, if the input string is unsuitable, i.e does not
correspond to an integer.

do not use any built-in functions except elementary arithmetic (which include mod and div BTW),
explode, and implode.

Solution:

(* Note: this implementation does not consider negative numbers *)

(*integer to string*)

fun dig2chr 0 = #"0" | dig2chr 1 = #"1" |
dig2chr 2 = #"2" | dig2chr 3 = #"3" |
dig2chr 4 = #"4" | dig2chr 5 = #"5" |
dig2chr 6 = #"6" | dig2chr 7 = #"7" |
dig2chr 8 = #"8" | dig2chr 9 = #"9";

fun int2lst 0 = [] |
int2lst num = int2lst(num div 10) @ [dig2chr(num mod 10)];

fun int2string 0 = "0" |
int2string num = implode(int2lst num);

(*string to integer*)

fun chr2dig #"0" = 0 | chr2dig #"1" = 1 |
chr2dig #"2" = 2 | chr2dig #"3" = 3 |
chr2dig #"4" = 4 | chr2dig #"5" = 5 |
chr2dig #"6" = 6 | chr2dig #"7" = 7 |
chr2dig #"8" = 8 | chr2dig #"9" = 9;

fun lst2int [] = 0 |
lst2int (h::t) = (lst2int t + chr2dig h )*10;

fun rev nil = nil |
rev (h::t) = rev t @ [h];

fun string2int(s) = lst2int(rev (explode s)) div 10;

16



Problem 1.16: Write a function that takes an odd positive integer and returns a char list list

which represents a triangle of stars with n stars in the last row. For example,

triangle 5;
val it =
[#" ", #" ", #"*", #" ", #" "],
[#" ", #"*", #"*", #"*", #" "],
[#"*", #"*", #"*", #"*", #"*"]]

Solution:

fun stars(0) = nil |
stars(n) = #"*" :: stars(n-1)

fun wall(nil) = nil |
wall(hd::tl) = ((#" "::hd)@[#" "])::wall(tl)

fun triangle(1) = [[#"*"]] |
triangle(n) = wall(triangle(n-2))@[stars(n)];

17



Problem 1.17: Write a non-recursive variant of the member function from ?? using the foldl

function.
Solution:

fun member (x,xs) = foldl (fn (y,b) => b orelse x=y) false

18



15pt10minProblem 1.18 (Decimal representations as lists)
The decimal representation of a natural number is the list of its digits (i. e. integers between 0
and 9). Write an SML function decToInt of type int list -> int that converts the decimal
representation of a natural number to the corresponding number:

- decToInt [7,8,5,6];
val it = 7856 : int

Hint: Use a suitable built-in higher-order list function of type fn : (int * int -> int) -> int -> int list -> int

that solves a great part of the problem.

Solution:

val decToInt = foldl (fn (x,y) => 10*y + x) 0;

19



30ptProblem 1.19 (List functions via foldl/foldr)
Write the following procedures using foldl or foldr

1. length which computes the length of a list

2. concat, which gets a list of lists and concatenates them to a list.

3. map, which maps a function over a list

4. myfilter, myexists, and myforall from ??

Solution:

fun length xs = foldl (fn (x,n) => n+1) 0 xs
fun concat xs = foldr op@ nil xs
fun map f = foldr (fn (x,yr) => (f x)::yr) nil
fun myfilter f =

foldr (fn (x,ys) => if f x then x::ys else ys) nil
fun myexists f = foldl (fn (x,b) => b orelse f x) false
fun myall f = foldl (fn (x,b) => b andalso f x) true

20



10ptProblem 1.20 (Mapping and Appending)
Can the functions mapcan and mapcan2 be written using foldl/foldr?

Solution:

fun mapcan_with(f,l) = foldl(fn (v,s) => s@f(v)) nil l;

21



1.2.2 Inductively Defined Sets and Computation

Problem 1.21: Figure out the functions on natural numbers for the following defining equations

τ(o) = o

τ(s(n)) = s(s(s(τ(n))))

Solution: The function τ triples its argument.

22



15pt5minProblem 1.22 (A function on natural numbers)
Figure out the function on natural numbers defined by the following equations:

η(o) = o

η(s(o)) = o

η(s(s(n))) = s(η(n))

Solution:

The function η halves its argument.

23



15ptProblem 1.23: In class, we have been playing with defining equations for functions on the
natural numbers. Give the defining equations for the function σ with σ(x) = x2 without using
the multiplication function (you may use the addition function though). Prove from the Peano
axioms or refute by a counterexample that your equations define a function. Indicate in each step
which of the axioms you have used.

Solution:

Lemma 1 The relation defined by the equations σ(o) = o and σ(s(n)) = +(〈+(〈σ(n), n〉), n〉) is a func-
tion.

Proof :

P.1 The proof of functionality is is carried out by induction. We show that for every n ∈ N sq is
one-valued.

P.1.1 n = o: Then the value is fixed to o there so we have the assertion.

P.1.2 n > 0: let σ is one-valued for n.:

P.1.2.1 By the defining equation we know that σ(s(n)) = +(〈+(〈σ(n), n〉), n〉)
P.1.2.2 By inductive hypothesis, σ(n) is one-valued, so σ(s(n)) is as + is a function.

P.1.2.3 This completes the step case and proves the assertion.
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1.2.3 Inductively Defined Sets in SML
8pt
8minProblem 1.24: Declare an SML datatype pair representing pairs of integers and define SML

functions fst and snd where fst returns the first- and snd the second component of q the pair.
Moreover write down the type of the constructor of pair as well as of the two procedures fst and
snd.

Use SML syntax for the whole problem.
Solution:

datatype pair = pair of int * int; (* val pair = fn : int * int -> pair *)

fun fst(pair(x,_)) = x; (* val fst = fn : pair -> int *)
fun snd(pair(_,y)) = y; (* val snd = fn : pair -> int *)
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4pt8minProblem 1.25: Declare a data type myNat for unary natural numbers and NatList for lists of
natural numbers in SML syntax, and define a function that computes the length of a list (as a unary
natural number in mynat). Furthermore, define a function nms that takes two unary natural num-
bers n and m and generates a list of length n which contains only ms, i.e. nms(s(s(zero)),s(zero))
evaluates to construct(s(zero),construct(s(zero),elist)).

Solution:

datatype mynat = zero | s of mynat;
datatype natlist = elist | construct of mynat * natlist;
fun length (nil) = zero | length (construct (n,l)) = s(length(l));
fun nms(zero,m) = elist | nms(s(n),m) = construct(m,nms(n));
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20ptProblem 1.26: Given the following SML data type for an arithmetic expressions

datatype arithexp = aec of int (* 0,1,2,... *)
| aeadd of arithexp * arithexp (* addition *)
| aemul of arithexp * arithexp (* multiplication *)
| aesub of arithexp * arithexp (* subtraction *)
| aediv of arithexp * arithexp (* division *)
| aemod of arithexp * arithexp (* modulo *)
| aev of int (* variable *)

give the representation of the expression (4x+ 5)− 3x.
Write a (cascading) function eval : (int -> int) -> arithexp -> int that takes a vari-

able assignment ϕ and an arithmetic expresson e and returns its evaluation as a value.
Note: A variable assignment is a function that maps variables to (integer) values, here it is represented

as function ϕ of type int -> int that assigns ϕ(n) to the variable aev(n).

Solution:

datatype arithexp = aec of int (* 0,1,2,... *)
| aeadd of arithexp * arithexp (* addition *)
| aemul of arithexp * arithexp (* multiplication *)
| aesub of arithexp * arithexp (* subtraction *)
| aediv of arithexp * arithexp (* division *)
| aemod of arithexp * arithexp (* modulo *)
| aev of int (* variable *)

(* aesub(aeadd(aemul(aec(4),aev(1)),aec(5)),aemul(aec(3),aev(1))) *)

fun eval phi =
let

fun calc (aev(x)) = phi(x) |
calc (aec(x)) = x |
calc (aeadd(e1,e2)) = calc(e1) + calc(e2) |
calc (aesub(e1,e2)) = calc(e1) - calc(e2) |
calc (aemul(e1,e2)) = calc(e1) * calc(e2) |
calc (aediv(e1,e2)) = calc(e1) div calc(e2) |
calc (aemod(e1,e2)) = calc(e1) mod calc(e2);

in fn x => calc(x)
end;

(* Test:
- eval (fn 1=>6) (aesub(aeadd(aemul(aec(4),aev(1)),aec(5)),aemul(aec(3),aev(1))));
stdIn:14.7-14.14 Warning: match nonexhaustive
1 => ...

val it = 11 : int
- *)
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Problem 1.27 (Your own lists)
Define a data type mylist of lists of integers with constructors mycons and mynil. Write trans-
lators tosml and tomy to and from SML lists, respectively.

Solution: The data type declaration is very simple

datatype mylist = mynil | mycons of int * mylist;

it declares three symbols: the base type mylist, the individual constructor mynil, and the constructor
function mycons.

The translator function tosml takes a term of type mylist and gives back the corresponding SML list;
the translator function tomy does the opposite.

fun tosml mynil = nil
| tosml mycons(n,l) = n::tosml(l)

fun tomy nil = mynil
| tomy (h::t) = mycons(h,tomy(t))
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Problem 1.28 (Unary natural numbers)
Define a datatype nat of unary natural numbers and implement the functions

• add = fn : nat * nat -> nat (adds two numbers)

• mul = fn : nat * nat -> nat (multiplies two numbers)

Solution:

datatype nat = zero | s of nat;
fun add(zero:nat,n2:nat) = n2
| add(n1,zero) = n1
| add(s(n1),s(n2)) = s(add(n1,s(n2)));

fun mult(zero:nat,_) = zero
| mult(_,zero) = zero
| mult(n1,s(zero)) = n1
| mult(s(zero),n2) = n2
| mult(n1,s(n2)) = add(n1,mult(n1,n2));
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Problem 1.29 (Nary Multiplication)
By defining a new datatype for n-tuples of unary natural numbers, implement an n-ary multipli-
cations using the function mul from ??. For n = 1, an n-tuple should be constructed by using a
constructor named first; for n > 1, further elements should be prepended to the first by using
a constructor named next. The multiplication function nmul should return the product of all
elements of a given tuple.

For example,

nmul(next(s(s(zero)),
next(s(s(zero)),
first(s(s(s(zero)))))))

should output s(s(s(s(s(s(s(s(s(s(s(s(zero)))))))))))) since 223 = 12.
Solution:

datatype tuple = first of nat | next of nat*tuple;
fun nmult(first(num)) = num |

nmult(next(num, rest)) = mult(num, nmult(rest));
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1.2.4 A Theory of SML: Abstract Data Types and Term Languages
5pt
Abstract
Data
Types and
Ground
Construc-
tor Terms
5min

Problem 1.30: Translate the abstract data types given in mathematical notation into SML
datatypes

1. 〈{S}, {[c1 : S], [c2 : S→ S], [c3 : S× S→ S], [c4 : S→ S→ S]}〉

2. 〈{T}, {[c1 : T], [c2 : T× (T→ T)→ T]}〉

Solution:

1. datatype S = c1 | c2 of S | c3 of S * S | c4 of S -> S

2. datatype S = c1 | c2 of T * (T -> T)
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5pt5minProblem 1.31: Translate the given SML datatype

datatype T = 0 | c1 of T * T | c2 of T -> (T * T)

into abstract data type in mathmatical notation.
Solution:

〈{T}, {[c1 : T], [c2 : T× T]T, [c2 : T]T× T→ T}〉
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20ptProblem 1.32 (Nested lists)
In class, we have defined an abstract data type for lists of natural numbers. Using this intuition,
construct an abstract data type for lists that contain natural numbers or lists (nested up to
arbitrary depth). Give the constructor term (the trace of the construction rules) for the list
[3, 4, [7, [8, 2], 9], 122, [2, 2]].

Solution: We choose the abstract data type

〈{N,L}, {[cl : L× L→ L], [cn : N× L→ L], [nil : L], [o : N], [s : N→ N]}〉

The constructors cl and cl construct lists by adding a list or a number at the front of the list. With this,
the list above has the constructor term.

cn(3, cn(4, cl(cn(7, cl(cn(8, cn(2, nil)), cn(9, nil)), cn(122), cl(cn(2, cn(2, nil)))nil))))

where n is the s, o-constructor term of the number n.

33



30ptA First Abstract Interpreter Problem 1.33: Give the defining equations for the maximum
function for two numbers. This function takes two arguments and returns the larger one.

Hint: You may define auxiliary functions with defining equations of their own. You can use ι from
above.

Solution: We first define the equality predicate on natural numbers by the rules

eq(o, o) ; T eq(s(nN), o) ; F eq(s(nN), s(mN)) ; eq(nN,mN)

Using this we define a relation of “greater than” by the rules

g(o, nN) ; F g(s(nN),mN) ; ∨(eq(s(mN), nN), g(nN,mN))

This allows us to finally define the function max by the rule

max(nN,mN) ; ι(∨(g(nN,mN), eq(svarnN,mN)), nN,mN)
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15ptProblem 1.34: Using the abstract data type of truth functions from ??, give the defining
equations for a function ι that takes three arguments, such that ι(ϕB, aN, bN) behaves like “if ϕ
then a, else b”, where a and b are natural numbers.

Solution: The defining equations are ι(T, aN, bN) ; aN and ι(F, aN, bN) ; bN.
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6ptProblem 1.35: Consider the following abstract data type:

A := 〈{A,B,C}, {[f : C→ B], [g : A× B→ C], [h : C→ A], [a : A], [b : B], [c : C]}〉

Which of the following expressions are constructor terms (with variables), which ones are ground.
Give the sorts for the terms.

Answer with Yes or No or /. and give the sort (if term)

expression term? ground? Sort

f(g(a))
f(g(〈a, b〉))
h(g(〈h(xC), f(c)〉))
h(g(〈h(xB), f(yC)〉))

Solution:

expression term? ground? Sort

f(g(a)) N / /

f(g(〈a, b〉)) Y Y B
h(g(〈h(xC), f(c)〉)) Y N A
h(g(〈h(xB), f(yC)〉)) N / /
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4ptSubstitutions
5min

Problem 1.36 (Substitution)
Apply the substitutions σ := [b/x], [(g(a))/y], [a/w] and τ := [(h(c))/x], [c/z] to the terms s :=
f(g(x, g(a, x, b), y)) and t := g(x, x, h(y)) (give the 4 result terms σ(s), σ(t), τ(s), and τ(t)).

Solution:

σ(s) = f(g(a, f(b), g(a, a, b))) σ(t) = g(a, f(b), h(a))
τ(s) = f(g(f(b), y, g(a, f(b), b))) τ(t) = g(f(b), y, h(c))
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Definition 2 We call a substitution σ idempotent, iff σ(σ(A)) = σ(A) for all terms A.

Definition 3 For a substitution σ = [A1/x1], · · ·, [An/xn], we call the set intro(σ) :=
⋃

1≤i≤n free(Ai)
the set of variables introduced by σ, and the set supp(σ) := {xi | 1 ≤ i ≤ n}

30pt
Problem 1.37: Prove or refute that σ is idempotent, if intro(σ) ∩ supp(σ) = ∅.
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30ptProblem 1.38 (Substitution Application)
Consider the following SML data type of terms:

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term

Constants and variables are represented by a constructor taking their name string, whereas ap-
plications of the form f(t) are constructed from the name string and the argument. Remember
that we use f(a, b) as an abbreviation for f(〈a, b〉). Thus a term f(a, g(x)) is represented as
appl("f",pair(const("a"), appl("g", var("x")))).

With this, we can represent substitutions as lists of elementary substitutions, which are pairs
of type term * string. Thus we can set

type subst = term * string list

and represent a substitution σ = [(f(a))/x], [b/y] as [(appl("f", const("a")), "x"), (const("b"), "y")].
Of course we may not allow ambiguous substitutions which contain duplicate strings.

Write an SML function substApply for the substitution application operation, i.e. substApply
takes a substitution σ and a term A as arguments and returns the term σ(A) if σ is unambiguous
and raises an exception otherwise.

Make sure that your function applies substitutions in a parallel way, i.e. that [y/x], [x/z](f(z)) =
f(x).

Solution:

exception ambiguous_substitution

local
fun sa(s,const(str)) = const(str)
| sa(s,pair(t1,t2)) = pair(sa(s,t1),sa(s,t2))
| sa(s,appl(fs,t1)) = appl(fs,sa(s,t1))
| sa(nil,var(str)) = var(str)
| sa((t,x)::L,var(str)) = if str = x then t else sa(L,var(str))

fun ambiguous = ...
in
fun substApply (s,t) = if ambiguous(s)

then raise ambiguous_substitution
else sa(s,t)

end

or

(* (C) by Anna Michalska *)

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term;
type subst = (term * string) list;

exception ania;

fun comparing1 ((x1,x2), []) = true | comparing1 ((x1,x2), hd::tl) = if
hd=x2 then false else comparing1 ((x1,x2),tl);

fun comparing2([],_)=true | comparing2 ((x3,x4)::t,tl) = if (comparing1
((x3,x4),tl)) then comparing2 (t,x4::tl) else raise ania;

fun tab (a,[]) = var(a)
| tab (a, (a1,a2)::tl) = if (a=a2) then a1 else tab(a,tl);

fun substApply_r (appl(a,b),subst_in) = appl(a,substApply_r(b,subst_in))
|substApply_r (pair(a,b),subst_in) =
pair(substApply_r(a,subst_in),substApply_r(b,subst_in))
|substApply_r (var(a),subst_in) = tab(a,subst_in)
|substApply_r (const(x),subst_in) = const(x);
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fun substApply (subst_in,term_in) =
if (comparing2(subst_in,[])) then substApply_r(term_in,subst_in)
else raise ania;
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20ptA Second Abstract Interpreter Problem 1.39: Consider the following abstract procedure
on the abstract data type of natural numbers:

P := 〈f::N→ N ; {f(o) ; o, f(s(o)) ; o, f(s(s(nN))) ; s(f(nN))}〉

1. Show the computation process for P on the arguments s(s(s(o))) and s(s(s(s(s(s(o)))))).

2. Give the recursion relation of P.

3. Does P terminate on all inputs?

4. What function is computed by P?

Solution:

1. f(s(s(s(o)))) ; s(f(s(o))) ; s(o), and f(s(s(s(s(s(s(o))))))) ; s(f(s(s(s(s(o)))))) ; s(s(f(s(s(o))))) ; s(s(s(f(o)))) ; s(s(s(o))),

2. The recursion relation is {〈s(s(n)), n〉 ∈ (N× N) | n ∈ N} (or 〈n+ 2, n〉)
3. the abstract procedure terminates on all inputs.

4. the abstract procedure computes the function f : N→ N with 2n 7→ n and 2n− 1 7→ n.
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4ptEvaluation
Order and
Termina-
tion
10min

Problem 1.40: Explain the concept of a “call-by-value” programming language in terms of
evaluation order. Give an example program where this effects evaluation and termination, explain
it.

Note: One point each for the definition, the program and the explanation.

Solution: A “call-by-value” programming language is one, where the arguments are all evaluated
before the defining equations for the function are applied. As a consequence, an argument that contains
a non-terminating call will be evaluated, even if the function ultimately disregards it. For instance,
evaluation of the last line does not terminate.

fun myif (true,A,_) = A | myif (false,_,B) = B
fun bomb (n) = bomb(n+1)
myif(true,1,bomb(1))
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2pt5minProblem 1.41: Give an example of an abstract procedure that diverges on all arguments,
and another one that terminates on some and diverges on others, each example with a short
explanation.

Solution: The abstract procedure 〈f::N→ N ; {f(nN) ; s(f(nN))}〉 diverges everywhere. The ab-
stract procedure 〈f::N→ N ; {f(s(s(nN))) ; nN, f(s(o)) ; f(s(o))}〉 terminates on all odd numbers and
diverges on all even numbers.
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15ptProblem 1.42: Give the recursion relation of the abstract procedures in ??, ??, ??, and ?? and
discuss termination.

Solution:

??: {〈s(n), n〉 | n ∈ N}
??: all recursion relations are empty

??: the recursion relation is empty

??: the recursion relation for g is {〈s(n), n〉 | n ∈ N}, the one for max is empty
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1.2.5 More SML: Recursion in the Real World

No problems supplied yet.

45



1.2.6 Even more SML: Exceptions and State in SML
5pt
10minProblem 1.43 (Integer Intervals)

Declare an SML data type for natural numbers and one for lists of natural numbers in SML. Write
an SML function that given two natural number n and m (as a constructor term) creates the list
[n,n+1,\ldots,m-1,m] if n ≤ m and raises an exception otherwise.

Solution:

datatype nat = z | s of nat;
datatype lnat = nil | c of nat*lnat;

exception Bad;

(* cmp(a,b) returns 1 if a>b, 0 if a=b, and ~1 if a<b *)
fun cmp(z,z) = 0 |

cmp(s(_),z) = 1 |
cmp(z,s(_)) = ~1 |
cmp(s(n),s(m)) = cmp(n,m);

fun makelist(n, m) =
case cmp(n, m) of

~1 => c(n, makelist(s(n),m)) |
0 => c(m, nil) |
1 => raise Bad
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Problem 1.44 (Operations with Exceptions)
Add to the functions from ?? functions for subtraction and division that raise exceptions where
necessary.

• function sub: nat*nat -> nat (subtracts two numbers)

• function div: nat*nat -> nat (divides two numbers)

Solution:

exception Underflow;
datatype nat = zero | s of nat;
fun sub(n1:nat,zero) = n1
| sub(zero,s(n2)) = raise Underflow
| sub(s(n1),s(n2)) = sub(n1,n2);
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6pt20minProblem 1.45 (List Functions with Exceptions)
Write three SML functions nth, take, drop that take a list and an integer as arguments, such
that

1. nth(xs,n) gives the n-th element of the list xs.

2. take(xs,n) returns the list of the first n elements of the list xs.

3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.

In all cases, the functions should raise the exception Subscript, if n < 0 or the list xs has less
than n elements. We assume that list elements are numbered beginning with 0.

Solution:

exception Subscript
fun nth (nil,_) = raise Subscript
| nth (h::t,n) = if n < 0 then raise Subscript

else if n=0 then h else nth(t,n-1)
fun take (l,0) = nil
| take (nil,_) = raise Subscript
| take (h::t,n) = if n < 0 then raise Subscript

else h::take(t,n-1)
fun drop (l,0) = l
| drop (nil,_) = raise Subscript
| drop (h::t,n) = if n < 0 then raise Subscript

else drop(t,n-1)
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10ptProblem 1.46 (Transformations with Errors)
Extend the function from ?? by an error flag, i.e. the value of the function should be a pair
consisting of a string, and the boolean value true, if the string was suitable, and false if it was
not.

Solution: 1

1EdNote: need one; please help
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10ptProblem 1.47 (Simple SML data conversion)
Write an SML function char_to_int = fn : char -> int that given a single character in the
range [0− 9] returns the corresponding integer. Do not use the built-in function Int.fromString

but do the character parsing yourself. If the supplied character does not represent a valid digit
raise an InvalidDigit exception. The exception should have one parameter that contains the
invalid character, i.e. it is defined as exception InvalidDigit of char

Solution:

exception InvalidDigit of char;

(* Converts a character representing a digit to an integer *)
fun char_to_int c =
let
val res = (ord c) - (ord #"0");

in
if res >= 0 andalso res <= 9 then res else raise InvalidDigit(c)

end;

(* TEST CASES *)
val test1 = char_to_int #"0" = 0;
val test2 = char_to_int #"3" = 3;
val test3 = char_to_int #"9" = 9;
val test4 = char_to_int #"~" = 6 handle InvalidDigit c => true | other => false;
val test5 = char_to_int #"a" = 6 handle InvalidDigit c => true | other => false;
val test6 = char_to_int #"Z" = 6 handle InvalidDigit c => true | other => false;
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10ptProblem 1.48 (Strings and numbers)
Write two SML functions

1. str_to_int = fn : string -> int

2. str_to_real = fn : string -> real

that given a string convert it to an integer or a real respectively. Do not use the built-in functions
Int.fromString, Real.fromString but do the string parsing yourself.

• Negative numbers begin with a ’~’ character (not ’-’).

• If the string does not represent a valid integer raise an exception as in the previous exercise.
Use the same definition and indicate which character is invalid.

• If the input string is empty raise an exception.

• Examples of valid inputs for the second function are: ~1, ~1.5, 4.63, 0.0, 0, .123

Solution:

(* Converts a list of characters to an integer. The list must be reversed and
there should be only digit characetrs (no minus). *)

fun inv_pos_charl_to_int nil = 0
| inv_pos_charl_to_int (a::l) = char_to_int a + 10*inv_pos_charl_to_int(l);

(* Converts a list of characters to a positive or a negative integer. *)
fun charl_to_int (#"~"::l) = ~( inv_pos_charl_to_int(rev l))
| charl_to_int l = inv_pos_charl_to_int(rev(l));

(* Converts a string to a negative or a positive integer *)
fun str_to_int s = charl_to_int(explode(s));

(* TEST CASES *)
val test1 = str_to_int "0" = 0;
val test2 = str_to_int "1" = 1;
val test3 = str_to_int "234" = 234;
val test4 = str_to_int "~0" = 0;
val test5 = str_to_int "~4" = ~4;
val test6 = str_to_int "~5734" = ~5734;
val test7 = str_to_int "hello" = 6 handle InvalidDigit c => true| other => false;
val test8 = str_to_int "~13.2" = 6 handle InvalidDigit c => true| other => false;

Solution:

exception NegativeFraction;

(* Splits a character list into two lists delimited by a ’.’ character *)
fun cl_get_num_parts nil whole _ = (whole,nil)
| cl_get_num_parts (#"."::l) whole fract = (whole, l)
| cl_get_num_parts (c::l) whole fract = cl_get_num_parts l (whole @ [c] ) fract;

(* Given a real number makes it into a fraction by dividing by 10 until the
input is less than 1 *)

fun make_fraction fr =
if fr < 1.0 then fr else make_fraction (fr / 10.0);

(* Converts a string to a real number. Only decimal dot notation is allowed *)
fun str_to_real s =
let
val (w,f) = cl_get_num_parts (explode s) nil nil;
val is_negative = (length w > 0) andalso (hd w = #"~");
val whole_r = real( str_to_int (implode w) );
val fract = real ( str_to_int (implode f) );
val fract_r = if fract < 0.0

then raise NegativeFraction
else make_fraction fract;

in
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if is_negative then whole_r - fract_r else whole_r + fract_r
end;

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;

val test1 = eq ( str_to_real "0") 0.0;
val test2 = eq ( str_to_real "0.156") 0.156;
val test3 = eq ( str_to_real "14.723") 14.723;
val test4 = eq ( str_to_real "~0.123") ~0.123;
val test5 = eq ( str_to_real "~12.789") ~12.789;
val test6 = eq ( str_to_real ".123") 0.123;
val test7 = eq ( str_to_real "hello") 4.2 handle InvalidDigit c => true| other => false;
val test8 = eq ( str_to_real "~13..2") 4.2 handle InvalidDigit c => true| other => false;
val test9 = eq ( str_to_real "~13.~2") 4.2 handle NegativeFraction => true| other => false;
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10ptProblem 1.49 (Recursive evaluation)
Write an SML function evaluate = fn : expression -> real that takes an expression of the
following datatype and computes its value:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

For example we have

evaluate(num(1.3)) -> 1.3
evaluate(div(num(2.2),num(1.0))) -> 2.2
evaluate(add(num(4.2),sub(mul(num(2.1),num(2.0)),num(1.4)))) -> 7.0

Solution:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

(* Evaluates an arithmetic expression to a real value *)
fun evaluate (add(x,y)) = (evaluate x) + (evaluate y)
| evaluate (sub(x,y)) = (evaluate x) - (evaluate y)
| evaluate (dvd(x,y)) = (evaluate x) / (evaluate y)
| evaluate (mul(x,y)) = (evaluate x) * (evaluate y)
| evaluate (num(x)) = x;

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;

val test1 = eq ( evaluate (num(0.0)) ) 0.0;
val test2 = eq ( evaluate (num(1.23)) ) 1.23;
val test3 = eq ( evaluate (num(~2.78)) ) ~2.78;
val test4 = eq ( evaluate (add(num(1.52),num(~1.78))) ) ~0.26;
val test5 = eq ( evaluate (sub(num(1.52),num(~1.78))) ) 3.3;
val test6 = eq ( evaluate (mul(num(1.5),num(~3.2))) ) ~4.8;
val test7 = eq ( evaluate (dvd(num(3.2),num(~0.5))) ) ~6.4;
val test8 = eq ( evaluate (add(add(add(num(1.0),num(1.0)),num(1.0)),num(1.0)))) 4.0;
val test9 = eq ( evaluate (add(mul(add(num(2.0),num(1.0)), sub(num(9.0),

mul(num(2.0),add(num(1.0),num(2.0))))),dvd(mul(num(2.0),
num(4.0)),dvd(add(num(1.0),num(1.0)),num(~4.0)))))) ~7.0;
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10ptProblem 1.50 (List evaluation)
Write a new function evaluate_list = fn : expression list -> real list that evaluates
a list of expressions and returns a list with the corresponding results. Extend the expression

datatype from the previous exercise by the additional constructor: var of int.
The variables here are the final results of previosly evaluated expressions. I.e. the first expres-

sion from the list should not contain any variables. The second can contain the term var(0) which
should evaluate to the result from the first expression and so on . . . If an expression contains an
invalid variable term raise: exception InvalidVariable of int that indicates what identifier
was used for the variable.

For example we have

evaluate_list [num(3.0), num(2.5), mul(var(0),var(1))] -> [3.0,2.5,7.5]

Solution:

exception InvalidVariable of int;

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real
| var of int;

(* Evaluates an arithmetic expression to a real value *)
fun evaluate vars (add(x,y)) = (evaluate vars x) + (evaluate vars y)
| evaluate vars (sub(x,y)) = (evaluate vars x) - (evaluate vars y)
| evaluate vars (dvd(x,y)) = (evaluate vars x) / (evaluate vars y)
| evaluate vars (mul(x,y)) = (evaluate vars x) * (evaluate vars y)
| evaluate _ (num(x)) = x
| evaluate vars (var(v)) = if v < 0 orelse v>= length vars

then raise InvalidVariable(v)
else List.nth(vars, v);

fun evaluate_list_helper nil vars = vars
| evaluate_list_helper (a::l) vars =

let
val res = evaluate vars a;

in
evaluate_list_helper l (vars @ [res ])

end;

fun evaluate_list l = evaluate_list_helper l nil;

Solution:

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;
fun eql nil nil = true
| eql l nil = false
| eql nil l = false
| eql (a::l) (b::m) = (eq a b) andalso (eql l m);

val test1 = eql ( evaluate_list [num(1.0)] ) [1.0];
val test2 = eql ( evaluate_list [num(1.0),num(~2.3)] ) [1.0,~2.3];
val test3 = eql ( evaluate_list [num(1.0),num(~2.3),add(var(0),var(1))] )

[1.0,~2.3,~1.3];
val test4 = eql ( evaluate_list [add(num(1.0),num(4.2)),

mul(num(~2.0),sub(num(2.0),num(~5.0))),
add(var(0),mul(var(1),num(~1.0)))] )
[5.2,~14.0,19.2];

val test5 = eql ( evaluate_list [var(~1)] ) [1.0]
handle InvalidVariable v => true| other => false;

val test6 = eql ( evaluate_list [var(0)] ) [1.0]
handle InvalidVariable v => true| other => false;
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val test7 = eql ( evaluate_list [var(1)] ) [1.0]
handle InvalidVariable v => true| other => false;

val test8 = eql ( evaluate_list [num(1.0),var(1)] ) [1.0]
handle InvalidVariable v => true| other => false;
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10ptProblem 1.51 (String parsing)
Write an SML function evaluate_str = fn : string list -> real list that given a list of
arithmetic expressions represented as strings returns their values. The strings follow the following
conventions:

• strict bracketing: every expression consists of 2 operands joined by an operator and has to
be enclosed in brackets, i.e. 1 + 2 + 3 would be represented as ((1+2)+3) (or (1+(2+3)))

• no spaces: the string contains no empty characters

The value of each of the expressions is stored in a variable named vn with n the position of the
expression in the list. These variables can be used in subsequent expressions.

Raise an exception InvalidSyntax if any of the strings does not follow the conventions.
For example we have

evaluate_str ["((4*.5)-(1+2.5))"] -> [~1.5]
evaluate_str ["((4*.5)-(1+2.5))","(v0*~2)"] -> [~1.5,3.0]
evaluate_str ["(1.8/2)","(1-~3)","(v0+v1)"] -> [0.9,4.0,4.9]

Solution:

exception InvalidSyntax;

fun parserest [] n = raise InvalidSyntax
| parserest [#")"] 0 = []
| parserest (#"("::t) n = #"("::(parserest t (n+1))
| parserest (#")"::t) n = #")"::(parserest t (n-1))
| parserest (h::t) n = h::(parserest t n);

fun findop [] n left = raise InvalidSyntax
| findop (#"+"::t) 0 left = (#"+",left,(parserest t 0))
| findop (#"-"::t) 0 left = (#"-",left,(parserest t 0))
| findop (#"*"::t) 0 left = (#"*",left,(parserest t 0))
| findop (#"/"::t) 0 left = (#"/",left,(parserest t 0))
| findop (#"("::t) n left = findop t (n+1) (left@[#"("])
| findop (#")"::t) n left = findop t (n-1) (left@[#")"])
| findop (h::t) n left = findop t n (left@[h]);

fun charl_to_exp [] = raise InvalidSyntax
| charl_to_exp (#"("::t) =

let val (c,x,y) = findop t 0 [];
in
if (c = #"+") then add(charl_to_exp x,charl_to_exp y)
else if (c = #"-") then sub(charl_to_exp x,charl_to_exp y)
else if (c = #"*") then mul(charl_to_exp x,charl_to_exp y)
else dvd(charl_to_exp x,charl_to_exp y)

end
| charl_to_exp (#"v"::t) = var(str_to_int (implode t))
| charl_to_exp (h::t) = num(str_to_real (implode(h::t)));

fun str_to_exp str = charl_to_exp (explode str);

fun evaluate_str l = evaluate_list ( map str_to_exp l);

Solution:

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;
fun eql nil nil = true
| eql l nil = false
| eql nil l = false
| eql (a::l) (b::m) = (eq a b) andalso (eql l m);

val test1 = eql (evaluate_str ["0"] ) [0.0];
val test2 = eql (evaluate_str ["1.5"] ) [1.5];
val test3 = eql (evaluate_str [".5"] ) [0.5];
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val test4 = eql (evaluate_str ["~1.2"] ) [~1.2];
val test5 = eql (evaluate_str ["(1+3)"] ) [4.0];
val test6 = eql (evaluate_str ["(1.2+3.5)"] ) [4.7];
val test7 = eql (evaluate_str ["(1.2+~3.5)"] ) [~2.3];
val test8 = eql (evaluate_str ["(1.2-~3.5)"] ) [4.7];
val test9 = eql (evaluate_str ["(~1.5+3.2)"] ) [1.7];
val test10 = eql (evaluate_str ["(~1.5*~3.2)"] ) [4.8];
val test11 = eql (evaluate_str ["(5.5/~1.1)"] ) [~5.0];
val test12 = eql (evaluate_str ["(~1.5/3.0)"] ) [~0.5];
val test13 = eql (evaluate_str

["(((6.4/~1.6)-7)+((.50-~10)*(20/(2.5/0.5))))"] ) [31.0];
val test14 = eql (evaluate_str ["42.5","v0"] ) [42.5,42.5];
val test15 = eql (evaluate_str

["~2","(v0*v0)","(v1*v0)","(v2*v0)"] ) [~2.0,4.0,~8.0,16.0];
val test16 = eql (evaluate_str

["~2","(v0*v0)","(v1*(v0+(~2.5/v0)))"] ) [~2.0,4.0,~3.0];
val test17 = eql (evaluate_str ["(((1+2)*3)"] ) [42.5] handle all => true;
val test18 = eql (evaluate_str ["((1+2)3)"] ) [42.5] handle all => true;
val test19 = eql (evaluate_str ["(13"] ) [42.5] handle all => true;
val test20 = eql (evaluate_str ["(((1+2)*3)"] ) [42.5] handle all => true;
val test21 = eql (evaluate_str ["*3)"] ) [42.5] handle all => true;
val test22 = eql (evaluate_str ["(*3)"] ) [42.5] handle all => true;
val test23 = eql (evaluate_str ["(7/3*2)"] ) [42.5] handle all => true;
val test24 = eql (evaluate_str ["((7/3)*(2#6))"] ) [42.5] handle all => true;
val test25 = eql (evaluate_str ["(3-6))"] ) [42.5] handle all => true;
val test26 = eql (evaluate_str ["v0"] ) [42.5] handle all => true;
val test27 = eql (evaluate_str ["0","v1"] ) [42.5] handle all => true;
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10ptProblem 1.52 (SML File IO)
Write an SML function evaluate_file = fn : string -> string -> unit that performs file
IO operations. The first argument is an input file name and the second is an output file name. The
input file contains lines which are arithmetic expressions. evaluate_file reads all the expressions,
evaluates them, and writes the corresponding results to the output file, one result per line.

For example we have

evaluate_list "input.txt" "output.txt";

Contents of input.txt:
4.9
0.7
(v0/v1)

Contents of output.txt (after evaluate_list is executed):
4.9
0.7
7.0

Solution:

fun get_lines istream =
let
val line = TextIO.inputLine (istream);

in
case line of

NONE => nil
| SOME(l) => let

val cl = explode l;
val cl = List.take(cl, length cl - 1);
val l = implode cl;

in
(l :: (get_lines istream) )

end
end;

fun write_lines nil ostream = true
| write_lines ((s:real)::l) ostream =
let
val _ = TextIO.output (ostream, Real.toString(s));

val _ = TextIO.output (ostream, "\textbackslash{n}");
in
write_lines l ostream

end;

fun evaluate_file in_filename out_filename =
let
val input = TextIO.openIn in_filename;
val output = TextIO.openOut out_filename;
val l = evaluate_str ( get_lines input );

val _ = write_lines l output;
in
(TextIO.closeIn input; TextIO.closeOut output)

end;
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1.3 A Theory of SML: Abstract Data Types and Term Languages

1.3.1 Abstract Data Types and Ground Constructor Terms
5pt
5minProblem 1.53: Translate the abstract data types given in mathematical notation into SML

datatypes

1. 〈{S}, {[c1 : S], [c2 : S→ S], [c3 : S× S→ S], [c4 : S→ S→ S]}〉

2. 〈{T}, {[c1 : T], [c2 : T× (T→ T)→ T]}〉

Solution:

1. datatype S = c1 | c2 of S | c3 of S * S | c4 of S -> S

2. datatype S = c1 | c2 of T * (T -> T)
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5pt5minProblem 1.54: Translate the given SML datatype

datatype T = 0 | c1 of T * T | c2 of T -> (T * T)

into abstract data type in mathmatical notation.
Solution:

〈{T}, {[c1 : T], [c2 : T× T]T, [c2 : T]T× T→ T}〉
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20ptProblem 1.55 (Nested lists)
In class, we have defined an abstract data type for lists of natural numbers. Using this intuition,
construct an abstract data type for lists that contain natural numbers or lists (nested up to
arbitrary depth). Give the constructor term (the trace of the construction rules) for the list
[3, 4, [7, [8, 2], 9], 122, [2, 2]].

Solution: We choose the abstract data type

〈{N,L}, {[cl : L× L→ L], [cn : N× L→ L], [nil : L], [o : N], [s : N→ N]}〉

The constructors cl and cl construct lists by adding a list or a number at the front of the list. With this,
the list above has the constructor term.

cn(3, cn(4, cl(cn(7, cl(cn(8, cn(2, nil)), cn(9, nil)), cn(122), cl(cn(2, cn(2, nil)))nil))))

where n is the s, o-constructor term of the number n.
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1.3.2 A First Abstract Interpreter
30pt

Problem 1.56: Give the defining equations for the maximum function for two numbers. This
function takes two arguments and returns the larger one.

Hint: You may define auxiliary functions with defining equations of their own. You can use ι from
above.

Solution: We first define the equality predicate on natural numbers by the rules

eq(o, o) ; T eq(s(nN), o) ; F eq(s(nN), s(mN)) ; eq(nN,mN)

Using this we define a relation of “greater than” by the rules

g(o, nN) ; F g(s(nN),mN) ; ∨(eq(s(mN), nN), g(nN,mN))

This allows us to finally define the function max by the rule

max(nN,mN) ; ι(∨(g(nN,mN), eq(svarnN,mN)), nN,mN)
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15ptProblem 1.57: Using the abstract data type of truth functions from ??, give the defining
equations for a function ι that takes three arguments, such that ι(ϕB, aN, bN) behaves like “if ϕ
then a, else b”, where a and b are natural numbers.

Solution: The defining equations are ι(T, aN, bN) ; aN and ι(F, aN, bN) ; bN.
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6ptProblem 1.58: Consider the following abstract data type:

A := 〈{A,B,C}, {[f : C→ B], [g : A× B→ C], [h : C→ A], [a : A], [b : B], [c : C]}〉

Which of the following expressions are constructor terms (with variables), which ones are ground.
Give the sorts for the terms.

Answer with Yes or No or /. and give the sort (if term)

expression term? ground? Sort

f(g(a))
f(g(〈a, b〉))
h(g(〈h(xC), f(c)〉))
h(g(〈h(xB), f(yC)〉))

Solution:

expression term? ground? Sort

f(g(a)) N / /

f(g(〈a, b〉)) Y Y B
h(g(〈h(xC), f(c)〉)) Y N A
h(g(〈h(xB), f(yC)〉)) N / /
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1.3.3 Substitutions
4pt
5minProblem 1.59 (Substitution)

Apply the substitutions σ := [b/x], [(g(a))/y], [a/w] and τ := [(h(c))/x], [c/z] to the terms s :=
f(g(x, g(a, x, b), y)) and t := g(x, x, h(y)) (give the 4 result terms σ(s), σ(t), τ(s), and τ(t)).

Solution:

σ(s) = f(g(a, f(b), g(a, a, b))) σ(t) = g(a, f(b), h(a))
τ(s) = f(g(f(b), y, g(a, f(b), b))) τ(t) = g(f(b), y, h(c))
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Definition 4 We call a substitution σ idempotent, iff σ(σ(A)) = σ(A) for all terms A.

Definition 5 For a substitution σ = [A1/x1], · · ·, [An/xn], we call the set intro(σ) :=
⋃

1≤i≤n free(Ai)
the set of variables introduced by σ, and the set supp(σ) := {xi | 1 ≤ i ≤ n}

30pt
Problem 1.60: Prove or refute that σ is idempotent, if intro(σ) ∩ supp(σ) = ∅.
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30ptProblem 1.61 (Substitution Application)
Consider the following SML data type of terms:

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term

Constants and variables are represented by a constructor taking their name string, whereas ap-
plications of the form f(t) are constructed from the name string and the argument. Remember
that we use f(a, b) as an abbreviation for f(〈a, b〉). Thus a term f(a, g(x)) is represented as
appl("f",pair(const("a"), appl("g", var("x")))).

With this, we can represent substitutions as lists of elementary substitutions, which are pairs
of type term * string. Thus we can set

type subst = term * string list

and represent a substitution σ = [(f(a))/x], [b/y] as [(appl("f", const("a")), "x"), (const("b"), "y")].
Of course we may not allow ambiguous substitutions which contain duplicate strings.

Write an SML function substApply for the substitution application operation, i.e. substApply
takes a substitution σ and a term A as arguments and returns the term σ(A) if σ is unambiguous
and raises an exception otherwise.

Make sure that your function applies substitutions in a parallel way, i.e. that [y/x], [x/z](f(z)) =
f(x).

Solution:

exception ambiguous_substitution

local
fun sa(s,const(str)) = const(str)
| sa(s,pair(t1,t2)) = pair(sa(s,t1),sa(s,t2))
| sa(s,appl(fs,t1)) = appl(fs,sa(s,t1))
| sa(nil,var(str)) = var(str)
| sa((t,x)::L,var(str)) = if str = x then t else sa(L,var(str))

fun ambiguous = ...
in
fun substApply (s,t) = if ambiguous(s)

then raise ambiguous_substitution
else sa(s,t)

end

or

(* (C) by Anna Michalska *)

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term;
type subst = (term * string) list;

exception ania;

fun comparing1 ((x1,x2), []) = true | comparing1 ((x1,x2), hd::tl) = if
hd=x2 then false else comparing1 ((x1,x2),tl);

fun comparing2([],_)=true | comparing2 ((x3,x4)::t,tl) = if (comparing1
((x3,x4),tl)) then comparing2 (t,x4::tl) else raise ania;

fun tab (a,[]) = var(a)
| tab (a, (a1,a2)::tl) = if (a=a2) then a1 else tab(a,tl);

fun substApply_r (appl(a,b),subst_in) = appl(a,substApply_r(b,subst_in))
|substApply_r (pair(a,b),subst_in) =
pair(substApply_r(a,subst_in),substApply_r(b,subst_in))
|substApply_r (var(a),subst_in) = tab(a,subst_in)
|substApply_r (const(x),subst_in) = const(x);
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fun substApply (subst_in,term_in) =
if (comparing2(subst_in,[])) then substApply_r(term_in,subst_in)
else raise ania;
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1.3.4 A Second Abstract Interpreter
20pt

Problem 1.62: Consider the following abstract procedure on the abstract data type of natural
numbers:

P := 〈f::N→ N ; {f(o) ; o, f(s(o)) ; o, f(s(s(nN))) ; s(f(nN))}〉

1. Show the computation process for P on the arguments s(s(s(o))) and s(s(s(s(s(s(o)))))).

2. Give the recursion relation of P.

3. Does P terminate on all inputs?

4. What function is computed by P?

Solution:

1. f(s(s(s(o)))) ; s(f(s(o))) ; s(o), and f(s(s(s(s(s(s(o))))))) ; s(f(s(s(s(s(o)))))) ; s(s(f(s(s(o))))) ; s(s(s(f(o)))) ; s(s(s(o))),

2. The recursion relation is {〈s(s(n)), n〉 ∈ (N× N) | n ∈ N} (or 〈n+ 2, n〉)
3. the abstract procedure terminates on all inputs.

4. the abstract procedure computes the function f : N→ N with 2n 7→ n and 2n− 1 7→ n.
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1.3.5 Evaluation Order and Termination
4pt
10minProblem 1.63: Explain the concept of a “call-by-value” programming language in terms of

evaluation order. Give an example program where this effects evaluation and termination, explain
it.

Note: One point each for the definition, the program and the explanation.

Solution: A “call-by-value” programming language is one, where the arguments are all evaluated
before the defining equations for the function are applied. As a consequence, an argument that contains
a non-terminating call will be evaluated, even if the function ultimately disregards it. For instance,
evaluation of the last line does not terminate.

fun myif (true,A,_) = A | myif (false,_,B) = B
fun bomb (n) = bomb(n+1)
myif(true,1,bomb(1))
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2pt5minProblem 1.64: Give an example of an abstract procedure that diverges on all arguments,
and another one that terminates on some and diverges on others, each example with a short
explanation.

Solution: The abstract procedure 〈f::N→ N ; {f(nN) ; s(f(nN))}〉 diverges everywhere. The ab-
stract procedure 〈f::N→ N ; {f(s(s(nN))) ; nN, f(s(o)) ; f(s(o))}〉 terminates on all odd numbers and
diverges on all even numbers.
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15ptProblem 1.65: Give the recursion relation of the abstract procedures in ??, ??, ??, and ?? and
discuss termination.

Solution:

??: {〈s(n), n〉 | n ∈ N}
??: all recursion relations are empty

??: the recursion relation is empty

??: the recursion relation for g is {〈s(n), n〉 | n ∈ N}, the one for max is empty
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1.4 More SML

1.4.1 More SML: Recursion in the Real World

No problems supplied yet.

1.4.2 Programming with Effects: Imperative Features in SML

Input and Output nothing here yet.

5pt
Even more
SML: Ex-
ceptions
and State
in SML
10min

Problem 1.66 (Integer Intervals)
Declare an SML data type for natural numbers and one for lists of natural numbers in SML. Write
an SML function that given two natural number n and m (as a constructor term) creates the list
[n,n+1,\ldots,m-1,m] if n ≤ m and raises an exception otherwise.

Solution:

datatype nat = z | s of nat;
datatype lnat = nil | c of nat*lnat;

exception Bad;

(* cmp(a,b) returns 1 if a>b, 0 if a=b, and ~1 if a<b *)
fun cmp(z,z) = 0 |

cmp(s(_),z) = 1 |
cmp(z,s(_)) = ~1 |
cmp(s(n),s(m)) = cmp(n,m);

fun makelist(n, m) =
case cmp(n, m) of

~1 => c(n, makelist(s(n),m)) |
0 => c(m, nil) |
1 => raise Bad
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Problem 1.67 (Operations with Exceptions)
Add to the functions from ?? functions for subtraction and division that raise exceptions where
necessary.

• function sub: nat*nat -> nat (subtracts two numbers)

• function div: nat*nat -> nat (divides two numbers)

Solution:

exception Underflow;
datatype nat = zero | s of nat;
fun sub(n1:nat,zero) = n1
| sub(zero,s(n2)) = raise Underflow
| sub(s(n1),s(n2)) = sub(n1,n2);
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6pt20minProblem 1.68 (List Functions with Exceptions)
Write three SML functions nth, take, drop that take a list and an integer as arguments, such
that

1. nth(xs,n) gives the n-th element of the list xs.

2. take(xs,n) returns the list of the first n elements of the list xs.

3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.

In all cases, the functions should raise the exception Subscript, if n < 0 or the list xs has less
than n elements. We assume that list elements are numbered beginning with 0.

Solution:

exception Subscript
fun nth (nil,_) = raise Subscript
| nth (h::t,n) = if n < 0 then raise Subscript

else if n=0 then h else nth(t,n-1)
fun take (l,0) = nil
| take (nil,_) = raise Subscript
| take (h::t,n) = if n < 0 then raise Subscript

else h::take(t,n-1)
fun drop (l,0) = l
| drop (nil,_) = raise Subscript
| drop (h::t,n) = if n < 0 then raise Subscript

else drop(t,n-1)
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10ptProblem 1.69 (Transformations with Errors)
Extend the function from ?? by an error flag, i.e. the value of the function should be a pair
consisting of a string, and the boolean value true, if the string was suitable, and false if it was
not.

Solution: 2

2EdNote: need one; please help
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10ptProblem 1.70 (Simple SML data conversion)
Write an SML function char_to_int = fn : char -> int that given a single character in the
range [0− 9] returns the corresponding integer. Do not use the built-in function Int.fromString

but do the character parsing yourself. If the supplied character does not represent a valid digit
raise an InvalidDigit exception. The exception should have one parameter that contains the
invalid character, i.e. it is defined as exception InvalidDigit of char

Solution:

exception InvalidDigit of char;

(* Converts a character representing a digit to an integer *)
fun char_to_int c =
let
val res = (ord c) - (ord #"0");

in
if res >= 0 andalso res <= 9 then res else raise InvalidDigit(c)

end;

(* TEST CASES *)
val test1 = char_to_int #"0" = 0;
val test2 = char_to_int #"3" = 3;
val test3 = char_to_int #"9" = 9;
val test4 = char_to_int #"~" = 6 handle InvalidDigit c => true | other => false;
val test5 = char_to_int #"a" = 6 handle InvalidDigit c => true | other => false;
val test6 = char_to_int #"Z" = 6 handle InvalidDigit c => true | other => false;
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10ptProblem 1.71 (Strings and numbers)
Write two SML functions

1. str_to_int = fn : string -> int

2. str_to_real = fn : string -> real

that given a string convert it to an integer or a real respectively. Do not use the built-in functions
Int.fromString, Real.fromString but do the string parsing yourself.

• Negative numbers begin with a ’~’ character (not ’-’).

• If the string does not represent a valid integer raise an exception as in the previous exercise.
Use the same definition and indicate which character is invalid.

• If the input string is empty raise an exception.

• Examples of valid inputs for the second function are: ~1, ~1.5, 4.63, 0.0, 0, .123

Solution:

(* Converts a list of characters to an integer. The list must be reversed and
there should be only digit characetrs (no minus). *)

fun inv_pos_charl_to_int nil = 0
| inv_pos_charl_to_int (a::l) = char_to_int a + 10*inv_pos_charl_to_int(l);

(* Converts a list of characters to a positive or a negative integer. *)
fun charl_to_int (#"~"::l) = ~( inv_pos_charl_to_int(rev l))
| charl_to_int l = inv_pos_charl_to_int(rev(l));

(* Converts a string to a negative or a positive integer *)
fun str_to_int s = charl_to_int(explode(s));

(* TEST CASES *)
val test1 = str_to_int "0" = 0;
val test2 = str_to_int "1" = 1;
val test3 = str_to_int "234" = 234;
val test4 = str_to_int "~0" = 0;
val test5 = str_to_int "~4" = ~4;
val test6 = str_to_int "~5734" = ~5734;
val test7 = str_to_int "hello" = 6 handle InvalidDigit c => true| other => false;
val test8 = str_to_int "~13.2" = 6 handle InvalidDigit c => true| other => false;

Solution:

exception NegativeFraction;

(* Splits a character list into two lists delimited by a ’.’ character *)
fun cl_get_num_parts nil whole _ = (whole,nil)
| cl_get_num_parts (#"."::l) whole fract = (whole, l)
| cl_get_num_parts (c::l) whole fract = cl_get_num_parts l (whole @ [c] ) fract;

(* Given a real number makes it into a fraction by dividing by 10 until the
input is less than 1 *)

fun make_fraction fr =
if fr < 1.0 then fr else make_fraction (fr / 10.0);

(* Converts a string to a real number. Only decimal dot notation is allowed *)
fun str_to_real s =
let
val (w,f) = cl_get_num_parts (explode s) nil nil;
val is_negative = (length w > 0) andalso (hd w = #"~");
val whole_r = real( str_to_int (implode w) );
val fract = real ( str_to_int (implode f) );
val fract_r = if fract < 0.0

then raise NegativeFraction
else make_fraction fract;

in
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if is_negative then whole_r - fract_r else whole_r + fract_r
end;

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;

val test1 = eq ( str_to_real "0") 0.0;
val test2 = eq ( str_to_real "0.156") 0.156;
val test3 = eq ( str_to_real "14.723") 14.723;
val test4 = eq ( str_to_real "~0.123") ~0.123;
val test5 = eq ( str_to_real "~12.789") ~12.789;
val test6 = eq ( str_to_real ".123") 0.123;
val test7 = eq ( str_to_real "hello") 4.2 handle InvalidDigit c => true| other => false;
val test8 = eq ( str_to_real "~13..2") 4.2 handle InvalidDigit c => true| other => false;
val test9 = eq ( str_to_real "~13.~2") 4.2 handle NegativeFraction => true| other => false;
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10ptProblem 1.72 (Recursive evaluation)
Write an SML function evaluate = fn : expression -> real that takes an expression of the
following datatype and computes its value:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

For example we have

evaluate(num(1.3)) -> 1.3
evaluate(div(num(2.2),num(1.0))) -> 2.2
evaluate(add(num(4.2),sub(mul(num(2.1),num(2.0)),num(1.4)))) -> 7.0

Solution:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

(* Evaluates an arithmetic expression to a real value *)
fun evaluate (add(x,y)) = (evaluate x) + (evaluate y)
| evaluate (sub(x,y)) = (evaluate x) - (evaluate y)
| evaluate (dvd(x,y)) = (evaluate x) / (evaluate y)
| evaluate (mul(x,y)) = (evaluate x) * (evaluate y)
| evaluate (num(x)) = x;

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;

val test1 = eq ( evaluate (num(0.0)) ) 0.0;
val test2 = eq ( evaluate (num(1.23)) ) 1.23;
val test3 = eq ( evaluate (num(~2.78)) ) ~2.78;
val test4 = eq ( evaluate (add(num(1.52),num(~1.78))) ) ~0.26;
val test5 = eq ( evaluate (sub(num(1.52),num(~1.78))) ) 3.3;
val test6 = eq ( evaluate (mul(num(1.5),num(~3.2))) ) ~4.8;
val test7 = eq ( evaluate (dvd(num(3.2),num(~0.5))) ) ~6.4;
val test8 = eq ( evaluate (add(add(add(num(1.0),num(1.0)),num(1.0)),num(1.0)))) 4.0;
val test9 = eq ( evaluate (add(mul(add(num(2.0),num(1.0)), sub(num(9.0),

mul(num(2.0),add(num(1.0),num(2.0))))),dvd(mul(num(2.0),
num(4.0)),dvd(add(num(1.0),num(1.0)),num(~4.0)))))) ~7.0;

80



10ptProblem 1.73 (List evaluation)
Write a new function evaluate_list = fn : expression list -> real list that evaluates
a list of expressions and returns a list with the corresponding results. Extend the expression

datatype from the previous exercise by the additional constructor: var of int.
The variables here are the final results of previosly evaluated expressions. I.e. the first expres-

sion from the list should not contain any variables. The second can contain the term var(0) which
should evaluate to the result from the first expression and so on . . . If an expression contains an
invalid variable term raise: exception InvalidVariable of int that indicates what identifier
was used for the variable.

For example we have

evaluate_list [num(3.0), num(2.5), mul(var(0),var(1))] -> [3.0,2.5,7.5]

Solution:

exception InvalidVariable of int;

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real
| var of int;

(* Evaluates an arithmetic expression to a real value *)
fun evaluate vars (add(x,y)) = (evaluate vars x) + (evaluate vars y)
| evaluate vars (sub(x,y)) = (evaluate vars x) - (evaluate vars y)
| evaluate vars (dvd(x,y)) = (evaluate vars x) / (evaluate vars y)
| evaluate vars (mul(x,y)) = (evaluate vars x) * (evaluate vars y)
| evaluate _ (num(x)) = x
| evaluate vars (var(v)) = if v < 0 orelse v>= length vars

then raise InvalidVariable(v)
else List.nth(vars, v);

fun evaluate_list_helper nil vars = vars
| evaluate_list_helper (a::l) vars =

let
val res = evaluate vars a;

in
evaluate_list_helper l (vars @ [res ])

end;

fun evaluate_list l = evaluate_list_helper l nil;

Solution:

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;
fun eql nil nil = true
| eql l nil = false
| eql nil l = false
| eql (a::l) (b::m) = (eq a b) andalso (eql l m);

val test1 = eql ( evaluate_list [num(1.0)] ) [1.0];
val test2 = eql ( evaluate_list [num(1.0),num(~2.3)] ) [1.0,~2.3];
val test3 = eql ( evaluate_list [num(1.0),num(~2.3),add(var(0),var(1))] )

[1.0,~2.3,~1.3];
val test4 = eql ( evaluate_list [add(num(1.0),num(4.2)),

mul(num(~2.0),sub(num(2.0),num(~5.0))),
add(var(0),mul(var(1),num(~1.0)))] )
[5.2,~14.0,19.2];

val test5 = eql ( evaluate_list [var(~1)] ) [1.0]
handle InvalidVariable v => true| other => false;

val test6 = eql ( evaluate_list [var(0)] ) [1.0]
handle InvalidVariable v => true| other => false;
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val test7 = eql ( evaluate_list [var(1)] ) [1.0]
handle InvalidVariable v => true| other => false;

val test8 = eql ( evaluate_list [num(1.0),var(1)] ) [1.0]
handle InvalidVariable v => true| other => false;
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10ptProblem 1.74 (String parsing)
Write an SML function evaluate_str = fn : string list -> real list that given a list of
arithmetic expressions represented as strings returns their values. The strings follow the following
conventions:

• strict bracketing: every expression consists of 2 operands joined by an operator and has to
be enclosed in brackets, i.e. 1 + 2 + 3 would be represented as ((1+2)+3) (or (1+(2+3)))

• no spaces: the string contains no empty characters

The value of each of the expressions is stored in a variable named vn with n the position of the
expression in the list. These variables can be used in subsequent expressions.

Raise an exception InvalidSyntax if any of the strings does not follow the conventions.
For example we have

evaluate_str ["((4*.5)-(1+2.5))"] -> [~1.5]
evaluate_str ["((4*.5)-(1+2.5))","(v0*~2)"] -> [~1.5,3.0]
evaluate_str ["(1.8/2)","(1-~3)","(v0+v1)"] -> [0.9,4.0,4.9]

Solution:

exception InvalidSyntax;

fun parserest [] n = raise InvalidSyntax
| parserest [#")"] 0 = []
| parserest (#"("::t) n = #"("::(parserest t (n+1))
| parserest (#")"::t) n = #")"::(parserest t (n-1))
| parserest (h::t) n = h::(parserest t n);

fun findop [] n left = raise InvalidSyntax
| findop (#"+"::t) 0 left = (#"+",left,(parserest t 0))
| findop (#"-"::t) 0 left = (#"-",left,(parserest t 0))
| findop (#"*"::t) 0 left = (#"*",left,(parserest t 0))
| findop (#"/"::t) 0 left = (#"/",left,(parserest t 0))
| findop (#"("::t) n left = findop t (n+1) (left@[#"("])
| findop (#")"::t) n left = findop t (n-1) (left@[#")"])
| findop (h::t) n left = findop t n (left@[h]);

fun charl_to_exp [] = raise InvalidSyntax
| charl_to_exp (#"("::t) =

let val (c,x,y) = findop t 0 [];
in
if (c = #"+") then add(charl_to_exp x,charl_to_exp y)
else if (c = #"-") then sub(charl_to_exp x,charl_to_exp y)
else if (c = #"*") then mul(charl_to_exp x,charl_to_exp y)
else dvd(charl_to_exp x,charl_to_exp y)

end
| charl_to_exp (#"v"::t) = var(str_to_int (implode t))
| charl_to_exp (h::t) = num(str_to_real (implode(h::t)));

fun str_to_exp str = charl_to_exp (explode str);

fun evaluate_str l = evaluate_list ( map str_to_exp l);

Solution:

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs( a - b) < EPSILON;
fun eql nil nil = true
| eql l nil = false
| eql nil l = false
| eql (a::l) (b::m) = (eq a b) andalso (eql l m);

val test1 = eql (evaluate_str ["0"] ) [0.0];
val test2 = eql (evaluate_str ["1.5"] ) [1.5];
val test3 = eql (evaluate_str [".5"] ) [0.5];
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val test4 = eql (evaluate_str ["~1.2"] ) [~1.2];
val test5 = eql (evaluate_str ["(1+3)"] ) [4.0];
val test6 = eql (evaluate_str ["(1.2+3.5)"] ) [4.7];
val test7 = eql (evaluate_str ["(1.2+~3.5)"] ) [~2.3];
val test8 = eql (evaluate_str ["(1.2-~3.5)"] ) [4.7];
val test9 = eql (evaluate_str ["(~1.5+3.2)"] ) [1.7];
val test10 = eql (evaluate_str ["(~1.5*~3.2)"] ) [4.8];
val test11 = eql (evaluate_str ["(5.5/~1.1)"] ) [~5.0];
val test12 = eql (evaluate_str ["(~1.5/3.0)"] ) [~0.5];
val test13 = eql (evaluate_str

["(((6.4/~1.6)-7)+((.50-~10)*(20/(2.5/0.5))))"] ) [31.0];
val test14 = eql (evaluate_str ["42.5","v0"] ) [42.5,42.5];
val test15 = eql (evaluate_str

["~2","(v0*v0)","(v1*v0)","(v2*v0)"] ) [~2.0,4.0,~8.0,16.0];
val test16 = eql (evaluate_str

["~2","(v0*v0)","(v1*(v0+(~2.5/v0)))"] ) [~2.0,4.0,~3.0];
val test17 = eql (evaluate_str ["(((1+2)*3)"] ) [42.5] handle all => true;
val test18 = eql (evaluate_str ["((1+2)3)"] ) [42.5] handle all => true;
val test19 = eql (evaluate_str ["(13"] ) [42.5] handle all => true;
val test20 = eql (evaluate_str ["(((1+2)*3)"] ) [42.5] handle all => true;
val test21 = eql (evaluate_str ["*3)"] ) [42.5] handle all => true;
val test22 = eql (evaluate_str ["(*3)"] ) [42.5] handle all => true;
val test23 = eql (evaluate_str ["(7/3*2)"] ) [42.5] handle all => true;
val test24 = eql (evaluate_str ["((7/3)*(2#6))"] ) [42.5] handle all => true;
val test25 = eql (evaluate_str ["(3-6))"] ) [42.5] handle all => true;
val test26 = eql (evaluate_str ["v0"] ) [42.5] handle all => true;
val test27 = eql (evaluate_str ["0","v1"] ) [42.5] handle all => true;
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10ptProblem 1.75 (SML File IO)
Write an SML function evaluate_file = fn : string -> string -> unit that performs file
IO operations. The first argument is an input file name and the second is an output file name. The
input file contains lines which are arithmetic expressions. evaluate_file reads all the expressions,
evaluates them, and writes the corresponding results to the output file, one result per line.

For example we have

evaluate_list "input.txt" "output.txt";

Contents of input.txt:
4.9
0.7
(v0/v1)

Contents of output.txt (after evaluate_list is executed):
4.9
0.7
7.0

Solution:

fun get_lines istream =
let
val line = TextIO.inputLine (istream);

in
case line of

NONE => nil
| SOME(l) => let

val cl = explode l;
val cl = List.take(cl, length cl - 1);
val l = implode cl;

in
(l :: (get_lines istream) )

end
end;

fun write_lines nil ostream = true
| write_lines ((s:real)::l) ostream =
let
val _ = TextIO.output (ostream, Real.toString(s));

val _ = TextIO.output (ostream, "\textbackslash{n}");
in
write_lines l ostream

end;

fun evaluate_file in_filename out_filename =
let
val input = TextIO.openIn in_filename;
val output = TextIO.openOut out_filename;
val l = evaluate_str ( get_lines input );

val _ = write_lines l output;
in
(TextIO.closeIn input; TextIO.closeOut output)

end;
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1.5 Encoding Programs as Strings

1.5.1 Formal Languages
3pt
5minProblem 1.76: Given the alphabet A = {a, b, c} and a L :=

⋃∞
i=1 Li, where L1 = {ε} and Li+1

contains the strings x, bbx, xac for all x ∈ Li.

1. Is L a formal language?

2. Which of the following strings are in L? Justify your answer

s1 = bbac s2 = bbacc s3 = bbbac
s4 = acac s5 = bbbacac s6 = bbacac

Solution:

1. L is a formal language as L1 ∈ A+ and every step from Li to Li+1 concatenates only elements from
A.

2. s1, s4, s6 ∈ L3

3EdNote: Need a justification here. Please help
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2ptProblem 1.77: Given the alphabet A = {a, 2, §}.

1. Determine k = #(Q) with Q = {s ∈ A+ | |s| ≤ 5}.

2. Is Q a formal language over A? Justify your results.

Solution:

k = #({s ∈ A+ | |s| = 0}) +

#({s ∈ A+ | |s| = 1}) + . . .+

#({s ∈ A+ | |s| = 5})
= 1 + 31 + . . .+ 35 = 364

Q is a formal language over A, since Q ⊆ A+.
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3pt5minProblem 1.78: Let A := {a, h, /,#, x} and ≺ be the ordering relation on A with x ≺ # ≺ / ≺
h ≺ a. Order the following strings in A∗ in the lexical order <lex induced by ≺.

s1 = #### s2 = ##x##h s3 = ε
s4 = ##h##x s5 = a###a# s6 = ####/
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20ptProblem 1.79 (Lexical Ordering)
Write a lexical ordering function lex on lists in SML, such that lex takes three arguments, an
ordering relation (i.e. a binary function from list elements to Booleans), and two lists (representing
strings over an arbitrary alphabet). Then lex(o,l,r) compares lists l and r in the lexical ordering
induced by the character ordering o.

We want the function lex to return three value strings "l<r", "r<l", and "l=r" with the
obvious meanings.

Solution:

fun lex (ts, nil, nil) = "l=r"
| lex (ts, nil, (_::_)) = "r<l"
| lex (ts, (_::_), nil) = "l<r"
| lex (ts, (h::t), (k::l)) =

if h=k then lex( ts, t, l)
else if ts(h,k) then "l<r" else "r<l";
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1.5.2 Elementary Codes
2pt

Problem 1.80: Given the alphabets A = {a, 2} and B = {9,#, /}.

1. Is c with c(a) = ## and c(2) = 9###/ a character code?

2. Is the extension of c on strings over A a code?

Solution: c is a character code, since c : A → B and c(a) 6= c(2), so c is injective. Furthermore c is a
prefix code, so the extension of c is a code.
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30ptProblem 1.81 (Testing for prefix codes)
Write an SML function prefix_code that tests whether a code is a prefix code. The code is given
as a list of pairs (SML type char*string list).

Example:

prefix_code [(#"a","0"), (#"b","1")];
val it = true : bool

Hint: You have to test for functionhood, injectivity and the prefix property.

Solution:

infix mem (* list membership *)
fun x mem nil = false | x mem (y::l) = (x=y) orelse (x mem l)
(* test for repeated elements in list *)
fun repeat nil = false
| repeat (h::t) = h mem t orelse repeat(t)

fun function rel = not (repeat (map (fn (x,_) => x ) rel))
fun injective rel = not (repeat (map (fn (_,x) => x ) rel))
(* test whether a list is a prefix of another *)
fun prefix_list _ nil = false
| prefix_list nil _ = true
| prefix_list (h::t) (k::l) = if (h = k) then prefix_list t l else false;

(* testing if there is an element with property p in list *)
fun exists p nil = false | exists p (h::t) = p h orelse exists p t;
(* testing for the prefix property *)
fun prefix_prop code =

exists (fn (_,c) =>
exists (fn (_,d) =>

prefix_list (explode c) (explode d))
code)

code;
(* putting it all together *)
fun prefix_code code = function code

andalso injective code
andalso prefix_prop code = false;

(*Test cases:*)
val test1 = prefix_code [(#"a","0"), (#"b","10")] = true;
val test2 = prefix_code [(#"a","0"), (#"b","1")] = true;
val test3 = prefix_code [(#"a","0"), (#"b","10"), (#"c", "110")]=true;
val test4 = prefix_code [(#"a","0"), (#"a","10")]=false;
val test5 = prefix_code [(#"a", "0"), (#"b", "01")]=false;
val test6 = prefix_code [(#"a", "10"), (#"b", "101"), (#"c", "01")]=false;
val test7 = prefix_code [(#"a", "10"), (#"b", "11")]=true;
val test8 = prefix_code [(#"a","0")]=true;
val test9 = prefix_code []=true;
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8pt5min

Problem 1.82: LetA := {a, b, c, d, e, f, g, h} and B := {0, 1}, and

c(a):=010010010101001 c(b):=010110010101001
c(c):=010011110101001 c(d):=010010011101001
c(e):=010010010110001 c(f):=010010010101101
c(g):=010011110101000 c(h):=011111110101000

Is c a character code? Does it induce a code on strings?
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40ptProblem 1.83 (Morse Code Translator)
Write an SML program that transforms arbitrary strings into Morse Code. Write a translation
function from Morse code to regular strings and show on some examples that the translators are
inverses.

Hint: The Morse codes are multi-character strings. In the Morse representation of the string, these
codes should be separated by space characters. This makes a back-translation possible.

Solution: The first task is to program the character-level translation procedures, to make things
simple, we will represent the translation table in a list of pairs and use functions assoc and rassoc to do
the lookup. Note that we have conveniently added the separating blanks to the table. Then translating
to Morse code is just a simple call to the mapcan function from ??.

val table = [(#"A",".- "),(#"B","-... "),\ldots,(#"0","----- ")]
exception Lookup
fun assoc (k,nil) = raise Lookup
| assoc (k,(key,value)::t) = if key = k then value else assoc(k,t);

fun rassoc (k,nil) = raise Lookup
| rassoc (k,(value,key)::t) = if key = k then value else rassoc(k,t)

fun morse s = implode(mapcan(fn c => explode(assoc(c,table)),explode(s)));

The translation back is more involved, since we cannot just “explode” the string into the right pieces
(which we call the tokens); we have to compute the tokens first. Armed with this procedure, we can
proceed almost like above:

fun tok(nil,chars,strings) = implode(chars)::strings
| tok(h::t,chars,strings) =

if h = #" "
then tok(t,nil, implode(chars)::strings)
else tok(t,h::chars,strings)

fun tokenize(s) = tok(explode(s),nil,nil)
fun demorse s = implode(map (fn s => rassoc(s,table)) (tokenize s));
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20ptProblem 1.84 (Morse Code again)
With what you know about codes now, is the Morse Code (without the blank characters as stop
symbols) a code on strings? Give a proof for your answer.

Solution: The Morse code is not a code on strings without stop characters: We have morse(IE) =
..+ . = ... = morse(S), so the Morse code is not injective.
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30ptProblem 1.85 (String Decoder without Stop Characters)
Write a general string decoder that takes as the first argument a code (in the representation you
developed in ??) and decodes strings with respect to this code if possible and raises and exception
otherwise.

Solution: The algorithm for decoding works as follows, we find a prefix of the coded string that is
a codeword, decode that and add it to the result string and recurse on the rest string.

(* drop the first n elements from a list of length >= n *)
exception too_short
fun drop n nil = raise too_short
| drop 0 l = l
| drop n (h::t) = drop (n-1) t

exception invalid
(* find a code word in a coded string as a prefix*)
fun find code nil = raise invalid
| find ((char,cw)::t) coded =

if prefix_list (explode cw) coded
then cw
else decode_one t coded

exception Lookup
fun rassoc (k,nil) = raise Lookup
| rassoc (k,(value,key)::t) = if key = k then value else rassoc(k,t)

fun decode code nil = nil
| decode code coded =

let cw = find code coded (* raises exception if not found *)
in (rassoc cw code) @ (decode code (drop (length cw) coded))
end
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1.5.3 Character Codes in the Real World

No problems supplied yet.
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1.5.4 Formal Languages and Meaning

No problems supplied yet.
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1.6 Boolean Algebra

1.6.1 Boolean Expressions and their Meaning
15pt

Problem 1.86 (Boolean complements)
Prove or refute that the following is a theorem of Boolean Algebra:

For all a, b ∈ B, if both a+ b = 1 and a ∗ b = 0, we obtain b = a. (That is, any b ∈ B
has a unique complement, regardless of whether we’re considering Boolean sums or
products.)

Observation: You are not allowed to use truth tables in this proof. Give a solution that is
only based on Boolean Algebra rules and theorems.

Solution: Source: [MM00]
Let a+ b = 1 and a ∗ b = 0. Then:

a = 1 ∗ a = (a+ b) ∗ a = b ∗ a
a = 0 + a = a ∗ b+ a = b+ a

Now we replace a in the rightmost term in (2) by the right side of (1), b ∗ a, and obtain

a = b+ b ∗ a = b
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10ptProblem 1.87: Give a model for Cbool, where the following expression are theorems: a∗a, a+a,
a ∗ a, a+ a.

Hint: Give the truth tables for the Boolean functions.

Solution: Let U := B, and I(0) = F, I(1) = T, and

I(+) T F

T F T
F T F

I(∗) T F

T T T
F T T

I(−)

T F
F T

With this, we have the truth tables

a a a ∗ a
T F T
F T T

a a a+ a

T F T
F T T

a a ∗ a
T T
F T

a a+ a a+ a

T F T
F F T

which verify that we have indeed found the desired model.
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15ptProblem 1.88 (Partial orders in a Boolean algebra)
For a given boolean algebra with a universe B and a, b ∈ B, we define that the relation a ≤ b holds
iff a+ b = b. Prove for refute that ≤ is a partial order on B.

Note: There are boolean algebras with a universe B larger than just {0, 1}. We are not going to
consider them in the scope of this lecture, but still try to keep your proof as generic as possible. That is,
assume that a, b are arbitrary elements of B instead of just distinguishing the cases a/b = 0 and a/b = 1.

Solution: Source: Meinel/Mundhenk: Mathematische Grundlagen der Informatik. Teubner, 2000.
ISBN 3-519-02949-9.

reflexive: because of idempotence

transitive: let x ≤ y and y ≤ z for arbitrary x, y, z ∈ B. Then, x + y = y and y + z = z by definition.
We obtain:

x+ z = x+ (y + z) = (x+ y) + z = y + z = z

i. e. x ≤ z.
antisymmetric: Let x ≤ y and y ≤ x for arbitrary x, y ∈ B. That implies x + y = y and y + x = x by

definition, and we obtain:
x = y + x = x+ y = y
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20ptProblem 1.89: Given the following SML data types for Boolean formulae and truth values

datatype boolexp = zero | one
| plus of boolexp * boolexp
| times of boolexp * boolexp
| compl of boolexp
| var of int

datatype mybool = mytrue | myfalse

write a (cascading) evaluation function eval : (int -> mybool) -> boolexp -> mybool that
takes an assignment ϕ and a Boolean formula e and returns Iϕ(e) as a value.

Solution:

fun eval1(_,zero) = myfalse
| eval1(_,one) = mytrue
| eval1(f,plus(x,y)) =
if (eval1(f,x) = mytrue orelse eval1(f,y) = mytrue)
then mytrue else myfalse

| eval1(f,times(x,y)) =
if (eval1(f,x) = mytrue andalso eval1(f,y) = mytrue)
then mytrue else myfalse

| eval1(f,compl(x)) = if eval1(f,x) = myfalse
then mytrue else myfalse

| eval1(f,var(n)) = f(n)

fun eval f e = eval1(f,e);
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20ptProblem 1.90: Given the SML data types from ??, write a simplified version of the function us-
ing the built-in truth values in SML, i.e. an evaluation function evalbib : (int -> bool) -> boolexp -> bool.
This function should not use any if constructs.

Solution:

fun evalbib(_,bez) = myfalse
| evalbib(_,beo) = mytrue
| evalbib(f,bep(x,y)) = evalbib(f,x) orelse evalbib(f,y)
| evalbib(f,bet(x,y)) = evalbib(f,x) andalso evalbib(f,y)
| evalbib(f,bec(x)) = not evalbib(f,x)
| evalbib(f,bev(n)) = f(n)
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40ptProblem 1.91 (Parsing boolean expressions)
Given the following SML data types for Boolean formulae

datatype boolexp = bez | beo (* 0 and 1 *)
| bep of boolexp * boolexp (* plus *)
| bet of boolexp * boolexp (* times *)
| bec of boolexp (* complement *)
| bev of int (* variables *)

write an SML function beparse : string -> boolexp that takes a string as input and transforms
it into an boolexp representation of this formula, if it is in Ebool and raises an exception if not.

Note: As there is no ASCII representation for the complement operation we used in the definition
in class, we use -(x) for the complement of x in the input syntax. So the relevant clause in the definition
is now:

• Ei+1
bool := {a,−(a), (a+ b), (a ∗ b) | a, b ∈ Eibool}

Hint: For this you will need to write a couple of auxiliary functions, e.g. to convert lists of characters
into integers and strings. A main function will have to look at all the characters in turn and decide what
to do next.

Solution: We will need some auxiliary functions take and drop for manipulating lists of characters:

exception parse_error;

fun take(nil,n) = if n=0 then nil else raise parse_error
| take(h::t,n) = if n<0 then raise parse_error

else if n=0 then nil else h::take(t,n-1);

fun drop(nil,n) = if n=0 then nil else raise parse_error
| drop(h::t,n) = if n<0

then raise parse_error
else if n=0 then(h::t) else drop(t,n-1);

furthermore, we need functions to convert lists of characters to integers and strings

fun to_int(l) =
if length(l)=0 then raise parse_error
else let fun to_int_rev(nil) = 0

| to_int_rev(h::t) = if h>=(#"0")
then if h<=(#"9")

then to_int_rev(t)*10 + ord(h)-ord(#"0")
else raise parse_error

else raise parse_error
in to_int_rev(rev l) end;

The following function finds out the head symbol of the expression

fun find_sign(nil,_,_) = raise parse_error
| find_sign(h::t,np,pos) =

if h=(#"(") then find_sign(t,np+1,pos+1)
else if h=(#")") then find_sign(t,np-1,pos+1)

else if (h=(#"~") orelse h=(#"+") orelse h=(#"*")) andalso np=0
then (pos,h)
else find_sign(t,np,pos+1);

With these, we can finally build the main processing function

fun process(nil) = raise parse_error
| process(h::t) =

case (h) of
(#"X") => if hd(t)=(#"0") then raise parse_error

else bev(str2int(implode(t)))
| (#"0") => if t=nil then bez else raise parse_error
| (#"1") => if t=nil then beo else raise parse_error
| (#"(") =>

let
val lst = if hd(rev t)=(#")") then take(t,length(t)-1)

else raise parse_error
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val (p,s)=find_sign(lst,0,1)
(* we find the next sign to be interpreted, and its position *)
in
case (s) of

(#"+") => bep(process(take(lst,p-1)),process(drop(lst,p)))
| (#"*") => bet(process(take(lst,p-1)),process(drop(lst,p)))
| (#"~") => bec(process(drop(lst,1)))
|(_) => raise parse_error end (* to surpress the warning *)

|(_) => raise parse_error;

With this, the main parsing function is simply

fun beparse(s) = process(explode(s));
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20ptProblem 1.92: Write a function beprint : boolexp -> string that converts boolexp for-
mulae from ?? to Ebool strings. This should be the inverse function to the function beparse from
??.

Test your implementation by round-tripping (check on some examples whether beparse(beprint(x))=x
and beprint(beparse(x))=x). Exhibit at least three examples with at least 8 operators each,
and show the results on them.

Solution: For the inverse function beprint we will need a function that converts an integer to a
string.

fun to_string(v) = if v<0 then "~"^to_string((~1)*v)
else if v>9

then to_string(v div 10)^to_string(v mod 10)
else implode([chr(v+48)]);

With this, the print function is a simple recursion over the structure of the object

fun beprint(bez) = "0" | beprint(beo) = "1"
| beprint(bec(e)) = "(~"^beprint(e)^")"
| beprint(bep(e1,e2)) = "("^beprint(e1)^"+"^beprint(e2)^")"
| beprint(bet(e1,e2)) = "("^beprint(e1)^"*"^beprint(e2)^")"
| beprint(bev(v)) = "X"^to_string(v);

To test that this is really an inverse, we have

- beprint(beparse("((X200+X100)*(X1+X2))"));
val it= "((X200+X100)*(X1+X2))"" : string
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3pt5minProblem 1.93: Is the expression e := x123 ∗ x72 + x123 ∗ x4 valid, satisfiable, unsatisfiable,
falsifiable? Justify your answer.

Solution: To determine the class of e, we determine its value under all assignments in a truth table,

assignments intermediate results full
x4 x72 x123 e1 := x123 ∗ x72 e2 := e1 e3 := x123 ∗ x4 e2 + e3
F F F F T F T
F F T F T F T
F T F F T F T
F T T T F F F
T F F F T F T
T F T F T T T
T T F F T F T
T T T T F T T

Ergo, e is satisfiable and falsifiable.
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2pt7minProblem 1.94 (Evaluating Expressions)
Let e := x1 + x2 + (x2 ∗ x3 + x3 ∗ x4) and ϕ := [F/x1], [F/x2], [T/x3], [F/x4], compute the value
Iϕ(e), give a (partial) trace of the computation.

Solution:

Iϕ(x1 + x2 + ((x2 ∗ x3) + (x3 ∗ x4)))

= Iϕ(x1 + x2) ∨ Iϕ((x2 ∗ x3) + (x3 ∗ x4))

= ¬Iϕ(x1 + x2) ∨ Iϕ((x2 ∗ x3) ∨ Iϕ(x3 ∗ x4))
= ¬(Iϕ(x1) ∨ Iϕ(x2)) ∨ (¬(Iϕ(x2 ∗ x3)) ∨ Iϕ(x3 ∗ x4))
= ¬(ϕ(x1) ∨ ϕ(x2)) ∨ (¬(Iϕ(x2) ∧ Iϕ(x3)) ∨ (Iϕ(x3) ∧ Iϕ(x4)))
= ¬(F ∨ F) ∨ (¬(¬Iϕ(x2) ∧ ϕ(x3)) ∨ (ϕ(x3) ∧ ϕ(x4)))
= ¬F ∨ (¬(¬ϕ(x2) ∧ T) ∨ (T ∧ F))
= T ∨ (¬(¬F ∧ T) ∨ F)
= T ∨ (¬(T ∧ T) ∨ F)
= T ∨ (¬T ∨ F)
= T ∨ (F ∨ F)
= T ∨ F = T
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Problem 1.95 (Boolean Equivalence)
Prove or refute the following equivalence:

x1 ∗ x1 + x1 + x2 ≡ (x1 + x2) ∗ ((x1 + x2) ∗ (x1 + x1))

For each step write down which equivalence rule you used (by equivalence rules we mean commu-
tativity, associativity, etc.).

Solution:
x1 ∗ x1 + x1 + x2 ≡ x1 + x2 + x1 ∗ x1 (commutativity)

≡ x1 ∗ x2 + x1 ∗ x1 (De Morgan)

≡ x1 ∗ (x2 + x1) (distributivity)
≡ x1 (covering)

(x1 + x2) ∗ ((x1 + x2) ∗ (x1 + x1)) ≡ (x1 + x2) ∗ (x1 + x2) (consensus)
≡ x1 (combining)

Since both expressions are equivalent to x1, they are equivalent to each other.
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1.6.2 Boolean Functions
10pt

Problem 1.96 (Induced Boolean Function)
Determine the Boolean function fe induced by the Boolean expression e := (x1 + x2) ∗ x1 ∗ x3.
Moreover determine the CNF and DNF of fe.

Solution:

argument value argument value
〈F,F,F〉 T 〈T,F,F〉 T
〈F,F,T〉 T 〈T,F,T〉 T
〈F,T,F〉 T 〈T,T,F〉 F
〈F,T,T〉 T 〈T,T,T〉 T
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Problem 1.97 (CNF and DNF)
Write the CNF and DNF of the boolean function that corresponds to the truth table below.

x1 x2 x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Solution:

DNF: x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

CNF: (x1 + x2 + x3) (x1 + x2 + x3) (x1 + x2 + x3)
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1.6.3 Complexity Analysis for Boolean Expressions

Problem 1.98 (Landau sets)
Order the landau sets below by specifying which ones are subsets and which ones are equal
(e.g.: O(a) ⊂ O(b) ⊂ O(c) ≡ O(d) ⊂ O(e)... )

O(n2); O((n)!); O(|sinn|); O(nn); O(1); O(2n); O(2n2 + 272)

Solution: O(|sinn|) ⊂ O(1) ⊂ O(2n2 + 272) ≡ O(n2) ⊂ O(2n) ⊂ O((n)!) ⊂ O(nn)
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5pt6minProblem 1.99 (Relations among polynomials)
Prove or refute that O(ni) ⊆ O(nj) for 0 ≤ i < j, n (i, j, n ∈ N).
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3pt10minProblem 1.100: Determine for the following functions f and g whether f ∈ O(g), or f ∈ Ω(g),
or f ∈ Θ(g), explain your answers.

f g f g
4572 84 n3 + 3 ∗ n n3

log(n3) log(n) (n2)− 22 n3

16n 2n nn 2n+1

Solution: The following table summarizes the results.
Fact Explanation

4572 ∈ Θ(84) For all n ∈ N we have 1000 · 84 ≤ 4572 and 0.001 · 4572 ≤
84

(n3) + 3 ∗ n ∈ Ω(n3) For all n: If c = 1 then n3 + 3 ∗ n ≥ n3 and if c = 10
then n3 + 3 ∗ n ≤ n3.

(log(n3)) ∈ Θ(log(n)) Since log(n3) = 3 · log(n)

((n2)− 22) ∈ Ω(n3) larger exponents win

(16n) ∈ Θ(2n) For all c there is an n such that 16n ≥ c · 2n; just take n
for a given c such that 8n ≥ c.

(nn) ∈ O(2n+1) For c = 2 and n > 1 we have 2n+1 = 2 ∗ 2n ≤ c · nn
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Problem 1.101 (Upper and lower bounds)
For each of the functions below determine whether f ∈ O(g), f ∈ Ω(g) or f ∈ Θ(g). Briefly
explain your answers.

1. f(n) = 235, g(n) = 12

2. f(n) = n, g(n) = 16n

3. f(n) = log10(n), g(n) = 7n+ 2

4. f(n) = 7n3 + 4n− 2, g(n) = 3n4 + 1

5. f(n) = log2(n)
n , g(n) = n

log2(n)

6. f(n) = 8n, g(n) = 2n

7. f(n) = nlogn(5), g(n) = 2n

8. f(n) = nn, g(n) = (logn(3))(n)!

9. f(n) =
(
n
2

)
, g(n) =

(
n
4

)
Solution:

1. f ∈ Θ(g) both are constants.

2. f ∈ Θ(g) the leading terms of the polynomial are of the same order.

3. f ∈ O(g) n grows faster than log2(n) as in the slides.

4. f ∈ O(g) the leading term of f n3 grows slower than n4 from g.

5. f ∈ O(g) The numerator of f grows slower that the numerator of g and the denominator of f grows
faster than the one from g. There fore f clearly grows slower.

6. f ∈ Ω(g) 8n = 23n which clearly grows faster than 2n.

7. f ∈ O(g) 2n is or a higher rank (see slides) and grows much faster.

8. f ∈ Ω(g) nn is clearly asymptotically bigger than (n)!. And the logarithm in front plays an
insignificant role when n is large.

9. f ∈ O(g) The first is a polynomial of degree 2 while the second is a polynomial of degree 4.
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Problem 1.102: What is the time complexity of the following SML function? Take one evalu-
ation step to be a creation of a head in function unwork and disregard other operations.

fun gigatwist lst = let

fun unwork nil = nil |
unwork(hd::tl) = hd::unwork(tl)

fun nextwork(nil, _) = nil |
nextwork(hd::tl, fnc) = fnc(lst)@nextwork(tl, fnc)

fun nthwork 1 = unwork |
nthwork n = let

fun work arg = nextwork(arg, nthwork(n-1))
in
work
end

in
nthwork(length lst) lst

end

Solution: Time complexity is Θ(nn).
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3pt10minProblem 1.103 (Proof of Membership in Landau Set)
Prove by induction or refute: the function f(n) := nn is in O((n)!2); i.e. there is a constant c such
that nn ≤ (n)!2 for sufficiently large n.

Hint:

Solution: We choose c = 1. Induction step: Show (n+ 1)(n+1) ≤ (n+ 1)!2 under the induction
hypothesis (IH) is nn ≤ (n)!2. We have (n+ 1)!2 = n+ 12 ∗ (n)!2 ≥ n+ 12nn by (IH). Hence, we have
to show that n+ 12nn ≥ n+ 1n+1 which we do by the equivalence transformations n+ 12nn ≥ n+ 1n+1

and nn ≥ n+ 1n−1 and now??? TODO !!!!!!
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1.6.4 The Quine-McCluskey Algorithm
14pt

Problem 1.104 (Quine-McCluskey)
Execute the QMC algorithm for the following function:

x1 x2 x3 f
F F F T
F F T T
F T F F
F T T T
T F F T
T F T F
T T F T
T T T T

Moreover you are required to find the solution with minimal cost where each operation (and,
not, or) adds 1 to the cost. E.g. the cost of (x1 + x3) (x3) is 3.

Solution:

QMC1 :
M0 = {x1 x2 x3, x1 x2 x3, x1 x2 x3, x1 x2 x3, x1 x2 x3, x1 x2 x3}
M1 = {x1 x2, x2 x3, x1 x3, x2 x3, x1 x2, x1 x3}
P1 = ∅
M2 = ∅
P2 = {x1 x2, x2 x3, x1 x3, x2 x3, x1 x2, x1 x3}

QMC2 :
FFF FFT FTT TFF TTF TTT

x1 x2 T T F F F F
x2 x3 T F F T F F
x1 x3 F T T F F F
x2 x3 F F T F F T
x1 x2 F F F F T T
x1 x3 F F F T T F

Final result: There are two solutions with optimal cost 8 which are actually the only solutions with
three polynomials:

1. f = x2 x3 + x1 x2 + x1 x3

2. f = x2 x3 + x2 x3 + x1 x3
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35ptProblem 1.105: Use the algorithm of Quine-McCluskey to determine the minimal polynomial
of the following functions:

x1 x2 x3 x4 f1
F F F F F
F F F T F
F F T F T
F F T T T
F T F F T
F T F T T
F T T F T
F T T T T
T F F F T
T F F T F
T F T F F
T F T T T
T T F F T
T T F T F
T T T F F
T T T T F

x1 x2 x3 x4 f2
F F F F T
F F F T F
F F T F T
F F T T F
F T F F F
F T F T F
F T T F F
F T T T T
T F F F T
T F F T T
T F T F F
T F T T F
T T F F F
T T F T F
T T T F F
T T T T T

Solution: For f1, we first enter the monomials and delete the rows that do not result in a monomial:

x1 x2 x3 x4 Monomials
F F T F x10 x20 x31 x40

F F T T x10 x20 x31 x41

F T F F x10 x21 x30 x40

F T F T x10 x21 x30 x41

F T T F x10 x21 x31 x40

F T T T x10 x21 x31 x41

T F F F x11 x20 x30 x40

T F T T x11 x20 x31 x41

T T F F x11 x21 x30 x40

The next two tables show each step in the Quine McCluskey Algorithm.

x1 x2 x3 x4 Monomials
F F T X x10 x20 x31

F X T F x10 x31 x40

F X T T x10 x31 x41

X F T T x20 x31 x41

X T F F x21 x30 x40

F T X T x10 x21 x40

F T T X x10 x21 x31

F T F X x10 x21 x30

T X F F x11 x30 x40

F T X F x10 x21 x40

x1 x2 x3 x4 Monomials
F X T X x10 x31

F T X X x10 x21

X F T T x20 x31 x41

X T F F x21 x30 x40

T X F F x11 x30 x40

Finally, we have to determine the prime implicants that form the minimal polynomial.

FFTF FFTT FTFF FTFT FTTF FTTT TFFF TFTT TTFF
x1x3 T T F F T T F F F
x1x2 F F T T T T F F F
x2x3x4 F T F F F F F T F
x2x3x4 F F T F F F F F T
x1x3x4 F F F F F F T F T

All prime implicants but the last one are essential. Hence, the minimal polynomial of f1 is:

f1 = x1x3 + x1x2 + x2x3x4 + x2x3x4

For f2, we first enter the monomials and delete all rows which do not result in a monomial and get the
following table from which we can start the algorithm from.
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x1 x2 x3 x4 Monomials
F F F F x10 x20 x30 x40

F F T F x10 x20 x31 x40

F T T T x10 x21 x31 x41

T F F F x11 x20 x30 x40

T F F T x11 x20 x30 x41

T T T T x11 x21 x31 x41

The next table shows the only step in the Quine McCluskey Algorithm that can be made for this
function.

x1 x2 x3 x4 Monomials
F F X F x10 x20 x40

X F F F x20 x30 x40

T F F X x11 x20 x30

X T T T x21 x31 x41

We are already done after one step. Now, we have to find out the prime implicants that form the minimal
polynomial.

FFFF FFTF TFFF TFFT FTTT TTTT
x1x2x4 T T F F F F
x2x3x4 T F T F F F
x1x2x3 F F T T F F
x2x3x4 F F F F T T

We see that all of the prime implicants but the second one are needed for the minimal polynomial.
Hence, we are finished and can write the polynomial. Our resulting polynomial is:

f2 = x1x2x4 + x1x2x2 + x1x3x4
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15ptProblem 1.106 (Quine-McCluskey with Don’t-Cares)

How can the Quine-McCluskey algorithm be modified to take advantage of don’t-cares? Find
out which steps of the algorithm are affected by this modification and explain how they change
by showing the respective steps of applying the algorithm to the function f(x1, x2, x3, x4) that
yields T for x10 x21 x30 x40, x10 x21 x30 x41, x10 x21 x31 x40, x11 x20 x30 x40, x11 x20 x30 x41,
x11 x20 x31 x40, x11 x21 x30 x41, “don’t care” for x10 x20 x30 x40, x10 x21 x31 x41, x11 x21 x31 x41,
and F for the other inputs.

Solution: A nice explanation for the same function can be found at http://www-static.cc.gatech.
edu/classes/AY2005/cs3220_spring/quine-mccluskey.pdf. One basically takes all all inputs with a
don’t-care output into account in QMC1, where the prime implicants are determined. In the top row of
the table used for QMC2, the don’t-cares are not included.
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14pt12minProblem 1.107 (CNF with Quine-McCluskey)

In class you have learned how to derive the optimal formula for a given function in DNF form
using the Quine-McCluskey algorithm. It appears that the same algorithm could be applied to
find the optimal formula in CNF form. Think of how this can be done and apply it on the function
defined by the following table:

x1 x2 x3 f
F F F T
F F T T
F T F T
F T T F
T F F T
T F T T
T T F F
T T T F

Hint:
The basic rule used in the QMC algorithm: a x+ a x = a also applies for formulas in CNF: (a+ x) (a+ x) =

(a)

Solution:

QMC1 :
C0 = {x1 + x2 + x3, x1 + x2 + x3, x1 + x2 + x3}
P1 = ∅
C1 = {x2 + x3, x1 + x2}
P2 = {x2 + x3, x1 + x2}

QMC2 :
FTT TTF TTT

x2 + x3 F T F
x1 + x2 T F F

Final result:
f = (x2 + x3) (x1 + x2)
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1.6.5 A simpler Method for finding Minimal Polynomials
10pt

Problem 1.108 (Karnaugh-Veitch Minimization)

Given the boolean function f = B ∗D + C +B ∗ (D +A) ∗ (A+D):

1. Use a KV map to determine the minimal polynomial for the function.

2. Try to further reduce the cost of the resulting polynomial using boolean equivalences. The
result does not need to be a polynomial.

3. Using boolean equivalences, transform the original expression into the the result from (2).
Show all intermediate steps.

Solution:

1. The KV map looks like this:

AB AB AB AB

CD T T T T

CD F F F F

CD F F F F

CD T F F T

The minimal polynomial is: DB +DC

2. We can reduce the cost by 1 if we use the following expression: f = D ∗ (B + C)

3.

f = B ∗D + C +B ∗ (D +A) ∗ (A+D)

= B ∗ (D ∗ C) +B ∗ (D +A+A+D)

= B ∗ (D ∗ C) +B ∗ (D ∗A+A ∗D)

= B ∗ (D ∗ C) + (B ∗ (D ∗A) +B ∗ (A ∗D))

= B ∗ (D ∗ C) +B ∗D
= D ∗ (B ∗ C +B)

= D ∗ (C +B)
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10minProblem 1.109 (Karnaugh-Veitch Diagrams)

1. Use a KV map to determine all possible minimal polynomials for the function defined by
the following truth table:

A B C D f
F F F F F
F F F T T
F F T F T
F F T T F
F T F F T
F T F T F
F T T F T
F T T T T
T F F F T
T F F T T
T F T F F
T F T T T
T T F F T
T T F T T
T T T F F
T T T T T

2. How would you use a KV map to find a minimal polynomial for a function with 5 variables?
What does your map look like? Which borders in the map are virtually connected? (A
simple but clear explanation suffices.)

Solution:

1. The resulting KV Map is:

AB AB AB AB

CD F T T T

CD T F F T

CD F T T T

CD T T T F

The two possible minimal polynomials are:

(a) AD +AC +BC D +AC D +BC D +BC D

(b) AD +AC +BC D +AC D +BC D +ABD

2. The picture below should be self explanatory:
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15pt6minProblem 1.110 (CNF with Karnaugh-Veitch Diagrams)
KV maps can also be used to compute a minimal CNF for a Boolean function. Using the function
f(x1, x2, x3) that yields T for x10 x20 x30, x10 x21 x30, x10 x21 x31, x11 x20 x30, and F for the
other inputs, develop an idea (and verify it for this example!) how to do this.

Hint: Start by grouping F-cells together.

Solution: Grading: Assuming 3 pt = 100%:

• 1 pt for the map

• 0.5 pt for correct grouping

• 1 pt for a reasonable description of the procedure

• 0.5 pt for a correct minimal CNF
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10ptProblem 1.111 (Karnaugh-Veitch Diagrams with Don’t-Cares)
In some cases, there is an input d ∈ dom(f) to a boolean function f : Bn → B for which no
output is specified — because the input is invalid or it would never occur. In a truth table for f ,
a function value f(d) would be written as X instead of F or T, which means, “Don’t care!”

Describe how don’t-cares can be utilized when determining the minimal polynomial of a
Boolean function using a KV map.

Note: Considering don’t-cares is particularly beneficial when designing digital circuits. This will be
done in GenCS 2. Just consider an electronic device with six states, which we can conveniently encode by
using three boolean memory elements, which leads to 23 − 6 = two leftover “don’t-care” states.

Solution: One tries to assign values, either F or T, to the don’t-care fields that lead to maximal
groups in the KV map.
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10ptProblem 1.112 (Don’t-Care Minimization)

1. Devise a concrete Boolean function f : B4 → B that gives T for 6 of the 16 possible inputs,
F for 7 inputs, and “don’t care” for the remaining 3 possible inputs.

2. Apply the don’t-care minimization algorithm from the previous exercise to it.

3. Then replace all don’t-cares by T, do minimization without don’t-cares, compare, and give
a short comment.
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1.7 Propositional Logic

1.7.1 Boolean Expressions and Propositional Logic
2pt
7minProblem 1.113 (The Nor Connective)

All logical binary connectives can be expressed by the ↓ (nor) connective which is defined as
A ↓ B := ¬(A ∨B). Rewrite P ∨ ¬P (tertium non datur) into an expression containing only ↓ as
a logical connective.

Hint: Recall that ¬A⇔ A ↓ A.

Solution: P ∨ ¬P = ¬¬(P ∨ ¬P ) = ¬(P ↓ ¬P ) = (P ↓ (P ↓ P )) ↓ (P ↓ (P ↓ P ))
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1.7.2 Logical Systems and Calculi

Problem 1.114 (Calculus Properties)
Explain briefly what the following properties of calculi mean:

• correctness

• completeness

Solution:

• correctness (H ` B implies H |= B) - A calculus is correct if any derivable(provable) formula is also
a valid formula.

• completeness (H |= B implies H ` B) - A calculus is complete if any valid formula can also be
derived(proven).
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1.7.3 Proof Theory for the Hilbert Calculus
5pt

Problem 1.115: We have proven the correctness of the Hilbert calculus H0 in class. The
problems of this quiz is about two incorrect calculi C1 and C2 which differ only slightly from H0.

What makes them incorrect?
Hint: The fact that H0 has two axioms, but each of C1 and C2 only have one is not the point.

Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus C1 incorrect?

• C1 Axiom:P ⇒ P ∧Q

• C1 Inference Rules:
A⇒ B A

MP
B

A
Subst

[B/P ]A

Why is this calculus C2 incorrect?

• C2 Axiom: P ⇒ (Q⇒ P )

• C2 Inference Rules:
A ∨B A

R2
A ∧B

A
Subst

[B/P ]A

Solution: A correct calculus requires valid axioms.
However the Axiom of C1 is not valid since the assignment ϕ = [T/P ], [T/Q], [F/R] makes it false.
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Problem 1.116 (Almost a Proof)
Please consider the following sequence of formulae: it pretends to be a proof of the formula A⇒ A
in H0. For each line annotate how it is derived by the inference rules from proceeding lines or
axioms. If a line is not derivable in such a manner then mark it as underivable and explain what
went wrong.

Use the aggregate notation we used in the slides for derivations with multiple steps (e.g. an
axiom with multiple applications of the Subst rule)

1. A⇒ (B⇒ A)

2. B⇒ A

3. B⇒ (A⇒ B)

4. A⇒ B

5. (B⇒ A)⇒ (A⇒ (B⇒ A))

6. (A⇒ (B⇒ A))⇒ ((A⇒ B)⇒ (A⇒ A))

7. (A⇒ B)⇒ (A⇒ A)

8. A⇒ A

Solution:

1. A⇒ (B⇒ A) Ax1 with [A/P ] and [B/Q]

2. B⇒ A underivable

3. B⇒ (A⇒ B) Ax1 with [B/P ] and [A/Q]

4. A⇒ B underivable

5. (B⇒ A)⇒ (A⇒ (B⇒ A)) Ax1 with [B⇒ A/P ] and [A/Q]

6. (A⇒ (B⇒ A))⇒ ((A⇒ B)⇒ (A⇒ A)) Ax2 with [A/P ], [B/Q] and [A/R]

7. (A⇒ B)⇒ (A⇒ A) MP16

8. A⇒ A MP47
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Problem 1.117: We have proven the correctness of the Hilbert calculus H0 in class. The
problems of this quiz is about two incorrect calculi C1 and C2 which differ only slightly from H0.
What makes them incorrect?

Hint: The fact that H0 has two axioms, but each of C1 and C2 only have one is not the point.
Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus C1 incorrect?

• C1 Axiom: P ⇒ (Q⇒ R)

• C1 Inference Rules:
A⇒ B A

MP
B

A
Subst

[B/P ]A

Solution: A correct calculus requires valid axioms.
However the Axiom of C1 is not valid since the assignment ϕ = [T/P ], [T/Q], [F/R] makes it false.
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Problem 1.118 (Alternative Calculus)
Consider a calculus given by the axioms A ∨ ¬A and A ∧B ⇒ B ∧A and the following
rules:

A⇒ B
Transp

¬B⇒ ¬A

A
Subst

[B/P ]A

Prove that the calculus is sound.
Solution: First we show that the axioms are theorems by constructing their truth tables:

A ¬A A ∨ ¬A
0 1 1
1 0 1

A B A ∨B B ∨A A ∧B⇒ B ∧A
0 0 0 0 1
0 1 1 1 1
1 0 1 1 1
1 1 1 1 1

The substitutionn rule is shown to be sound in the slides, so we are left to show that transposition is
sound. We use a truth table to show that its outcome is true whenever the precondition is true.

A B ¬A ¬B A⇒ B ¬B⇒ ¬A
0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 0 0
1 1 0 0 1 1

All axioms and rules were shown to be sound, thus we can conclude that the calculus is sound.
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10pt10minProblem 1.119 (A calculus for propositional logic)
Let us assume a calculus for propositional logic that consists of the single axiom A⇒ A and the
inference rule:

A⇒ (B⇒ C)

A ∧B⇒ C

A
Subst

[B/P ]A

1. Show that this calculus is sound (i. e. correct).

2. Prove the formula ((P ⇒ Q) ∧ P )⇒ Q using this calculus.

Solution:

1. Induction over proof length:

• The axiom is valid.

• The first inference rule is valid.

• The substitution inference rule is valid (see lecture).

2.
` A⇒ A
` (P ⇒ Q)⇒ (P ⇒ Q)
` ((P ⇒ Q) ∧ P )⇒ Q
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Problem 1.120 (Hilbert Calculus)
Prove the following theorem using H0: ((A⇒ C)⇒ A)⇒ ((A⇒ C)⇒ ((B⇒ B)⇒ A))

Solution:
Proof :

P.1 ((A⇒ C)⇒ (A⇒ ((B⇒ B)⇒ A)))⇒ (((A⇒ C)⇒ A)⇒ ((A⇒ C)⇒ ((B⇒ B)⇒ A))) (S with [A⇒ C/P ], [A/Q], [(B⇒ B)⇒ A/R])

P.2 A⇒ ((B⇒ B)⇒ A) (K with [A/P ], [B⇒ B/Q])

P.3 (A⇒ ((B⇒ B)⇒ A))⇒ ((A⇒ C)⇒ (A⇒ ((B⇒ B)⇒ A))) (K with [A⇒ ((B⇒ B)⇒ A)/P ], [A⇒ C/Q])

P.4 (A⇒ C)⇒ (A⇒ ((B⇒ B)⇒ A)) (MP on P.2 and P.3)

P.5 ((A⇒ C)⇒ A)⇒ ((A⇒ C)⇒ ((B⇒ B)⇒ A)) (MP on P.1 and P.4)
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20ptProblem 1.121 (A Hilbert Calculus)
Consider the Hilbert-style calculus given by the following axioms:

1. (F ∨ F)⇒ F (idempotence of disjunction)

2. F⇒ (F ∨G) (weakening)

3. (G ∨ F)⇒ (F ∨G) (commutativity)

4. (G⇒ H)⇒ ((F ∨G)⇒ (F ∨H))

and the identities

1. A⇒ B = ¬A ∨B

2. F ∧G = ¬(¬F ∨ ¬G)

You can use the MP and substitution as inference rules:

A⇒ B A
MP

B

A
Subst

[B/X](A)

Prove the formula P ∧Q ∨ (P ∨ (¬P ∨ ¬Q))

Solution:
Proof :

P.1 (((P⇒ ¬Q) ∨P)⇒ (P ∨ (P⇒ ¬Q)))⇒ ((P ∧Q ∨ ((P⇒ ¬Q) ∨P))⇒ (P ∧Q ∨ (P ∨ (P⇒ ¬Q))))
(ax.4 with [P ∧Q/F ], [(P⇒ ¬Q) ∨P/G], [P ∨ (P⇒ ¬Q)/H])

P.2 ((P⇒ ¬Q) ∨P)⇒ (P ∨ (P⇒ ¬Q)) (ax.3 with [P/F ], [P⇒ ¬Q/G])

P.3 (P ∧Q ∨ ((P⇒ ¬Q) ∨P))⇒ (P ∧Q ∨ (P ∨ (P⇒ ¬Q))) (MP on P.1 and P.2)

P.4 (P ∧Q ∨ ((P⇒ ¬Q) ∨P))⇒ (P ∧Q ∨ (P ∨ (¬P ∨ ¬Q))) (Identity 1.)

P.5 (¬(¬P ∨ ¬Q) ∨ ((P⇒ ¬Q) ∨P))⇒ (P ∧Q ∨ (P ∨ (¬P ∨ ¬Q))) (Identity 2.)

P.6 (¬(P⇒ ¬Q) ∨ ((P⇒ ¬Q) ∨P))⇒ (P ∧Q ∨ (P ∨ (¬P ∨ ¬Q))) (Identity 1.)

P.7 ((P⇒ ¬Q)⇒ ((P⇒ ¬Q) ∨P))⇒ (P ∧Q ∨ (P ∨ (¬P ∨ ¬Q))) (Identity 1.)

P.8 (P⇒ ¬Q)⇒ ((P⇒ ¬Q) ∨P) (ax.2 with [P⇒ ¬Q/F ], [P/G])

P.9 P ∧Q ∨ (P ∨ (¬P ∨ ¬Q)) (MP on P.7 and P.8)
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1.7.4 The Calculus of Natural Deduction

No problems supplied yet.
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1.8 Machine-Oriented Calculi

1.8.1 Calculi for Automated Theorem Proving: Analytical Tableaux

Problem 1.122: Prove the Hilbert-Calculus axioms P ⇒ (Q⇒ P ), and (P ⇒ (Q⇒ R)) ⇒
((P ⇒ Q)⇒ (P ⇒ R))

Solution:

P ⇒ (Q⇒ P )F

PT

Q⇒ P F

QT

P F

⊥

(P ⇒ (Q⇒ R))⇒ ((P ⇒ Q)⇒ (P ⇒ R))F

P ⇒ (Q⇒ R)T

(P ⇒ Q)⇒ (P ⇒ R)F

P ⇒ QT

P ⇒ RT

PT

RT

P F

⊥
Q⇒ RT

QF

P F

⊥
QT

⊥

RT

⊥
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Problem 1.123: Prove the associative law for disjunction (P ∨Q) ∨R⇔ P ∨ (Q ∨R)2 with
the tableau method.

Solution:

(P ∨Q) ∨R⇔ P ∨ (Q ∨R)F

(P ∨Q) ∨RF

P ∨ (Q ∨R)T

P F

QF

RF

PT

⊥
QT

⊥
RT

⊥

(P ∨Q) ∨RT

P ∨ (Q ∨R)F

P F

QF

RF

PT

⊥
QT

⊥
RT

⊥

2Proving this in the Hilbert calculus from ?? takes about 300 steps.
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0pt10minProblem 1.124 (Tableau Calculus)

1. Explain the difference between tableau proof of validity and model generation.

2. Derive a tableau inference rule for A⇔ BT. Show the derivation.

3. Generate all models of the following expression: ¬Q ∧ P ⇔ Q ∧ ¬P

Solution:

1. Tableau proof of validity is done by assuming the expression to be false and then refuting the
assumption by showing that all branches get closed. On the other hand, model generation starts
from the assumption that the expression is true and proceeds until all branches are saturated. All
open saturated branches lead to models.

2. A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A), then:

(A⇒ B) ∧ (B ⇒ A)T

A⇒ BT

B ⇒ AT

AF

BF AT

⊥

BT

BF

⊥
AT

Thus the rule is:

A⇔ BT

AT

BT

∣∣∣∣ AF

BF

3. We generate models by assuming the expression to be true:

¬Q ∧ P ⇔ Q ∧ ¬PT

¬Q ∧ PT

Q ∧ ¬PT

¬QT

PT

QT

¬PT

QF

P F

⊥

¬Q ∧ P F

Q ∧ ¬P F

¬QF

P F

QF

¬P F

QT

PT

⊥

Clearly, the expression ¬Q ∧ P ⇔ Q ∧ ¬P has no model. It is unsatisfiable.
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11ptProblem 1.125 (Refutation and model generation in Tableau Calculus)

1. Prove the following proposition:

|=¬A ∧ ¬B ⇒ ¬(A ∨B)

2. Find all models for the following proposition:

|=(A⇒ B) ∧ (B ⇒ A ∧B)

Hint: You may use derived rules for implication and disjunction.

Solution:

1.
¬A ∧ ¬B ⇒ ¬(A ∨B)F

¬A ∧ ¬BT

AF

BF

¬(A ∧B)F

A ∨BT

AT

⊥
BT

⊥
2.

(A⇒ B) ∧ (B ⇒ A ∧B)T

A⇒ BT

B ⇒ A ∧BT

BF

A⇒ BT

AF BT

⊥

A ∧BT

AT

BT

A⇒ BT

AF

⊥
BT

That yields the models ϕ := {A 7→ F, B 7→ F} and ψ := {A 7→ T, B 7→ T}.
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14ptProblem 1.126 (Tableau Calculus)
Prove or refute that the following proposition is valid using a tableaux:

(P ⇒ Q) ∨R⇔ ¬R ∧Q⇒ S

Solution:

(P ⇒ Q) ∨R⇔ ¬R ∧Q⇒ SF

(P ⇒ Q) ∨RT

¬R ∧Q⇒ SF

¬R ∧QT

SF

¬RT

QT

RF

P ⇒ QT

P F QT
RT

⊥

(P ⇒ Q) ∨RF

¬R ∧Q⇒ ST

P ⇒ QF

RF

PT

QF

¬R ∧QF

RT

⊥

ST

Based on the tableaux we find the following assignments that make the expression false therefore it is
not valid:

1. ϕ := {P 7→ T, Q 7→ T, R 7→ F, S 7→ F}
2. ϕ := {P 7→ F, Q 7→ T, R 7→ F, S 7→ F}
3. ϕ := {P 7→ T, Q 7→ F, R 7→ F, S 7→ T}
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4pt13minProblem 1.127 (A Nor Tableau Calculus)
Develop a variant of the tableau calculus presented in class for propositional formulae expressed
with ↓ (i.e. ”not or”) as the only logical connective.

Complete the following scheme of inference rules for such a tableau calculus and proof its
correctness

A ↓ BT

?

A ↓ BF

?

Aα

Aβ α 6= β

⊥

Prove the formula (P ↓ (P ↓ P )) ↓ (P ↓ (P ↓ P )) in your new tableau calculus.

Solution: The completed Nor -tableau calculus is the following.

A ↓ BT

AF

BF

A ↓ BF

AT
∣∣∣ BT

Aα

Aβ α 6= β

⊥

And the proof of the formula is
(P ↓ (P ↓ P )) ↓ (P ↓ (P ↓ P ))F

P ↓ (P ↓ P )T

P F

P ↓ P F

PT

⊥

P ↓ (P ↓ P )T

P F

P ↓ P F

PT

⊥

(1)
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35ptProblem 1.128 (Tableau Construction)
Write an SML function that computes a complete tableau for a labeled formula. Use the data
type prop for formulae and the datatype tableau for tableaux.

datatype prop = tru | fals (* true and false *)
| por of prop * prop (* disjunction *)
| pand of prop * prop (* conjunction *)
| pimpl of prop * prop (* implication *)
| piff of prop * prop (* biconditional *)
| pnot of prop (* negation *)
| var of int (* variables *)

datatype label = prove | refute
datatype tableau = ext of prop * label * tableau (* extension by a formula *)

| cases of tableau * tableau (* two branches *)
| complete (* branch completehalt *)

Hint: Write a recursive function ctab that takes a list of (unresolved) proposition/label pairs as an
input, goes through them, extending the tableau as needed.

Solution: We proceed like the hint tells us. The main idea is to write a large case distinction; one for
every rule.

fun ctab (nil) = complete
| ctab ((tru,prove)::PL) = ext(tru,prove,ctab(PL))
| ctab ((tru,refute)::PL) = ext(tru,refute,ctab((fals,prove)::PL))
| ctab ((fals,prove)::PL) = ext(fals,prove,ctab(PL))
| ctab ((fals,refute)::PL) = ext(fals,refute,ctab((tru,prove)::PL))
| ctab ((var(X),L)::PL) = ext(var(X),L,ctab(PL))
| ctab ((por(X,Y),prove)::PL) = ext(por(X,Y),prove,

cases(ctab((X,prove)::PL),
ctab((Y,prove)::PL)))

| ctab ((por(X,Y),refute)::PL) = ext(por(X,Y),refute,
ctab((X,refute)::(Y,refute)::PL))

| ctab ((pand(X,Y),prove)::PL) = ext(pand(X,Y),prove,
ctab((X,prove)::(Y,prove)::PL))

| ctab ((pand(X,Y),refute)::PL) = ext(pand(X,Y),refute,
cases(ctab((X,refute)::PL),

ctab((Y,refute)::PL)))
| ctab ((pimpl(X,Y),prove)::PL) = ext(pimpl(X,Y),prove,

cases(ctab((X,refute)::PL),
ctab((Y,prove)::PL)))

| ctab ((pimpl(X,Y),refute)::PL) = ext(pimpl(X,Y),refute,
ctab((X,prove)::(Y,refute)::PL))

| ctab ((piff(X,Y),prove)::PL) = ext(piff(X,Y),prove,
cases(ctab((X,refute)::(Y,refute)::PL),

ctab((X,prove)::(Y,prove)::PL)))
| ctab ((piff(X,Y),refute)::PL) = ext(piff(X,Y),prove,

cases(ctab((X,prove)::(Y,refute)::PL),
ctab((X,refute)::(Y,prove)::PL)))

| ctab ((pnot(X),prove)::PL) = ext(pnot(X),prove,ctab((X,refute)::PL))
| ctab ((pnot(X),refute)::PL) = ext(pnot(X),refute,ctab((X,prove)::PL));
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30ptProblem 1.129 (Automated Theorem Prover)
Building on the tableau procedure from ?? build an automated theorem prover for propositional
logic. Concretely build an SML function prove that given a formula F outputs valid, if F is
valid, and returns a counterexample otherwise (i.e. an interpretation of the variables that satisfy
FT).

Solution: Given a formula F , we have to examine the refutation tableau constructed by ctab to see
if it is closed. The first step is to write a function that detects contradictions on a list of positive and
negative literals

fun exists (_,nil) = false
| exists (f,h::t) = f(h) orelse exists(f,t);

fun contradiction (pos,neg) =
exists ((fn (x) => exists( (fn (y) => x = y), pos)), neg);

Then we build some infrastructure for outputting interpretations anything will do.

fun to_string(v) = if v<0 then
"~"^to_string((~1)*v)

else
if v>9 then
to_string(v div 10)^to_string(v mod 10)

else
implode([chr(v+48)]);

fun istring(nil) = ""
| istring((x,true)::t) = to_string(x)^"=true, " ^ istring(t)
| istring((x,false)::t) = to_string(x)^"=false, " ^ istring(t);

fun interpretation (pos,neg) =
(map (fn (x) => (x,true)) pos) @ (map (fn (x) => (x,false)) neg)

building on this, we walk the tableau and see whether all the branches are closed.

exception invalid;

fun closed (complete,pos,neg) = (*check at the leaves *)
if (contradiction(pos,neg)) then true
else
let
in
print (istring(interpretation(pos,neg)));
raise invalid
end

| closed (ext(var(n),prove,t),pos,neg) = closed(t,n::pos,neg)
| closed (ext(var(n),refute,t),pos,neg) = closed(t,pos,n::neg)
| closed (ext(tru,refute,_),pos,neg) = true
| closed (ext(fals,prove,_),pos,neg) = true
| closed (ext(_,_,t),pos,neg) = closed(t,pos,neg) (* only need literals *)
| closed (cases(X,Y),pos,neg) = closed(X,pos,neg) andalso closed(Y,pos,neg);

Now, the function prove can be built by collecting the pieces.

fun prove(X) = closed(ctab[(X,refute)],nil,nil)
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30ptProblem 1.130 (Testing the ATP)
Use the random formula generators from ?? to test your tableau implementation. Run experiments
on large sets (e.g. 100) of random formulae with differing depths and plot the runtimes, percentages
of valid formulae, over depths, and weights, and variable numbers. Interpret the results briefly.

Hint: You can use any plotting software you are familiar with, e.g. Excel or gnuplot. If you are not
familiar with any, use pen and paper. Do not waste time on the plotting aspect.
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G

1.8.2 Resolution for Propositional Logic
10pt

Problem 1.131: Compute the Clause normal form of (P ⇔ Q)⇔ (R⇔ P ) with and without
using the derived rules.
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Problem 1.132: Prove in the resolution calculus using derived rules:

|=A ∧ (B ∨ C)⇒ (A ∧B ∨A ∧ C)

Solution: Clause Normal Form transformation

A ∧ (B ∨ C)⇒ (A ∧B ∨A ∧ C)F

A ∧ (B ∨ C)T;A ∧B ∨A ∧ CF

AT;BT ∨ CT;A ∧BF;A ∧ CF

AT;BT ∨ CT;AF ∨BF;AF ∨ CF

Resolution Proof
1 AT initial

2 BT ∨ CT initial

3 AF ∨BF initial

4 AF ∨ CF initial

5 BF with 1 and 3

6 CF with 1 and 4

7 CT with 2 and 5
8 2 with 6 and 7
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4pt8minProblem 1.133 (Basics of Resolution)
What are the principal steps when you try to prove the validity of a propositional formula by
means of resolution calculus? In case you succeed deriving the empty clause, why does this mean
you have found a proof for the validity of the initial formula?
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5pt10minProblem 1.134 (Resolution Calculus with Nand Connective)
Develop a variant PropCNFCalcNAND of the CNF transformation calculus presented in class
that transforms propositional formulae expressed with NAND (denoted by ↑) as the only logical
connective. To do so just complete the scheme of inference rules given here:

C ∨A ↑ BT

?

C ∨A ↑ BF

?

With this variant CNF↑ together with the usual inference rule from resolution calculus conduct
a resolution proof to verify the formula (A ↑ A) ↑ ((A ↑ B) ↑ (A ↑ B))

Solution:

C ∨A ↑ BT

C ∨AF ∨BF

C ∨A ↑ BF

C ∨AT; C ∨BT
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25ptProblem 1.135: Use the resolution method to prove the formulae from ??:

1. (¬P ⇒ Q)⇒ ((P ⇒ Q)⇒ Q)

2. (P ⇒ Q) ∧ (Q⇒ R)⇒ ¬(¬R ∧ P )

You may use any derived correctly derived inference rules such as for instance:

A⇒ BF

AT

BF

However, if you use more complex inference rules (i.e. more than one connective involved) then
you have to prove your derived inference rule.

Solution:

((¬P ⇒ Q)⇒ ((P ⇒ Q)⇒ Q))F

(¬P ⇒ Q)T((P ⇒ Q)⇒ Q)F

PT ∨QT; (P ⇒ Q)F ∨QT

PT ∨QT; (P ⇒ Q)T;QT

PT ∨QT;P F ∨QT;QT

for the conversion to clause normal form, so we have

resolution derivation

QT initial

PT ∨QF initial

P F ∨QF initial

PT resolved

P F resolved
2

For the second part we proceed similarly

((P ⇒ Q) ∧ (Q⇒ R)⇒ ¬(¬R ∧ P ))F

(P ⇒ Q) ∧ (Q⇒ R)T;¬(¬R ∧ P )F

(P ⇒ Q)T; (Q⇒ R)T;¬(¬R ∧ P )F

P F ∨QT;QF ∨RT;¬RT;PT

P F ∨QT;QF ∨RT;RF;PT

and then the resolution proof

P F ∨QT initial

QF ∨RT initial

RF initial

PT initial

QT resolved

QF resolved
2 resolved
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25ptProblem 1.136: Consider the following two formulae where the first one is in conjunctive
normal form and the second in disjunctive normal form

1. (P ∨ ¬P ) ∧ (Q ∨ ¬Q)

2. P ∧Q ∨ (¬P ∨ ¬Q)

Try to find the shortest proofs of both formulae using the resolution method as well as the tableau
method. Describe your observations concerning the proof length in dependency on the normal
form and proof method.

Solution: For the first forumla we have the tableau

(P ∨ ¬P ) ∧ (Q ∨ ¬Q)F

P ∨ ¬P F

P F

¬P F

PT⊥

Q ∨ ¬QF

QF

¬QF

QT⊥

For the resolution proof we first have to convert into clause normal form.

((P ⇒ Q) ∧ (Q⇒ R)⇒ ¬(¬R ∧ P ))F

(P ⇒ Q) ∧ (Q⇒ R)T;¬(¬R ∧ P )F

(P ⇒ Q)T; (Q⇒ R)T;¬(¬R ∧ P )F

P F ∨QT;QF ∨RT;¬RTPT

P F ∨QT;QF ∨RT;RF;PT

then we have the resolution derivation

P F ∨QT initial

QF ∨RT initial

RF initial

PT initial

QT resolved

QF resolved
2 resolved

Now to the next formula; here we have the tableau

P ∧Q ∨ (¬P ∨ ¬Q)F

P ∧QF

¬P ∨ ¬QF

¬P F

¬QF

PT

QT

pF

⊥
QF

⊥
For the resolution proof we convert to clause normal form:

(P ∨ ¬P ) ∧ (Q ∨ ¬Q)F

(P ∨ ¬P )F ∨ (Q ∨ ¬Q)F

P F ∨ (Q ∨ ¬Q);¬P (Q ∨ ¬Q)F

P F ∨QF;P F ∨QT;PT ∨QF;PT ∨QT

So we have the resolution derivation
P F ∨QF initial

P F ∨QT initial

PT ∨QF initial

PT ∨QT initial

QT resolved

QF resolved
2 resolved
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We note that for the formula in DNF the shortest method is the tableaux and for the one in CNF it is
the resolution method. This is not particularly surprising, since the Resolution medthod is CNF-based
(we construct the CNF in for clause normal form first), whereas Tableau is DNF-based.
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2 How to build Computers and the Internet (in principle)

2.1 Circuits

2.1.1 Graphs and Trees

Conjecture 6 Let G be a graph with a cycle and n ∈ N, then there is a path p in G with
length(p) > n.

20pt
Problem 2.1 (Infinite Paths)
Prove or refute ?? using the formal definitions (no, it is not sufficient to just draw a picture).
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25ptProblem 2.2 (Node Connectivity Relation is an Equivalence Relation)
Let G = 〈V,E〉 be an undirected graph and the relation C be defined as

C := {〈u, v〉 | there is a path from u to v}

Prove or refute that C is an equivalence relation.
Hint: Recall the properties of an equivalence relation!

Solution:
Proof :

P.1.1 reflexivity:From every node, there is a zero-length path to itself.

P.1.2 symmetry:If there is a path from a node u to a node v, just reverse it.

P.1.3 transitivity:If there is a path from u to v and a path from v to w, we can reach w from u via v.
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Problem 2.3 (Directed Graph)
We call a graph connected, iff for any two nodes n1 and n2 there is a path starting at n1 and
ending at n2.

Complete the partially directed graph below by adding directed edges or directing undirected
edges such that it becomes a connected, (fully) directed graph where each indeg(n) = outdeg(n)
for all nodes n.

How many initial, terminal nodes and how many paths does your graph have?

A B C

D E

F G H

Solution: This graph has neither a initial nor a terminal node and infinite many paths since it is cyclic.

A B C

D E

F G H
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4ptProblem 2.4: Draw examples of

1. a directed graph with 4 nodes and 6 edges

2. a undirected graph with 7 nodes and 8 edges.

Present a mathematical representation of these graphs.
Solution: Any graph will do, for instance the following ones (we only give the mathematical

formulation here, go draw them yourselves)

• 〈{a, b, c, d}, {〈a, b〉, 〈b, c〉, 〈c, d〉, 〈d, a〉, 〈a, c〉, 〈b, d〉}〉
• 〈{a, b, c, d, e, f, g}, {{a, b}, {b, c}, {c, d}, {d, e}, {e, f}{f, g}, {g, a}, {a, c}, {c, e}}〉
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Problem 2.5 (Planar Graphs)
A graph G is called planar if G can be drawn in the plane in such a manner that edges do not
cross elsewhere than vertices. The geometric realization of a planar graph gives rise to regions in
the plane called faces; if G is a finite planar graph, there will be one unbounded (i.e. infinite) face,
and all other faces (if there are any) will be bounded. Given a planar realization of the graph G,
let v = #(V ), e = #(E), and let f be the number of faces (including the unbounded face) of G’s
realization.

Prove or refute the Euler formula, i.e. that v − e + f = 2, must hold for a connected planar
graph.

Solution:
Proof : Proof by induction on the number of faces

P.1 If G has only one face, it is acyclic and connected, so it is a tree and e = v − 1. Thus v − e+ f = 2.

P.2 Otherwise, choose an edge e connecting two different faces of G, and remove it; e can then only
appear once in the boundary of each face, so the graph remains connected – any path involving e
can be replaced by a path around the other side of one of the two faces. This removal decreases
both the number of faces and edges by one, and the result then holds by induction.
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Problem 2.6 (Parse trees and isomorphism)
Let Pe be the parse-tree of e := x1 + (x2 + x3) ∗ x4

1. Draw the graphic representation of Pe.

2. Write the mathematical representation of a graph G that is different but equivalent to Pe.

Solution:

1.

+

·

x1

*

+

x2 x3

x4

2. G := 〈{A,B,C,D, 1, 2, 3, 4}, {〈A,B〉, 〈A,C〉, 〈B, 1〉, 〈C,D〉, 〈C, 4〉, 〈D, 2〉, 〈D, 3〉}〉
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3ptProblem 2.7 (Size and Depth of a Binary Tree)
Given the following data type for binary trees, define functions size and depth that compute the
depth and the size of a given tree.

datatype btree = leaf | parent of btree * btree

Write a function fbbtree that given a natural number n returns a fully balanced binary tree of
depth n

Solution:

fun size (leaf) = 0 | size (parent(x,y)) = 1+ size(x) + size(y)
fun depth (leaf) = 0 | depth (parent(x,y)) = 1+ max(depth(x),size(y))
fun fbbtree (n) = leaf | parent(fbbtree(n-1),fbbtree(n-1))
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Problem 2.8 (Graph basics)
For each of the five directed graphs below do the following:

• State whether the graph is also a tree and explain why.

• Determine the depth of the graph.

• Write out in math notation a path from A to E if one exists and determine the path’s length.

1. G1 := 〈{A,B,C,D,E}, {〈A,B〉, 〈A,C〉, 〈A,D〉, 〈D,E〉}〉

2. G2 := 〈{A,B,C,D,E}, {〈A,B〉, 〈B,C〉, 〈C,A〉, 〈C,D〉, 〈C,E〉}〉

3. G3 := 〈{A,B,C,D,E}, {〈A,B〉, 〈B,C〉, 〈B,D〉, 〈C,E〉}〉

4. G4 := 〈{A,B,C,D,E}, {〈A,B〉, 〈A,C〉, 〈B,D〉, 〈D,C〉, 〈C,B〉, 〈A,D〉}〉

5. G5 := 〈{A,B,C,D,E}, {〈D,A〉, 〈D,B〉, 〈D,E〉, 〈D,C〉}〉

Solution:

1. • Yes, because it has no cycles and the graph is connected.

• 2

• 〈A,D,E〉 - length 2

2. • No, because it has a cycle - 〈A,B,C,A〉.
• infinite

• 〈A,B,C,E〉 - length 3

3. • Yes, because it has no cycles and the graph is connected.

• 3

• 〈A,B,C,E〉 - length 3

4. • No, because it has a cycle - 〈B,D,C,B〉.
• infinite

• E is not reachable from A, since indeg(E) = 0 i.e. E is a source.

5. • Yes, because it has no cycles and the graph is connected.

• 1

• E is not reachable from A, since outdeg(A) = 0 i.e. A is a sink.
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Conjecture 7 1. Let G = 〈V,E〉 be a directed graph. Then,

#(V )∑
i=1

indeg(vi) =

#(V )∑
i=1

outdeg(vi) = #(E)

2. If G is undirected, we have
#(V )∑
i=1

deg(vi) = 2 ·#(E)

25pt
Problem 2.9 (Degrees in an Undirected Graph)
Prove or refute the conjecture above

Note: For undirected graphs, we introduce the notation deg with deg(v) = indeg(v) = outdeg(v) for
each node.

Hint: Use induction over the number of edges. Derive the second assertion from the first one.

Solution:
Proof : by induction over m = #(E)

P.1.1 m = 0 (base case):For graphs that only consist of isolated nodes, both assertions hold trivially.

P.1.2 m→ m+ 1 (induction step):

P.1.2.1 If we remove an arbitrary edge e ∈ E from G, we obtain G\{e}
P.1.2.2 G\{e} is a directed (or undirected, resp.) graph with m edges.

P.1.2.3.1 directed graph:By removing one edge, we have decreased the sum of in-degrees as well as the
sum of out-degrees by one.

P.1.2.3.2 undirected graph:By removing one edge e = 〈u, v〉, we have decreased the degree of u as well
as the degree of v by one and thus the sum of degrees by two.

161



Problem 2.10 (Graph representation in memory)
How would you represent a graph in memory if you write a program which processes it in some
way? Give 2-3 variants and explain the advantages and disadvantages of each method.

Solution:

1. The adjacency matrix. You represent a graph in a matrix (two-dimensional array). Each column
and row corresponds to a vertex. In a matrix cell you put a number which denotes the presence (or
absence) of an edge between two vertices. E.g. you can use 0 and 1 for undirected graphs, or -1, 0
and 1 for directed ones. Also such a number may represent a weight of an edge if needed.

• Advantages: convenient to work with if our program frequently checks if there is an edge
between two vertices.

• Disadvantages: takes a lot of memory, especially when a graph contains a few edges and a
lot of nodes.

2. The incidence matrix. You represent a graph also in a matrix, the rows correspond to vertices,
the columns to edges. In the m[i][j] you put 1 if 〈ai, v〉 belongs to V , where v is an arbitrary vertex,
-1 if 〈v, ai〉belongs to V , and 0 if there is no v that 〈ai, v〉 or 〈v, ai〉 belongs to V .

• Advantages: simplifies the finding cycles in a graph.

• Disadvantages: when there is more edges than vertices then this method consumes even
more memory than the previous one.

3. List of pairs of numbers representing edges.

• Advantages: convenient when we mostly work with edges, but not with separate vertices.
Requires less memory than the previous two.

• Disadvantages: working with vertices is not so easy.

4. For each vertex v we have a list which contains the numbers of vertices the v vertex is connected
to. but

• Advantages: consumes less memory than 1.

• Disadvantages: to find out whether vertex v is connected to vertex u we have to traverse
the entire list for vertex v.
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4ptProblem 2.11: How many edges can a directed graph of size n (i.e. with n vertices) have
maximally. How many can it have if it is acyclic? Justify your answers (prove them).

Solution:

Theorem 8 A directed graph with n vertices has at most n2 edges.

Proof :

P.1 Let G = 〈V,E〉.
P.2 By definition E ⊆ V 2, so maximally #(V ) = n2.

Theorem 9 A DAG with n vertices has at most (n(n− 1))/2 edges.

Proof : by induction on n

P.1.1 If n = 1:

P.1.1.1 then G1 = 〈{c}, E〉, since the only possible edge 〈c, c〉 is a cycle.

P.1.2 If n > 1:

P.1.2.1 Let Gn = 〈Vn, En〉 be a maximal DAG,

P.1.2.2 then the graph Gn−1 = 〈commiVn−1, En−1〉 which we obtain from Gn by deleting an arbitrary
vertex c and all the edges c in must be a maximal DAG with n− 1 nodes (otherwise we could add
an edge to Gn).

P.1.2.3 Thus #(En−1) = ((n− 1)(n− 2))/2. Now, there can be at most n − 1 edges in Vn, which c
occurs in without cycles (Gn−1 has n− 1 vertices).

P.1.2.4 Therefore, #(Vn) = ((n− 1)(n− 2))/2 + (n− 1) = (n− 1)(n− 2)+(2(n− 1))/2 = ((n− 1)n)/2.
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4ptProblem 2.12 (Undirected tree properties)
We’ve defined the notion of path for the directed graphs.

• Define the notion of path and cycle for the undirected graphs.

We call an undirected graph connected, iff for any two nodes n1 6= n2 there is a path starting at
n1 and ending at n2.

An undirected tree is an undirected acyclic connected graph.
Let G = 〈V,E〉. Prove or refute that the following statements are equivalent:

1. G is an undirected tree

2. For any two nodes n1 6= n2 there is a single path starting at n1 and ending at n2

3. G is a connected graph, but it becomes disconnected after deleting any edge

4. G is connected and #(E) = #(V )− 1

5. G is acyclic and #(E) = #(V )− 1

6. G is acyclic, but adding one edge to E introduces a cycle

Solution:

• (1)⇒(2) If there were two paths, then there would be a cycle. Contradiction.

• (2)⇒(3) If G is connected and after removing an edge 〈u, v〉 from E it remains connected, it means
that there were two paths between u and v. Conradiction with condition 2.

• (3)⇒(4) The connected graph has no less edges than #(V )− 1. If we remove one edge G becomes
unconnected that means that #(E) < #(V ) − 1, but before was that #(E) ≥ #(V )− 1. That
means that #(E) = #(V )− 1

• (4)⇒(5) If G is connected and has a cycle then after removing edge from the cycle G should remain
connected, but in this case #(E) = #(V )− 2 and it means that G is not connected.

• (5)⇒(6) Assume that addition of edge 〈u, v〉 did not make a cycle in G, that means that u and v
were in the different components of connectivity. But since #(E) = #(V )−1 then one component of
connectivity (let say 〈V1, E1〉) has #(V1) = #(E1) and it means that it has a cycle. Contradiction.

• (6)⇒ (1) If G was disconnected then we could add an edge and not to add a cycle. But it contradicts
with a condition 6.
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3pt10minProblem 2.13 ((Modified) Königsberg Bridge Problem)
Consider a river fork with three banks (A,B,C) and one island (I) connected with bridges as shown
in the figure.

Is it possible to walk accross each of the bridges exactly once in an uninterrupted tour and
return to the starting point?

In order to prove your answer first translate the question into a graph problem where the banks
and the island are modeled as nodes and the bridges as undirected edges.

Hint: Consider the degree of each node (i.e.the number for edges connected to it). Relate the degrees
of the nodes to the constraint of an uninterrupted tour.

Solution: If there is a round trip path which passes all edges of the graph once then each node
must have an even degree, because whenever the path enters a node it must leave it again.

Since in the given bridge problem the nodes I and B have odd degree there is no such round trip.

A

I B

C
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35ptProblem 2.14 (Parse Tree)
Given the data type prop for formulae

datatype prop = tru | fals (* true and false *)
| por of prop * prop (* disjunction *)
| pand of prop * prop (* conjunction *)
| pimpl of prop * prop (* implication *)
| piff of prop * prop (* biconditional *)
| pnot of prop (* negation *)
| var of int (* variables *)

Write an SML function that computes the parse tree for a formula. The output format should be

• a list of integers for the set of vertices,

• a list of pairs of integers for the set of edges,

• and for the labeling function a list of pairs where the first component is an integer and the
second a string (the label).

Solution:

datatype prop = tru | fals (* true and false *)
| por of prop * prop (* disjunction *)
| pand of prop * prop (* conjunction *)
| pimpl of prop * prop (* implication *)
| piff of prop * prop (* biconditional *)
| pnot of prop (* negation *)
| var of int (* variables *)

The output is a triple (vertices, edges, labeling_list) where

• vertices is simply an integer (so the vertices are represented as integers from 1 to that number)

• edges is a list of pairs of integers that are the vertices between which there are edges

• labeling_list: a list of (vertex:integer, label:string) pairs that will be used to make a labeling
function which takes the index of a vertex and returns its label, e.g. a string "impl" Input: A pair
(root, p)

• root is a name for the root node (an integer), see the function maketree

• p a variable of datatype prop in which a boolean expression is stored

fun totree(mroot, pnot(be)) = let val (verout, edges, lblpairs) = totree(mroot+1, be)
in (verout, [mroot, mroot+1] :: edges, (mroot, "-") :: lblpairs)
end |

totree(mroot, tru) = (mroot, nil, [(mroot, "T")])|
totree(mroot, fals) = (mroot, nil, [(mroot, "F")])|
totree(mroot, var v) = (mroot, nil, [(mroot, Int.toString(v))])|
totree(mroot, two_var) = let val ax = fn (por(be1, be2)) => ("OR", be1, be2) |

(pand(be1, be2)) => ("AND", be1, be2) |
(pimpl(be1, be2)) => ("=>", be1, be2) |
(piff(be1, be2)) => ("<=>", be1, be2)

val (lbl, be1, be2) = ax two_var
val (verout1, edges1, lblpairs1) = totree(mroot+1, be1)
val (verout2, edges2, lblpairs2) = totree(verout1+1, be2)

in (verout2, [[mroot, mroot+1],[mroot, verout1+1]] @ edges1 @ edges2, (mroot, lbl) :: (lblpairs1 @ lblpairs2))
end

Now we have an optional wrapper function that

• eliminates the need for the index of the root (default value is 1)

• converts the labeling_list into labeling function that takes a vertex and returns its label
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local
fun findString(num, hd::tl) = let

val (a,b) = hd
in

if a = num then b
else findString(num, tl)

end

in
fun maketree(t) = let

val (lastnode, edges, lblpairs) = totree(1, t)
in (lastnode, edges, fn num => findString(num, lblpairs))
end

end

Finallly: an example of how the program can be tested:

totree(1, por(por(piff(pnot(var 4), fals), pimpl(tru, pand(var 2, var 3))), var 9));
val it =
(12,[[1,2],[1,12],[2,3],[2,7],[3,4],[3,6],[4,5],[7,8],[7,9],[9,10],[9,11]],
[(1,"OR"),(2,"OR"),(3,"<=>"),(4,"-"),(5,"4"),(6,"F"),(7,"=>"),(8,"T"),
(9,"AND"),(10,"2"),(11,"3"),(12,"9")])
: int * int list list * (int * string) list *)
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2.1.2 Introduction to Combinatorial Circuits
25pt

Problem 2.15 (DNF Circuit with Quine McClusky)
Use the technique shown in class to design a combinational circuit for the following Boolean
function:

X1 X2 X3 f1(X) f2(X) f3(X)
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 1 1 1

Hint: Use Quine-McCluskey to compute minimal polynomials for the three component functions,
look for shared monomials, and build the DNF circuit.

Solution: After using Quine-McCluskey and checking the prime implicants for their essentialness
we conclude that the given functions are

f1(X) = ¬X1 ∨X2

f2(X) = ¬X1 ∧X3 ∨X1 ∧X2

f3(X) = ¬X1

Hence the circuit for these functions can be designed as the following:
x1

x2
x3

f1 f2

f3
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25ptProblem 2.16 (DNF Circuit with Quine McCluskey)
Use the technique shown in class to design a combinational circuit for the following Boolean
function:

X1 X2 X3 f1(X) f2(X) f3(X)
0 0 0 0 1 1
0 0 1 0 0 0
0 1 0 0 1 1
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 0 0 0

Hint: Use Quine-McCluskey to compute minimal polynomials for the three component functions,
look for shared monomials, and build the DNF circuit.

Solution: After using Quine-McCluskey and checking the prime implicants for their essentialness
we conclude that the given functions are

f1(X) = X1 ∧ ¬X2

f2(X) = (X1 ∨ ¬X3) ∧ ¬X1 ∨ ¬X2

f3(X) = (¬X1 ∨ ¬X2) ∧ ¬X3

Draw a circuit for these function is a trivial task (see similar tasks).
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12pt10minProblem 2.17 (Combinational Circuit)
Consider the following Boolean function

f : {0, 1}3 → {0, 1}2; 〈i1, i2, i3〉 7→ 〈i1 ∗ i2 + i2 ∗ i3, i1 + i2 ∗ i3〉

Draw the corresponding combinational circuit and write down its labeled graph G = 〈V,E, fg〉 in
explicit math notation.

Solution: The solution is obvious. All we need is to just draw graph and write some line about
math representation.
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5pt10minProblem 2.18 (Combinational Circuit for Shift)
Design an explicit 4-bit shifter (combinational circuit) (using only NOT, AND and OR gates) that
corresponds to fshift : B4 × B× B→ B4 with

fshift(〈a3, a2, a1, a0〉, s1, s2)


〈a3, a2, a1, a0〉 if s1 = 0, s2 = 0
〈a2, a1, a0, 0〉 if s1 = 1, s2 = 0
〈0, a3, a2, a1〉 if s1 = 0, s2 = 1
〈a0, a3, a2, a1〉 if s1 = 1, s2 = 1

Hint: Think of a variant of multiplexer.

Solution:
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Problem 2.19 (Is XOR universal?)
Imagine a logical gate XOR that computes the logical exclusive disjunction. Prove or refute
whether the set S = {XOR} is universal, considering the following two cases:

1. combinational circuits without constants

2. combinational circuits with constants

If the set turns out to be not universal in either of the cases, add one appropriate non-universal
gate G ∈ {AND,OR,NOT} to S, and prove that the set S′ = {XOR, G} is universal.

Note: A set of Boolean function is called universal (also called “functionally complete”), if any
Boolean function can be expressed in terms of the functions from that set. {NAND} is an example from
the lecture.

Solution: This solution is left to TAs. We had a similar task (impication-universality).
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Problem 2.20 (Alarm System)

You have to devise an alarm system that signals if the image recorded by a camera changes.
The camera is preprogrammed with a static image, divided into 8 regions. Whenever an observed
region is different from the preprogrammed one, the corresponding input bit 〈r0, ..., r7〉 is set to
1. The image is sampled at discrete time periods. The value of an input (clk) changes between 0
and 1 on every time interval.

Design a circuit with one output which is set to 1 if two or more regions (the inputs 〈r0, ..., r7〉)
are different from the preprogrammed image for two consecutive intervals. We do not care if
different sets of regions are marked as different between the consecutive intervals. We also don’t
care what happens once the output is set to one.

You may use all elementary gates and all circuit blocks studied in class.
Hint:

• First make a circuit that determines how many of the regions are different.

• Make a circuit that outputs 1 if two or more regions are different in 2 consecutive intervals.
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2.1.3 Realizing Complex Gates Efficiently
999pt

Balanced Binary Trees Problem 2.21 (Operations on Binary Trees)
Given the SML datatype btree for binary trees and position for a position pointer into a binary
tree:

datatype btree = leaf | parent of btree * btree;
datatype position = stop | right of position | left of position;

The interpretation of a position right(left(stop)) is like a reversed path: start from root follow
the right branch then the left and then stop.

Write two SML functions:

• getSubtree that takes a binary tree and a position and returns the subtree of the that
binary at the corresponding position.

• cutSubtree that takes a binary tree and a position and returns the binary tree where the
subtree at the corresponding position is cut off; i.e replaced by a leaf.

a

b c

binary tree B

pos := left(right(stop))

getSubtree(B,pos) cutSubtree(B,pos)

a

b c

a

In both cases an exception should be raised if the position exceeds the observed binary tree.
Solution:

datatype btree = leaf | parent of btree * btree;
datatype position = stop | right of position | left of position;

exception TreeExceeded;

fun getSubtree (parent(l, r), right(pos)) = getSubtree(r, pos)
| getSubtree (parent(l, r), left(pos)) = getSubtree(l, pos)
| getSubtree (tree, stop) = tree
| getSubtree (_, _) = raise TreeExceeded;

fun cutSubtree (parent(l, r), right(pos)) = parent(l, cutSubtree(r, pos))
| cutSubtree (parent(l, r), left(pos)) = parent(cutSubtree(l, pos), r)
| cutSubtree (tree, stop) = leaf
| cutSubtree (_, _) = raise TreeExceeded;

val testTree = parent(parent(leaf, parent(leaf, leaf)),parent(leaf, leaf));

val testPos = left(right(stop));

(* test get Subtree:
- getSubtree(testTree, testPos);
val it = parent (leaf,leaf) : btree
- cutSubtree(testTree, testPos);
val it = parent (parent (leaf,leaf),parent (leaf,leaf)) : btree
*)
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4ptProblem 2.22 (Number of Paths in Balanced Binary Tree)
Let p(n) be the number of different paths in a fully balanced binary tree of depth n. Find a
recursive equation for p(n).

Hint: Do not forget the base case(s) for small n.

Solution: Base case: p(0) = 0 and p(1) = 2. Recursive rest for n > 1:

p(n) := n ∗ 2n + p(n− 1)

175



4ptProblem 2.23 (Length of the inner path in balanced trees)
Prove by induction or refute that in a balanced binary tree the length of the inner path is not
more than (n+ 1)blog2(n)c − 2 · 2blog2(n)c + 2. Here n is the number of nodes in the graph.

Note: Length of the inner path is the sum of all lengths of paths from the root to the nodes.

Solution: This solution is courtesy of Andrea Georgescu.
To show this, it is enough to show that if the tree is fully balanced

l(n) = (n+ 1)blog2(n)c − 2 · 2blog2(n)c + 2

Here l(n) denotes the the length of the inner path.

• #(V ) = 2d+1 − 1 (d→ length, tree is fully balanced) n = 2d+1 − 1

• l(d) = 2d+1blog2(2d+1 − 1)c − 2 · 2blog2(2
d+1)−1c + 2 = 2d+1 · d− 2 · 2d + 2 = 2d+1(d− 1) + 2

• Now, we do induction on d

– d = 0 : l(d) = 0

– d = 1 : l(d) = 2

• Assume the statements holds for d ≤ k
• d = k+ 1, when we add one more row of leaves, the path from the cost to each of these is k+ 1. So
l(k + 1) = l(k) + (k + 1) · 2k+1 = 2k+1(k − 1) + 2 + 2k+1(k + 1) = 2k+2 · k + 2
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10ptProblem 2.24 (Depth of a Fully Balanced Binary Tree)
Prove or refute that in a fully balanced binary tree with n ≥ 1 nodes, the depth is log2(n).

Solution:
Proof : by induction over n

P.1.1 n = 1 (base case):log2(1) = 0, the depth

P.1.2 n → n + 1 (induction step):n + 1 leaves are added (because fully balanced), so we have
log2(2n+ 1).

log2(2n) = (log2(n)) + 1.

Since 2n+ 1 is not a power of 2, log2(2n+ 1) = log2(2n) = 1 + (log2(n)), which by I.H is depth+1
.
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Realizing n-ary Gates No problems supplied yet.
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2.2 Arithmetic Circuits

2.2.1 Basic Arithmetics with Combinational Circuits
6pt
Positional
Number
Systems
6min

Problem 2.25 (Number System Conversion)
Convert the following 12-bit twos complement numbers into hexadecimal and decimal numbers.

1. 1000 0101 0100

2. 0010 1000 1010

3. 1101 0101 1001
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25pt
Problem 2.26 (Mapping between Positional Number Systems)
Show that the mapping ψ : D+ → {/}∗ from the definition of a positional number system is indeed
a bijection.

Solution:
Proof :

P.1 ϕ : D → {ε, /, //, . . ., /[b−1]} is bijective by definition.

P.2 Then we have ψ : D+ → {/}∗ such that ψ(〈nk, . . ., n1〉) := ⊕ki=1

(
ϕ(ni)� (/[b])i−1

)
where D is an

alphabet of digits.

P.3 To prove that ψ is an isomorphism we will show that is both 1− 1 and onto.

P.4 ”1 − 1”: Indeed, if we have u = 〈nk, . . ., n1〉, v = 〈mr, . . ., n1〉, u, v ∈ D+ and u 6= v, i.e. there

is a j such that nj 6= mj or k 6= r then ψ(u) = ⊕j−1
i=1

(
ϕ(ni)� (/[b])i−1

)
+ ϕ(nj) � (/[b])j−1 +

⊕ki=j+1

(
ϕ(ni)� (/[b])i−1

)
6= ⊕j−1

i=1

(
ϕ(mi)� (/[b])i−1

)
+ϕ(mj)�(/[b])j−1+⊕ri=j+1

(
ϕ(mi)� (/[b])i−1

)
=

ψ(v) since ϕ is bijective (i.e. different inputs to it give different outputs).

P.5 ”onto”: We define its inverse ψ−1 : {/}∗ → D+ in the following way: Consider U1 = /[c] be inputted
and Ui = Ui−1 � /[b], 2 ≤ i ≤ k, where k = b c

b
c + 1, Ux ∈ {/}∗ for 1 ≤ x ≤ k, where b is the base,

and � : {/}∗ × {/}∗ → {/}∗ integer division in the unary system defined the usual way. Then we
will take our output to be 〈nk, . . ., n1〉 ∈ D+ such that ni = ϕ−1(Ui ÷ /[b]) for 1 ≤ i ≤ k where ÷
is (similary defined to �) defined as division by module in our unary system and ϕ−1 is the inverse
to the above mentioned ϕ.

P.6 This concludes our proof.
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20ptProblem 2.27 (Binary Number Conversion)
Write an SML function binary that converts decimal numbers into binary strings and an inverse
decimal that converts binary strings into decimal numbers. Use the positive integers (of built-in
type int) as a representation for decimal numbers. binary should raise an exception, if applied
to a negative integer.

Solution:

exception NegInteger
fun binary 0 = "0" |

binary 1 = "1" |
binary n = if (n<0) raise NegInteger

else binary(n div 2)^(Int.toString(n mod 2))

fun decimal s = let
fun bintodec nil = 0
| bintodec sa = foldl (fn (x, y) => 2*y+(if x = #"0" then 0 else 1)) 0 sa

in bintodec(explode(s))
end
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Problem 2.28 (Playing with bases)
Convert 2748 from decimal to hexadecimal, binary and octal representation.

Solution: Divide repeatedly 2748 by 16 and take the remainders - get ABC. A = 1010, B = 1011
and C = 1100, thus ABC = 101010111100. Starting from right to left convert every 3 bits to their
corresponding octal value: 5274.
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Problem 2.29 (Converting to decimal in SML)
Write an SML function

to_int = fn : string -> int

that takes a string in binary, octal or hexadecimal notation and converts it to a decimal integer.
If the string represents a binary number, it begins with ’b’ (e.g. ”b1011”), if it is an octal number
- with ’0’ (e.g. ”075”) and if it is a hexadecimal number it begins with ’0x’ (e.g. ”0x3A”).

If the input does not represent an integer in one of these three forms raise the InvalidInput

exception.
For example we have

to_int("b101010") -> 42

Solution:

exception InvalidInput;

fun reverse nil = nil
| reverse (h::t) = reverse(t)@[h];

fun find_int(#"A") = 10
|find_int(#"B") = 11

|find_int(#"C") = 12
|find_int(#"D") = 13
|find_int(#"E") = 14
|find_int(#"F") = 15
|find_int(c) = if 0<= ord(c)- 48 andalso ord(c)-48 <=9 then ord(c)-48 else raise InvalidInput;

fun from_binary (nil) = 0
| from_binary (h::l) = if 0<= ord(h)- 48 andalso ord(h)-48 <=1
then ord(h) - 48 + 2 * from_binary(l) else raise InvalidInput;

fun from_octal (nil) = 0
|from_octal (h::l) = if 0<= ord(h)- 48 andalso ord(h)-48 <=8

then ord(h) - 48 + 8 * from_octal(l) else raise InvalidInput;

fun from_hexa (nil) = 0
|from_hexa (h::l) = find_int(h) + 16 * from_hexa(l);

fun selector (#"0"::(#"x"::l)) = from_hexa(reverse(l))
| selector (#"0"::l) = from_octal(reverse(l))

| selector (#"b"::l) = from_binary(reverse(l))
| selector _ = raise InvalidInput;

fun to_int number = selector(explode(number));

(*TEST CASES*)
val test1 = to_int("b101010")=42;
val test2 = to_int("052")=42;
val test3 = to_int("0x2A")=42;
val test4 = to_int("0x11A")=282;
val test5 = to_int("b101101")=45;
val test6 = to_int("12") = 0 handle InvalidInput => true| other => false;
val test7 = to_int("b12") = 0 handle InvalidInput => true| other => false;
val test8 = to_int("0x12H") = 0 handle InvalidInput => true| other => false;
val test9 = to_int("0129") = 0 handle InvalidInput => true| other => false;
val test10 = to_int("0-") = 0 handle InvalidInput => true| other => false;
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Adders Problem 2.30 (Cost and depth of adders)
What is the cost and depth of an n-bit CCA? What about the n-bit CSA (for cost, big-O is
enough)? Now what if we construct a new adder, that computes the two cases for the first half of
the input just like CSAs do (and of course uses a multiplexer), but only does this once, and the
n
2 -bit adders are not also CSAs, but CCAs (so only one multiplexer is used overall) - what would
the cost and depth of this adder be?

Solution: The CCA has depth 3n and cost 5n, as shown in the slides. The CSA has depth 3 log(n)+3
and cost of complexity order nlog3. For the new adder, the depth is the one of the n

2
-bit CCA, plus the n

2
-

bit multiplexer, which is 3. Thus the depth is 3n
2

+3. The cost is that of three CCAs and one multiplexer,
so 5n

2
· 3 + 3n

2
+ 1.
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35ptProblem 2.31 (Carry Chain and Conditional Sum Adder)
Draw an explicit combinational circuit of a 4-bit Carry Chain Adder and a 4-bit Conditional
Sum Adder. Do not use abbreviations, but only NOT, AND, OR, XOR gates. Demonstrate the
addition of the two binary numbers 〈1, 0, 1, 1〉 and 〈0, 0, 1, 1〉 on both adders; i.e. annotate the
output of each logic gate of your adders with the result bit for the given two binary numbers as
input of the whole adder.
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4pt10minProblem 2.32 (Carry Chain Adder and Subtractor for TCN)

• Draw a 2-bit carry chain adder only using (1-bit) full adders.

• Draw a subtractor for two’s complement numbers using (1-bit) full-adders and Boolean gates
of your choice.

Hint: Remember: An n-bit subtractor fnSUB(a, b, b′) can be implemented as n-bit full-adder
(FAn(a, b, b′))

Solution: 2 bit carry chain adder:

FA

b0

a0

s1

s
0

b

a
1

1
c

FA

c’

2 bit TCN subtractor:

FA

FA

b0

a0

s1

s
0

b

a
1

1

b’

c
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Problem 2.33 (Half Adder)
Design an explicit combinational circuit for the half-adder using only NOR gates. What is its cost
and depth? Looking at the first, straightforward solution, can cost and depth be improved?

Hint: First express the XOR gate by AND, OR and NOT gates then express each of these gates by
NOR gates. Then think of further improvements.

Solution: A half-adder is a combination of an AND and a XOR gate. The rather difficult part
is how to express the XOR gate by NOR gates. Solution steps: First express the XOR gate by AND,
OR and NOT gates then express each of these gates by NOR gates. This process is sketched by the blue
boxes. The result circuit has depth 5 and cost 12.

a
b

c

s

a or b

~a or~b

(~a or ~b) and (a or b)

a xor b

a and b

Removing double negations and a smarter placing of the circuit for the carrier output yields a circuit with
depth 3 and cost 7.

a
b

c

s

187



Problem 2.34 (2-Stage Adder)
Design a circuit that computes the sum of two 6-bit numbers. In your solution you can use only
a single 3-bit Adder, you are not allowed to implement an additional adder using elementary
gates. You have to perform the computation in two steps. Therefore an additional control input
is available. At first it will be 0. Then it will be set to 1 (you do not have to implement this
yourself). After that the output of your circuit should represent the sum of the two numbers
including a carry bit. You may use all circuit gates and block from the lecture notes.

Hint: Think about using the D Flip-Flop with an enable input to store intermediate data.

Solution:
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2.2.2 Arithmetics for Two’s Complement Numbers

Problem 2.35 (Binary Number Systems)

• Write down the definition of 〈〈·〉〉, (〈〈·〉〉−), and 〈〈n〉〉2s· .

• Given the binary number a = 10110 compute 〈〈a〉〉, (〈〈a〉〉−), and 〈〈a〉〉2sn .
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Problem 2.36 (Sign-and-Magnitude Adder)
Recall the näıve sign and magnitude representation for n-bit integers: If the sign bit is 0, the
number is positive, else negative. The other n−1 bits represent the absolute value of the number.

1. Describe how to add two equally-signed n-bit numbers (simple).

2. Describe how to add two n-bit numbers numbers with different sign bits (a bit more tricky).

3. Draw a combinational circuit of a 4-bit sign and magnitude adder (one sign bit, three data
bits). You may use the 1-bit full adder/subtractor (with one input that selects whether to
add or to subtract) known from the lecture, an n-bit multiplexer that selects one of two n-

bit numbers, as well as an n-bit comparator that computes the function f : {0, 1}2 → {0, 1}
defined as follows:

f(a, b) :=

{
1 if a ≤ b
, 0 else

Be sure to explain the layout of your circuit.

4. How can an over-/underflow be detected at the outputs? In which cases can an over-
/underflow occur?

Solution:

1. Add the absolute values and keep the sign

2. Choose the greater of the absolute values of the two numbers (|a|), subtract the absolute value of
the other number (|b|) from it and take the sign of a.

3. (Wire the above.)

4. An over-/underflow can occur when two equally-signed numbers are added. It can be detected by
checking the last carry-out.
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12ptProblem 2.37: Given following integer numbers in base ten. Convert them to 32-bit Two’s
Complement numbers.

1. 3643

2. 5731923

3. -128

4. -24689

Solution: First we need the numbers’ normal binary representation, therefore4

1. 3643 = ϕ111000111011(2)

2. 5731923 = ϕ10101110111011001010011(2)

3. −128 = −ϕ10000000(2)

4. −24689 = −ϕ110000001110001(2)

To align a positive number to 32 bits we just fill in the space to the left with its sign bit (0), therefore

1.

2. 3643 = 〈〈2〉〉2s00000000000000000000111000111011
3. 5731923 = 〈〈2〉〉2s00000000010101110111011001010011

To convert a negative number we need to complement it and add 1 to the resulted number. Afterwards
we will fill in the space on its left with its sign bit (1).

1. −128 = 〈〈2〉〉2s11111111111111111111111110000000
2. −24689 = 〈〈2〉〉2s1111111111111111001111110001111111

4EdNote: Check all of these.
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9ptProblem 2.38: Given the following integer numbers as 16-bit Two’s Complement numbers.

1. 1010 0001 0100 0000

2. 0010 1110 1110 1110

3. 1101 0011 1111 0010

Convert them into decimal numbers.

Solution: We just have to sum up powers of 2, adding − in front of the sign bit’s power.

1. 1010000101000000 = 2−15 + 213 + 28 + 26 = −24256

2. 0010111011101110 = 213 + 211 + 210 + 29 + 27 + 26 + 25 + 23 + 22 + 21 = 12014

3. 1101001111110010 = −215 + 214 + 212 + 29 + 28 + 27 + 26 + 25 + 24 + 21 = −11278
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4pt7minProblem 2.39 (The Structure Theorem for TCN)
Write down the structure theorem for two’s complement numbers (TCN) and make use of it to
convert

• the integer -53 into a 8-bit TCN.

• the 8-bit TCN 10110101 into an integer.

Furthermore convert

• the integer -53 into a 10-bit TCN.

• the 10-bit TCN 1110110101 into an integer.

The 10-bit version of the conversion task shouldn’t be any effort after solving the 8-bit version.
You just have to remember the appropriate lemma to transfer an n-bit TCN to an n+ 1-bit TCN.
How is the lemma called and what does it state?

Solution:
The 8-bit version:

• B(()53) = 00110101, B(53) = 11001010, B(〈〈B(53)〉〉+ 1) = 11001011

• B(〈〈10110101〉〉 − 1) = 01001011, −〈〈B(〈〈b〉〉 − 1)〉〉 = −75

The 10-bit version: We make use of the sign bit duplication lemma

• We just have prepend two 1̈̈ın front to get from the 8-bit to the 10-bit version: B(〈〈B(53)〉〉+ 1) =
1111001011

• With the argument reverted we see that 1110110101 is the 10-bit variant of 10110101, hence it
represents the same integer as above namely -75.
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15ptProblem 2.40 (2s Complement Conversion)
Write an SML function tcn that takes an integer i and a natural number n as arguments and
converts i into an n-bit two’s complement number if it is in range and raises an exception otherwise.

Write an SML function that converts a 2s complement number into a decimal integer.

Solution:

exception OverFlow
exception UnderFlow

fun align(n, s, sb) = if String.size(s) < n
then Int.toString(sb)^align(n-1, s, sb)
else s

fun flipadd (nil, _) = ""
| flipadd (#"0"::t, 0) = flipadd(t, 0)^"0"
| flipadd (#"1"::t, 0) = flipadd(t, 1)^"1"
| flipadd (h::t, 1) = flipadd(t, 1)^(if h = #"0" then "1" else "0")

(* converts a decimal number into a TCN’s binary string *)
fun tcn (i, n) =
if i>=0 then

if String.size(binary(i)) < n then align(n, binary(i), 0)
else raise OverFlow

else
if String.size(binary(~i-1)) < n then

align(n, flipadd(foldl op:: nil (explode(binary(~i))), 0), 1)
else raise UnderFlow

(* converts a TCN’s binary string into a decimal number *)
fun todec(s) = let

fun exp 0 = 1 |exp n = 2*exp(n-1)
fun dec(#"0"::t) = decimal(s) |
dec(#"1"::t) = decimal(implode(t))-exp(String.size(s)-1)

in
dec(explode(s))

end
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8pt10minProblem 2.41 (Shift and Duplication on PNS)
Consider for this problem the signed bit number system and the two’s complement number system.
Given a binary string b = an. . .a0. We define

1. the duplication function dupl that duplicates the leading bit; i.e. it maps the n + 1-bit
number an. . .a0 to the n+ 2-bit number anan. . .a0 and

2. the shift function shift that maps the n + 1-bit number an. . .a0 to the n + 2-bit number
an. . .a00

Prove or refute the following two statements

• The shift function has the same effect in both number systems; i.e. for any integer z:

(〈〈shift(B(z))〉〉−) = 〈〈shift(B2s
n (z))〉〉2sn+1

• The dupl function has the same effect in both number systems; i.e. for any integer z:

(〈〈dupl(B(z))〉〉−) = 〈〈dupl(B2s
n (z))〉〉2sn+1

Solution:

• (〈〈dupl(B(z))〉〉−) = z − 2n+1 if z < 0 else z.

• (〈〈shift(B(z))〉〉−) = 2 ∗ z
• 〈〈dupl(B2s

n (z))〉〉2sn+1 = z

• 〈〈shift(B2s
n (z))〉〉2sn+1 = 2 ∗ z

Proof for the last equality:

shift(−an ∗ 2n +

n−1∑
k=0

ak ∗ 2k) = −an ∗ 2n+1 +

n−1∑
k=0

ak ∗ 2k+1 = 2 ∗ (−an ∗ 2n +

n−1∑
k=0

ak ∗ 2k)
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15ptProblem 2.42: Compute the intermediate carry (ick(9235, 26234, 1)) for k = 3 and k = 5.

Hint: You have to convert the first two arguments to binary numbers of the same range beforehand.

Solution: The two binary representations of the two numbers are:

1. 9235 = 0010010000010011

2. 26234 = 0110011001111010

Now we can perform addition to get that (ic3(())9235, 26234, 1) = 0 and (ic5(())9235, 26234, 1) = 1.
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2.2.3 Algorithmic/Logic Units
3pt
6minProblem 2.43 (TCN Substraction)

Let A = 576 and B = 9.

1. convert the numbers into an n-bit TCN system. What is the minimal n in order to encode
A as well as B?

2. perform a binary subtraction A−B and check the result by converting back to the decimal
system.

Solution: n should be 11. The 11-bit TCN representations are:

〈〈B(576)〉〉 = 01001000000

〈〈B(9)〉〉 = 00000001001

The subtraction A−B in TCN representation is

〈〈B(576)〉〉 − 〈〈B(9)〉〉 = 〈〈B(576)〉〉+ 〈〈B(9)〉〉+ 1

This corresponds to

01001000000− 00000001001 = 01001000000 + 11111110110 + 1 = 01000110111

In fact: 〈〈B(576− 9)〉〉 = 〈〈B(565)〉〉 = 01000110111
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2pt6minProblem 2.44 (Carry Chain Adder and Subtractor for TCN)

• Draw a 2-bit carry chain adder only using (1-bit) full adders as primitives.

• Draw a 2-bit subtractor for two’s complement numbers using (1-bit) full-adders and Boolean
gates of your choice.

Hint: Remember: An n-bit subtractor fnSUB(a, b, b′) can be implemented as n-bit full-adder (FAn(a, b, b′))

Solution: 2 bit carry chain adder:

FA

b0

a0

s1

s
0

b

a
1

1
c

FA

c’

2 bit TCN subtractor:

FA

FA

b0

a0

s1

s
0

b

a
1

1

b’

c
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2.3 Sequential Logic Circuits and Memory Elements

Problem 2.45 (2bit Address Decoder)
Design a 2 bit address decoder using only NOR gates.

Solution:
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Problem 2.46 (Reading from and writing to memory)

Suppose you have a 2-bit addressed memory of 4 bits managed by 4 D-Flipflops aligned as
shown in the figure. The input of the circuit consists of a total of 4 bits. 2 of the bits (a0 and a1)
provide a 2-bit address. In addition there is a data bit D and a write bit W .

Design a circuit which output should be the data memorized in the D-Flipflop addressed by
〈a1, a0〉 . In addition if the write bit W is 1, your circuit should write the data from the data bit
D to the same D-Flipflop addressed by 〈a1, a0〉.

Solution:
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Problem 2.47 (Event Detection with RS Flipflops)
Using RS flipflops, you can detect events.

1. Design a sequential logic circuit (draw a graph) with two inputs and two outputs that detects,
which out of two events occurred first. Use the RS flipflop and elementary gates (AND, OR,
NOT, . . . ). Assume that, initially, all inputs are 0 and the RS flipflop(s) are holding a 0. If
input Ii, where i ∈ {1, 2}, changes its value to 1, output Oi should change its value to 1, and
all other outputs should yield 0. The outputs must not change any more when the second
input changes to 1.

2. Combine several (how many?) of the circuits from step 1 to a similar event detector for
three events.

Note: You need not handle the case of two inputs simultaneously changing to 1.

Solution: Circuit that checks which out of two events (x or y) occurred first:

R Q

S Q
y

x
y first

x first

Three of those combined to a circuit that checks which out of three events (a, b, or c) occurred first:

x

y

y first

x first

x

y

y first

x first

x

y

y first

x firstb

a

c

b

c

a<b

c<a

a<c

c<b

b<c

a b<a

(here, < means "before")

a first

b first

c first

a b c
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Problem 2.48 (Binary counters)

In the slides there is an implementation of a D-flipflop with an enable input. In practice a
different version is more commonly used - the edge-trigerred D-flipflop. Here instead of an enable
input there is a clock input (clk). The difference in operation is that the edge-trigerred D-flipflop
only remembers the value of the D input at the one instant when the clk input switches from 0 to
1. If clk is constantly 0 or constantly 1 the flipflop will not change its state.

Using only such flipflops implement a 3-bit binary counter circuit. The circuit should have
only one input ’tick’ that will periodically change between 1 and 0. It should have three outputs
that count the number of pulses on the input. After the counter counts to 111 it should continue
from 000. You can assume the initial state of all flipflops is 0.

Note: For those of you who are curious here is how an edge-trigerred D-flipflop is built from NAND
gates: http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip-flop.png. If you’re trying to un-
derstand this it will help to note that a real physical gate has a certain delay. When the input changes it
takes some time (nanoseconds) for the output to react.

Solution:
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Problem 2.49 (Displaying a two-bit number)
Your task for this problem is to create a 2-bit synchronous counter and display the output in a
decimal form with the help of 8 light emitting diodes.

You need to assemble this circuit only with the help of the following items:

• 2 positive edge triggered D-flipflops

• 6 NAND gates

• 1 digit display circuit with 8 inputs (a− g) corresponding to 8 diodes arranged in the figure
below

• 1 signal generator that provides you with a clock signal that you should use to trigger the
D-flipflops

• set of wires

Note:

• Basically your task is to create a 2-bit counter and decode the 2-bit output of the counter into 8-bits
so that the display shows proper numbers from 0 to 3.

• Positive edge triggered D-Flipflop is just like a normal D-flipflop with the exception that it writes
the data when the enable signal (clock) transits from 0 to 1, and in all other cases (constant 0,
constant 1, transition 1 → 0) nothing happens.

• You cannot use constant signals.

• For all of the inputs to the 1-digit display logical true (1) means ON and logical false (0) means
OFF for the corresponding diode.

• You dont need to worry about the power supplies of the diodes, ICs and the flipflops.

Solution:

204



205



Problem 2.50 (Making a speedometer)
You are working for a car manufacturer and are given the task to make a digital speedometer for a
future model. The electrical engineers tell you that they can provide you with two inputs: rev tick
very briefly goes from 0 to 1 and then back to 0, whenever the wheels of the car complete one
revolution and ref clk that every second very briefly goes form 0 to 1 and then back to 0. You
know that the wheels of the car have a circumference of 1 meter. For the initial design you need to
provide an electronic circuit that measures the speed in meters per second. You have to provide
a number of outputs a0, . . . , an that represent the current speed. You also know that the car has
a maximum speed of 220 km/h.

Imagine that you wanted to display the speed in km/h. What is the maximum resolution your
speedometer could achieve? What improvements to the car design can you propose to make this
better?

For this problem you should use the edge-trigerred flip-flop together with an extended version
that has one additional input R. Whenever R is one, the internal state of the flip-flop is reset to
0 (Q = 0) regardless of the state of the D and clk inputs. Reseting the internal state when R
becomes 1 also happens after a short delay.

Solution:

With the current design we can only achieve a resolution of 3.6 km/h (1m/s). To improve this we need
to have a greater number of impulses per 1 revolution of the wheels. For example 100 ticks per revolution
will be enough to provide a resolution of 0.1 km/h.
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2.4 Machines

2.4.1 How to build a Computer (in Principle)
20pt

Problem 2.51 (Hyperpower)
Write an assembler program that reads an integer n ≥ 1 stored in P (0), and writes nn in P (1).

Solution:

P instruction

0 LOADI 1
1 STORE 1
2 LOAD 0
3 STORE 2
4 JUMP= 15
5 LOADI 0
6 STORE 3
7 LOAD 3
8 ADD 1
9 STORE 3
10 LOAD 2
11 SUBI 1
12 STORE 2
13 JUMP6 = − 6
14 LOAD 3
15 STORE 1
16 LOAD 0
17 SUBI 1
18 JUMP − 14
19 STOP 0
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10ptProblem 2.52 (Multiplication)
Write an assembler program (for the assembler language we defined in class) that multiplies the
values of data cells 1 and 2 and stores the result in data cell 0.
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25pt
Problem 2.53 (Poking zeros)
Given are n ≥ 1 (n is stored in P (0)) integers stored in P (10) . . . P (9 + n), such that no two zeros
are next to each other and P (10) 6= 0 6= P (9 + n). Write an assembler program that overwrites
all zeros in that array with the sum of the numbers in the neighboring cells of its position.

Solution:

P instruction

0 LOAD 0
1 SUBI 1
2 STORE 0
3 LOADI 11
4 MOVE ACC IN1
5 LOAD 0
6 SUBI 1
7 STORE 0
8 JUMP≤ 12
9 LOADIN 1 0
10 JUMP6 = 6
11 LOADIN 1 − 1
12 STORE 1
13 LOADIN 1 1
14 ADD 1
15 STOREIN 1 0
16 MOVE IN1 ACC
17 ADDI 1
18 MOVE ACC IN1
19 JUMP − 14
20 STOP 0
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70ptProblem 2.54 (Simulating a Register Machine)
Write an SML function regma (register machine) that simulates the simple register machine we
discussed in class. To represent the program and data store, you should use SML vectors as de-
scribed in http://www.standardml.org/Basis/vector.html. In a nutshell, Vector.sub(arr,i)
returns the ith element of the vector arr and Vector.update(arr,i,x) returns the vector arr,
except that the ith element is replaced by x. Finally (useful for testing) Vector.fromList makes
a vector from a list.

So the the data store should be of type int vector and the program store is of type (instruction * int) vector,
where instruction is defined by the following type

datatype instruction =
load | store | add | sub | loadi | addi | subi |
loadin1 | loadin2 | storein1 | storein2 |
moveaccin1 | moveaccin2 | movein1acc | movein2acc | movein1in2 | movein2in1 |
jump | jumpeq | jumpne | jumpless | jumpleq | jumpgeq | jumpmore |
nop | stop

regma should take as input a data store data and a program store prog, and regma(prog,data)

should return the value of the accumulator register, when the program encounters a stop instruc-
tion.

Solution: We first write an auxiliary function that takes care of the current instruction by a large
case statement. Let us start out with the load/store instructions:

\scriptsize
fun arg(n,p) = let val (_,a) = Vector.sub(n,p) in a end
fun doinst ((load,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,arg(pc,prog),pc+1,in1,in2)
| doinst((store,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,Vector.update(data,acc,i),pc+1,in1,in2)
| doinst ((loadi,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,i,pc+1,in1,in2)
| doinst((loadin1,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,Vector.sub(data,in1+i),pc+1,in1,in2)
| doinst((loadin2,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,Vector.sub(data,in2+i),pc+1,in1,in2)
| doinst((storein1,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,Vector.update(data,acc,in1+i),pc+1,in1,in2)
| doinst((storein2,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,Vector.update(data,acc,in2+i),pc+1,in1,in2)

Then come the cases for the computation instructions, where we just make use of the SML computation
facilities.

\scriptsize
| doinst((add,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc + Vector.sub(data,i),pc+1,in1,in2)
| doinst((Vector.sub,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc - Vector.sub(data,i),pc+1,in1,in2)
| doinst((add,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc + i,pc+1,in1,in2)
| doinst((Vector.sub,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc - i,pc+1,in1,in2)

The register move instructions are rather boring:

\scriptsize
| doinst(moveaccin1,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,acc,in2)
| doinst(moveaccin2,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,acc)
| doinst(movein1acc,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,in1,pc+1,in1,in2)
| doinst(movein2acc,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,in2,pc+1,in1,in2)
| doinst(movein1in2,prog,data,acc,pc,in1,in2) =
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doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in1)
| doinst(movein2in1,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in2,in2)

The jump instructions can be mapped to conditional expressions in SML using the SML comparisons

\scriptsize
| doinst((jump,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+i,prog),prog,data,acc,pc+i,in1,in2)
| doinst((jumpeq,i),prog,data,acc,pc,in1,in2) =

if (acc = 0)
then doinst(Vector.sub(pc+i,prog),prog,data,acc,pc+i,in1,in2)
else doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in2)

...
| doinst((jumpmore,i),prog,data,acc,pc,in1,in2) =

if (acc > 0)
then doinst(Vector.sub(pc+i,prog),prog,data,acc,pc+i,in1,in2)
else doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in2)

For the skip instruction we do nothing, except increment the program counter and supply the next
instruction:

\scriptsize
| doinst(nop,prog,data,acc,pc,in1,in2) =
doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in2)

Finally, the stop instruction just returns the value of the accumulator.

\scriptsize
| doinst(stop,prog,data,acc,pc,in1,in2) = acc

With this giant case distinction, the function regma is very simple, we just have to use doinst with suitable
initial values.

\scriptsize
fun regma (prog,data) = doinst(Vector.sub(0,prog),prog,data,0,1,0,0)
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20pt20minProblem 2.55 (sorting-by-selection)
Let n ≥ 1 be stored in P (0) and n numbers stored in P (2) . . . P (n+ 1). Write an assembler
program that performs a sorting by selection and outputs the result in P (n+ 2) . . . P (2n+ 1).
Write comments to each line of your code (like in the example codes from the slides). Uncommented
code will not be considered.

Solution:

P instruction comment

0 LOAD 0 ACC : = P (0) = n
1 ADD 0 ACC : = ACC +n
2 MOVE ACC IN2 The recursion index. Initializing IN2 = 2n (will come in

handy when printing the results)
3 LOAD 0 ACC : = n
4 MOVE ACC IN1 IN1: = n Initialising the sequence index. Outer loop

starts.
5 LOADIN 1 1
6 STORE 1 Initialize MAX = P (1) = P (n+ 1)
7 MOVE IN1 ACC ACC : = IN1 = n Starting inner loop
8 SUBI 1
9 MOVE ACC IN1 IN1−−
10 JUMP= 7 if IN1 becomes 0 we have a MAX
11 LOADIN 1 1 ACC : = P (IN1 +1)
12 SUB 1 ACC : = ACC −MAX
13 JUMP< 2 if P (IN1 +1) < MAX jump
14 LOADIN 1 1 else MAX = P (IN1 +1)
15 STORE 1
16 JUMP − 9 End inner loop (for one max)
17 LOAD 1 ACC = MAX
18 STOREIN 2 1 P (IN2 +1): = ACC = MAX
19 LOAD 0 now we have to make the max we chose to be equal to 0,

so we wouldn’t find it again
20 MOVE ACC IN1 we test if the current number equals P (1)
21 LOADIN 1 1
22 SUB 1
23 JUMP= 5 if we find the number we make it 0
24 MOVE IN1 ACC
25 SUBI 1
26 MOVE ACC IN1
27 JUMP − 6
28 LOADI 0
29 STOREIN 1 1
30 MOVE IN2 ACC
31 SUBI 1
32 MOVE ACC IN2 IN2−−
33 SUB 0 IN2: = IN2−n
34 JUMP> − 20 if IN2−n > 0 go back again. End big loop.
35 STOP 0
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20pt20minProblem 2.56 (Binary to decimal)
Let P (0) = n contain the number of bits of a binary number stored in P (2)...P (2 + n− 1).
Each memory cell represents one bit of the number where P (2) is the least significant bit and
P (2 + n− 1) is the most significant bit. Write a program that stores the corresponding decimal
number in P (1).

Solution:

label instruction comment

LOAD 0
MOVE ACC IN1 The recursion index. Initializing IN1: = n
LOADI 0
STORE 1 Initialize P (1) : = 0

〈loop〉 MOVE IN1 ACC
JUMP= 〈end〉 if IN1 becomes 0 we are done.
LOAD 1
ADD 1
STORE 1 P (1) : = 2 · P (1)
LOADIN 1 1
ADD 1
STORE 1 P (1) : = P (1) + P (IN1 +1)
MOVE IN1 ACC
SUBI 1
MOVE ACC IN1 IN1−−
JUMP 〈loop〉 go to next iteration.

〈end〉 STOP 0
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2.4.2 A Stack-based Virtual Machine

Problem 2.57 (Reasons for Virtual Machines)
Thinking back to the lectures about L(VM) and SW, sum up the benefits of compiling programs in
high-level languages to the language of a virtual machine instead of directly compiling them to an
assembler language ASM.
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12pt15minProblem 2.58 (Binary Conversion in L(VM))
Write a L(VM) program that converts a binary natural number into a decimal natural number.
Suppose that n, the number of digits, is stored in stack[2] and n numbers 0 or 1 above it follow,
where the top of stack is the least significant bit. stack[0] and stack[1] are available for your
use. Your program should leave only the converted number on the stack (in stack[0]). You are
allowed to use labels for (conditional) jumps.

For instance an initial stack

1
0
1
3
?
?

should give the result stack 5 .

Solution: con (0)
poke (0) ; init. result to 0
con (1)
poke (1) ; init. 2i to 1
peek (1)
mul ; multiply with 2i

peek (0)
add ; add to result
poke (0)
peek (1) ; update multiplier
con (2)
mul

poke (1) con (1) 1 ; update digit counter
peek (2)
sub

poke (2)
peek (2) ; if counter = 0 go out
cjp 4 jp − 26 ; else again
poke (1) 1 ; clean stack and stop
add

halt
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12ptProblem 2.59 (Fibonacci Numbers)
Assume the data stack initialized with con n for some natural number n. Write a L(VM) program
that computes the nth Fibonacci number and returns it on the top of the stack.

Hint: Remember that the nth Fibonacci number is given by the following recursive equations:

fib(n+ 1) = f(n) + fib(n− 1) fib(0) = 0 fib(1) = 1

Solution:

con n The requested fibonacci number
con 0 con 1 The 0th and the 1st fibonacci number
con 0 peek 0 leq cjp 5 If $\RMdatastore{0}$ <= 0
peek 1 halt return the current fibonacci number
peek 2 else save the next fibonacci number ...
peek 1 peek 2 add poke 2 ... compute the number after next and save at $\RMdatastore{2}$
poke 1 ... make the next number current ...
con 1 peek 0 sub poke 0 ... decrease n by 1 ...
jp -28 ... and jump back the the beginning
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2.4.3 A Simple Imperative Language
20pt

Problem 2.60 (Convert Highlevel Code to VM Code)
Given is an array A[0..10] and the following piece of imperative code:

for j := 1 to 5 do
for i := j to 10-j do
A[i] := A[i-j] + A[i+j];

Suppose the array is loaded on stack (top value being A[10]). Convert the code into VM code.
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Problem 2.61 (Static procedure for logarithm)
Write down a static procedure in L(VM) that computes f(x) = blog2(x)c. This procedure should
not be recursive. Use the new lpeek and lpoke instructions from the previous exercise. Is there
something you do at the end of your procedure that is not part of your algorithm. If yes, then
describe a more elegant way of doing that by modifying the behavior of an existing VM instruction.

Hint: Remember that at the end of a static procedure call exactly one value - the result - should be
left on the stack.

Solution:

proc 1 34 f(x)
con 0 con 2 local variables n, y
arg 1 lpeek 1 leq cjp 16 if y ≤ x
con 1 lpeek 0 add lpoke 0 n := n+ 1
con 2 lpeek 1 mul lpoke 1 y := y ∗ 2
con 0 lpoke 0 add else: eliminate all excess elements on the stack
return return n

At the end we have two variables left on the stack n and y. We need to eliminate y. Therefore we
make it 0 and then add this to n. In this way only the final result is left on the stack.

A better way of implementing this for example is to make the return instruction take one argument
which represents the number of excess variables on the stack. The implementation of this instruction can
then take care of adjusting the stack pointer to the right position.
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6pt10minProblem 2.62 (While Loop in L(VM))
Write a program in the Simple While language that takes two numbers A and B, given at the
memory addresses 1 and 2, and returns (A+B)42. Show how the compiled version of it looks like
in the Virtual Machine Language L(VM) (concrete, not abstract syntax).

Solution:

var n := 1; var a := A; var b := B; con 1 peek 1 peek 2
var c := a+b; add con 1
while n >= 42 do ( peek 0 con 43 leq cjp halt
p := c * p; peek 1 peek 2 mul poke 2
n := n + 1; peek 0 con 1 add poke 0

) jp back
return p; halt
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Problem 2.63 (Simple While program on Fibonacci)

Write a Simple While Program that takes a number N and computes the N th Fibonacci
number. Then provide the Abstract Syntax for your code.

Show how the L(VM) version of it looks like by compiling it.

Hint: Remember that the nth Fibonacci number is given by the following recursive equations:

fib(n+ 1) = f(n) + fib(n− 1) fib(0) = 0 fib(1) = 1

Solution:

var n := N; var a := 0;
var b := 1; var c=b; ([ ("n", Con N), ("a", Con 0), ("b", Con 1), ("a", Con 1)],
while 2<= n do While(Leq(Con 2, Var"n"),

c=b+a; Seq [Assign("c", Add(Var"b", Var"a")),
a=b; Assign("a", "b"),
b=c; Assign("b", "c"),
n:=n-1; Assign("n", Sub(Var"n", Con 1))]

end ),
return b; Var"c")

VM code:

con N con 0 con 1; con 1
peek 0 con 2 leq cjp 22
peek 1 peek 2 add poke 3
peek 2 poke 1
peek 3 poke 2
con 1 peek 0 sub poke 0
jp − 27
peek 3 halt
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2.4.4 Compiling Basic Functional Programs

Problem 2.64 (Cross identifiers?)
Now suppose you want to compile a µML program containing a few function declarations such
that they use the local identifiers from the functions defined above. For example,

([("F1", ["n","a"], Sub(Id "n",Id "a")),
("F2", ["m","x"], Mul(Add(Id "m",Id "x"),Id "n"))],
App("F2", [Con 1, Con 2]) );

Will such a program compile? If yes, will it execute correctly? Explain your answer.
Hint: You may want to track down the compilation process on a given example.

Solution: Since the compiler doesn’t check for such cross-references, it will get confused and ulti-
mately stop compilation raising an uncaught error.
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Problem 2.65 (Duplicate identifiers?)
Suppose you want to compile a µML program containing a few function declarations such that
some of them contain the same identifier names such as

([("F1", ["n","a"], Sub(Id "n",Id "a")),
("F2", ["m","n","a"], Mul(Add(Id "m",Id "a"),Id "n"))],
App("F2", [Con 1, Con 2, Con 3]) );

Will such a program compile? If yes, will it execute correctly? Explain your answer.
Hint: You may want to track down the compilation process on a given example.

Solution: Such programs will compile successfully anyway, since the compilation of every list of
identifiers is followed by the function that uses it. Although the identifiers from the list from the function
that follows will be poured in the same environment, the identical names will be overwritten and the usage
of the new identifiers will cause no problems.
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Problem 2.66 (Prime numbers)
Write a program in µML that takes an integer n > 1 and returns 1 if the number is prime and
0 otherwise. Your program should be a pair of a well defined list of function declarations, and a
single App call of the main function. Obviously, that function will call the helping function(s) in
its body and helping functions may call themselves. Can you solve the problem using only two
helping functions?

Solution: A long, standard solution

(
[

("Equal", ["a","b"],
If(Leq(Id"a",Id"b"),

If(Leq(Id"b",Id"a"), Con 1, Con 0),
Con 0
)

),

("Less", ["a","b"],
If(Leq(Id"a",Id"b"),

If(Leq(Id"b",Id"a"), Con 0, Con 1),
Con 0
)

),

("Mod", ["a","b"],
If(App("Less",[Id"a",Id"b"]),

Id"a",
App("Mod", [Sub(Id"a", Id"b"), Id"b"])
)

),

("Div", ["a","b"],
If(App("Less",[Id"a",Id"b"]),

Con 0,
Add(Con 1, App("Div", [Sub(Id"a",Id"b"), Id"b"]))
)

),

("FindRoot", ["n","i"],
If(Leq(Mul(Id"i", Id"i"), Id"n"),

App("FindRoot", [Id "n", Add(Id "i",Con 1)]),
Sub(Id "i",Con 1)
)

),

("FindDv", ["n","i","b"],
If(Leq(Id"i", Id"b"),

If(App("Equal", [App("Mod", [Id"n",Id"i"]),Con 0]),
Con 0,
App("FindDv", [Id"n", Add(Id"i", Con 2), Id"b"])
),

Con 1
)

),

("IsPrime", ["n"],
If(App("Equal", [Id"n",Con 2]),

Con 1,
If(App("Equal", [App("Mod", [Id"n",Con 2]),Con 0]),

Con 0,
App("FindDv", [Id"n", Con 3, App("FindRoot", [Id"n", Con 1]) ])
)

)
)

],
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App("IsPrime", [Con 119]) );

Another ingenious test for prime numbers taken from ”Goedel, Escher, Bach”

(
[
("DND", ["x", "y"],
If(Leq(Id"y", Con 0), Con 0,
If(Leq(Id"x", Id"y"), App("DND", [Id"x", Sub(Id"y", Id"x")]), Con 1))),

("DF", ["x", "n"],
If(Leq(Id"n", Con 2), App("DND", [Con 2, Id"x"]),
If(App("DND", [Id"n", Id"x"]),

If(App("DF", [Id"x", Sub(Id"n", Con 1)]), Con 1, Con 0),
Con 0)

)
),

("Prime", ["x"],
App("DF", [Id"x", Sub(Id"x", Con 1)])

)
],

App("Prime", [Con 9])
);

224



2.4.5 A theoretical View on Computation
10pt
10minProblem 2.67: Explain the concept of a Turing machine, what is it used for? What is a

universal Turing machine?
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12ptProblem 2.68 (Turing Machine)
Given the alphabet {0, 1} and a initial tape that starts with 0,1,0.

1. Define a transition table that converts the three entries of this tape to 1,0,1 and terminates
afterwards independently of the tape’s tail.

2. Give an example initial tape where your transition table wouldn’t terminate or argue why
such an initial tape can’t exist.

Hint: The Turing machine terminates when there is no action in the transition table applicable.
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5pt8minProblem 2.69 (Boolean And)
Suppose a tape with only two cells arbitrarily filled with 0 or 1 and the head of the Turing machine
over the left cell. Define a transition table such that the machine always terminates with a final
state where the left cell has value 1 if and only if both cells contained 1 in the initial state; i.e.
the machine should evaluate the a boolean “and”.

Hint: Admissible moves are left, right, and stop with the obvious meaning.

Solution: Missing entries in the transition table can be filled arbitrarily; i.e. they are irrelevant for
the solution of the problem.

Old Read Write Move New

s0 0 stop
s0 1 0 right s1
s1 0 stop
s1 1 left s2
s2 1 stop
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11pt20minProblem 2.70 (Boolean Equivalence)
Consider a tape arbitrarily filled with ones and zeros and the head initially positioned over some
cell “X” as depicted below

X Y ......

initial head position

Define a transition table for an always terminating Turing machine TM that computes the
boolean equivalence of “X” and “Y”: Upon halting, your TM should return the value 1 in cell “X”
if the values of the cells “X” and “Y” were initially equal and otherwise 0.

Try to use as few states as possible. The number of points you can obtain for this exercise is
max(0, 14− x), where x is the number of states of your working TM.

Hint: You only need to consider the two cells “X” and “Y”. It does not matter where the head stays
when the TM terminates.

Note:

1. Admissible moves are left, right, and none with the obvious meaning.

2. You are free to overwrite the initial value of “Y” and to introduce additional symbols in the alphabet,
if you need it for your solution.

Solution: There are lots of possible solutions.
The following four-state solution (including the final state) by Dmakreshanski Pesikan does not use

any additional alphabet symbols:

Old Read Write New Move

s1 0 0 s2 right
s1 1 1 s2 right
s2 0 0 s3 left
s3 1 0 s4 left
s3 0 1 s4 none

Tanmay Pradhan presented a solution that uses additional symbols and only needs two states. This
is supposed to be optimal.

Old Read Write New Move

s1 0 W s2 right
s1 1 Y s2 right
s2 0 L s1 left
s2 1 L s2 left
s1 W 1 s1 right
s1 Y 0 s1 right
s2 W 0 s1 right
s2 Y 1 s1 right

If we require that the head must stop on “X” – but we don’t , as Darko pointed out! – , it gets more
complicated. The following solution by Christoph Lange is quite straight-forward, but not optimal:

Old Read Write New Move

a 0 0 b right
a 1 1 b right
b 0 0 c0 left
b 1 1 c1 left
c0 0 1 ⊥ none
c0 1 0 ⊥ none
c1 0 0 ⊥ none
c1 1 1 ⊥ none
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Andrei Aiordachioaie supposed this four-state solution:

Old Read Write New Move

s0 1 X right sx
s0 0 Y right sy
sx 1 1 left sx
sx X 1 none ⊥
sx 0 (anything) left sy
sx Y 0 none ⊥
sy 0 0 L sy
sy Y 1 none ⊥
sy 1 (anything) left sx
sy X 0 none ⊥
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Problem 2.71 (Halting Reductions)
The fact that a TM cannot decide if another TM halts on a given input is not the only limit of
computation. There are a lot of other things TM’s cannot do, and the halting problem can be
used to prove this. This process is called ”reduction to the halting problem”: for proving that
a TM cannot decide a certain a property P , assume that it could and then use it to construct
another TM that can decide the halting problem (i.e. to decide if some TM halts on some given
input).

For the following statements, provide a proof by reduction to the halting problem or a coun-
terexample:

• No TM can decide in general whether another TM halts on all inputs.

• TM can decide in general whether another TM uses all its states in the computation on a
given input x.

Hint: Here is an example of how to solve such a task. All you need to do is to figure out how to
adapt this to the points above.

• Prove or refute that no TM can decide in general if another TM halts on the empty input.

• Assume we have a machine M that can decide if another TM halts on the empty input. We want
to decide if a given TM N halts on input x. We can construct a machine K that started on the
empty input, writes x on the tape and then simulates N(x). If M(K) (M run on a coded version
of K as input) outputs yes, then it means that K halted on the empty input, thus N halted on x,
no means the opposite. Thus, we can decide the halting problem, which is false.

Solution:

• Construct K such that it halts on every input but x, and on x it simulates N . Then use M on K,
and if the output is yes, then it means N halted on x, otherwise no.

• Construct K such that it simulates N on x and if it halts, then it goes through all the states of N .
This means that N halting on x is equivalent to K uses all its states on x (since if N doesn’t halt,
then the halting state will not be used). Then run M on K.
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Problem 2.72 (Number of Steps of a Turing Machine)
Let smax(n) be the maximum number of steps that an n-state Turing machine with the alphabet
{0, 1} can take on an empty tape, halting in the end. Is the function smax computable? Give a
proof or a refutation.

Hint: If we had an implementation of smax, how could we implement the will_halt function from
the lecture using smax?

Note: From the lecture, we know that it is impossible to implement a function will_halt(program, input).
Assume the following corollary, known as the “halting problem on the empty tape”, as given: It is even
impossible to write a Turing machine (or an equivalent function will_halt_empty(program), resp.) that
tells whether an arbitrary Turing machine halts on an empty tape.

Solution:
Proof : by contradiction

P.1 smax(n) is the maximum number of steps a halting n-state Turing machine can take on an empty
tape.

P.2 Any n-state machine that runs for more than smax(n) steps must be non-halting.

P.3 Using smax, one could now implement will_halt_empty(TM) as follows:

• Let n be the number of states of TM.

• Compute m := smax(n).

• Simulate at most m steps of TM.

• If TM has not halted so far, return “yes”; otherwise, return “no”.

P.4 This contradicts the non-computability of will_halt_empty.
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Problem 2.73 (TM and languages)

Design a Turing Machine which accepts the language {101100...1n−10n−11n0n | n > 0} (halts
with ”yes” if such input is given and halts with ”no” otherwise). First describe in plain English
the core idea of how your algorithm works. Think of possible wrong inputs, and show how your
TM handles them.

Note:

• The point of this exercise is to help you think of how to approach and solve a problem. Imagine you
are given 0 points for a TM which only partially works (some wrong inputs can pass as accepted or
the other way around).

• For exercises about TM construction, please format the transition table according to the TM simu-
lator at http://ironphoenix.org/tril/tm/ (here you will also find some example programs). This
way you will be able to check your “code” and your TAs will have an easier time grading.

Solution:

• A good starting point is to think of how to handle something of the form Xk1k+10k+1 , where X is
a special symbol we will use to mark processed 0s. For processed 1s we will use Y .

• This is a relatively easier problem, and once we solve this, we can just repeat the process n times
over our input.

• Idea: for each X, mark the first ’1’ (going from left to right) with a Y , and mark the last ’0’ with
an X. You also have to mark the initial ’X’s to keep their track (Well mark them with a ’Z’).

• Note: if you would start marking the 0s from the left too, you would get tricked by inputs like
XXX10101010.

• Keep doing this step until there are no more ’X’s in front. The word will look something like
ZZZY Y Y 10XXX (for a correct input). Now you just have to check that there is exactly one 1
followed by exactly one 0. You dont have to check for the number of Y s and Xs since you only
wrote one for each Z.

• Possible wrong inputs:

– XXX111110000 → ZZZY Y Y 110XXX (will fail at the last check)

– XXX111100000 → ZZZY Y Y 100XXX (will fail at the last check)

– XXX10101010 → ZXXYX10101010 (will fail when processing the second X)

– XXX110000 → ZZXY Y 00XX (will fail when processing the third Z)

• There are also a few things to be taken care of in the beginning and in the end:

– In the beginning we dont have the preceding ’X’s, but we only want a ’1’ followed by a ’0’
(which happens to be the same thing as our final check → have this as a starting state).

– In the end, on a correct input we will have ’X’s followed by blanks. So let our checking
procedure halt with ”yes” if it immediately encounters a blank.

Solution: Here is the complete code:

1,_ H,1,>
1,1 2,Y,>
1,0 H,0,>
1,X H,0,>
1,Y H,0,>

2,0 5,Z,>
2,1 H,0,>
2,X H,0,>
2,Y H,0,>
2,_ H,0,>

3,_ H,1,>
3,X 4,X,>
3,0 H,0,>
3,1 H,0,>
3,Y H,0,>

232

http://ironphoenix.org/tril/tm/


4,X 5,Z,>
4,Y 10,Y,>
4,1 H,0,>
4,0, H,0,>
4,_ H,0,>

5,X 5,X,>
5,Y 5,Y,>
5,1 6,Y,>
5,_ H,1,>
5,0 H,0,>

6,1 6,1,>
6,0 7,0,>
6,X H,0,>
6,Y H,0,>
6,_ H,0,>

7,0 7,0,>
7,1 8,1,<
7,X 8,X,<
7,Y H,0,>
7,_ 8,_,<

8,0 9,X,<
8,Y H,0,>
8,X H,0,>
8,1 H,0,>
8,_ H,0,>

Solution:

9,0 9,0,<
9,1 9,1,<
9,Y 9,Y,<
9,X 9,X,<
9,Z 4,Z,>

10,Y 10,Y,>
10,1 2,Y,>
10,0 H,0,>
10,X H,0,>
10,_ H,0,>
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Problem 2.74 (TM and TCN numbers)
Given a tape with an n-bit binary number written after symbol + or − (denoting if the number
is positive or negative), design a Turing Machine which will convert it to a TCN. Initially, the
head is over the sign symbol. There is no restriction where would the head be after halting. If
the number of states exceeds 4, you will lose 2 points per extra state. Uncommented code will
not be graded.

For example we would have

Input: -101
Output: 1011

Solution:

Old Read Wr. Mv. New
q1 + 0 H
q1 - 1 R qflip

qflip 0 1 R qflip
qflip 1 0 R qflip
qflip L qaddone

qaddone 0 1 H
qaddone 1 1 L qaddone
qaddone 1 H
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Problem 2.75 (Turing Machine Simulating a Half Adder)
Given the alphabet {0, 1} and a finite set of states of your choice. Define upon these sets a
transition table that behaves like a half adder, i.e. it reads two bits from the tape and writes a
sum and carry bit on the tape again (at any arbitrary but fixed position).

Solution: According to the table for the Half bit Adder

A B C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

by considering the head

on A and the state of the system s1 at the beginning the head will be moved to C and the system will be
in state s9 when halting. The complete transition table is the following:

oldstate read write move newstate

s1 0 0 R s2
s1 1 1 R s3
s2 0 0 R s4
s2 1 1 R s5
s3 0 0 R s5
s3 1 1 R s6
s4 0 0 R s7
s4 1 0 R s7
s7 0 0 L s9
s7 1 0 L s9
s5 0 0 R s8
s5 1 0 R s8
s8 0 1 L s9
s8 1 1 L s9
s6 0 1 R s7
s6 1 1 R s7
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2.5 The Information and Software Architecture of the Internet and
WWW

2.5.1 Overview

nothing here yet

2.5.2 Internet Basics

nothing here yet

2.5.3 Basics Concepts of the World Wide Web

Problem 2.76 (Quiz for the TAs)

Your last assignment this semester is to give your TAs a quiz. We hope you will enjoy this :)

You need to create a form in HTML that contains the following:

1. Include at least 5 multiple choice questions.

2. All following concepts: button, radio button, check box, drop down box, text input.

3. At least one image and one working link.

4. Tables, lists.

5. Make it look nice overall (styles, colors ...)

You can provide a fictive action attribute.
Hint: HTML is useful and easy to learn. Start by finding a nice tutorial online.
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Problem 2.77 (HTML basics)
Answer the following questions about HTML:

1. What does HTML stand for?

2. Who is making the Web standards?

3. What is HTML tag for the largest heading?

4. What is the correct HTML tag for inserting a line break?

5. What is the correct HTML for adding a background color?

6. What is the correct HTML tag to make a text bold?

7. What is the correct HTML tag to make a text italic?

8. What is the correct HTML for creating a hyperlink?

9. How can you create an e-mail link?

10. How can you open a link in a new browser window?

11. Which of these tags are all <table> tags?

• <thead><body><tr>

• <table><head><tfoot>

• <table><tr><tt>

• <table><tr><td>

12. What is the correct HTML to left-align the content inside a tablecell?

13. How can you make a list that lists the items with numbers?

14. How can you make a list that lists the items with bullets?

15. What is the correct HTML for making a checkbox?

16. What is the correct HTML for making a text input field?

17. What is the correct HTML for making a drop-down list?

18. What is the correct HTML for making a text area?

19. What is the correct HTML for inserting an image?

20. What is the correct HTML for inserting a background image?

Solution:

1. Hyper Text Markup Language

2. The World Wide Web Consortium

3. <h1>

4. <br />

5. <body style="background-color:yellow">

6. <b>

7. <i>

8. <a href="http://www.link.com">WordToBeLinked</a>

9. <a href="mailto:xxx@yyy">
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10. <a href="url"target="_blank">

11. <table><tr><td>

12. <td align="left">

13. <ol>

14. <ul>

15. <input type="checkbox"/>

16. <input type="text"/>

17. <select>

18. <textarea>

19. <img src="image.gif"/>

20. <body background="background.gif">
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Problem 2.78 (For Future Generations)

As one of the last assignments, we would like you to look a bit into the future. Imagine
yourselves one year from now. Some of you will definitely be TAs at that time, so it’s time to show
your creativity and teaching skills. Your task is to basically create an HTML form representing
the examination you would give to the freshmen in 2012. It can be any midterm or final for GenCS
I or II. There are only a few specifications you must look out for. The rest is fully up to you.

The web form must:

1. Include multiple choice and ’fill in the blanks’ questions, enough for an actual exam time of
75 or 120 minutes.

2. Include all of the following: button, radio button, check box, drop down box, text input.

3. The exam must contain figures and sections of code from any of the studied programming
languages that you ask questions on.

4. Link your exam to some useful pages. Make it like an ’open book’ exam and offer some
actual existing resources.

5. The overall style should be professional. Put a bit of effort into appearance and aesthetics.

6. In the end, the scoring system should work. Nothing too fancy, but it should be an opera-
tional exam from start to finish.

Hint: HTML is useful and easy to learn. Start by finding a nice tutorial online. You might wish to
consider JavaScript for your scoring mechanism. Also, CSS is recommended for brushing up your design!
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Problem 2.79 (Web browsers)

• What is the difference between a web page and a web site?

• What is a web browser? Name at least 5 practical web browser tools.

Solution:

• A web page is a document on the Web that can include multimedia data. A web site is a collection
of related Web pages usually designed or controlled by the same individual or company.

• A web Browser is a software application for retrieving, presenting, and traversing information re-
sources on the World Wide Web, enabling users to view Web pages and to jump from one page to
another.

Practical web browser tools: Status Bar, Bookmarks, View Source, history, temporary Internet files,
home page, auto complete, security settings, programs, etc.
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2.5.4 Web Applications

Nothing here yet

2.5.5 Introduction to Web Search

Problem 2.80 (SML Web Crawler)
A web crawler is a program that will store a copy (mirror) of a web site. Generally, crawlers access
a given web page and, after retrieving the HTML source, they extract the links and also download
those pages (or images or scripts). This will provide the user the possibility to access these pages
even when they are not connected to the internet or to perform different measurements on the
pages.

Your task is to write your own SML Web Crawler, following these steps:

1. Make sure that you downloaded and understood the SML sockets example file used in the
last assignment. Use the following updated socketReceive function:

(* Receives maxbytes bytes from the socket. Returns the string message. *)
fun socketReceive(sock, maxbytes) =

Byte.bytesToString(
Socket.recvVecNB(sock, maxbytes)

);

The problem with this function is that, if the server sends a message longer than maxbytes,
all the remaining bytes will be queued on the socket, but not processed. Write your own
fullMessage function that overcomes this problem by reading the whole reply from the
server (you can use socketReceive, it will return a string of length 0 if the message from
the server is finished). Your function should have the following type:

val fullMessage= fn : (’a,Socket.active Socket.stream) Socket.sock -> string

2. Now, write a method that, given a host and page, will make a HTTP GET request to the
server for the given page on that host, and will return the HTTP response. Your function
should have the following signature:

val getPage = fn : string * string -> string

For example, you should be able to run getPage("en.wikipedia.org","/wiki/Main_Page")

and retrieve the home page of Wikipedia.

Hint: Try to do the request on telnet first, by connecting to the host on port 80. Check resources
online (i.e. Wikipedia) on how to make a valid HTTP request.

3. Now that you have the HTTP response, check it closely and you will discover that it contains
the HTML web page, but also some headers. In order to be sure that you will only store the
HTML page, write a function extractHTML that scans the string and discards everything
that is not between <html> and </html>. Of course, your function will have the signature:

val extractHTML : string -> string
- extractHTML("Discard me! <html><head><title>Hello!</title></head></html>");
val it = "<html><head><title>Hello!</title></head></html>" : string;

4. Write a function extractLinks that will go through your HTML source code and will
return all the links that it contains. Feel free to look into the HTML or RegExp library of
SML, but making your function only going through the string and extracting sequences like
the following will suffice:

<a href="extract me!">...
<img src="extract me!"> ...
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You are not required to handle links other than the ones found in anchors and images. Your
function will have the following signature (get a string and return a list of strings which are
the links found):

val extractLinks = fn : string -> string list;

5. Mind the fact that these links might contain the protocol (”http://”), might be relative to
the root of the host (”/img/happy.png”), or might be relative to the current page (”nex-
t/index.html”). Your getPage function requires a host and a page as arguments, and the
page should be relative to the host root (i.e. absolute path). Write an SML function
normalizeLinks that, given a host, page and list of strings, will return a list of pairs
(host, page) that can be used by the getPage:

val normalizeLinks : string * string * string list -> (string * string) list;
normalizeLinks("www.example.com", "/en/test.html",

["http://www.google.com/something/x", "/img/happy.png", "next/index.html"]
);
val it = [

("www.google.com", "/something/x"),
("www.example.com", "/img/happy.png"),
("www.example.com", "/en/next/index.html")

] : (string * string) list;

6. This sub-task will be to write the wrapping crawler function.

Have a look at the following SML function that writes a string to a file:

fun writeToFile(file, content) =
let

val os = TextIO.openOut(file)
val vc = String.toString(content) (* we need an SML vector *)
val _ = TextIO.output(os, vc)
val _ = TextIO.flushOut(os)

in
TextIO.closeOut(os)

end;

Hint: You might want to extend this function to also handle folders, such that you can store the
pages or images relative to the root page you start your crawl on. However, you are not requested
to do so.

This function will be used in storing the HTML page to disk. Your crawler will have the
following signature:

val crawler : string * string * int -> unit;

The first two parameters are the host and the starting page (i.e. ”www.example.com” and
”/test/index.html”). The third parameter is an integer representing the maximum depth
you should go into. You will follow the following steps:

(a) use getPage to retrieve the HTTP response

(b) use extractHTML to extract only the HTML part of the response

(c) write the HTML part to a file (see the note below!)

(d) use extractLinks and normalizeLinks to get the list of links to follow further

(e) recursively call the crawler method; remember to decrease the depth and not proceed
with a negative depth!

Note: There might be problems with storing images. We will not grade this problem based on the
output, but rather on how well you managed to follow the instructions and on your intermediary results.
Please think about what the problem with images is and write a short comment at the end of your sml
file!

Solution:
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Problem 2.81 (Ranking pages)
In this task you will gain some practical experience with a real-world web crawler and you will
come up with your own page ranking procedure!

Look into the man pages of wget (available on linux, use the tlab machines if you don’t have
linux already on your laptop; you might also find Windows ports of the program). wget has the
ability to follow links while saving the pages to disk, and also to keep the directory structure
consistent with the server.

Choose a web page of your preference (we recommend using a wikipedia page) and run wget

with a depth limit of your choice. Now inspect the output directory and observe items that might
help you in ranking your web pages (for example, number of links pointing to a web page, number
of images, length of the content or its age might be starting points!). Do not reinvent the wheel, or
reverse-engineer the Google PageRank algorithm! Be creative and make a good use of the features
that your starting page has (wikipedia has, for example, the links between related topics). Also,
do not take into consideration whether the features are (easily) computable.

You will have to supply a PDF document reporting your actions. Describe how you used wget
to mirror the site (do include the commands used!). Describe your ranking function (what items
you consider, how they influence the page score). Compile a table which contain these items, the
score of each item for each page and the final score of the page.

Finally, write down your observations and comments about the method that you employed.

Solution:
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2.5.6 Security by Encryption

Nothing here yet

2.5.7 An Overview over XML Technologies

Nothing here yet.

2.5.8 The Semantic Web

nothing here yet

2.6 Legal Foundations of Information Technology

2.6.1 Intellectual Property, Copyright, and Licensing

nothing here yet

2.6.2 Information Privacy

nothing here yet
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3 Search and Declarative Computation

3.1 Problem Solving and Search

3.1.1 Problem Solving

5 EdN:5
Problem 3.1 (Sudoku)

This question will give you an excuse to play Sudoku (see www.websudoku.com for explanation)
while doing homework. Consider using search to solve Sudoku puzzles: You are given a partially
filled grid to start, and already know there is an answer.

• Define a state representation for Sudoku answer search. A state is a partially filled, valid
grid in which no rows, column, or 3x3 square contains duplicated digits. Also specify what
transitions would be.

• If the puzzle begins with 28 digits filled, what is L, the length of the shortest path to goal
using your representation?

• On a typical PC, which search algorithm would you choose: BFS, DFS or IDS? Why?

Solution:

• A 9x9 matrix whose elements are 1 to 9 or 0 as empty. Transitions are any valid filling of an empty
cell. Only valid matrices (no duplication in rows, column, or 3x3 squares) are allowed.

• L = 81− 28 = 53

• DFS is the most suitable, and actually almost all Sudoku search program use DFS. B, the branching
factor, can be in the range of 9 × 53 so B >> L. Hence BFS and IDS will have serious memory
problems on a typical PC. Since L is fixed so L = Lmax = Lmin, DFS is the only choice here.

5EdNote: we should extract some problem formulation sub-problems from e.g. moving-knight
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Problem 3.2 (Define Problem Formulation)
Define the concept of Problem Formulation.

Solution: See definition 13.3 from slide 158.6

6EdNote: need to replace this by an sref
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Problem 3.3: Does a finite state space always lead to a finite search tree? How about a finite
space state that is a tree? Justify your answers.
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Problem 3.4 (Problem formulation)
You and your roommate just bought an 8 liter jug full of beer. In addition you have two smaller
empty jugs that can hold 5 and 3 liters respectively. Being good friends you want to share the
beer equally. For this you need to split the amount in two separate jugs and each should contain
exactly 4 liters. Write a formal description of this problem. What is one possible solution? What
is the cost of your solution?

Solution:
We encode the states as three digits where the first digit is the amount of beer in the 8 liter jug, the

second digit is the amount in the 5 liter jug and the last digit is the amount in the 3 liter jug.

• Initial state: 800

• Actions:

1. pour8in5

2. pour8in3

3. pour5in3

4. pour5in8

5. pour3in5

6. pour3in8

Each of these actions pours beer from one jug to anonther until either the first jug is empty or the
second jug is full. The corresponding successor function S can be derived from these actions.

• Goal test: x = 440

• Path cost: The amount of actions we perform to reach the solution.

A sample solution is:

[pour8in5, pour5in3, pour3in8, pour5in3, pour8in5, pour5in3, pour3in8]

800→ 350→ 323→ 620→ 602→ 152→ 143→ 440

It has a cost of 7.
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20pt20minProblem 3.5 (Problem formulation and solution)

a) Write a problem formulation and path cost for each of the following problems:

1. A monkey is in a room with a crate, with bananas suspended just out of reach on the
ceiling. The monkey would like to get the bananas.

2. You have to color a complex planar map using only four colors, with no two adjacent
regions to have the same color.

b) Given the following concrete examples of the two problems from (a), provide a solution for
each of the examples that conforms the problem formulation you gave in (a) and specify the
cost of this solution according to the path cost you defined.

Hint: Refer to the slides for specifications regarding problem formulation and solution. Path cost is
a function that assigns cost to every operator.

Solution:

a) 1.

P = 〈S,O, I,G〉
S = {〈a1, a2, a3, a4, a5, a6, a7〉 | ai ∈ {nocolor, color1, color2, color3, color4}}
O = {placecolor.ionmap section j | i ∈ {0, 1, 2, 3, 4}, j ∈ {1, 2, 3, 4, 5, 6, 7}}
I = 〈nocolor, nocolor, nocolor, nocolor, nocolor, nocolor, nocolor〉
G = {s ∈ S | every 2 neighboring regions have different color}

path cost 1 for every coloring step

2. 1. See above. One option is to make a grid out of the room and give every cell a number, then
the states are numbers (where the crate is), operators are left, right, up, down, initial state is
initial number of the cell with the crate, goal state is number of the cell with bananas.

b) 1.
right, right, right, right, up, up, up, up

cost 8

2.
red, black, green, red, orange, black, red

cost 7 (correspondingly to enumeration of the areas)
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8pt10minProblem 3.6 (Search of the max element)
Formalize the task of finding the maximum element in a set of the integer numbers. What are the
properties of your search? Justify your answers.

Solution: The properties to be considered are completesness, time, space, optimality.
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3.1.2 Search

7 20minEdN:7
20ptProblem 3.7 (The Dog/Chicken/Grain Problem)

A farmer wants to cross a river with a dog, a chicken, and a sack of grain. He has a boat which
can hold himself and either of these three items. He must avoid that either dog and chicken or
chicken and grain are together alone on one river bank, since otherwise something gets eaten.

1. Represent the farmer’s problem of crossing the river without losing his goods as a search
problem.

2. Draw a sufficiently large portion of the search tree induced by this problem to exhibit a
solution.

3. Discuss three search strategies and their advantages and disadvantages in this scenario.

Hint: The farmer can also take something back over the river.

Solution: We present the states as a pair 〈S, T 〉 of sets, where S is the set of items of the on the
start bank and T that of items on the target bank. The initial state is 〈{f, d, c, g}, ∅〉 and the goal state
is 〈∅, {f, d, c, g}〉. The actions are represented as cross(A), where A is the item taken over back(A) the
action of taking A back.

〈{f, d, c, g}, ∅〉−→c(c)〈{d, g}, {f, c}〉−→b〈{f, d, g}, {c}〉−→c(d)

〈{g}, {f, d, c}〉−→b(c)〈{f, c, g}, {d}〉−→c(g)〈{c}, {f, d, g}〉−→b

〈{f, c}, {d, g}〉−→c(c)〈∅, {f, d, c, g}〉

7EdNote: need to take these problems apart, so that they do not mention specific search strategies
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Problem 3.8 (Moving a Knight)
Consider the problem of moving a knight on a 3x4 board, with start and goal states labeled as
S and G in the figure below. The search space can be translated into the following graph. The
letter in each node is its name and you do not need to worry about its subscript for now.

Make the following assumptions:

• The algorithms do not go into infinite loops (i.e. once a node appears on a path, it will not
be considered again on this path)

• Nodes are selected in alphabetical order when the algorithm finds a tie.

Write the sequence of nodes in the order visited by the specified methods (until the goal is
reached). Note: You may find it useful to draw the search tree corresponding to the graph above.

• DFS

• BFS

Solution:

• DFS : S A C H E B D F J K G

• BFS : S A B C D E H F I G
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3.1.3 Uninformed Search Strategies

Problem 3.9 (Uninformed Search)
Explain all uninformed search strategies introduced in class and compare their advantages and
disadvantages with respect to completeness, time, space, and optimality.

Solution: Breadth-first search Uniform-cost search Depth-first search Depth-limited search Iterative
deepening search
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8 EdN:8
Problem 3.10 (Sudoku)

This question will give you an excuse to play Sudoku (see www.websudoku.com for explanation)
while doing homework. Consider using search to solve Sudoku puzzles: You are given a partially
filled grid to start, and already know there is an answer.

• Define a state representation for Sudoku answer search. A state is a partially filled, valid
grid in which no rows, column, or 3x3 square contains duplicated digits. Also specify what
transitions would be.

• If the puzzle begins with 28 digits filled, what is L, the length of the shortest path to goal
using your representation?

• On a typical PC, which search algorithm would you choose: BFS, DFS or IDS? Why?

Solution:

• A 9x9 matrix whose elements are 1 to 9 or 0 as empty. Transitions are any valid filling of an empty
cell. Only valid matrices (no duplication in rows, column, or 3x3 squares) are allowed.

• L = 81− 28 = 53

• DFS is the most suitable, and actually almost all Sudoku search program use DFS. B, the branching
factor, can be in the range of 9 × 53 so B >> L. Hence BFS and IDS will have serious memory
problems on a typical PC. Since L is fixed so L = Lmax = Lmin, DFS is the only choice here.

8EdNote: we need to take the sudoku problem apart and only have the third bullet point here
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Problem 3.11: Describe a state space in which iterative deepening search performs much worse
than depth-first search (for example O(n2) vs. O(n)).

Solution: Depth-First search strategy performs great if the solutions are dense. Consider an abstract
situation where we have many possible solutions and they are roughly at the same depth. Furthermore
let the solution with minimal depth be at a high depth level.

To make the situation more concrete consider a search problem with the following parameters:

• b = 100

• d = 33

• m = 36

Assume furthermore that the solutions are very dense (most leaves represent a possible solution). Here
depth-first will find a solution extremely fast while iterative-deepening will take much more time to reach
the optimal solution at depth 33.
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Problem 3.12 (Actions with Negative Costs)
Suppose that actions can have arbitrary large negative costs.

1. Explain why this possibility would force any optimal algorithm to explore the entire state
space.

2. Does it help if we insist that step costs must be greater than or equal than to some negative
constant c? Justify your answer.
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50ptProblem 3.13 (Implementing Search)
Implement the depth-first and breadth-first search algorithms in SML. The functions depthFirst
and breadthFirst take three arguments that make up the problem description:

1. the initial state

2. a function next that given a state x in the state tree returns at set of pairs (action,state):
the next states (i.e. the child nodes in the search tree) together with the actions that reach
them.

3. a predicate (i.e. a function that returns a Boolean value) goal that returns true if a state
is a goal state and false else.

the result of the functions should be the goal state together with a list of actions that reaches the
goal state from the initial state.

Hint:

1. Write an auxiliary function that takes the fringe (i.e. a list of unexpanded states together with the
plans to reach them) as an accumulator argument.

2. It is always good to treat the failure case with an exception.

3. The problem may become simpler to think about, if you first write a function that does not care
about actions, which makes next simpler and also the return actions of the auxiliary function.

Solution: We will follow the hint and write a simple function first and later extend it to the full case.

exception search_exhausted
fun depthFirst next goal x =

let fun dfs [] = raise search_exhausted
| dfs (state::rest) = if goal(state) then state

else dfs (next state @ rest)
in dfs [x] end;

\smlout{val depthFirst = fn : (’a -> ’a list) -> (’a -> bool) -> ’a -> ’a}

fun breadthFirst next goal x =
let fun bfs [] = raise search_exhausted

| bfs (state::rest) = if goal(state) then state
else bfs (rest @ next state)

in bfs [x] end;
\smlout{val breadthFirst = fn : (’a -> ’a list) -> (’a -> bool) -> ’a -> ’a}

Note that the programs only differ in the order of the arguments in the recursive call of the local function.
Now, we extend the functions to deal with actions. Here we add the plans how to get to the fringe node
to the states in the argument of the local function. Thus we need to add the current plan to the actions
in the recursive call.

fun depthFirst next goal x =
let fun dfs [] = raise search_exhausted

| dfs ((plan,state)::rest) =
if goal(state) then plan
else dfs ((map (fn ((act,st)) => (act::plan,st)) (next state)) @ rest)

in rev(dfs [(nil,x)]) end;
\smlout{val depthFirst = fn : (’a -> (’b * ’a) list) -> (’a -> bool) -> ’a -> ’b list}
fun breadthFirst next goal x =

let fun bfs [] = raise search_exhausted
| bfs ((plan,state)::rest) =

if goal(state) then plan
else bfs (rest @ (map (fn ((act,st)) => (act::plan,st)) (next state)))

in rev(bfs [(nil,x)]) end;
\smlout{val breadthFirst = fn : (’a -> (’b * ’a) list) -> (’a -> bool) -> ’a -> ’b list}
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Problem 3.14 (Implementing Search)
Implement the depth-first and breadth-first search algorithms in SML. The corresponding func-
tions dfs and bfs take three arguments that make up the problem description:

1. the initial state

2. a function next that given a state x in the state tree returns at set of pairs (action,state):
the next states (i.e. the child nodes in the search tree) together with the actions that reach
them.

3. a predicate (i.e. a function that returns a Boolean value) goal that returns true if a state
is a goal state and false else.

The result of the functions should be a pair of two elements:

• a list of actions that reaches the goal state from the initial state

• the goal state

The signatures of the two functions should be:

dfs : ’a -> (’a -> (’b * ’a) list) -> (’a -> bool) -> ’b list * ’a
bfs : ’a -> (’a -> (’b * ’a) list) -> (’a -> bool) -> ’b list * ’a

where ’a is the type of states and ’b is the type of actions.
In case of an error or no solution found raise an InvalidSearch exception.
Hint:

1. Write an auxiliary function that takes the fringe (i.e. a list of unexpanded states together with the
plans to reach them) as an accumulator argument.

2. It is always good to treat the failure case with an exception.

3. The problem may become simpler to think about, if you first write a function that does not care
about actions, which makes next simpler and also the return actions of the auxiliary function.

Solution:

exception InvalidSearch;
val tick = false; (* used for debugging *)

local

fun add_actions x nil = nil
| add_actions x ((a,s)::l) = (x @ [a],s)::(add_actions x l);

fun depthFirst_strategy nil next = raise InvalidSearch
| depthFirst_strategy ((a,s)::l) next = ( add_actions a (next s) ) @ l;

fun breadthFirst_strategy nil next = raise InvalidSearch
| breadthFirst_strategy ((a,s)::l) next = l @ ( add_actions a (next s) );

fun sl strategy nil next goal = raise InvalidSearch
| sl strategy ((a,s)::l) next goal =
let
val _ = if tick then print "#" else print "";

in
if goal(s)

then (a,s)
else

let
val new_fringe = strategy ((a,s)::l) next;

in
sl strategy new_fringe next goal

end
end;

fun search strategy i next goal =
if goal(i)
then (nil,i)
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else sl strategy (add_actions nil (next i)) next goal;
in

fun dfs i next goal = search depthFirst_strategy i next goal;
fun bfs i next goal = search breadthFirst_strategy i next goal;

end;

Solution:

(* TEST CASES *)

datatype action = a1to2 | a1to4 | a1to5 | a2to3 | a4to5 | a4to6 | a5to1 | a5to7 | a3to6;
datatype state = one | two | three | four | five | six | seven;

fun next1(one) = [(a1to2,two),(a1to4,four),(a1to5,five)]
| next1(two) = [(a2to3,three)]
| next1(three) = [(a3to6,six)]
| next1(four) = [(a4to5,five),(a4to6,six)]
| next1(five) = [(a5to1,one),(a5to7,seven)]
| next1(six) = []
| next1(seven) = [];

fun next2(one) = [(a1to2,two),(a1to4,four),(a1to5,five)]
| next2(two) = [(a2to3,three)]
| next2(three) = [(a3to6,six)]
| next2(four) = [(a4to5,five),(a4to6,six)]
| next2(five) = [(a5to7,seven),(a5to1,one)]
| next2(six) = []
| next2(seven) = [];

fun goal1(six) = true
| goal1(_) = false;

fun goal2(four) = true
| goal2(three) = true
| goal2(_) = false;

fun goal3(seven) = true
| goal3(_) = false;

val test4 = bfs one next1 goal1 = ([a1to4,a4to6],six);
val test5 = dfs one next1 goal1 = ([a1to2,a2to3,a3to6],six);
val test6 = bfs one next1 goal2 = ([a1to4],four);
val test7 = dfs one next1 goal2 = ([a1to2,a2to3],three);
val test8 = bfs one next2 goal3 = ([a1to5,a5to7],seven);
val test9 = dfs one next2 goal3 = ([a1to4,a4to5,a5to7],seven);
val test10 = bfs one next1 goal3 = ([a1to5,a5to7],seven);
val test11 = dfs one next1 goal3; (*should run endlessly*)
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9 EdN:9
30ptProblem 3.15 (A Trip Through Romania)

Represent the Romanian map we talked about in class in a concrete next function. Search with
the procedures from Problem 1.13 a trip from Arad to Bucharest. Compare the solution paths
and run times.

Solution:

datatype State = Arad | Zerind | Oradea | Timisoara | Sibiu | Lugoj | Mehadia |
RimnicuVilcea | Fagaras | Pitesti | Craiova | Dobreta | Giurgiu |
Bucharest | Urziceni | Hirsova | Eforie | Vaslui | Iasi | Neamt;

datatype Actions = goAra | goZer | goOra | goTim | goSib | goLug | goMeh | goRim | goFag | goPit |
goCra | goDob | goGiu | goBuc | goUrz | goHir | goEfo | goVas | goIas | goNea;

fun next Arad = [(goZer, Zerind), (goSib, Sibiu), (goTim, Timisoara)] |
next Timisoara = [(goAra, Arad), (goLug, Lugoj)] |
next Zerind = [(goAra, Arad), (goOra, Oradea)] |
next Oradea = [(goZer, Zerind), (goSib, Sibiu)] |
next Sibiu = [(goAra, Arad), (goOra, Oradea), (goRim, RimnicuVilcea), (goFag, Fagaras)] |
next Lugoj = [(goTim, Timisoara), (goMeh, Mehadia)] |
next Mehadia = [(goLug, Lugoj), (goDob, Dobreta)] |
next Dobreta = [(goMeh, Mehadia), (goCra, Craiova)] |
next Craiova = [(goDob, Dobreta), (goPit, Pitesti), (goRim, RimnicuVilcea)] |
next RimnicuVilcea = [(goCra, Craiova), (goPit, Pitesti), (goSib, Sibiu)] |
next Pitesti = [(goRim, RimnicuVilcea), (goCra, Craiova), (goBuc, Bucharest)] |
next Fagaras = [(goSib, Sibiu), (goBuc, Bucharest)] |
next Bucharest = [(goPit, Pitesti), (goFag, Fagaras), (goGiu, Giurgiu), (goUrz, Urziceni)] |
next Giurgiu = [(goBuc, Bucharest)] |
next Urziceni = [(goBuc, Bucharest), (goHir, Hirsova), (goVas, Vaslui)] |
next Hirsova = [(goEfo, Eforie), (goUrz, Urziceni)] |
next Eforie = [(goHir, Hirsova)] |
next Vaslui = [(goUrz, Urziceni), (goIas, Iasi)] |
next Iasi = [(goVas, Vaslui), (goNea, Neamt)] |
next Neamt = [(goIas, Iasi)];

fun goal Sibiu = true |
goal _ = false;

val RESdepth = depthFirst(Giurgiu, next, goal);
val RESbreadth = breadthFirst(Giurgiu, next, goal);

(* The result is:
val RESdepth = (Bucharest,[goZer,goOra,goSib,goRim,goCra,goPit,goBuc])
: State * Actions list
val RESbreadth = (Bucharest,[goSib,goFag,goBuc]) : State * Actions list

We know that BFS always finds the optimal solution, and in our case
this is actually so. We go to Bucharest in 3 actions, while DFS has found a path with 7 actions.
Depending of where a solution it, BFS may prove to be faster than DFS. However, DFS will use less
memory in literally all cases. Our test case is too simple to notice any difference *)

9EdNote: make a separate problem in formaulation from the problem representation in SML and reference this here.
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15ptProblem 3.16 (Relations between search strategies)
Prove or refute each of the following statements:

1. Breadth-first search is a special case of uniform-cost search.

2. Breadth-first search, depth-first search, and uniform-cost search are special cases of best first
searches.

Solution:

1. Let’s consider a UCS on a search tree where the cost of each action is the same. Then the cost of
a node will be proportional to its depth (distance from initial node). Therefore, the smallest-cost
nodes in that way will actually be the shallowest nodes. So our UCS will expand first the shallowest
nodes since they are cheaper. This is exactly the defining property of BFS, so our UCS will be
equivalent to it, proving the required assertion.

2. Best first search with evaluation function h(n) = ”distance from n to the initial node” is indeed
BFS since shallowest nodes will be the most desirable.

Best first search with evaluation function h(n) = −”distance from the initial node” is indeed DFS
since the deapest leaves will have the most negative (the smallest) h(n).

Best first search with evaluation function h(n) =”the cost of the path from n to the initial node” is
indeed UCS since the cheapest nodes will be the most desirable.

Note that we assume h to be a function from teh set of nodes to the integers, where a smaller value
means greater desirability for exapansion of a certain node.

261



Problem 3.17 (Search Strategy Comparison on Tree Search)
Consider the tree shown below. The numbers on the arcs are the arc lengths.

Assume that the nodes are expanded in alphabetical order when no other order is specified by the
search, and that the goal is state G. No visited or expanded lists are used. What order would the
states be expanded by each type of search? Stop when you expand G. Write only the sequence of
states expanded by each search.

Search Type Sequence of States
Breadth First

Depth First

Iterative Deepening (step size 1)

Uniform Cost
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Problem 3.18 (Missionaries and cannibals)
Three missionaries and three cannibals are on one side of a river, along with a boat that can hold
one or two people. The final goal is to get everyone to the other side, without ever leaving a group
of missionaries in one place outnumbered by the cannibals in that place.

1. Formulate the problem precisely. When defining the operators, it is not necessary that you
write every possible state → state combination, but you should make it clear how one would
derive the next state from the current one.

2. Suppose the next-function for depth first search (DFS) and breadth first search (BFS) ex-
pands a state to its successor states using the operators you have defined in 1. in the order
you have defined them. Operators that leave more cannibals than missionaries on one side
will not be considered. Likewise, operators that lead to the immediate previous state will
not be considered (e.g., after moving a cannibal from left to right, the next-function for this
state will not include a state where a cannibal moves from right to left). Draw the search
tree till depth 3. What are the first 5 nodes explored by DFS? What are the first 5 nodes
explored by BFS?

3. If you would implement this problem, would you rather use BFS or DFS to find the solution?
Briefly explain why?

Solution:

1. Here is one possible representation:

The State Space is a six-tuple of integers listing the number of missionaries, cannibals, and boats
on the first side, and then the second side of the river. The goal is a state with 3 missionaries and 3
cannibals on the second side. The cost function is one per action, and the successors of a state are
all the states that move 1 or 2 people and 1 boat from one side to another.

The Initial State is (3, 3, 1, 0, 0, 0)

The Final State is (0,0,0,3,3,1)

Operators: Unless the next state leaves more cannibals then missionaries on one side, and unless
the transition is impossible (eg: a movement always occurs from the side where the boat is to the
other) rules are as follows:

(a) Move a missionary to the other side.

(b) Move a cannibal to the other side.

(c) Move 2 missionaries to the other side.

(d) Move 2 cannibals to the other side.

(e) Move a missionary and a cannibal to the other side.

2. Depends in which order the operators are defined. In the case above, it will look as follows:

3. BFS, since the branching factor is not big (we won’t have memory problems), and DFS may get
stuck in loops.
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50ptProblem 3.19: Write the next function, goal predicate and initial_state variable for the
8-puzzle presented on the slides (please check the slides for the description). Then use these to
test your breadth-first and depth-first search algorithms from the previous problem.

Use the following :

datatype action = left|right|up|down;
type state = int list;(*9 elements, in order, 0 for the empty cell*)

Refer to the slides for the initial_state variable. Make sure that if an action is illegal for a
certain state, it does not appear in the output of next.

Sample testcase:

test call : next(initial_state);

output: [(left,[7,2,4,0,5,6,8,3,1]),(right,[7,2,4,5,6,0,8,3,1]),
(up,[7,0,4,5,2,6,8,3,1]),(down,[7,2,4,5,3,6,8,0,1])];

Solution:

datatype action = left|right|up|down;
type state = int list;(*9 elements, in order, 0 for the empty cell*)

val initial_state=[7,2,4,5,0,6,8,3,1];

fun goal(state)=if state=[1,2,3,4,5,6,7,8,0]
then true
else false;

(*invert a list*)
fun invert(a::l)=invert(l)@[a]
|invert(nil)=nil;

(*compute for left action*)
fun next_left(0::l)=nil
|next_left(a::b::c::0::e::f::g::h::i::nil)=nil
|next_left(a::b::c::d::e::f::0::h::i::nil)=nil
|next_left(a::0::l)=0::a::l
|next_left(hd::l)=hd::next_left(l);

(*to compute for right, just invert the list and call left*)
fun next_right(state)=invert(next_left(invert(state)));

(*this rearranges the list so that left can be used also for up and down*)
fun rearrange(a::b::c::d::e::f::g::h::i::nil)=[a,d,g,b,e,h,c,f,i]
|rearrange(nil)=nil;

(*to compute the up, rearrange the list and then call left*)
fun next_up(state)=rearrange(next_left(rearrange(state)));

(*to compuet down, invert and rearrange the list and then call left*)
fun next_down(state)=invert(rearrange(next_left(rearrange(invert(state)))));

(*gets rid of the nil ones, for which the action cannot be performed*)
fun make_list((act,l)::tl)=if (l=nil)then make_list(tl)

else (act,l)::make_list(tl)
|make_list(nil)=nil;

fun next(state)=let val x=next_left(state);
val y=next_right(state);
val z=next_up(state);
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val t=next_down(state);
in

make_list([(left,x),(right,y),(up,z),(down,t)])
end;

(*Testcases*)

next(initial_state)= [(left,[7,2,4,0,5,6,8,3,1]),(right,[7,2,4,5,6,0,8,3,1]),
(up,[7,0,4,5,2,6,8,3,1]),(down,[7,2,4,5,3,6,8,0,1])];

next([7,2,4,0,3,6,8,5,1])=[(right,[7,2,4,3,0,6,8,5,1]),(up,[0,2,4,7,3,6,8,5,1]),
(down,[7,2,4,8,3,6,0,5,1])];(*cannot do left*)

next([7,2,4,8,3,6,0,5,1])=[(right,[7,2,4,8,3,6,5,0,1]),(up,[7,2,4,0,3,6,8,5,1])];(*connot do left or down*)

next([7,2,0,8,3,6,4,5,1])=[(left,[7,0,2,8,3,6,4,5,1]),(down,[7,2,6,8,3,0,4,5,1])]; (*cannot do right or up*)
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15ptProblem 3.20 (Interpreting Search Results)
The state of Ingushetia has only four cities (A, B, C, and D) and a few two-way roads between
them, so that it can be modeled as an undirected graph with four nodes. The task is to go from
city A to city D. The UCS algorithm finds a solution to this task that is 10km shorter than the
one BFS finds. The solution of BFS in turn is 10km shorter than the one of the DFS algorithm.

Draw a map of Ingushetia with roads and their distances that satisfies both conditions. What
paths between A and D in your map will be found as solutions by each of those algorithms?

Note: All algorithms had repetition checking implemented, so that when a node is expanded, all
its children that belong to a list of previously expanded nodes during the execution of that algorihtm
are ignored. In addition, when no order of choosing a node for expansion is specified by an algorithm,
expansion in alphabetical order takes place.

Solution: One possible solution:

A

B

C

D

30

15

5

10

15

The paths found are:

UCS ACBD (30km)

BFS ABD (40km)

DFS ABCD (50km)

A second solution: All possible edges should be present in the graph, except AD. The weigths are
given as : AB = 10, AC = 10, AD is not in the graph, BC = 20, BD = 20, CD = 10. The solutions are
then: DFS: ABCD , with cost = 40; BFS: ABD, with cost = 30; UCS: ACD, with cost = 20.

(Thanks to Darko Pesikan for suggesting this problem.)
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14ptProblem 3.21 (Treesort Function)
Your task is to write a treesort function in SML that sorts a list of integers by first creating a
binary search tree from the list and then loading the tree (in a sorted order) back into a list.

Use the following definition of a binary search tree:

• All leaves are empty nodes.

• All internal nodes carry a value and a left and a right subtree.

• The values of all nodes in a node’s left subtree are smaller than the node’s value and all
nodes in its right subtree are greater or equal to the node’s value.

The following tree is an example of a binary search tree:

4

1 7

0

e e

1

e e

6

e e

8

e 9

e e

Given the following datatype:

datatype searchtree = empty | node of searchtree*searchtree*int;

The tree above would be represented as follows:

node(node(node(empty,empty,0),node(empty,empty,1),1),
node(node(empty,empty,6), node(empty,node(empty,empty,9),8),7) , 4);

Write the functions using the searchtree datatype. The function sort should be of the following
type:

fn treesort: int list -> int list

Solution:

datatype searchtree = empty | node of searchtree*searchtree*int;

(* insert a new value into a binary search tree *)
fun insert empty new = node(empty,empty,new)
| insert (node(left,right,n)) new = if (n > new)
then node((insert left new),right,n)
else node(left,(insert right new),n);

(* create a binary search tree from a list *)
fun maketree list = foldl (fn (a,b) => insert b a) empty list;

(* loads a binary search tree into a list in a sorted manner *)
fun load empty = []
| load (node(left,right,n)) = (load left)@[n]@(load right);

(* first makes a tree from the original values and them loads them
back in a sorted order *)

fun treesort list = load (maketree list);
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Problem 3.22 (Power Source Search)
A robot is on the 5x5 map shown below. It wants to reach a power source, but its sensors only
allow it to detect the source once it is in the same cell with it. Find a problem formulation in the
quadruple format presented in the lecture such that depth first search will find a solution after
expanding exactly 6 nodes.

Assume that the next function of the DFS algorithm used returns the (action, state) tuples
in the order in which the corresponding operators are defined. For example, if your operators are
jump and sing, then the next function called on state i would return a list [(jump, state j), (sing, state k)]

and not the other way around. (this is just an example, these operators will not do a very good
job ... :) )

Define a path cost for this problem. What is the cost of this solution? Is the solution optimal?
How many node expansions would BFS make considering the same next function?

R

P P

R represents the robot and P a power source.

Solution:

S = {1,2,...25}
I = 9 //initial state
G = 20 //goal state
O = {down, right, up, left} // this is why the
//order in which they are specified matters, like this you get 5 expansions

DFS will go
9 -> 14 (down) -> 19 (down) -> 24 (down) now there is no down available so ->
25 (right) -> no down, no right, so up takes u to 19, goal state

So it expands 6 nodes.
With cost 1 per move, the cost of the solution is 5 and it is not optimal
BFS would find the solution at depth 3, so for this it will make all the expansions until depth 2, so

1 + 4 + 16, then on the last level, the solution would be the second node expanded because the correct
path is down down right. The first node will correspond to down down down, but the next will be the
right solution. So 1 + 4 + 16 + 2 = 23.
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10 EdN:10
Problem 3.23 (Maximum independent set)

An independent set of vertices in a graph G is a set where no two vertices are adjacent. The
maximum independent set of vertices in a graph is an independent set with the greatest number
of vertices. This number is denoted as α(G).

• Using what we have learned about search, how can you construct a representation that can
be used to find a maximum independent set in a graph?

• What search algorithm is most appropriate?

• Estimate the number of maximum independent sets in a graph

Solution:

• Let G be a graph in which we want to find a maximum independent set. Pick the arbitrary vertex
a. Let G1 be a graph which is obtained by deleting the vertex a from the graph G, i.e. G1 = G− a.
And let G2 be a graph which is obtained from G by deleting all vertices which are adjacent to a.

Now let X be an arbitrary independent set of G. If a /∈ X, then X is an independent set of G1. If
a ∈ X, then X is an independent set of G2. Note that #(G) = #(G1) + 1 and if a is not isolated
then #(G) > #(G2). Thus we reduce the problem to the same two problems for smaller graphs and
α(G) = maxα(G1), α(G2), i.e. we find maximum independent sets of graphs G1 and G2 and choose
the maximum.

We can build the following tree for our search algorithms. The root of a tree is G. An inner vertex
of a tree is associated with a subgraph X and arbitrary vertex x to be removed. Left and right
children of X are graph X1 and X2. Leaves of a tree are graphs without any edges and at the same
time are independent sets of G.

• The DFS could be applied. Using that it is not necessary to store information about the whole tree
in memory. We can store only those parts which are enough for finding the leaves.

• The number of maximum independent sets are less or equal to the number of leaves.

10EdNote: take the next problem apart as well.
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3.1.4 Informed Search Strategies

Problem 3.24 (A looping greedy search)
Draw a graph and give a heuristic so that a greedy search for a path from a node A to a node B
gets stuck in a loop. Draw the development of the search tree, starting from A, until one node is
visited for the second time.

Indicate, in one or two sentences, how the search algorithm could be modified or changed in
order to solve the problem without getting stuck in a loop.

Solution:

1. The example from the lecture, i. e. traveling through Romania.

2. Use A∗, or remember which nodes have been visited before and don’t visit them again.
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Problem 3.25 (A∗ Theory)
What is the condition on the heuristic function that makes A∗ optimal? Does a heuristic with
this condition always exist?

Solution: Admissible heuristic - always underestimates the real cost to the goal. This always exists:
h(x) = 0.
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10ptProblem 3.26 (A variant of A∗)
Imagine an algorithm B∗ that uses the evaluation function f(n) = g(n) · h(n), where g(n) is the
path cost to the current node n, and h(n) is a heuristic function. Is this algorithm better or worse
than A∗? Explain your findings. What does h(n) represent?

Solution: Comment by Andrei Aiordachioaie, to be formatted. . .
It’s not that complicated and it leaves room for creativity to students. It would be nice to see how

exactly they think :) As I see it, it’s worse than A∗ because heuristics h(n) needs extreme values for
different nodes. When n is close to the root, h(n) needs to be very big to estimate a realistic distance to
the goal, while if n is near the goal, the heuristic has to be very small. We will therefore need to work
with floating-point numbers, which are a bit slower :)
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Problem 3.27 (True or False on A∗)
True or False? Explain why.

1. A∗ search always expands fewer nodes than DFS does.

2. For any search space, there is always and admissible and monotone A∗ heuristic.

Solution:

1. A∗ search always expands fewer nodes than DFS does.

False. No optimal search algorithm can be more effcient than A∗, but DFS is not optimal and it can
be lucky in searching goals. For example on the Sudoku search problem above, DFS almost always
expands fewer nodes than A∗.

2. For any search space, there is always and admissible and monotone A∗ heuristic

True. For example h(s) = 0.
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Problem 3.28 (Sudoku Revisited)

Remember the Sudoku problem from the last homework. You were asked which search algo-
rithm you would choose on a typical PC: BFS, DFS or IDS. Is A∗ better than your first choice?
What is an admissible heuristic for A∗?

Solution: Same argument applies: the branching factor is huge, so A∗ will run into memory troubles.
An admissible heuristics for A∗ is the number of cells left, but this does not differentiate in terms of choice
(i.e. at any depth in the tree all nodes have the same heuristic value).
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12pt15minProblem 3.29 (Monotone heuristics)
Let c(n, a, n′) be the cost for a step from node n to a successor node n′ for an action a. A heuristic
h is called monotone if h(n) ≤ h(n′) + c(n, a, n′). Prove or refute that if a heuristic is monotone,
it must be admissible. Construct a search problem and a heuristic that is admissible but not
monotone. Note: For the goal node g it holds h(g) = 0. Moreover we require that the goal must
be reachable and that h(n) ≥ 0.

Solution: For the heuristic h to be admissible we have to show that h(x) is less or equal the minimum
coast to a goal state.

Let n1 any node different from the goal node g. Suppose < n1, n2, . . . , np, g > is the minimum cost path
from n1 to g. Its cost is C = c(n1, a1, n2) + c(n2, a2, n3) . . .+ c(np, ap, g). Using h(n)− h(n′) ≤ c(n, a, n′)
we get C ≥ h(n1) − h(n2) + h(n2) − h(n1) + . . . + h(np) − h(g) = h(n1) − h(g) = h(n1). Hence we have
proven that h(n1) is admissible.

We consider the minimum distance search problem with three cities A,B,G where G is the goal city
and the distances are dist(A,B) = 2 and dist(B,G) = 100. The heuristic h(A) = 6, h(B) = 3, h(G) = 0 is
admissble since h(A) < dist(A,B) + dist(B,G). But is is not monotone since h(A) > h(B) + dist(A,B).
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Problem 3.30 (A Good Old Friend, the Maze)

Given a maze like the one above, consider using search to find the way from start to goal. The
shaded areas are walls. You start from S and can only go left, right, up or down (unless there
is a wall). All movements cost the same. The heuristic function is the Manhattan distance,
h = |x1 − x2|+ |y1 − y2|. For the following questions, explanations are required (simple answer is
not enough).

1. Is this an admissible heuristic for A∗ for the maze problem?

2. Is it an admissible heuristic if you can move in 8 directions instead of 4 (so also diagonally),
if any movement still costs the same?

3. Which performs better with this heuristic, A∗ or simple Greedy?

4. For the case of moving in all 8 directions, is the Euclidean distance, he =
√

(x1 − x2)2 + (y1 − y2)2,
admissible?

5. For the case of moving in all 8 directions, provide an admissible heuristic that is different
from h and he, call it h1, such that h1 is non-trivial (non-constant and not the hardcoded
actual cost).

6. Getting back to the 4 direction movement, is he more efficient for A∗ than h?

Solution:

1. Yes, the Manhattan distance always underestimates the cost - in the case of walls constricting the
path it will be strictly smaller than the actual cost.

2. No, it overestimates. In the example above, S has Manhattan distance 5 but can reach the goal in
4 steps.

3. A∗ doesn’t get stuck like Greedy.

4. No, because the position diagonally next to the goal has a cost of 1 and a Euclidean distance of√
2 > 1

5. Divide the Euclidean distance by
√

2 to fix the problem.

6. In 4 moves, Manhattan is a closer estimate of the real cost and will thus perform better.
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45ptProblem 3.31 (A∗ search on Jacobs campus)
Implement the A∗ search algorithm in SML and test it on the problem of walking from the main
gate to the entrance of Research 3 with linear distance as heuristic. The length of line segments
are annotated in the map below.

No function signature is provided, instead at the end of your program call your function so
that it prints the actions needed to reach the entrance and the associated cost.

16

1642 42

50

32

18

10

25 25

25 25

4242

50

50

25

25 25

25

25 25

17
8 8 17

17 8 8 17

35 35

35 35

25

10

10

10

Solution:
val it = ([”E”,”E”,”S”,”E”,”SE”,”E”,”S”,”W”],202) (∗ The states here are directions e.g. SE means Southeast. ∗)

fun coor 1 = (0,0) | coor 2 = (25,0) | coor 3 = (67,0) | coor 4 = (83,0) | coor 5 = (125,0) |
coor 6 = (25,18) | coor 7 = (35,18) | coor 8 = (115,18) | coor 9 = (125,18) | coor 10 = (50,25) |

coor 11 = (67,25) | coor 12 = (75,25) | coor 13 = (83,25) | coor 14 = (100,25) | coor 15 = (25,50) |
coor 16 = (50,50) | coor 17 = (100,50) | coor 18 = (125,50) | coor 19 = (50,75) | coor 20 = (67,75) |
coor 21 = (75,75) | coor 22 = (83,75) | coor 23 = (100,75) | coor 24 = (25,82) | coor 25 = (35,82) |
coor 26 = (115,82) | coor 27 = (125,82) | coor 28 = (25,100) | coor 29 = (67,100) | coor 30 = (83,100) |
coor 31 = (125,100);

val edges = [(1,2), (2,3), (3,4), (4,5), (6,7), (8,9), (10,11), (11,12), (12,13), (13,14), (15,16), (17,18),
(19,20), (20,21), (21,22), (22,23), (24,25), (26,27), (28,29), (29,30), (30,31),
(2,6), (6,15), (15,24), (24,28), (10,16), (16,19), (3,11), (20, 29), (4,13), (22,30),
(14,17), (17,23),
(5,9), (9,18), (18,27), (27,31),
(12,16), (16,21), (21,17), (17,12) ];

fun heuristic(n,m) = let
val (x1,y1) = coor(n);
val (x2,y2) = coor(m);

in Real.round(Math.sqrt(Real.fromInt((x1−x2)∗(x1−x2)+(y1−y2)∗(y1−y2))))
end;

fun next(n) = let
fun successors( ,nil) = nil |

successors(n,(a,b)::tl) = if n=a then b::successors(n,tl)
else if n=b then a::successors(n,tl)

else successors(n,tl);
fun hlist( , nil) = nil |

hlist(n, hd::tl) = heuristic(n, hd) :: hlist(n, tl);
fun tie(nil,nil) = nil |
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tie(h1::t1, h2::t2) = (h1,h2) :: tie(t1,t2);
val succ = successors(n,edges)
val cost = hlist(n, succ)

in
tie(succ,cost)

end;

exception NoSolution;

(∗ASearch takes and initial node, next function and goal node and returns
the optimal path between initial and goal node ∗)

fun AStarSearch(initial, next, goal) = let
fun putCheapestInFront(hd::tl, nil) = putCheapestInFront(tl,[hd]) |

putCheapestInFront(nil, x) = x |
putCheapestInFront((a,b,c,d)::tl1, (xa,xb,xc,xd)::tl2 ) =

if c < xc then putCheapestInFront(tl1, (a,b,c,d)::((xa,xb,xc,xd)::tl2))
else putCheapestInFront(tl1, ((xa,xb,xc,xd)::tl2)@[(a,b,c,d)]);

fun addActionsCosts( , ,nil) = nil |
addActionsCosts(pcost, pactions, (node, cost)::tl) =

( node, pcost + cost, pcost + cost + heuristic(node, goal), pactions@[node] ) ::
addActionsCosts(pcost, pactions, tl);

fun asearch(nil) = raise NoSolution |
asearch((node, pathcost, totalcost, actions)::rfringe) =

if node = goal then actions
else let

val expansion = next(node); (∗ next(20) = [(19,17), (21,8), (29,25)] ∗)
val newFringeEl = addActionsCosts(pathcost, actions, expansion);

in
asearch(putCheapestInFront(newFringeEl@rfringe, nil))

end
in

asearch([(initial, 0, heuristic(initial, goal), [])])
end

(∗ The nodes are labeled starting from the upper−left corner of the map to right/down direction ∗)
val result = AStarSearch(1, next, 26);
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Problem 3.32 (Relaxed Problem)
The relaxed version of a search problem P is a problem P ′ with the same states as P , such that
any solution of P is also a solution of P ′. More precisely, if s′ is a successor of s in P, it is also
a successor in P ′ with the same cost. Prove or refute that for any state s, the cost c′(s) of the
optimal path between s and the goal in P ′ is an admissible A∗ heuristic for P .

Hint: Think about the graphical representation of the problems.

Solution: Graphically, P ′ has all the arcs from P , plus maybe more. This means that the optimal
path in P ′ is the same as the optimal path in P , or better through the possibility of using the additional
arcs. Therefore c′(s) ≤ c(s), which is the admissibility criterion for a heuristic.
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15ptProblem 3.33 (Relations between search strategies)
Uniform-cost search is a special case of A∗ search.

Solution: Consider an A∗ search such that the estimated cost to the goal is given by h(n) = 0 for all
nodes n. Now f(n) = g(n) + h(n) = g(n) + 0 = g(n) =”the path cost for n”. Since f(n) is our evaluation
function, desirability will be actually the path cost from the initial node to n, therefore cheapest path-cost
nodes will be exapanded first, which is the behaviour of UCS.
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Problem 3.34 (Global Solutions)
For each of the following algorithms, briefly state why or why not they are guaranteed to converge
to a global optimum on a problem P :

1. A∗ search with the heuristic from the problem above

2. Greedy search with the same heuristic

3. Hill Climbing

4. Genetic Algorithms

Solution:

1. search with the heuristic from the problem above: will converge to a global solution because the
heuristic is admissible

2. Greedy search with the same heuristic: no, it actually might not converge at all because it can get
stuck in infinite loops, as it doesn’t take into account the distance so far, like A∗

3. Hill Climbing: no, it will just climb the current ”hill”, which does not necessarily have the biggest
”hight”

4. Genetic Algorithms: no, there is no guarantee that GA’s find the optimal solution. The quality of
a solution of course depends on how cross-overs, mutations and other settings are chosen, and it
can happen that the population simply cannot reach the region in the solution space in which the
global optimum is.
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3.1.5 Local Search

Problem 3.35 (Local Search)
What is a local search algorithm?

1. What does the “fringe” known from generic search algorithms look like in a local search
algorithm?

2. What is the space complexity of local search?

3. Name two practical applications for local search.

4. Name a simple algorithm for local search. Give a brief overview of its advantages and
disadvantages.
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Problem 3.36 (Greedy vs. Hill Climbing)
What is the fundamental difference between Greedy Search and Hill Climbing? Explain.

Solution: HC is local search, i.e. the path is not kept because we are only interested in finding a
solution and not how we got there.

283



Problem 3.37 (Local Beam Search)
What known algorithm does Local Beam Search become if k = 1?

Solution: The beam is 1, so there is only one starting point, so Hill Climbing.

284



40ptProblem 3.38 (Hill Climbing)
Consider a world with equal number of women and men. Every man is interested in a nonnegative
number of women and vice versa. You are given a matrix that specifies a directed graph of
interest between the people. Write an SML function that uses local search to find a pairing
{<man,woman>,<man,woman>,...} such that no man is paired up with > 1 women and vice versa.
A pairing is admissible if in every pair <man i, woman j> the two people are interested in each
other. An optimal pairing is the pairing with the highest cardinality of all the possible pairings in
a problem.

To accomplish this task follow the steps outlined below:

• Define what is a state in this problem

• Given any state, describe what the neighbours of this state are (i.e. describe how neighbours
are related). Hint: think about neighbours in the Traveling Salesman Problem

• Find and describe a heuristic. What is the optimal value of your heuristic?

• Write an SML function pairup that takes an interest graph (represented as a matrix) and
an initial paring (not necessarily admissible) and uses hill climbing to return an admissible
pairing. A sample hill-climbing algorithm is provided in the slides. You may assume that
the format of the input matrix is correct

Input: The following matrix encodes the graph below:
Woman

< 0, 1 > < 1, 1 > < 1, 0 > < 0, 0 >
Man < 0, 0 > < 1, 1 > < 1, 1 > < 0, 0 >

< 0, 0 > < 0, 0 > < 1, 0 > < 1, 0 >
< 1, 1 > < 0, 0 > < 0, 0 > < 0, 1 >

The first value indicates if the man is interested in the woman, while the second value indicates
if the woman is interested in the man.

It would be encoded as follows:

val matrix = [[(false,true),(true,true),(true,false),(false,false)],[(false,false),(true,true),(true,true),(false,false)],
[(false,false),(false,false),(true,false),(true,true)],[(true,true),(false,false),(false,false),(false,true)]]

Use the following datatypes:

datatype man = man of int
datatype woman = woman of int
type pairing = (man * woman) list
type matrix = (bool * bool) list list

Function signature:

val pairup = fn : pairing -> matrix -> pairing
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Sample run:

val matrix = [[(false,true),(true,true),(true,false),(false,false)],[(false,false),(true,true),(true,true),(false,false)],
[(false,false),(false,false),(true,false),(true,true)],[(true,true),(false,false),(false,false),(false,true)]];
val init = [(man 1,woman 2),(man 2,woman 3),(man 3,woman 1),(man 4,woman 4)];
pairup init matrix;
(*Ideally*)
val it = [(man 1,woman 2),(man 2,woman 3),(man 3,woman 4),(man 4,woman 1)] : (man * woman) list

Solution:

• A state is a bijective pairing Men->Women

• A neighbour of a state is any state such that 2 men have switched partners, e.g. states {<man 1,woman 1>,<man 2,woman 2>,<man 3,woman 3>}

and {<man 1,woman 2>,<man 2,woman 1>,<man 3,woman 3>} are neighbours

• A heuristic simply counts how many good pairs there are, i.e. how many pairs are really interested
in each other. An optimal value is n (the number of men/women)

• exception LookupException

datatype man = man of int;
datatype woman = woman of int;
type pairing = (man * woman) list;
type matrix = (bool * bool) list list;

local
(* reduce boolean values (a,b) to true if both a and b are true, false otherwise
fun strip [] = []

| strip ((bool1,bool2)::tail) = (bool1 andalso bool2)::(strip tail)

(* reduce the interest matrix to bool list list form: (a,b) -> true iff (a and b) *)
fun stripall [] = []

| stripall (list::tail) = (strip list)::(stripall tail)

(* find member j of the given list *)
fun lookup_one j [] = raise LookupException

| lookup_one 1 (h::t) = h
| lookup_one j (h::t) = lookup_one (j-1) t

(* find element at position i,j in the matrix *)
fun lookup i j [] = raise LookupException

| lookup 1 j (h::t) = lookup_one j h
| lookup i j (h::t) = lookup (i-1) j t

(* evaluate the state using the interest matrix *)
fun heuristic interest [] = 0

| heuristic interest ((man i, woman j)::tail) = if (lookup i j interest)
then (heuristic interest tail) + 1
else heuristic interest tail

(* find which woman is in the i-th couple *)
fun find i [] = raise LookupException

| find 1 ((man(_), woman j)::t) = j
| find i (h::t) = find (i-1) t

(* replace i-th woman with woman w *)
fun replace_woman i w [] = raise LookupException

| replace_woman 1 w ((man m, woman(_))::t) = ((man m, woman w)::t)
| replace_woman i w (h::t) = h::(replace_woman (i-1) w t)

(* switch the women in the i-th and j-th couples *)
fun switch i j state = let val wi = find i state;

val wj = find j state;
in

replace_woman i wj (replace_woman j wi state)
end

(* finds the highest-value neighbour with the couples i and j swapped s.t. i < j <= n *)
fun high_neigh_small i j n state interest =

if (j > n) then (state,0)
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else
let val (best_state,best_heu) = high_neigh_small i (j+1) n state interest;

val this_state = switch i j state;
val this_heu = heuristic interest this_state;

in
if (this_heu > best_heu) then (this_state,this_heu) else (best_state,best_heu)

end

(* the highest_neighbour function returns the highests of all of the state’s neighbours
(i.e. all states that have exactly one couple switched). All possible pair switchings are
treated using the high_neigh_small function that computes the best of all neighbours with
couple i and all j-s s.t. i < j <= n swapped. The high_neigh_small function is run on all 1 <= i < n *)

fun highest_neighbour i n state interest =
if (i >= n) then (state,0)
else

let val (small_state,small_heu) = high_neigh_small i (i+1) n state interest;
val (best_state,best_heu) = highest_neighbour (i+1) n state interest;

in
if (small_heu > best_heu) then (small_state,small_heu) else (best_state,best_heu)
end

(* performs the search using highest_neighbour function, stops searching when no neighbour
has better heuristic than the current state*)

fun search (state,heu) n interest =
let val (neigh,neigh_heu) = highest_neighbour 1 n state interest
in

if (heu >= neigh_heu) then state else search (neigh,neigh_heu) n interest
end

(* only leave the pairs that are interested in each other *)
fun extract_correct interest [] = []

| extract_correct interest ((man i,woman j)::t) = if (lookup i j interest)
then (man i,woman j)::(extract_correct interest t)
else extract_correct interest t

in
fun pairup (init:pairing) (interest:matrix) : pairing =

let val inter = stripall interest;
val n = length inter;

in
extract_correct inter (search (init,(heuristic inter init)) n inter)

end
end

Test cases: The test cases below can only be applied to solutions with that define states
and neighbours as in the sample solution. All other solutions should be treated on a
case by case basis. Sorry :)

local
fun member a [] = false
| member a (h::t) = if (a = h) then true else member a t

fun extract a [] = []
| extract a (h::t) = if (a = h) then t else h::(extract a t)

in
fun compare_res [] [] = true
| compare_res (h::t) [] = false
| compare_res [] (h::t) = false
| compare_res (h1::t1) l2 = if (member h1 l2) then compare_res t1 (extract h1 l2) else false

end;

(* CHANGE HERE IF THEIR SIGNATURE DOESN’T MATCH!! *)
fun f (init : pairing) (interest : matrix) = pairup init interest;

val matrix1 = [[(true,true),(false,false)],[(false,false),(true,true)]];
val init1 = [(man 1,woman 2),(man 2,woman 1)];
val matrix2 = [[(false,true),(true,true),(true,false),(false,false)],[(false,false),(true,true),(true,true),(false,false)],[(false,false),(false,false),(true,false),(true,true)],[(true,true),(false,false),(false,false),(false,true)]];
val init2 = [(man 1,woman 2),(man 2,woman 3),(man 3,woman 1),(man 4,woman 4)];
val init3 = [(man 1,woman 1),(man 2,woman 2),(man 3,woman 3),(man 4,woman 4)];
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val init4 = [(man 2,woman 1),(man 3,woman 2),(man 3,woman 3),(man 1,woman 4)];

val test1 = compare_res (f init1 matrix1) [(man 1,woman 1),(man 2,woman 2)];
val test2 = compare_res (f init2 matrix2) [(man 2,woman 3),(man 1,woman 2),(man 3,woman 4),(man 4,woman 1)];
val test3 = compare_res (f init3 matrix2) [(man 2,woman 3),(man 1,woman 2),(man 3,woman 4),(man 4,woman 1)];
val test4 = compare_res (f init4 matrix2) [(man 2,woman 3),(man 3,woman 4),(man 1,woman 2)];
val test5 = compare_res (f [] []) [];
val test6 = compare_res (f [(man 1,woman 1)] [[(true,true)]]) [(man 1,woman 1)];
val test7 = compare_res (f [(man 1,woman 1)] [[(true,false)]]) [];
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Problem 3.39 (Easter Bunnies in Boxes)
Imagine there are n Easter bunnies and n different coloured boxes, and each bunny has specific
color preferences and will like their box on a scale of 1 to 10. We want to makes as many bunnies
as happy as we can, so the overall fitness of an assignment of bunnies in boxes will be the sum
of how much each bunny likes its box. An assignment is admissible if each bunny has exactly 1
box. Think about applying Genetic Algorithms for this problem: your task is to come up with
an encoding that allows only admissible states and with crossover and mutation operators that
preserve admissibility. Don’t take the term crossover too literally though - it is not a must that you
split the chromosomes and cross over their parts, you can think about the concept of reproduction
in general. Similarly for mutation.

Solution: Encoding: An n-permutation (e.g. for 8, 12376548) Crossover: There are many ways
to do this, one of them is to compose the 2 permutations - permutations are functions and they can be
composed (apply the first one and then the second one), yielding a permutation. E.g. composing 132 with
213 yields 312 (or 231 depending on the order, this is up to convention). Mutation: Compose with any
2-cycle permutation (i.e. one that switches 2 of the entries). E.g 12376548 can become 21376548.
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Problem 3.40 (Implementing simulated annealing)
Write an SML function that implements the simulated annealing algorithm to find the x value
where a function f(x) has a maximum. Your function should take the following arguments:

• f : real->real the SML implementation of f(x)

• (a,b) : real*real an interval [a; b] in which to search for the maximum

• schedule : int->real a function that maps time steps to temperature values

For example the maximum of f(x) = −(x − 2)2 in [0.0; 5.0] is at x = 2.0. Given a good
temperature schedule your implementation should be able to compute the maximum of sin(x)
with an accuracy of 0.0001. Show this at the end of your program by computing the maximum of
sin(x) in the interval [0.0; 5.0].

The complete signature of the function should look like this:
find_max : (real -> real) -> real * real -> (int -> real) -> real

Solution:

val min_temp = 0.000001;

(* First set random seed. *
val rand_state =
let

val now = Time.toMicroseconds ( Time.now () );
val x = IntInf.div(now,1000);
val y = IntInf.toInt (IntInf.mod(x,10000));
in

Random.rand (y,y)
end;

(* picks a random point in the interval [current-eps;current+eps] with a lower limit of a and
an upper limit of b*)

fun get_random_successor current a b eps =
let
val random_num = Random.randReal rand_state;
val upper = if ( current + eps) > b then b else current + eps;
val lower = if (current - eps) < a then a else current - eps;

in
lower + ( random_num * (upper-lower) )

end;

(* Choses the next state based on the current state the temperature and the energy difference. *)
fun pick_with_probability current next deltaE temp =
if deltaE > 0.0
then next
else
if (Random.randReal rand_state) < Math.exp(deltaE/temp)
then next
else current;

(* Uses the simulated annealing algorithm to find the maximum of f in the interval [a,b] given
the specified schedule. Furthermore this function must know the current solution, time and an
epsilon value. The epsilon value is used to limit the neighborhood in which successor states
can be chosen.*)

fun sim_ann f a b schedule time current eps =
let
val temp = schedule time;
val next = get_random_successor current a b eps;
val deltaE = (f next) - (f current);

in
if temp < min_temp
then current
else sim_ann f a b schedule (time+1) (pick_with_probability current next deltaE temp) eps

end;

(* Uses the simulated annealing algorithm to find the maximum of f in the interval [a,b] given
the specified schedule. *)

fun find_max f (a,b) schedule = sim_ann f a b schedule 0 ((a+b)/2.0) ((b-a)/10.0);
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(* TESTING *)
fun schedule_lin time = 2.0 - 0.0002 * real(time);
fun schedule_exp time = Math.pow(0.95, real(time) ) * 50.0;

fun compute_num_steps schedule time =
if schedule time < min_temp then time else compute_num_steps schedule (time+1);

val test_lin = Math.sin (find_max Math.sin (0.0,5.0) schedule_lin);
val test_lin_ok = (1.0 - test_lin) < 0.0001;
val test_lin_steps = compute_num_steps schedule_lin 0;

val test_exp = Math.sin (find_max Math.sin (0.0,5.0) schedule_exp);
val test_exp_ok = (1.0 - test_exp) < 0.0001;
val test_exp_steps = compute_num_steps schedule_exp 0;
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Problem 3.41 (Simulated annealing schedules)
In the simulated annealing algorithm one has to choose a temperature schedule. Two possible
schedules are:

• The linear cooling scheme: Tk+1 = Tk − α = T0 − (k + 1) ∗ α

• The exponential cooling scheme: Tk+1 = αTk = αk+1T0 where α < 1.0 (the typical
value is 0.95, but this really depends on the problem - and the smaller this is, the less
iterations you will have).

The exponential cooling scheme typically performs better. Explain why this might be the case.
To help you with this you should do an experiment where you try to achieve the desired accuracy
in the pevious question by using both a linear and an exponential schedule.

Solution: It is important that near the end of our search we focus on only good solutions. By this
time ideally we should be in the region of the global maximum and we should use the last iterations in
order to find an optimal solution within the current ”hill”. The exponential cooling schedule allows just
that. In the beginning it is still possible to make big jumps therefore escaping local maxima but at the
end it leaves quite a lot of time where the algorithm tries to fine tune the current solution (because with
low temperatures, the probability of accepting a worse state is very small, which means the state improves
or stays the same at each iteration, thus allowing for a (randomized) hill-climbing like search for the top
of the hill). The exponential schedule allows for more time at smaller temperatures.

To achive similar performance with the linear schedule we typically need a lot more iterations.
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Problem 3.42 (Simulated Annealing)
Assume that you are using Simulated Annealing to solve the 8Queens problem. The SA is at a
point where T = 3, the energy (fitness) of the current state is Ecurrent = 7 and the energy of the
neighboring state is Eneighbor = 4. With what probability will the neighbor be accepted as the
new state and why?

Solution: e
4−7
3 = 1

e
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3.2 Logic Programming

3.2.1 Introduction to Logic Programming and PROLOG

nothing here

3.2.2 Programming as Search

These exercises should be tried by everybody. They will confront you with the main (conceptual)
problems of programming PROLOG, like relational programming, recursion, and a term language.
Problem 3.43: Build a database of facts about flight connections from Bremen Airport and
write some query predicates for connections. Consider it is furthermore plausible to assume that
whenever it is possible to take a flight from A to B, it is also possible to take a flight from B to
A.

3.2.3 Logic Programming as Resolution Theorem Proving

No problems supplied yet.
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