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Preface

This document contains selected homework and self-study problems for the course General Com-
puter Science I/II held at Jacobs University Bremen1 in the academic years 2003-2012. It is meant
as a supplement to the course notes [Gen11a, Gen11c]. We try to keep the numbering consistent
between the documents.

This document contains practice and homework problems for the material coverd in the lecture
(notes). The problems are tailored for understanding and practicing and should be attempted
without consulting the solutions, which are avaialbe at [Gen11b, Gen11d]

This document is made available for the students of this course only. It is still a draft, and will
develop over the course of the course. It will be developed further in coming academic years.

Acknowledgments: Immanuel Normann, Christoph Lange, Christine Müller, and Vyacheslav
Zholudev have acted as lead teaching assistants for the course, have contributed many of the initial
problems and organized them consistently. Throughout the time I have tought the course, the
teaching assistants (most of them Jacobs University undergraduates; see below) have contributed
new problems and sample solutions, have commented on existing problems and refined them.

GenCS Teaching Assistants: The following Jacobs University students have contributed prob-
lems while serving as teaching assiatants over the years: Darko Pesikan, Nikolaus Rath, Flo-
rian Rabe, Andrei Aiordachioaie, Dimitar Asenov, Alen Stojanov, Felix Schlesinger, Ştefan Anca,
Anca Dragan, Vladislav Perelman, Josip Djolonga, Lucia Ambrošová, Flavia Grosan, Christoph
Lange, Ankur Modi, Gordan Ristovski, Darko Makreshanski, Teodora Chitiboj, Cristina Stancu-
Mara, Alin Iacob, Vladislav Perelman, Victor Savu, Mihai Cotizo Sima, Radu Cimpeanu, Mihai
Cr̂lǎnaru, Maria Alexandra Alecu, Miroslava Georgieva Slavcheva, Corneliu-Claudiu Prodescu,
Flavia Adelina Grosan, Felix Gabriel Mance, Anton Antonov, Alexandra Zayets, Ivaylo Enchev.

1International University Bremen until Fall 2006
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0.1 Getting Started with “General Computer Science”

0.1.1 Overview over the Course

This should pose no problems

0.1.2 Administrativa

Neither should the administrativa

0.1.3 Motivation and Introduction

Problem 0.1 (Algorithms)
One of the most essential concepts in computer science is the Algorithm.

• What is the intuition behind the term “algorithm”.

• What determines the quality of an algorithm?

• Give an everyday example of an algorithm.

Problem 0.2 (Keywords of General Computer Science)
Our course started with a motivation of ”General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a
short explanation.

Problem 0.3 (Representations)
An essential concept in computer science is the Representation.

• What is the intuition behind the term “representation”?

• Why do we need representations?

• Give an everyday example of a representation.
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0.2 Motivation and Introduction

Problem 0.4 (Algorithms)
One of the most essential concepts in computer science is the Algorithm.

• What is the intuition behind the term “algorithm”.

• What determines the quality of an algorithm?

• Give an everyday example of an algorithm.

Problem 0.5 (Keywords of General Computer Science)
Our course started with a motivation of ”General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a
short explanation.

Problem 0.6 (Representations)
An essential concept in computer science is the Representation.

• What is the intuition behind the term “representation”?

• Why do we need representations?

• Give an everyday example of a representation.

1 Representation and Computation

1.1 Elementary Discrete Math

1.1.1 Mathematical Foundations: Natural Numbers
25pt

Problem 1.1 (A wrong induction proof)
What is wrong with the following “proof by induction”?

Theorem: All students of Jacobs University have the same hair color.

Proof: We prove the assertion by induction over the number n of students at Jacobs
University.

base case: n = 1. If there is only one student at Jacobs University, then the assertion is
obviously true.

step case: n > 1. We assume that the assertion is true for all sets of n students and
show that it holds for sets of n+ 1 students. So let us take a set S of n+ 1 students. As
n > 1, we can choose students s ∈ S and t ∈ S with s 6= t and consider sets Ss = S\{s}
and St := S\{t}. Clearly, #(Ss) = #(St) = n, so all students in Ss and have the same
hair-color by inductive hypothesis, and the same holds for St. But S = Ss ∪ St, so any
u ∈ S has the same hair color as the students in Ss ∩ St, which have the same hair color
as s and t, and thus all students in S have the same hair color

Problem 1.2 (Natural numbers)
Prove or refute that s(s(o)) and s(s(s(o))) are unary natural numbers and that their successors
are different.

Problem 1.3 (Peano’s induction axiom)
State Peano’s induction axiom and discuss what it can be used for.

2



1.1.2 Naive Set Theory
25pt

Problem 1.4: Let A be a set with n elements (i.e #(A) = n). What is the cardinality of the
power set of A, (i.e. what is #(P(A)))?

15pt
Problem 1.5: Let A := {5, 23, 7, 17, 6} and B := {3, 4, 8, 23}. Which of the relations are
reflexive, antireflexive, symmetric, antisymmetric, and transitive?

Note: Please justify the answers.

R1 ⊆ A×A,R1 = {〈23, 7〉, 〈7, 23〉, 〈5, 5〉, 〈17, 6〉, 〈6, 17〉}
R2 ⊆ B ×B,R2 = {〈3, 3〉, 〈3, 23〉, 〈4, 4〉, 〈8, 23〉, 〈8, 8〉, 〈3, 4〉, 〈23, 23〉, 〈4, 23〉}
R3 ⊆ B ×B,R3 = {〈3, 3〉, 〈3, 23〉, 〈8, 3〉, 〈4, 23〉, 〈8, 4〉, 〈23, 23〉}

20pt
Problem 1.6: Given two relations R ⊆ C ×B and Q ⊆ C ×A, we define a relation P ⊆
C × (B ∩A) such that for every x ∈ C and every y ∈ (B ∩A), 〈x, y〉 ∈ P ⇔ 〈x, y〉 ∈ R ∨ 〈x, y〉 ∈ Q.
Prove or refute (by giving a counterexample) the following statement: If Q and P are total func-
tions, then P is a partial function.

3



1.1.3 Naive Set Theory
3pt
3minProblem 1.7: Fill in the blanks in the table of Greek letters. Note that capitalized names

denote capital Greek letters.

Symbol γ Σ π Φ
Name alpha eta lambda iota

4



1.1.4 Relations and Functions

Problem 1.8 (Associativity of Relation Composition)

Let R, S, and T be relations on a set M . Prove or refute that the composition operation for
relations is associative, i. e. that

(T ◦ S) ◦R = T ◦ (S ◦R)

5



1.2 Computing with Functions over Inductively Defined Sets

1.2.1 Standard ML: Functions as First-Class Objects

Problem 1.9: Define the member relation which checks whether an integer is member of a list
of integers. The solution should be a function of type int * int list -> bool, which evaluates
to true on arguments n and l, iff n is an element of the list l.

Problem 1.10: Define the subset relation. Set T is a subset of S iff all elements of T are also
elements of S. The empty set is subset of any set.

Hint: Use the member function from Problem 1.9
20pt

Problem 1.11: Define functions to zip and unzip lists. zip will take two lists as input and create
pairs of elements, one from each list, as follows: zip [1,2,3] [0,2,4] ; [[1,0],[2,2],[3,4]].
unzip is the inverse function, taking one list of tuples as argument and outputing two separate
lists. unzip [[1,4],[2,5],[3,6]] ; [1,2,3] [4,5,6].

Problem 1.12 (Compressing binary lists)
Define a data type of binary digits. Write a function that takes a list of binary digits and returns
an int list that is a compressed version of it and the first binary digit of the list (needed for
reconversion). For example,

ZIPit([zero,zero,zero, one,one,one,one,
zero,zero,zero, one, zero,zero]) -> (0,[3,4,3,1,2]),

because the binary list begins with 3 zeros, followed by 4 ones etc.

Problem 1.13 (Decompressing binary lists)
Write an inverse function UNZIPit of the one written in Problem 1.12. 15pt
Problem 1.14: Program the function f with f(x) = x2 on unary natural numbers without
using the multiplication function. 20pt
Problem 1.15 (Translating between Integers and Strings)
SML has pre-defined types int and string, write two conversion functions:

• int2string converts an integer to a string, i.e. int2string(~317) ; "~317":string

• string2int converts a suitable string to an integer, i.e. string2int("444") ; 444:int.
For the moment, we do not care what happens, if the input string is unsuitable, i.e does not
correspond to an integer.

do not use any built-in functions except elementary arithmetic (which include mod and div BTW),
explode, and implode.

Problem 1.16: Write a function that takes an odd positive integer and returns a char list list

which represents a triangle of stars with n stars in the last row. For example,

triangle 5;
val it =
[#" ", #" ", #"*", #" ", #" "],
[#" ", #"*", #"*", #"*", #" "],
[#"*", #"*", #"*", #"*", #"*"]]

Problem 1.17: Write a non-recursive variant of the member function from Problem 1.9 using
the foldl function. 15pt

10minProblem 1.18 (Decimal representations as lists)
The decimal representation of a natural number is the list of its digits (i. e. integers between 0
and 9). Write an SML function decToInt of type int list -> int that converts the decimal
representation of a natural number to the corresponding number:

- decToInt [7,8,5,6];
val it = 7856 : int

6



Hint: Use a suitable built-in higher-order list function of type fn : (int * int -> int) -> int -> int list -> int

that solves a great part of the problem.
30pt

Problem 1.19 (List functions via foldl/foldr)
Write the following procedures using foldl or foldr

1. length which computes the length of a list

2. concat, which gets a list of lists and concatenates them to a list.

3. map, which maps a function over a list

4. myfilter, myexists, and myforall from ??

10pt
Problem 1.20 (Mapping and Appending)
Can the functions mapcan and mapcan2 be written using foldl/foldr?

7



1.2.2 Inductively Defined Sets and Computation

Problem 1.21: Figure out the functions on natural numbers for the following defining equations

τ(o) = o

τ(s(n)) = s(s(s(τ(n))))

15pt
5minProblem 1.22 (A function on natural numbers)

Figure out the function on natural numbers defined by the following equations:

η(o) = o

η(s(o)) = o

η(s(s(n))) = s(η(n))

15pt
Problem 1.23: In class, we have been playing with defining equations for functions on the
natural numbers. Give the defining equations for the function σ with σ(x) = x2 without using
the multiplication function (you may use the addition function though). Prove from the Peano
axioms or refute by a counterexample that your equations define a function. Indicate in each step
which of the axioms you have used.

8



1.2.3 Inductively Defined Sets in SML
8pt
8minProblem 1.24: Declare an SML datatype pair representing pairs of integers and define SML

functions fst and snd where fst returns the first- and snd the second component of q the pair.
Moreover write down the type of the constructor of pair as well as of the two procedures fst and
snd.

Use SML syntax for the whole problem. 4pt
8minProblem 1.25: Declare a data type myNat for unary natural numbers and NatList for lists of

natural numbers in SML syntax, and define a function that computes the length of a list (as a unary
natural number in mynat). Furthermore, define a function nms that takes two unary natural num-
bers n and m and generates a list of length n which contains only ms, i.e. nms(s(s(zero)),s(zero))
evaluates to construct(s(zero),construct(s(zero),elist)). 20pt
Problem 1.26: Given the following SML data type for an arithmetic expressions

datatype arithexp = aec of int (* 0,1,2,... *)
| aeadd of arithexp * arithexp (* addition *)
| aemul of arithexp * arithexp (* multiplication *)
| aesub of arithexp * arithexp (* subtraction *)
| aediv of arithexp * arithexp (* division *)
| aemod of arithexp * arithexp (* modulo *)
| aev of int (* variable *)

give the representation of the expression (4x+ 5)− 3x.
Write a (cascading) function eval : (int -> int) -> arithexp -> int that takes a vari-

able assignment ϕ and an arithmetic expresson e and returns its evaluation as a value.
Note: A variable assignment is a function that maps variables to (integer) values, here it is represented

as function ϕ of type int -> int that assigns ϕ(n) to the variable aev(n).

Problem 1.27 (Your own lists)
Define a data type mylist of lists of integers with constructors mycons and mynil. Write trans-
lators tosml and tomy to and from SML lists, respectively.

Problem 1.28 (Unary natural numbers)
Define a datatype nat of unary natural numbers and implement the functions

• add = fn : nat * nat -> nat (adds two numbers)

• mul = fn : nat * nat -> nat (multiplies two numbers)

Problem 1.29 (Nary Multiplication)
By defining a new datatype for n-tuples of unary natural numbers, implement an n-ary multipli-
cations using the function mul from Problem 1.28. For n = 1, an n-tuple should be constructed
by using a constructor named first; for n > 1, further elements should be prepended to the first
by using a constructor named next. The multiplication function nmul should return the product
of all elements of a given tuple.

For example,

nmul(next(s(s(zero)),
next(s(s(zero)),
first(s(s(s(zero)))))))

should output s(s(s(s(s(s(s(s(s(s(s(s(zero)))))))))))) since 223 = 12.

9



1.2.4 A Theory of SML: Abstract Data Types and Term Languages
5pt
Abstract
Data
Types and
Ground
Construc-
tor Terms
5min

Problem 1.30: Translate the abstract data types given in mathematical notation into SML
datatypes

1. 〈{S}, {[c1 : S], [c2 : S→ S], [c3 : S× S→ S], [c4 : S→ S→ S]}〉

2. 〈{T}, {[c1 : T], [c2 : T× (T→ T)→ T]}〉
5pt
5minProblem 1.31: Translate the given SML datatype

datatype T = 0 | c1 of T * T | c2 of T -> (T * T)

into abstract data type in mathmatical notation. 20pt
Problem 1.32 (Nested lists)
In class, we have defined an abstract data type for lists of natural numbers. Using this intuition,
construct an abstract data type for lists that contain natural numbers or lists (nested up to
arbitrary depth). Give the constructor term (the trace of the construction rules) for the list
[3, 4, [7, [8, 2], 9], 122, [2, 2]].

10



30ptA First Abstract Interpreter Problem 1.33: Give the defining equations for the maximum
function for two numbers. This function takes two arguments and returns the larger one.

Hint: You may define auxiliary functions with defining equations of their own. You can use ι from
above.

15pt
Problem 1.34: Using the abstract data type of truth functions from ??, give the defining
equations for a function ι that takes three arguments, such that ι(ϕB, aN, bN) behaves like “if ϕ
then a, else b”, where a and b are natural numbers. 6pt
Problem 1.35: Consider the following abstract data type:

A := 〈{A,B,C}, {[f : C→ B], [g : A× B→ C], [h : C→ A], [a : A], [b : B], [c : C]}〉

Which of the following expressions are constructor terms (with variables), which ones are ground.
Give the sorts for the terms.

Answer with Yes or No or /. and give the sort (if term)

expression term? ground? Sort

f(g(a))
f(g(〈a, b〉))
h(g(〈h(xC), f(c)〉))
h(g(〈h(xB), f(yC)〉))

11



4ptSubstitutions
5min

Problem 1.36 (Substitution)
Apply the substitutions σ := [b/x], [(g(a))/y], [a/w] and τ := [(h(c))/x], [c/z] to the terms s :=
f(g(x, g(a, x, b), y)) and t := g(x, x, h(y)) (give the 4 result terms σ(s), σ(t), τ(s), and τ(t)).

Definition 1 We call a substitution σ idempotent, iff σ(σ(A)) = σ(A) for all terms A.

Definition 2 For a substitution σ = [A1/x1], · · ·, [An/xn], we call the set intro(σ) :=
⋃

1≤i≤n free(Ai)
the set of variables introduced by σ, and the set supp(σ) := {xi | 1 ≤ i ≤ n}

30pt
Problem 1.37: Prove or refute that σ is idempotent, if intro(σ) ∩ supp(σ) = ∅.

30pt
Problem 1.38 (Substitution Application)
Consider the following SML data type of terms:

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term

Constants and variables are represented by a constructor taking their name string, whereas ap-
plications of the form f(t) are constructed from the name string and the argument. Remember
that we use f(a, b) as an abbreviation for f(〈a, b〉). Thus a term f(a, g(x)) is represented as
appl("f",pair(const("a"), appl("g", var("x")))).

With this, we can represent substitutions as lists of elementary substitutions, which are pairs
of type term * string. Thus we can set

type subst = term * string list

and represent a substitution σ = [(f(a))/x], [b/y] as [(appl("f", const("a")), "x"), (const("b"), "y")].
Of course we may not allow ambiguous substitutions which contain duplicate strings.

Write an SML function substApply for the substitution application operation, i.e. substApply
takes a substitution σ and a term A as arguments and returns the term σ(A) if σ is unambiguous
and raises an exception otherwise.

Make sure that your function applies substitutions in a parallel way, i.e. that [y/x], [x/z](f(z)) =
f(x).

12



20ptA Second Abstract Interpreter Problem 1.39: Consider the following abstract procedure
on the abstract data type of natural numbers:

P := 〈f::N→ N ; {f(o) ; o, f(s(o)) ; o, f(s(s(nN))) ; s(f(nN))}〉

1. Show the computation process for P on the arguments s(s(s(o))) and s(s(s(s(s(s(o)))))).

2. Give the recursion relation of P.

3. Does P terminate on all inputs?

4. What function is computed by P?

13



4ptEvaluation
Order and
Termina-
tion
10min

Problem 1.40: Explain the concept of a “call-by-value” programming language in terms of
evaluation order. Give an example program where this effects evaluation and termination, explain
it.

Note: One point each for the definition, the program and the explanation.
2pt
5minProblem 1.41: Give an example of an abstract procedure that diverges on all arguments,

and another one that terminates on some and diverges on others, each example with a short
explanation. 15pt
Problem 1.42: Give the recursion relation of the abstract procedures in Problem 1.14, ??, ??,
and Problem 1.56 and discuss termination.
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1.2.5 More SML: Recursion in the Real World

No problems supplied yet.
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1.2.6 Even more SML: Exceptions and State in SML
5pt
10minProblem 1.43 (Integer Intervals)

Declare an SML data type for natural numbers and one for lists of natural numbers in SML. Write
an SML function that given two natural number n and m (as a constructor term) creates the list
[n,n+1,\ldots,m-1,m] if n ≤ m and raises an exception otherwise.

Problem 1.44 (Operations with Exceptions)
Add to the functions from Problem 1.28 functions for subtraction and division that raise exceptions
where necessary.

• function sub: nat*nat -> nat (subtracts two numbers)

• function div: nat*nat -> nat (divides two numbers)

6pt
20minProblem 1.45 (List Functions with Exceptions)

Write three SML functions nth, take, drop that take a list and an integer as arguments, such
that

1. nth(xs,n) gives the n-th element of the list xs.

2. take(xs,n) returns the list of the first n elements of the list xs.

3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.

In all cases, the functions should raise the exception Subscript, if n < 0 or the list xs has less
than n elements. We assume that list elements are numbered beginning with 0. 10pt
Problem 1.46 (Transformations with Errors)
Extend the function from Problem 1.15 by an error flag, i.e. the value of the function should be
a pair consisting of a string, and the boolean value true, if the string was suitable, and false if
it was not. 10pt
Problem 1.47 (Simple SML data conversion)
Write an SML function char_to_int = fn : char -> int that given a single character in the
range [0− 9] returns the corresponding integer. Do not use the built-in function Int.fromString

but do the character parsing yourself. If the supplied character does not represent a valid digit
raise an InvalidDigit exception. The exception should have one parameter that contains the
invalid character, i.e. it is defined as exception InvalidDigit of char

10pt
Problem 1.48 (Strings and numbers)
Write two SML functions

1. str_to_int = fn : string -> int

2. str_to_real = fn : string -> real

that given a string convert it to an integer or a real respectively. Do not use the built-in functions
Int.fromString, Real.fromString but do the string parsing yourself.

• Negative numbers begin with a ’~’ character (not ’-’).

• If the string does not represent a valid integer raise an exception as in the previous exercise.
Use the same definition and indicate which character is invalid.

• If the input string is empty raise an exception.

• Examples of valid inputs for the second function are: ~1, ~1.5, 4.63, 0.0, 0, .123

10pt
Problem 1.49 (Recursive evaluation)
Write an SML function evaluate = fn : expression -> real that takes an expression of the
following datatype and computes its value:
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datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

For example we have

evaluate(num(1.3)) -> 1.3
evaluate(div(num(2.2),num(1.0))) -> 2.2
evaluate(add(num(4.2),sub(mul(num(2.1),num(2.0)),num(1.4)))) -> 7.0

10pt
Problem 1.50 (List evaluation)
Write a new function evaluate_list = fn : expression list -> real list that evaluates
a list of expressions and returns a list with the corresponding results. Extend the expression

datatype from the previous exercise by the additional constructor: var of int.
The variables here are the final results of previosly evaluated expressions. I.e. the first expres-

sion from the list should not contain any variables. The second can contain the term var(0) which
should evaluate to the result from the first expression and so on . . . If an expression contains an
invalid variable term raise: exception InvalidVariable of int that indicates what identifier
was used for the variable.

For example we have

evaluate_list [num(3.0), num(2.5), mul(var(0),var(1))] -> [3.0,2.5,7.5]
10pt

Problem 1.51 (String parsing)
Write an SML function evaluate_str = fn : string list -> real list that given a list of
arithmetic expressions represented as strings returns their values. The strings follow the following
conventions:

• strict bracketing: every expression consists of 2 operands joined by an operator and has to
be enclosed in brackets, i.e. 1 + 2 + 3 would be represented as ((1+2)+3) (or (1+(2+3)))

• no spaces: the string contains no empty characters

The value of each of the expressions is stored in a variable named vn with n the position of the
expression in the list. These variables can be used in subsequent expressions.

Raise an exception InvalidSyntax if any of the strings does not follow the conventions.
For example we have

evaluate_str ["((4*.5)-(1+2.5))"] -> [~1.5]
evaluate_str ["((4*.5)-(1+2.5))","(v0*~2)"] -> [~1.5,3.0]
evaluate_str ["(1.8/2)","(1-~3)","(v0+v1)"] -> [0.9,4.0,4.9]

10pt
Problem 1.52 (SML File IO)
Write an SML function evaluate_file = fn : string -> string -> unit that performs file
IO operations. The first argument is an input file name and the second is an output file name. The
input file contains lines which are arithmetic expressions. evaluate_file reads all the expressions,
evaluates them, and writes the corresponding results to the output file, one result per line.

For example we have

evaluate_list "input.txt" "output.txt";

Contents of input.txt:
4.9
0.7
(v0/v1)

Contents of output.txt (after evaluate_list is executed):
4.9
0.7
7.0
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1.3 A Theory of SML: Abstract Data Types and Term Languages

1.3.1 Abstract Data Types and Ground Constructor Terms
5pt
5minProblem 1.53: Translate the abstract data types given in mathematical notation into SML

datatypes

1. 〈{S}, {[c1 : S], [c2 : S→ S], [c3 : S× S→ S], [c4 : S→ S→ S]}〉

2. 〈{T}, {[c1 : T], [c2 : T× (T→ T)→ T]}〉
5pt
5minProblem 1.54: Translate the given SML datatype

datatype T = 0 | c1 of T * T | c2 of T -> (T * T)

into abstract data type in mathmatical notation. 20pt
Problem 1.55 (Nested lists)
In class, we have defined an abstract data type for lists of natural numbers. Using this intuition,
construct an abstract data type for lists that contain natural numbers or lists (nested up to
arbitrary depth). Give the constructor term (the trace of the construction rules) for the list
[3, 4, [7, [8, 2], 9], 122, [2, 2]].
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1.3.2 A First Abstract Interpreter
30pt

Problem 1.56: Give the defining equations for the maximum function for two numbers. This
function takes two arguments and returns the larger one.

Hint: You may define auxiliary functions with defining equations of their own. You can use ι from
above.

15pt
Problem 1.57: Using the abstract data type of truth functions from ??, give the defining
equations for a function ι that takes three arguments, such that ι(ϕB, aN, bN) behaves like “if ϕ
then a, else b”, where a and b are natural numbers. 6pt
Problem 1.58: Consider the following abstract data type:

A := 〈{A,B,C}, {[f : C→ B], [g : A× B→ C], [h : C→ A], [a : A], [b : B], [c : C]}〉

Which of the following expressions are constructor terms (with variables), which ones are ground.
Give the sorts for the terms.

Answer with Yes or No or /. and give the sort (if term)

expression term? ground? Sort

f(g(a))
f(g(〈a, b〉))
h(g(〈h(xC), f(c)〉))
h(g(〈h(xB), f(yC)〉))
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1.3.3 Substitutions
4pt
5minProblem 1.59 (Substitution)

Apply the substitutions σ := [b/x], [(g(a))/y], [a/w] and τ := [(h(c))/x], [c/z] to the terms s :=
f(g(x, g(a, x, b), y)) and t := g(x, x, h(y)) (give the 4 result terms σ(s), σ(t), τ(s), and τ(t)).

Definition 3 We call a substitution σ idempotent, iff σ(σ(A)) = σ(A) for all terms A.

Definition 4 For a substitution σ = [A1/x1], · · ·, [An/xn], we call the set intro(σ) :=
⋃

1≤i≤n free(Ai)
the set of variables introduced by σ, and the set supp(σ) := {xi | 1 ≤ i ≤ n}

30pt
Problem 1.60: Prove or refute that σ is idempotent, if intro(σ) ∩ supp(σ) = ∅.

30pt
Problem 1.61 (Substitution Application)
Consider the following SML data type of terms:

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term

Constants and variables are represented by a constructor taking their name string, whereas ap-
plications of the form f(t) are constructed from the name string and the argument. Remember
that we use f(a, b) as an abbreviation for f(〈a, b〉). Thus a term f(a, g(x)) is represented as
appl("f",pair(const("a"), appl("g", var("x")))).

With this, we can represent substitutions as lists of elementary substitutions, which are pairs
of type term * string. Thus we can set

type subst = term * string list

and represent a substitution σ = [(f(a))/x], [b/y] as [(appl("f", const("a")), "x"), (const("b"), "y")].
Of course we may not allow ambiguous substitutions which contain duplicate strings.

Write an SML function substApply for the substitution application operation, i.e. substApply
takes a substitution σ and a term A as arguments and returns the term σ(A) if σ is unambiguous
and raises an exception otherwise.

Make sure that your function applies substitutions in a parallel way, i.e. that [y/x], [x/z](f(z)) =
f(x).
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1.3.4 A Second Abstract Interpreter
20pt

Problem 1.62: Consider the following abstract procedure on the abstract data type of natural
numbers:

P := 〈f::N→ N ; {f(o) ; o, f(s(o)) ; o, f(s(s(nN))) ; s(f(nN))}〉

1. Show the computation process for P on the arguments s(s(s(o))) and s(s(s(s(s(s(o)))))).

2. Give the recursion relation of P.

3. Does P terminate on all inputs?

4. What function is computed by P?
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1.3.5 Evaluation Order and Termination
4pt
10minProblem 1.63: Explain the concept of a “call-by-value” programming language in terms of

evaluation order. Give an example program where this effects evaluation and termination, explain
it.

Note: One point each for the definition, the program and the explanation.
2pt
5minProblem 1.64: Give an example of an abstract procedure that diverges on all arguments,

and another one that terminates on some and diverges on others, each example with a short
explanation. 15pt
Problem 1.65: Give the recursion relation of the abstract procedures in Problem 1.14, ??, ??,
and Problem 1.56 and discuss termination.
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1.4 More SML

1.4.1 More SML: Recursion in the Real World

No problems supplied yet.

1.4.2 Programming with Effects: Imperative Features in SML

Input and Output nothing here yet.

5pt
Even more
SML: Ex-
ceptions
and State
in SML
10min

Problem 1.66 (Integer Intervals)
Declare an SML data type for natural numbers and one for lists of natural numbers in SML. Write
an SML function that given two natural number n and m (as a constructor term) creates the list
[n,n+1,\ldots,m-1,m] if n ≤ m and raises an exception otherwise.

Problem 1.67 (Operations with Exceptions)
Add to the functions from Problem 1.28 functions for subtraction and division that raise exceptions
where necessary.

• function sub: nat*nat -> nat (subtracts two numbers)

• function div: nat*nat -> nat (divides two numbers)

6pt
20minProblem 1.68 (List Functions with Exceptions)

Write three SML functions nth, take, drop that take a list and an integer as arguments, such
that

1. nth(xs,n) gives the n-th element of the list xs.

2. take(xs,n) returns the list of the first n elements of the list xs.

3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.

In all cases, the functions should raise the exception Subscript, if n < 0 or the list xs has less
than n elements. We assume that list elements are numbered beginning with 0. 10pt
Problem 1.69 (Transformations with Errors)
Extend the function from Problem 1.15 by an error flag, i.e. the value of the function should be
a pair consisting of a string, and the boolean value true, if the string was suitable, and false if
it was not. 10pt
Problem 1.70 (Simple SML data conversion)
Write an SML function char_to_int = fn : char -> int that given a single character in the
range [0− 9] returns the corresponding integer. Do not use the built-in function Int.fromString

but do the character parsing yourself. If the supplied character does not represent a valid digit
raise an InvalidDigit exception. The exception should have one parameter that contains the
invalid character, i.e. it is defined as exception InvalidDigit of char

10pt
Problem 1.71 (Strings and numbers)
Write two SML functions

1. str_to_int = fn : string -> int

2. str_to_real = fn : string -> real

that given a string convert it to an integer or a real respectively. Do not use the built-in functions
Int.fromString, Real.fromString but do the string parsing yourself.

• Negative numbers begin with a ’~’ character (not ’-’).

• If the string does not represent a valid integer raise an exception as in the previous exercise.
Use the same definition and indicate which character is invalid.
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• If the input string is empty raise an exception.

• Examples of valid inputs for the second function are: ~1, ~1.5, 4.63, 0.0, 0, .123

10pt
Problem 1.72 (Recursive evaluation)
Write an SML function evaluate = fn : expression -> real that takes an expression of the
following datatype and computes its value:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

For example we have

evaluate(num(1.3)) -> 1.3
evaluate(div(num(2.2),num(1.0))) -> 2.2
evaluate(add(num(4.2),sub(mul(num(2.1),num(2.0)),num(1.4)))) -> 7.0

10pt
Problem 1.73 (List evaluation)
Write a new function evaluate_list = fn : expression list -> real list that evaluates
a list of expressions and returns a list with the corresponding results. Extend the expression

datatype from the previous exercise by the additional constructor: var of int.
The variables here are the final results of previosly evaluated expressions. I.e. the first expres-

sion from the list should not contain any variables. The second can contain the term var(0) which
should evaluate to the result from the first expression and so on . . . If an expression contains an
invalid variable term raise: exception InvalidVariable of int that indicates what identifier
was used for the variable.

For example we have

evaluate_list [num(3.0), num(2.5), mul(var(0),var(1))] -> [3.0,2.5,7.5]

10pt
Problem 1.74 (String parsing)
Write an SML function evaluate_str = fn : string list -> real list that given a list of
arithmetic expressions represented as strings returns their values. The strings follow the following
conventions:

• strict bracketing: every expression consists of 2 operands joined by an operator and has to
be enclosed in brackets, i.e. 1 + 2 + 3 would be represented as ((1+2)+3) (or (1+(2+3)))

• no spaces: the string contains no empty characters

The value of each of the expressions is stored in a variable named vn with n the position of the
expression in the list. These variables can be used in subsequent expressions.

Raise an exception InvalidSyntax if any of the strings does not follow the conventions.
For example we have

evaluate_str ["((4*.5)-(1+2.5))"] -> [~1.5]
evaluate_str ["((4*.5)-(1+2.5))","(v0*~2)"] -> [~1.5,3.0]
evaluate_str ["(1.8/2)","(1-~3)","(v0+v1)"] -> [0.9,4.0,4.9]

10pt
Problem 1.75 (SML File IO)
Write an SML function evaluate_file = fn : string -> string -> unit that performs file
IO operations. The first argument is an input file name and the second is an output file name. The
input file contains lines which are arithmetic expressions. evaluate_file reads all the expressions,
evaluates them, and writes the corresponding results to the output file, one result per line.

For example we have
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evaluate_list "input.txt" "output.txt";

Contents of input.txt:
4.9
0.7
(v0/v1)

Contents of output.txt (after evaluate_list is executed):
4.9
0.7
7.0
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1.5 Encoding Programs as Strings

1.5.1 Formal Languages
3pt
5minProblem 1.76: Given the alphabet A = {a, b, c} and a L :=

⋃∞
i=1 Li, where L1 = {ε} and Li+1

contains the strings x, bbx, xac for all x ∈ Li.

1. Is L a formal language?

2. Which of the following strings are in L? Justify your answer

s1 = bbac s2 = bbacc s3 = bbbac
s4 = acac s5 = bbbacac s6 = bbacac

2pt
Problem 1.77: Given the alphabet A = {a, 2, §}.

1. Determine k = #(Q) with Q = {s ∈ A+ | |s| ≤ 5}.

2. Is Q a formal language over A? Justify your results.

3pt
5minProblem 1.78: Let A := {a, h, /,#, x} and ≺ be the ordering relation on A with x ≺ # ≺ / ≺

h ≺ a. Order the following strings in A∗ in the lexical order <lex induced by ≺.

s1 = #### s2 = ##x##h s3 = ε
s4 = ##h##x s5 = a###a# s6 = ####/

20pt
Problem 1.79 (Lexical Ordering)
Write a lexical ordering function lex on lists in SML, such that lex takes three arguments, an
ordering relation (i.e. a binary function from list elements to Booleans), and two lists (representing
strings over an arbitrary alphabet). Then lex(o,l,r) compares lists l and r in the lexical ordering
induced by the character ordering o.

We want the function lex to return three value strings "l<r", "r<l", and "l=r" with the
obvious meanings.
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1.5.2 Elementary Codes
2pt

Problem 1.80: Given the alphabets A = {a, 2} and B = {9,#, /}.

1. Is c with c(a) = ## and c(2) = 9###/ a character code?

2. Is the extension of c on strings over A a code?

30pt
Problem 1.81 (Testing for prefix codes)
Write an SML function prefix_code that tests whether a code is a prefix code. The code is given
as a list of pairs (SML type char*string list).

Example:

prefix_code [(#"a","0"), (#"b","1")];
val it = true : bool

Hint: You have to test for functionhood, injectivity and the prefix property.
8pt
5min

Problem 1.82: LetA := {a, b, c, d, e, f, g, h} and B := {0, 1}, and

c(a):=010010010101001 c(b):=010110010101001
c(c):=010011110101001 c(d):=010010011101001
c(e):=010010010110001 c(f):=010010010101101
c(g):=010011110101000 c(h):=011111110101000

Is c a character code? Does it induce a code on strings? 40pt
Problem 1.83 (Morse Code Translator)
Write an SML program that transforms arbitrary strings into Morse Code. Write a translation
function from Morse code to regular strings and show on some examples that the translators are
inverses.

Hint: The Morse codes are multi-character strings. In the Morse representation of the string, these
codes should be separated by space characters. This makes a back-translation possible.

20pt
Problem 1.84 (Morse Code again)
With what you know about codes now, is the Morse Code (without the blank characters as stop
symbols) a code on strings? Give a proof for your answer.

30pt
Problem 1.85 (String Decoder without Stop Characters)
Write a general string decoder that takes as the first argument a code (in the representation you
developed in Problem 1.81) and decodes strings with respect to this code if possible and raises
and exception otherwise.
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1.5.3 Character Codes in the Real World

No problems supplied yet.
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1.5.4 Formal Languages and Meaning

No problems supplied yet.
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1.6 Boolean Algebra

1.6.1 Boolean Expressions and their Meaning
15pt

Problem 1.86 (Boolean complements)
Prove or refute that the following is a theorem of Boolean Algebra:

For all a, b ∈ B, if both a+ b = 1 and a ∗ b = 0, we obtain b = a. (That is, any b ∈ B
has a unique complement, regardless of whether we’re considering Boolean sums or
products.)

Observation: You are not allowed to use truth tables in this proof. Give a solution that is
only based on Boolean Algebra rules and theorems. 10pt
Problem 1.87: Give a model for Cbool, where the following expression are theorems: a∗a, a+a,
a ∗ a, a+ a.

Hint: Give the truth tables for the Boolean functions.
15pt

Problem 1.88 (Partial orders in a Boolean algebra)
For a given boolean algebra with a universe B and a, b ∈ B, we define that the relation a ≤ b holds
iff a+ b = b. Prove for refute that ≤ is a partial order on B.

Note: There are boolean algebras with a universe B larger than just {0, 1}. We are not going to
consider them in the scope of this lecture, but still try to keep your proof as generic as possible. That is,
assume that a, b are arbitrary elements of B instead of just distinguishing the cases a/b = 0 and a/b = 1.

20pt
Problem 1.89: Given the following SML data types for Boolean formulae and truth values

datatype boolexp = zero | one
| plus of boolexp * boolexp
| times of boolexp * boolexp
| compl of boolexp
| var of int

datatype mybool = mytrue | myfalse

write a (cascading) evaluation function eval : (int -> mybool) -> boolexp -> mybool that
takes an assignment ϕ and a Boolean formula e and returns Iϕ(e) as a value.

20pt
Problem 1.90: Given the SML data types from ??, write a simplified version of the function us-
ing the built-in truth values in SML, i.e. an evaluation function evalbib : (int -> bool) -> boolexp -> bool.
This function should not use any if constructs. 40pt
Problem 1.91 (Parsing boolean expressions)
Given the following SML data types for Boolean formulae

datatype boolexp = bez | beo (* 0 and 1 *)
| bep of boolexp * boolexp (* plus *)
| bet of boolexp * boolexp (* times *)
| bec of boolexp (* complement *)
| bev of int (* variables *)

write an SML function beparse : string -> boolexp that takes a string as input and transforms
it into an boolexp representation of this formula, if it is in Ebool and raises an exception if not.

Note: As there is no ASCII representation for the complement operation we used in the definition
in class, we use -(x) for the complement of x in the input syntax. So the relevant clause in the definition
is now:

• Ei+1
bool := {a,−(a), (a+ b), (a ∗ b) | a, b ∈ Ei

bool}

Hint: For this you will need to write a couple of auxiliary functions, e.g. to convert lists of characters
into integers and strings. A main function will have to look at all the characters in turn and decide what
to do next.

20pt
Problem 1.92: Write a function beprint : boolexp -> string that converts boolexp for-
mulae from ?? to Ebool strings. This should be the inverse function to the function beparse from
Problem 1.91.
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Test your implementation by round-tripping (check on some examples whether beparse(beprint(x))=x
and beprint(beparse(x))=x). Exhibit at least three examples with at least 8 operators each,
and show the results on them. 3pt

5minProblem 1.93: Is the expression e := x123 ∗ x72 + x123 ∗ x4 valid, satisfiable, unsatisfiable,
falsifiable? Justify your answer. 2pt

7minProblem 1.94 (Evaluating Expressions)
Let e := x1 + x2 + (x2 ∗ x3 + x3 ∗ x4) and ϕ := [F/x1], [F/x2], [T/x3], [F/x4], compute the value
Iϕ(e), give a (partial) trace of the computation.

Problem 1.95 (Boolean Equivalence)
Prove or refute the following equivalence:

x1 ∗ x1 + x1 + x2 ≡ (x1 + x2) ∗ ((x1 + x2) ∗ (x1 + x1))

For each step write down which equivalence rule you used (by equivalence rules we mean commu-
tativity, associativity, etc.).

1.6.2 Boolean Functions
10pt

Problem 1.96 (Induced Boolean Function)
Determine the Boolean function fe induced by the Boolean expression e := (x1 + x2) ∗ x1 ∗ x3.
Moreover determine the CNF and DNF of fe.

Problem 1.97 (CNF and DNF)
Write the CNF and DNF of the boolean function that corresponds to the truth table below.

x1 x2 x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

1.6.3 Complexity Analysis for Boolean Expressions

Problem 1.98 (Landau sets)
Order the landau sets below by specifying which ones are subsets and which ones are equal
(e.g.: O(a) ⊂ O(b) ⊂ O(c) ≡ O(d) ⊂ O(e)... )

O(n2); O((n)!); O(|sinn|); O(nn); O(1); O(2n); O(2n2 + 272)
5pt
6minProblem 1.99 (Relations among polynomials)

Prove or refute that O(ni) ⊆ O(nj) for 0 ≤ i < j, n (i, j, n ∈ N).
3pt
10minProblem 1.100: Determine for the following functions f and g whether f ∈ O(g), or f ∈ Ω(g),

or f ∈ Θ(g), explain your answers.

f g f g
4572 84 n3 + 3 ∗ n n3

log(n3) log(n) (n2)− 22 n3

16n 2n nn 2n+1

Problem 1.101 (Upper and lower bounds)
For each of the functions below determine whether f ∈ O(g), f ∈ Ω(g) or f ∈ Θ(g). Briefly
explain your answers.
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1. f(n) = 235, g(n) = 12

2. f(n) = n, g(n) = 16n

3. f(n) = log10(n), g(n) = 7n+ 2

4. f(n) = 7n3 + 4n− 2, g(n) = 3n4 + 1

5. f(n) = log2(n)
n , g(n) = n

log2(n)

6. f(n) = 8n, g(n) = 2n

7. f(n) = nlogn(5), g(n) = 2n

8. f(n) = nn, g(n) = (logn(3))(n)!

9. f(n) =
(
n
2

)
, g(n) =

(
n
4

)
Problem 1.102: What is the time complexity of the following SML function? Take one evalu-
ation step to be a creation of a head in function unwork and disregard other operations.

fun gigatwist lst = let

fun unwork nil = nil |
unwork(hd::tl) = hd::unwork(tl)

fun nextwork(nil, _) = nil |
nextwork(hd::tl, fnc) = fnc(lst)@nextwork(tl, fnc)

fun nthwork 1 = unwork |
nthwork n = let

fun work arg = nextwork(arg, nthwork(n-1))
in
work
end

in
nthwork(length lst) lst

end
3pt
10minProblem 1.103 (Proof of Membership in Landau Set)

Prove by induction or refute: the function f(n) := nn is in O((n)!2); i.e. there is a constant c such
that nn ≤ (n)!2 for sufficiently large n.

Hint:

1.6.4 The Quine-McCluskey Algorithm
14pt

Problem 1.104 (Quine-McCluskey)
Execute the QMC algorithm for the following function:

x1 x2 x3 f
F F F T
F F T T
F T F F
F T T T
T F F T
T F T F
T T F T
T T T T

Moreover you are required to find the solution with minimal cost where each operation (and,
not, or) adds 1 to the cost. E.g. the cost of (x1 + x3) (x3) is 3.

35pt

32



Problem 1.105: Use the algorithm of Quine-McCluskey to determine the minimal polynomial
of the following functions:

x1 x2 x3 x4 f1
F F F F F
F F F T F
F F T F T
F F T T T
F T F F T
F T F T T
F T T F T
F T T T T
T F F F T
T F F T F
T F T F F
T F T T T
T T F F T
T T F T F
T T T F F
T T T T F

x1 x2 x3 x4 f2
F F F F T
F F F T F
F F T F T
F F T T F
F T F F F
F T F T F
F T T F F
F T T T T
T F F F T
T F F T T
T F T F F
T F T T F
T T F F F
T T F T F
T T T F F
T T T T T

15pt
Problem 1.106 (Quine-McCluskey with Don’t-Cares)

How can the Quine-McCluskey algorithm be modified to take advantage of don’t-cares? Find
out which steps of the algorithm are affected by this modification and explain how they change
by showing the respective steps of applying the algorithm to the function f(x1, x2, x3, x4) that
yields T for x10 x21 x30 x40, x10 x21 x30 x41, x10 x21 x31 x40, x11 x20 x30 x40, x11 x20 x30 x41,
x11 x20 x31 x40, x11 x21 x30 x41, “don’t care” for x10 x20 x30 x40, x10 x21 x31 x41, x11 x21 x31 x41,
and F for the other inputs. 14pt

12minProblem 1.107 (CNF with Quine-McCluskey)

In class you have learned how to derive the optimal formula for a given function in DNF form
using the Quine-McCluskey algorithm. It appears that the same algorithm could be applied to
find the optimal formula in CNF form. Think of how this can be done and apply it on the function
defined by the following table:

x1 x2 x3 f
F F F T
F F T T
F T F T
F T T F
T F F T
T F T T
T T F F
T T T F

Hint:
The basic rule used in the QMC algorithm: a x+ a x = a also applies for formulas in CNF: (a+ x) (a+ x) =

(a)

1.6.5 A simpler Method for finding Minimal Polynomials
10pt

Problem 1.108 (Karnaugh-Veitch Minimization)

Given the boolean function f = B ∗D + C +B ∗ (D +A) ∗ (A+D):

1. Use a KV map to determine the minimal polynomial for the function.
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2. Try to further reduce the cost of the resulting polynomial using boolean equivalences. The
result does not need to be a polynomial.

3. Using boolean equivalences, transform the original expression into the the result from (2).
Show all intermediate steps.

10minProblem 1.109 (Karnaugh-Veitch Diagrams)

1. Use a KV map to determine all possible minimal polynomials for the function defined by
the following truth table:

A B C D f
F F F F F
F F F T T
F F T F T
F F T T F
F T F F T
F T F T F
F T T F T
F T T T T
T F F F T
T F F T T
T F T F F
T F T T T
T T F F T
T T F T T
T T T F F
T T T T T

2. How would you use a KV map to find a minimal polynomial for a function with 5 variables?
What does your map look like? Which borders in the map are virtually connected? (A
simple but clear explanation suffices.)

15pt
6minProblem 1.110 (CNF with Karnaugh-Veitch Diagrams)

KV maps can also be used to compute a minimal CNF for a Boolean function. Using the function
f(x1, x2, x3) that yields T for x10 x20 x30, x10 x21 x30, x10 x21 x31, x11 x20 x30, and F for the
other inputs, develop an idea (and verify it for this example!) how to do this.

Hint: Start by grouping F-cells together.
10pt

Problem 1.111 (Karnaugh-Veitch Diagrams with Don’t-Cares)
In some cases, there is an input d ∈ dom(f) to a boolean function f : Bn → B for which no
output is specified — because the input is invalid or it would never occur. In a truth table for f ,
a function value f(d) would be written as X instead of F or T, which means, “Don’t care!”

Describe how don’t-cares can be utilized when determining the minimal polynomial of a
Boolean function using a KV map.

Note: Considering don’t-cares is particularly beneficial when designing digital circuits. This will be
done in GenCS 2. Just consider an electronic device with six states, which we can conveniently encode by
using three boolean memory elements, which leads to 23 − 6 = two leftover “don’t-care” states.

10pt
Problem 1.112 (Don’t-Care Minimization)

1. Devise a concrete Boolean function f : B4 → B that gives T for 6 of the 16 possible inputs,
F for 7 inputs, and “don’t care” for the remaining 3 possible inputs.

2. Apply the don’t-care minimization algorithm from the previous exercise to it.

3. Then replace all don’t-cares by T, do minimization without don’t-cares, compare, and give
a short comment.
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1.7 Propositional Logic

1.7.1 Boolean Expressions and Propositional Logic
2pt
7minProblem 1.113 (The Nor Connective)

All logical binary connectives can be expressed by the ↓ (nor) connective which is defined as
A ↓ B := ¬(A ∨B). Rewrite P ∨ ¬P (tertium non datur) into an expression containing only ↓ as
a logical connective.

Hint: Recall that ¬A⇔ A ↓ A.

1.7.2 Logical Systems and Calculi

Problem 1.114 (Calculus Properties)
Explain briefly what the following properties of calculi mean:

• correctness

• completeness

1.7.3 Proof Theory for the Hilbert Calculus
5pt

Problem 1.115: We have proven the correctness of the Hilbert calculus H0 in class. The
problems of this quiz is about two incorrect calculi C1 and C2 which differ only slightly from H0.

What makes them incorrect?
Hint: The fact that H0 has two axioms, but each of C1 and C2 only have one is not the point.

Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus C1 incorrect?

• C1 Axiom:P ⇒ P ∧Q

• C1 Inference Rules:
A⇒ B A

MP
B

A
Subst

[B/P ]A

Why is this calculus C2 incorrect?

• C2 Axiom: P ⇒ (Q⇒ P )

• C2 Inference Rules:
A ∨B A

R2
A ∧B

A
Subst

[B/P ]A

Problem 1.116 (Almost a Proof)
Please consider the following sequence of formulae: it pretends to be a proof of the formula A⇒ A
in H0. For each line annotate how it is derived by the inference rules from proceeding lines or
axioms. If a line is not derivable in such a manner then mark it as underivable and explain what
went wrong.

Use the aggregate notation we used in the slides for derivations with multiple steps (e.g. an
axiom with multiple applications of the Subst rule)

1. A⇒ (B⇒ A)

2. B⇒ A

3. B⇒ (A⇒ B)
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4. A⇒ B

5. (B⇒ A)⇒ (A⇒ (B⇒ A))

6. (A⇒ (B⇒ A))⇒ ((A⇒ B)⇒ (A⇒ A))

7. (A⇒ B)⇒ (A⇒ A)

8. A⇒ A

Problem 1.117: We have proven the correctness of the Hilbert calculus H0 in class. The
problems of this quiz is about two incorrect calculi C1 and C2 which differ only slightly from H0.
What makes them incorrect?

Hint: The fact that H0 has two axioms, but each of C1 and C2 only have one is not the point.
Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus C1 incorrect?

• C1 Axiom: P ⇒ (Q⇒ R)

• C1 Inference Rules:
A⇒ B A

MP
B

A
Subst

[B/P ]A

Problem 1.118 (Alternative Calculus)
Consider a calculus given by the axioms A ∨ ¬A and A ∧B ⇒ B ∧A and the following
rules:

A⇒ B
Transp

¬B⇒ ¬A

A
Subst

[B/P ]A

Prove that the calculus is sound. 10pt
10minProblem 1.119 (A calculus for propositional logic)

Let us assume a calculus for propositional logic that consists of the single axiom A⇒ A and the
inference rule:

A⇒ (B⇒ C)

A ∧B⇒ C

A
Subst

[B/P ]A

1. Show that this calculus is sound (i. e. correct).

2. Prove the formula ((P ⇒ Q) ∧ P )⇒ Q using this calculus.

Problem 1.120 (Hilbert Calculus)
Prove the following theorem using H0: ((A⇒ C)⇒ A)⇒ ((A⇒ C)⇒ ((B⇒ B)⇒ A))

20pt
Problem 1.121 (A Hilbert Calculus)
Consider the Hilbert-style calculus given by the following axioms:

1. (F ∨ F)⇒ F (idempotence of disjunction)

2. F⇒ (F ∨G) (weakening)

3. (G ∨ F)⇒ (F ∨G) (commutativity)

4. (G⇒ H)⇒ ((F ∨G)⇒ (F ∨H))

and the identities
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1. A⇒ B = ¬A ∨B

2. F ∧G = ¬(¬F ∨ ¬G)

You can use the MP and substitution as inference rules:

A⇒ B A
MP

B

A
Subst

[B/X](A)

Prove the formula P ∧Q ∨ (P ∨ (¬P ∨ ¬Q))

1.7.4 The Calculus of Natural Deduction

No problems supplied yet.
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1.8 Machine-Oriented Calculi

1.8.1 Calculi for Automated Theorem Proving: Analytical Tableaux

Problem 1.122: Prove the Hilbert-Calculus axioms P ⇒ (Q⇒ P ), and (P ⇒ (Q⇒ R)) ⇒
((P ⇒ Q)⇒ (P ⇒ R))

Problem 1.123: Prove the associative law for disjunction (P ∨Q) ∨R⇔ P ∨ (Q ∨R)2 with
the tableau method. 0pt

10minProblem 1.124 (Tableau Calculus)

1. Explain the difference between tableau proof of validity and model generation.

2. Derive a tableau inference rule for A⇔ BT. Show the derivation.

3. Generate all models of the following expression: ¬Q ∧ P ⇔ Q ∧ ¬P
11pt

Problem 1.125 (Refutation and model generation in Tableau Calculus)

1. Prove the following proposition:

|=¬A ∧ ¬B ⇒ ¬(A ∨B)

2. Find all models for the following proposition:

|=(A⇒ B) ∧ (B ⇒ A ∧B)

Hint: You may use derived rules for implication and disjunction.
14pt

Problem 1.126 (Tableau Calculus)
Prove or refute that the following proposition is valid using a tableaux:

(P ⇒ Q) ∨R⇔ ¬R ∧Q⇒ S

4pt
13minProblem 1.127 (A Nor Tableau Calculus)

Develop a variant of the tableau calculus presented in class for propositional formulae expressed
with ↓ (i.e. ”not or”) as the only logical connective.

Complete the following scheme of inference rules for such a tableau calculus and proof its
correctness

A ↓ BT

?

A ↓ BF

?

Aα

Aβ α 6= β

⊥

Prove the formula (P ↓ (P ↓ P )) ↓ (P ↓ (P ↓ P )) in your new tableau calculus.
35pt

Problem 1.128 (Tableau Construction)
Write an SML function that computes a complete tableau for a labeled formula. Use the data
type prop for formulae and the datatype tableau for tableaux.

datatype prop = tru | fals (* true and false *)
| por of prop * prop (* disjunction *)
| pand of prop * prop (* conjunction *)
| pimpl of prop * prop (* implication *)
| piff of prop * prop (* biconditional *)
| pnot of prop (* negation *)
| var of int (* variables *)

2Proving this in the Hilbert calculus from ?? takes about 300 steps.
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datatype label = prove | refute
datatype tableau = ext of prop * label * tableau (* extension by a formula *)

| cases of tableau * tableau (* two branches *)
| complete (* branch completehalt *)

Hint: Write a recursive function ctab that takes a list of (unresolved) proposition/label pairs as an
input, goes through them, extending the tableau as needed.

30pt
Problem 1.129 (Automated Theorem Prover)
Building on the tableau procedure from Problem 1.128 build an automated theorem prover for
propositional logic. Concretely build an SML function prove that given a formula F outputs
valid, if F is valid, and returns a counterexample otherwise (i.e. an interpretation of the variables
that satisfy FT).

30pt
Problem 1.130 (Testing the ATP)
Use the random formula generators from ?? to test your tableau implementation. Run experiments
on large sets (e.g. 100) of random formulae with differing depths and plot the runtimes, percentages
of valid formulae, over depths, and weights, and variable numbers. Interpret the results briefly.

Hint: You can use any plotting software you are familiar with, e.g. Excel or gnuplot. If you are not
familiar with any, use pen and paper. Do not waste time on the plotting aspect.

G

1.8.2 Resolution for Propositional Logic
10pt

Problem 1.131: Compute the Clause normal form of (P ⇔ Q)⇔ (R⇔ P ) with and without
using the derived rules.

Problem 1.132: Prove in the resolution calculus using derived rules:

|=A ∧ (B ∨ C)⇒ (A ∧B ∨A ∧ C)

4pt
8minProblem 1.133 (Basics of Resolution)

What are the principal steps when you try to prove the validity of a propositional formula by
means of resolution calculus? In case you succeed deriving the empty clause, why does this mean
you have found a proof for the validity of the initial formula? 10min

5pt
Problem 1.134 (Resolution Calculus with Nand Connective)
Develop a variant PropCNFCalcNAND of the CNF transformation calculus presented in class
that transforms propositional formulae expressed with NAND (denoted by ↑) as the only logical
connective. To do so just complete the scheme of inference rules given here:

C ∨A ↑ BT

?

C ∨A ↑ BF

?

With this variant CNF↑ together with the usual inference rule from resolution calculus conduct
a resolution proof to verify the formula (A ↑ A) ↑ ((A ↑ B) ↑ (A ↑ B))

25pt
Problem 1.135: Use the resolution method to prove the formulae from ??:

1. (¬P ⇒ Q)⇒ ((P ⇒ Q)⇒ Q)

2. (P ⇒ Q) ∧ (Q⇒ R)⇒ ¬(¬R ∧ P )

You may use any derived correctly derived inference rules such as for instance:

A⇒ BF

AT

BF

39



However, if you use more complex inference rules (i.e. more than one connective involved) then
you have to prove your derived inference rule. 25pt
Problem 1.136: Consider the following two formulae where the first one is in conjunctive
normal form and the second in disjunctive normal form

1. (P ∨ ¬P ) ∧ (Q ∨ ¬Q)

2. P ∧Q ∨ (¬P ∨ ¬Q)

Try to find the shortest proofs of both formulae using the resolution method as well as the tableau
method. Describe your observations concerning the proof length in dependency on the normal
form and proof method.
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2 How to build Computers and the Internet (in principle)

2.1 Circuits

2.1.1 Graphs and Trees

Conjecture 5 Let G be a graph with a cycle and n ∈ N, then there is a path p in G with
length(p) > n.

20pt
Problem 2.1 (Infinite Paths)
Prove or refute ?? using the formal definitions (no, it is not sufficient to just draw a picture).

25pt
Problem 2.2 (Node Connectivity Relation is an Equivalence Relation)
Let G = 〈V,E〉 be an undirected graph and the relation C be defined as

C := {〈u, v〉 | there is a path from u to v}

Prove or refute that C is an equivalence relation.
Hint: Recall the properties of an equivalence relation!

Problem 2.3 (Directed Graph)
We call a graph connected, iff for any two nodes n1 and n2 there is a path starting at n1 and
ending at n2.

Complete the partially directed graph below by adding directed edges or directing undirected
edges such that it becomes a connected, (fully) directed graph where each indeg(n) = outdeg(n)
for all nodes n.

How many initial, terminal nodes and how many paths does your graph have?

A B C

D E

F G H

4pt
Problem 2.4: Draw examples of

1. a directed graph with 4 nodes and 6 edges

2. a undirected graph with 7 nodes and 8 edges.

Present a mathematical representation of these graphs.

Problem 2.5 (Planar Graphs)
A graph G is called planar if G can be drawn in the plane in such a manner that edges do not
cross elsewhere than vertices. The geometric realization of a planar graph gives rise to regions in
the plane called faces; if G is a finite planar graph, there will be one unbounded (i.e. infinite) face,
and all other faces (if there are any) will be bounded. Given a planar realization of the graph G,
let v = #(V ), e = #(E), and let f be the number of faces (including the unbounded face) of G’s
realization.

Prove or refute the Euler formula, i.e. that v − e + f = 2, must hold for a connected planar
graph.

Problem 2.6 (Parse trees and isomorphism)
Let Pe be the parse-tree of e := x1 + (x2 + x3) ∗ x4

1. Draw the graphic representation of Pe.

2. Write the mathematical representation of a graph G that is different but equivalent to Pe.
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3pt
Problem 2.7 (Size and Depth of a Binary Tree)
Given the following data type for binary trees, define functions size and depth that compute the
depth and the size of a given tree.

datatype btree = leaf | parent of btree * btree

Write a function fbbtree that given a natural number n returns a fully balanced binary tree of
depth n

Problem 2.8 (Graph basics)
For each of the five directed graphs below do the following:

• State whether the graph is also a tree and explain why.

• Determine the depth of the graph.

• Write out in math notation a path from A to E if one exists and determine the path’s length.

1. G1 := 〈{A,B,C,D,E}, {〈A,B〉, 〈A,C〉, 〈A,D〉, 〈D,E〉}〉

2. G2 := 〈{A,B,C,D,E}, {〈A,B〉, 〈B,C〉, 〈C,A〉, 〈C,D〉, 〈C,E〉}〉

3. G3 := 〈{A,B,C,D,E}, {〈A,B〉, 〈B,C〉, 〈B,D〉, 〈C,E〉}〉

4. G4 := 〈{A,B,C,D,E}, {〈A,B〉, 〈A,C〉, 〈B,D〉, 〈D,C〉, 〈C,B〉, 〈A,D〉}〉

5. G5 := 〈{A,B,C,D,E}, {〈D,A〉, 〈D,B〉, 〈D,E〉, 〈D,C〉}〉

Conjecture 6 1. Let G = 〈V,E〉 be a directed graph. Then,

#(V )∑
i=1

indeg(vi) =

#(V )∑
i=1

outdeg(vi) = #(E)

2. If G is undirected, we have
#(V )∑
i=1

deg(vi) = 2 ·#(E)

25pt
Problem 2.9 (Degrees in an Undirected Graph)
Prove or refute the conjecture above

Note: For undirected graphs, we introduce the notation deg with deg(v) = indeg(v) = outdeg(v) for
each node.

Hint: Use induction over the number of edges. Derive the second assertion from the first one.

Problem 2.10 (Graph representation in memory)
How would you represent a graph in memory if you write a program which processes it in some
way? Give 2-3 variants and explain the advantages and disadvantages of each method. 4pt
Problem 2.11: How many edges can a directed graph of size n (i.e. with n vertices) have
maximally. How many can it have if it is acyclic? Justify your answers (prove them).

4pt
Problem 2.12 (Undirected tree properties)
We’ve defined the notion of path for the directed graphs.

• Define the notion of path and cycle for the undirected graphs.

We call an undirected graph connected, iff for any two nodes n1 6= n2 there is a path starting at
n1 and ending at n2.

An undirected tree is an undirected acyclic connected graph.
Let G = 〈V,E〉. Prove or refute that the following statements are equivalent:

42



1. G is an undirected tree

2. For any two nodes n1 6= n2 there is a single path starting at n1 and ending at n2

3. G is a connected graph, but it becomes disconnected after deleting any edge

4. G is connected and #(E) = #(V )− 1

5. G is acyclic and #(E) = #(V )− 1

6. G is acyclic, but adding one edge to E introduces a cycle

3pt
10minProblem 2.13 ((Modified) Königsberg Bridge Problem)

Consider a river fork with three banks (A,B,C) and one island (I) connected with bridges as shown
in the figure.

Is it possible to walk accross each of the bridges exactly once in an uninterrupted tour and
return to the starting point?

In order to prove your answer first translate the question into a graph problem where the banks
and the island are modeled as nodes and the bridges as undirected edges.

Hint: Consider the degree of each node (i.e.the number for edges connected to it). Relate the degrees
of the nodes to the constraint of an uninterrupted tour.

35pt
Problem 2.14 (Parse Tree)
Given the data type prop for formulae

datatype prop = tru | fals (* true and false *)
| por of prop * prop (* disjunction *)
| pand of prop * prop (* conjunction *)
| pimpl of prop * prop (* implication *)
| piff of prop * prop (* biconditional *)
| pnot of prop (* negation *)
| var of int (* variables *)

Write an SML function that computes the parse tree for a formula. The output format should be

• a list of integers for the set of vertices,

• a list of pairs of integers for the set of edges,

• and for the labeling function a list of pairs where the first component is an integer and the
second a string (the label).
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2.1.2 Introduction to Combinatorial Circuits
25pt

Problem 2.15 (DNF Circuit with Quine McClusky)
Use the technique shown in class to design a combinational circuit for the following Boolean
function:

X1 X2 X3 f1(X) f2(X) f3(X)
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 1 1 1

Hint: Use Quine-McCluskey to compute minimal polynomials for the three component functions,
look for shared monomials, and build the DNF circuit.

25pt
Problem 2.16 (DNF Circuit with Quine McCluskey)
Use the technique shown in class to design a combinational circuit for the following Boolean
function:

X1 X2 X3 f1(X) f2(X) f3(X)
0 0 0 0 1 1
0 0 1 0 0 0
0 1 0 0 1 1
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 0 0 0

Hint: Use Quine-McCluskey to compute minimal polynomials for the three component functions,
look for shared monomials, and build the DNF circuit.

12pt
10minProblem 2.17 (Combinational Circuit)

Consider the following Boolean function

f : {0, 1}3 → {0, 1}2; 〈i1, i2, i3〉 7→ 〈i1 ∗ i2 + i2 ∗ i3, i1 + i2 ∗ i3〉

Draw the corresponding combinational circuit and write down its labeled graph G = 〈V,E, fg〉 in
explicit math notation. 5pt

10minProblem 2.18 (Combinational Circuit for Shift)
Design an explicit 4-bit shifter (combinational circuit) (using only NOT, AND and OR gates) that
corresponds to fshift : B4 × B× B→ B4 with

fshift(〈a3, a2, a1, a0〉, s1, s2)


〈a3, a2, a1, a0〉 if s1 = 0, s2 = 0
〈a2, a1, a0, 0〉 if s1 = 1, s2 = 0
〈0, a3, a2, a1〉 if s1 = 0, s2 = 1
〈a0, a3, a2, a1〉 if s1 = 1, s2 = 1

Hint: Think of a variant of multiplexer.

Problem 2.19 (Is XOR universal?)
Imagine a logical gate XOR that computes the logical exclusive disjunction. Prove or refute
whether the set S = {XOR} is universal, considering the following two cases:

1. combinational circuits without constants

2. combinational circuits with constants
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If the set turns out to be not universal in either of the cases, add one appropriate non-universal
gate G ∈ {AND,OR,NOT} to S, and prove that the set S′ = {XOR, G} is universal.

Note: A set of Boolean function is called universal (also called “functionally complete”), if any
Boolean function can be expressed in terms of the functions from that set. {NAND} is an example from
the lecture.

Problem 2.20 (Alarm System)

You have to devise an alarm system that signals if the image recorded by a camera changes.
The camera is preprogrammed with a static image, divided into 8 regions. Whenever an observed
region is different from the preprogrammed one, the corresponding input bit 〈r0, ..., r7〉 is set to
1. The image is sampled at discrete time periods. The value of an input (clk) changes between 0
and 1 on every time interval.

Design a circuit with one output which is set to 1 if two or more regions (the inputs 〈r0, ..., r7〉)
are different from the preprogrammed image for two consecutive intervals. We do not care if
different sets of regions are marked as different between the consecutive intervals. We also don’t
care what happens once the output is set to one.

You may use all elementary gates and all circuit blocks studied in class.
Hint:

• First make a circuit that determines how many of the regions are different.

• Make a circuit that outputs 1 if two or more regions are different in 2 consecutive intervals.

2.1.3 Realizing Complex Gates Efficiently
999pt

Balanced Binary Trees Problem 2.21 (Operations on Binary Trees)
Given the SML datatype btree for binary trees and position for a position pointer into a binary
tree:

datatype btree = leaf | parent of btree * btree;
datatype position = stop | right of position | left of position;

The interpretation of a position right(left(stop)) is like a reversed path: start from root follow
the right branch then the left and then stop.

Write two SML functions:

• getSubtree that takes a binary tree and a position and returns the subtree of the that
binary at the corresponding position.

• cutSubtree that takes a binary tree and a position and returns the binary tree where the
subtree at the corresponding position is cut off; i.e replaced by a leaf.

a

b c

binary tree B

pos := left(right(stop))

getSubtree(B,pos) cutSubtree(B,pos)

a

b c

a

In both cases an exception should be raised if the position exceeds the observed binary tree. 4pt
Problem 2.22 (Number of Paths in Balanced Binary Tree)
Let p(n) be the number of different paths in a fully balanced binary tree of depth n. Find a
recursive equation for p(n).
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Hint: Do not forget the base case(s) for small n.
4pt

Problem 2.23 (Length of the inner path in balanced trees)
Prove by induction or refute that in a balanced binary tree the length of the inner path is not
more than (n+ 1)blog2(n)c − 2 · 2blog2(n)c + 2. Here n is the number of nodes in the graph.

Note: Length of the inner path is the sum of all lengths of paths from the root to the nodes.
10pt

Problem 2.24 (Depth of a Fully Balanced Binary Tree)
Prove or refute that in a fully balanced binary tree with n ≥ 1 nodes, the depth is log2(n).

Realizing n-ary Gates No problems supplied yet.
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2.2 Arithmetic Circuits

2.2.1 Basic Arithmetics with Combinational Circuits
6pt
Positional
Number
Systems
6min

Problem 2.25 (Number System Conversion)
Convert the following 12-bit twos complement numbers into hexadecimal and decimal numbers.

1. 1000 0101 0100

2. 0010 1000 1010

3. 1101 0101 1001
25pt

Problem 2.26 (Mapping between Positional Number Systems)
Show that the mapping ψ : D+ → {/}∗ from the definition of a positional number system is indeed
a bijection. 20pt
Problem 2.27 (Binary Number Conversion)
Write an SML function binary that converts decimal numbers into binary strings and an inverse
decimal that converts binary strings into decimal numbers. Use the positive integers (of built-in
type int) as a representation for decimal numbers. binary should raise an exception, if applied
to a negative integer.

Problem 2.28 (Playing with bases)
Convert 2748 from decimal to hexadecimal, binary and octal representation.

Problem 2.29 (Converting to decimal in SML)
Write an SML function

to_int = fn : string -> int

that takes a string in binary, octal or hexadecimal notation and converts it to a decimal integer.
If the string represents a binary number, it begins with ’b’ (e.g. ”b1011”), if it is an octal number
- with ’0’ (e.g. ”075”) and if it is a hexadecimal number it begins with ’0x’ (e.g. ”0x3A”).

If the input does not represent an integer in one of these three forms raise the InvalidInput

exception.
For example we have

to_int("b101010") -> 42

Adders Problem 2.30 (Cost and depth of adders)
What is the cost and depth of an n-bit CCA? What about the n-bit CSA (for cost, big-O is
enough)? Now what if we construct a new adder, that computes the two cases for the first half of
the input just like CSAs do (and of course uses a multiplexer), but only does this once, and the
n
2 -bit adders are not also CSAs, but CCAs (so only one multiplexer is used overall) - what would
the cost and depth of this adder be? 35pt
Problem 2.31 (Carry Chain and Conditional Sum Adder)
Draw an explicit combinational circuit of a 4-bit Carry Chain Adder and a 4-bit Conditional
Sum Adder. Do not use abbreviations, but only NOT, AND, OR, XOR gates. Demonstrate the
addition of the two binary numbers 〈1, 0, 1, 1〉 and 〈0, 0, 1, 1〉 on both adders; i.e. annotate the
output of each logic gate of your adders with the result bit for the given two binary numbers as
input of the whole adder. 4pt

10minProblem 2.32 (Carry Chain Adder and Subtractor for TCN)

• Draw a 2-bit carry chain adder only using (1-bit) full adders.

• Draw a subtractor for two’s complement numbers using (1-bit) full-adders and Boolean gates
of your choice.

Hint: Remember: An n-bit subtractor fn
SUB(a, b, b′) can be implemented as n-bit full-adder

(FAn(a, b, b′))
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Problem 2.33 (Half Adder)
Design an explicit combinational circuit for the half-adder using only NOR gates. What is its cost
and depth? Looking at the first, straightforward solution, can cost and depth be improved?

Hint: First express the XOR gate by AND, OR and NOT gates then express each of these gates by
NOR gates. Then think of further improvements.

Problem 2.34 (2-Stage Adder)
Design a circuit that computes the sum of two 6-bit numbers. In your solution you can use only
a single 3-bit Adder, you are not allowed to implement an additional adder using elementary
gates. You have to perform the computation in two steps. Therefore an additional control input
is available. At first it will be 0. Then it will be set to 1 (you do not have to implement this
yourself). After that the output of your circuit should represent the sum of the two numbers
including a carry bit. You may use all circuit gates and block from the lecture notes.

Hint: Think about using the D Flip-Flop with an enable input to store intermediate data.

2.2.2 Arithmetics for Two’s Complement Numbers

Problem 2.35 (Binary Number Systems)

• Write down the definition of 〈〈·〉〉, (〈〈·〉〉−), and 〈〈n〉〉2s· .

• Given the binary number a = 10110 compute 〈〈a〉〉, (〈〈a〉〉−), and 〈〈a〉〉2sn .

Problem 2.36 (Sign-and-Magnitude Adder)
Recall the näıve sign and magnitude representation for n-bit integers: If the sign bit is 0, the
number is positive, else negative. The other n−1 bits represent the absolute value of the number.

1. Describe how to add two equally-signed n-bit numbers (simple).

2. Describe how to add two n-bit numbers numbers with different sign bits (a bit more tricky).

3. Draw a combinational circuit of a 4-bit sign and magnitude adder (one sign bit, three data
bits). You may use the 1-bit full adder/subtractor (with one input that selects whether to
add or to subtract) known from the lecture, an n-bit multiplexer that selects one of two n-

bit numbers, as well as an n-bit comparator that computes the function f : {0, 1}2 → {0, 1}
defined as follows:

f(a, b) :=

{
1 if a ≤ b
, 0 else

Be sure to explain the layout of your circuit.

4. How can an over-/underflow be detected at the outputs? In which cases can an over-
/underflow occur?

12pt
Problem 2.37: Given following integer numbers in base ten. Convert them to 32-bit Two’s
Complement numbers.

1. 3643

2. 5731923

3. -128

4. -24689
9pt

Problem 2.38: Given the following integer numbers as 16-bit Two’s Complement numbers.

1. 1010 0001 0100 0000
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2. 0010 1110 1110 1110

3. 1101 0011 1111 0010

Convert them into decimal numbers. 4pt
7minProblem 2.39 (The Structure Theorem for TCN)

Write down the structure theorem for two’s complement numbers (TCN) and make use of it to
convert

• the integer -53 into a 8-bit TCN.

• the 8-bit TCN 10110101 into an integer.

Furthermore convert

• the integer -53 into a 10-bit TCN.

• the 10-bit TCN 1110110101 into an integer.

The 10-bit version of the conversion task shouldn’t be any effort after solving the 8-bit version.
You just have to remember the appropriate lemma to transfer an n-bit TCN to an n+ 1-bit TCN.
How is the lemma called and what does it state? 15pt
Problem 2.40 (2s Complement Conversion)
Write an SML function tcn that takes an integer i and a natural number n as arguments and
converts i into an n-bit two’s complement number if it is in range and raises an exception otherwise.

Write an SML function that converts a 2s complement number into a decimal integer. 8pt
10minProblem 2.41 (Shift and Duplication on PNS)

Consider for this problem the signed bit number system and the two’s complement number system.
Given a binary string b = an. . .a0. We define

1. the duplication function dupl that duplicates the leading bit; i.e. it maps the n + 1-bit
number an. . .a0 to the n+ 2-bit number anan. . .a0 and

2. the shift function shift that maps the n + 1-bit number an. . .a0 to the n + 2-bit number
an. . .a00

Prove or refute the following two statements

• The shift function has the same effect in both number systems; i.e. for any integer z:

(〈〈shift(B(z))〉〉−) = 〈〈shift(B2s
n (z))〉〉2sn+1

• The dupl function has the same effect in both number systems; i.e. for any integer z:

(〈〈dupl(B(z))〉〉−) = 〈〈dupl(B2s
n (z))〉〉2sn+1

15pt
Problem 2.42: Compute the intermediate carry (ick(9235, 26234, 1)) for k = 3 and k = 5.

Hint: You have to convert the first two arguments to binary numbers of the same range beforehand.

2.2.3 Algorithmic/Logic Units
3pt
6minProblem 2.43 (TCN Substraction)

Let A = 576 and B = 9.

1. convert the numbers into an n-bit TCN system. What is the minimal n in order to encode
A as well as B?
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2. perform a binary subtraction A−B and check the result by converting back to the decimal
system.

2pt
6minProblem 2.44 (Carry Chain Adder and Subtractor for TCN)

• Draw a 2-bit carry chain adder only using (1-bit) full adders as primitives.

• Draw a 2-bit subtractor for two’s complement numbers using (1-bit) full-adders and Boolean
gates of your choice.

Hint: Remember: An n-bit subtractor fn
SUB(a, b, b′) can be implemented as n-bit full-adder (FAn(a, b, b′))
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2.3 Sequential Logic Circuits and Memory Elements

Problem 2.45 (2bit Address Decoder)
Design a 2 bit address decoder using only NOR gates.

Problem 2.46 (Reading from and writing to memory)

Suppose you have a 2-bit addressed memory of 4 bits managed by 4 D-Flipflops aligned as
shown in the figure. The input of the circuit consists of a total of 4 bits. 2 of the bits (a0 and a1)
provide a 2-bit address. In addition there is a data bit D and a write bit W .

Design a circuit which output should be the data memorized in the D-Flipflop addressed by
〈a1, a0〉 . In addition if the write bit W is 1, your circuit should write the data from the data bit
D to the same D-Flipflop addressed by 〈a1, a0〉.

Problem 2.47 (Event Detection with RS Flipflops)
Using RS flipflops, you can detect events.

1. Design a sequential logic circuit (draw a graph) with two inputs and two outputs that detects,
which out of two events occurred first. Use the RS flipflop and elementary gates (AND, OR,
NOT, . . . ). Assume that, initially, all inputs are 0 and the RS flipflop(s) are holding a 0. If
input Ii, where i ∈ {1, 2}, changes its value to 1, output Oi should change its value to 1, and
all other outputs should yield 0. The outputs must not change any more when the second
input changes to 1.

2. Combine several (how many?) of the circuits from step 1 to a similar event detector for
three events.

Note: You need not handle the case of two inputs simultaneously changing to 1.
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Problem 2.48 (Binary counters)

In the slides there is an implementation of a D-flipflop with an enable input. In practice a
different version is more commonly used - the edge-trigerred D-flipflop. Here instead of an enable
input there is a clock input (clk). The difference in operation is that the edge-trigerred D-flipflop
only remembers the value of the D input at the one instant when the clk input switches from 0 to
1. If clk is constantly 0 or constantly 1 the flipflop will not change its state.

Using only such flipflops implement a 3-bit binary counter circuit. The circuit should have
only one input ’tick’ that will periodically change between 1 and 0. It should have three outputs
that count the number of pulses on the input. After the counter counts to 111 it should continue
from 000. You can assume the initial state of all flipflops is 0.

Note: For those of you who are curious here is how an edge-trigerred D-flipflop is built from NAND
gates: http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip-flop.png. If you’re trying to un-
derstand this it will help to note that a real physical gate has a certain delay. When the input changes it
takes some time (nanoseconds) for the output to react.

Problem 2.49 (Displaying a two-bit number)
Your task for this problem is to create a 2-bit synchronous counter and display the output in a
decimal form with the help of 8 light emitting diodes.

You need to assemble this circuit only with the help of the following items:

• 2 positive edge triggered D-flipflops

• 6 NAND gates

• 1 digit display circuit with 8 inputs (a− g) corresponding to 8 diodes arranged in the figure
below

• 1 signal generator that provides you with a clock signal that you should use to trigger the
D-flipflops

• set of wires

Note:

• Basically your task is to create a 2-bit counter and decode the 2-bit output of the counter into 8-bits
so that the display shows proper numbers from 0 to 3.

• Positive edge triggered D-Flipflop is just like a normal D-flipflop with the exception that it writes
the data when the enable signal (clock) transits from 0 to 1, and in all other cases (constant 0,
constant 1, transition 1 → 0) nothing happens.
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• You cannot use constant signals.

• For all of the inputs to the 1-digit display logical true (1) means ON and logical false (0) means
OFF for the corresponding diode.

• You dont need to worry about the power supplies of the diodes, ICs and the flipflops.

Problem 2.50 (Making a speedometer)
You are working for a car manufacturer and are given the task to make a digital speedometer for a
future model. The electrical engineers tell you that they can provide you with two inputs: rev tick
very briefly goes from 0 to 1 and then back to 0, whenever the wheels of the car complete one
revolution and ref clk that every second very briefly goes form 0 to 1 and then back to 0. You
know that the wheels of the car have a circumference of 1 meter. For the initial design you need to
provide an electronic circuit that measures the speed in meters per second. You have to provide
a number of outputs a0, . . . , an that represent the current speed. You also know that the car has
a maximum speed of 220 km/h.

Imagine that you wanted to display the speed in km/h. What is the maximum resolution your
speedometer could achieve? What improvements to the car design can you propose to make this
better?

For this problem you should use the edge-trigerred flip-flop together with an extended version
that has one additional input R. Whenever R is one, the internal state of the flip-flop is reset to
0 (Q = 0) regardless of the state of the D and clk inputs. Reseting the internal state when R
becomes 1 also happens after a short delay.
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2.4 Machines

2.4.1 How to build a Computer (in Principle)
20pt

Problem 2.51 (Hyperpower)
Write an assembler program that reads an integer n ≥ 1 stored in P (0), and writes nn in P (1).

10pt
Problem 2.52 (Multiplication)
Write an assembler program (for the assembler language we defined in class) that multiplies the
values of data cells 1 and 2 and stores the result in data cell 0. 25pt
Problem 2.53 (Poking zeros)
Given are n ≥ 1 (n is stored in P (0)) integers stored in P (10) . . . P (9 + n), such that no two zeros
are next to each other and P (10) 6= 0 6= P (9 + n). Write an assembler program that overwrites
all zeros in that array with the sum of the numbers in the neighboring cells of its position. 70pt
Problem 2.54 (Simulating a Register Machine)
Write an SML function regma (register machine) that simulates the simple register machine we
discussed in class. To represent the program and data store, you should use SML vectors as de-
scribed in http://www.standardml.org/Basis/vector.html. In a nutshell, Vector.sub(arr,i)
returns the ith element of the vector arr and Vector.update(arr,i,x) returns the vector arr,
except that the ith element is replaced by x. Finally (useful for testing) Vector.fromList makes
a vector from a list.

So the the data store should be of type int vector and the program store is of type (instruction * int) vector,
where instruction is defined by the following type

datatype instruction =
load | store | add | sub | loadi | addi | subi |
loadin1 | loadin2 | storein1 | storein2 |
moveaccin1 | moveaccin2 | movein1acc | movein2acc | movein1in2 | movein2in1 |
jump | jumpeq | jumpne | jumpless | jumpleq | jumpgeq | jumpmore |
nop | stop

regma should take as input a data store data and a program store prog, and regma(prog,data)

should return the value of the accumulator register, when the program encounters a stop instruc-
tion. 20pt

20minProblem 2.55 (sorting-by-selection)
Let n ≥ 1 be stored in P (0) and n numbers stored in P (2) . . . P (n+ 1). Write an assembler
program that performs a sorting by selection and outputs the result in P (n+ 2) . . . P (2n+ 1).
Write comments to each line of your code (like in the example codes from the slides). Uncommented
code will not be considered. 20pt

20minProblem 2.56 (Binary to decimal)
Let P (0) = n contain the number of bits of a binary number stored in P (2)...P (2 + n− 1).
Each memory cell represents one bit of the number where P (2) is the least significant bit and
P (2 + n− 1) is the most significant bit. Write a program that stores the corresponding decimal
number in P (1).

2.4.2 A Stack-based Virtual Machine

Problem 2.57 (Reasons for Virtual Machines)
Thinking back to the lectures about L(VM) and SW, sum up the benefits of compiling programs in
high-level languages to the language of a virtual machine instead of directly compiling them to an
assembler language ASM. 12pt

15minProblem 2.58 (Binary Conversion in L(VM))
Write a L(VM) program that converts a binary natural number into a decimal natural number.
Suppose that n, the number of digits, is stored in stack[2] and n numbers 0 or 1 above it follow,
where the top of stack is the least significant bit. stack[0] and stack[1] are available for your
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use. Your program should leave only the converted number on the stack (in stack[0]). You are
allowed to use labels for (conditional) jumps.

For instance an initial stack

1
0
1
3
?
?

should give the result stack 5 .

12pt
Problem 2.59 (Fibonacci Numbers)
Assume the data stack initialized with con n for some natural number n. Write a L(VM) program
that computes the nth Fibonacci number and returns it on the top of the stack.

Hint: Remember that the nth Fibonacci number is given by the following recursive equations:

fib(n+ 1) = f(n) + fib(n− 1) fib(0) = 0 fib(1) = 1

2.4.3 A Simple Imperative Language
20pt

Problem 2.60 (Convert Highlevel Code to VM Code)
Given is an array A[0..10] and the following piece of imperative code:

for j := 1 to 5 do
for i := j to 10-j do
A[i] := A[i-j] + A[i+j];

Suppose the array is loaded on stack (top value being A[10]). Convert the code into VM code.

Problem 2.61 (Static procedure for logarithm)
Write down a static procedure in L(VM) that computes f(x) = blog2(x)c. This procedure should
not be recursive. Use the new lpeek and lpoke instructions from the previous exercise. Is there
something you do at the end of your procedure that is not part of your algorithm. If yes, then
describe a more elegant way of doing that by modifying the behavior of an existing VM instruction.

Hint: Remember that at the end of a static procedure call exactly one value - the result - should be
left on the stack.

6pt
10minProblem 2.62 (While Loop in L(VM))

Write a program in the Simple While language that takes two numbers A and B, given at the
memory addresses 1 and 2, and returns (A+B)42. Show how the compiled version of it looks like
in the Virtual Machine Language L(VM) (concrete, not abstract syntax).

Problem 2.63 (Simple While program on Fibonacci)

Write a Simple While Program that takes a number N and computes the N th Fibonacci
number. Then provide the Abstract Syntax for your code.

Show how the L(VM) version of it looks like by compiling it.

Hint: Remember that the nth Fibonacci number is given by the following recursive equations:

fib(n+ 1) = f(n) + fib(n− 1) fib(0) = 0 fib(1) = 1

2.4.4 Compiling Basic Functional Programs

Problem 2.64 (Cross identifiers?)
Now suppose you want to compile a µML program containing a few function declarations such
that they use the local identifiers from the functions defined above. For example,
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([("F1", ["n","a"], Sub(Id "n",Id "a")),
("F2", ["m","x"], Mul(Add(Id "m",Id "x"),Id "n"))],
App("F2", [Con 1, Con 2]) );

Will such a program compile? If yes, will it execute correctly? Explain your answer.
Hint: You may want to track down the compilation process on a given example.

Problem 2.65 (Duplicate identifiers?)
Suppose you want to compile a µML program containing a few function declarations such that
some of them contain the same identifier names such as

([("F1", ["n","a"], Sub(Id "n",Id "a")),
("F2", ["m","n","a"], Mul(Add(Id "m",Id "a"),Id "n"))],
App("F2", [Con 1, Con 2, Con 3]) );

Will such a program compile? If yes, will it execute correctly? Explain your answer.
Hint: You may want to track down the compilation process on a given example.

Problem 2.66 (Prime numbers)
Write a program in µML that takes an integer n > 1 and returns 1 if the number is prime and
0 otherwise. Your program should be a pair of a well defined list of function declarations, and a
single App call of the main function. Obviously, that function will call the helping function(s) in
its body and helping functions may call themselves. Can you solve the problem using only two
helping functions?

2.4.5 A theoretical View on Computation
10pt
10minProblem 2.67: Explain the concept of a Turing machine, what is it used for? What is a

universal Turing machine? 12pt
Problem 2.68 (Turing Machine)
Given the alphabet {0, 1} and a initial tape that starts with 0,1,0.

1. Define a transition table that converts the three entries of this tape to 1,0,1 and terminates
afterwards independently of the tape’s tail.

2. Give an example initial tape where your transition table wouldn’t terminate or argue why
such an initial tape can’t exist.

Hint: The Turing machine terminates when there is no action in the transition table applicable.
5pt
8minProblem 2.69 (Boolean And)

Suppose a tape with only two cells arbitrarily filled with 0 or 1 and the head of the Turing machine
over the left cell. Define a transition table such that the machine always terminates with a final
state where the left cell has value 1 if and only if both cells contained 1 in the initial state; i.e.
the machine should evaluate the a boolean “and”.

Hint: Admissible moves are left, right, and stop with the obvious meaning.
11pt
20minProblem 2.70 (Boolean Equivalence)

Consider a tape arbitrarily filled with ones and zeros and the head initially positioned over some
cell “X” as depicted below

X Y ......

initial head position
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Define a transition table for an always terminating Turing machine TM that computes the
boolean equivalence of “X” and “Y”: Upon halting, your TM should return the value 1 in cell “X”
if the values of the cells “X” and “Y” were initially equal and otherwise 0.

Try to use as few states as possible. The number of points you can obtain for this exercise is
max(0, 14− x), where x is the number of states of your working TM.

Hint: You only need to consider the two cells “X” and “Y”. It does not matter where the head stays
when the TM terminates.

Note:

1. Admissible moves are left, right, and none with the obvious meaning.

2. You are free to overwrite the initial value of “Y” and to introduce additional symbols in the alphabet,
if you need it for your solution.

Problem 2.71 (Halting Reductions)
The fact that a TM cannot decide if another TM halts on a given input is not the only limit of
computation. There are a lot of other things TM’s cannot do, and the halting problem can be
used to prove this. This process is called ”reduction to the halting problem”: for proving that
a TM cannot decide a certain a property P , assume that it could and then use it to construct
another TM that can decide the halting problem (i.e. to decide if some TM halts on some given
input).

For the following statements, provide a proof by reduction to the halting problem or a coun-
terexample:

• No TM can decide in general whether another TM halts on all inputs.

• TM can decide in general whether another TM uses all its states in the computation on a
given input x.

Hint: Here is an example of how to solve such a task. All you need to do is to figure out how to
adapt this to the points above.

• Prove or refute that no TM can decide in general if another TM halts on the empty input.

• Assume we have a machine M that can decide if another TM halts on the empty input. We want
to decide if a given TM N halts on input x. We can construct a machine K that started on the
empty input, writes x on the tape and then simulates N(x). If M(K) (M run on a coded version
of K as input) outputs yes, then it means that K halted on the empty input, thus N halted on x,
no means the opposite. Thus, we can decide the halting problem, which is false.

Problem 2.72 (Number of Steps of a Turing Machine)
Let smax(n) be the maximum number of steps that an n-state Turing machine with the alphabet
{0, 1} can take on an empty tape, halting in the end. Is the function smax computable? Give a
proof or a refutation.

Hint: If we had an implementation of smax, how could we implement the will_halt function from
the lecture using smax?

Note: From the lecture, we know that it is impossible to implement a function will_halt(program, input).
Assume the following corollary, known as the “halting problem on the empty tape”, as given: It is even
impossible to write a Turing machine (or an equivalent function will_halt_empty(program), resp.) that
tells whether an arbitrary Turing machine halts on an empty tape.

Problem 2.73 (TM and languages)

Design a Turing Machine which accepts the language {101100...1n−10n−11n0n | n > 0} (halts
with ”yes” if such input is given and halts with ”no” otherwise). First describe in plain English
the core idea of how your algorithm works. Think of possible wrong inputs, and show how your
TM handles them.

Note:

• The point of this exercise is to help you think of how to approach and solve a problem. Imagine you
are given 0 points for a TM which only partially works (some wrong inputs can pass as accepted or
the other way around).
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• For exercises about TM construction, please format the transition table according to the TM simu-
lator at http://ironphoenix.org/tril/tm/ (here you will also find some example programs). This
way you will be able to check your “code” and your TAs will have an easier time grading.

Problem 2.74 (TM and TCN numbers)
Given a tape with an n-bit binary number written after symbol + or − (denoting if the number
is positive or negative), design a Turing Machine which will convert it to a TCN. Initially, the
head is over the sign symbol. There is no restriction where would the head be after halting. If
the number of states exceeds 4, you will lose 2 points per extra state. Uncommented code will
not be graded.

For example we would have

Input: -101
Output: 1011

Problem 2.75 (Turing Machine Simulating a Half Adder)
Given the alphabet {0, 1} and a finite set of states of your choice. Define upon these sets a
transition table that behaves like a half adder, i.e. it reads two bits from the tape and writes a
sum and carry bit on the tape again (at any arbitrary but fixed position).

2.5 The Information and Software Architecture of the Internet and
WWW

2.5.1 Overview

nothing here yet

2.5.2 Internet Basics

nothing here yet

2.5.3 Basics Concepts of the World Wide Web

Problem 2.76 (Quiz for the TAs)

Your last assignment this semester is to give your TAs a quiz. We hope you will enjoy this :)

You need to create a form in HTML that contains the following:

1. Include at least 5 multiple choice questions.

2. All following concepts: button, radio button, check box, drop down box, text input.

3. At least one image and one working link.

4. Tables, lists.

5. Make it look nice overall (styles, colors ...)

You can provide a fictive action attribute.
Hint: HTML is useful and easy to learn. Start by finding a nice tutorial online.

Problem 2.77 (HTML basics)
Answer the following questions about HTML:

1. What does HTML stand for?

2. Who is making the Web standards?

3. What is HTML tag for the largest heading?
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4. What is the correct HTML tag for inserting a line break?

5. What is the correct HTML for adding a background color?

6. What is the correct HTML tag to make a text bold?

7. What is the correct HTML tag to make a text italic?

8. What is the correct HTML for creating a hyperlink?

9. How can you create an e-mail link?

10. How can you open a link in a new browser window?

11. Which of these tags are all <table> tags?

• <thead><body><tr>

• <table><head><tfoot>

• <table><tr><tt>

• <table><tr><td>

12. What is the correct HTML to left-align the content inside a tablecell?

13. How can you make a list that lists the items with numbers?

14. How can you make a list that lists the items with bullets?

15. What is the correct HTML for making a checkbox?

16. What is the correct HTML for making a text input field?

17. What is the correct HTML for making a drop-down list?

18. What is the correct HTML for making a text area?

19. What is the correct HTML for inserting an image?

20. What is the correct HTML for inserting a background image?

Problem 2.78 (For Future Generations)

As one of the last assignments, we would like you to look a bit into the future. Imagine
yourselves one year from now. Some of you will definitely be TAs at that time, so it’s time to show
your creativity and teaching skills. Your task is to basically create an HTML form representing
the examination you would give to the freshmen in 2012. It can be any midterm or final for GenCS
I or II. There are only a few specifications you must look out for. The rest is fully up to you.

The web form must:

1. Include multiple choice and ’fill in the blanks’ questions, enough for an actual exam time of
75 or 120 minutes.

2. Include all of the following: button, radio button, check box, drop down box, text input.

3. The exam must contain figures and sections of code from any of the studied programming
languages that you ask questions on.

4. Link your exam to some useful pages. Make it like an ’open book’ exam and offer some
actual existing resources.

5. The overall style should be professional. Put a bit of effort into appearance and aesthetics.
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6. In the end, the scoring system should work. Nothing too fancy, but it should be an opera-
tional exam from start to finish.

Hint: HTML is useful and easy to learn. Start by finding a nice tutorial online. You might wish to
consider JavaScript for your scoring mechanism. Also, CSS is recommended for brushing up your design!

Problem 2.79 (Web browsers)

• What is the difference between a web page and a web site?

• What is a web browser? Name at least 5 practical web browser tools.

2.5.4 Web Applications

Nothing here yet

2.5.5 Introduction to Web Search

Problem 2.80 (SML Web Crawler)
A web crawler is a program that will store a copy (mirror) of a web site. Generally, crawlers access
a given web page and, after retrieving the HTML source, they extract the links and also download
those pages (or images or scripts). This will provide the user the possibility to access these pages
even when they are not connected to the internet or to perform different measurements on the
pages.

Your task is to write your own SML Web Crawler, following these steps:

1. Make sure that you downloaded and understood the SML sockets example file used in the
last assignment. Use the following updated socketReceive function:

(* Receives maxbytes bytes from the socket. Returns the string message. *)
fun socketReceive(sock, maxbytes) =

Byte.bytesToString(
Socket.recvVecNB(sock, maxbytes)

);

The problem with this function is that, if the server sends a message longer than maxbytes,
all the remaining bytes will be queued on the socket, but not processed. Write your own
fullMessage function that overcomes this problem by reading the whole reply from the
server (you can use socketReceive, it will return a string of length 0 if the message from
the server is finished). Your function should have the following type:

val fullMessage= fn : (’a,Socket.active Socket.stream) Socket.sock -> string

2. Now, write a method that, given a host and page, will make a HTTP GET request to the
server for the given page on that host, and will return the HTTP response. Your function
should have the following signature:

val getPage = fn : string * string -> string

For example, you should be able to run getPage("en.wikipedia.org","/wiki/Main_Page")

and retrieve the home page of Wikipedia.

Hint: Try to do the request on telnet first, by connecting to the host on port 80. Check resources
online (i.e. Wikipedia) on how to make a valid HTTP request.

3. Now that you have the HTTP response, check it closely and you will discover that it contains
the HTML web page, but also some headers. In order to be sure that you will only store the
HTML page, write a function extractHTML that scans the string and discards everything
that is not between <html> and </html>. Of course, your function will have the signature:
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val extractHTML : string -> string
- extractHTML("Discard me! <html><head><title>Hello!</title></head></html>");
val it = "<html><head><title>Hello!</title></head></html>" : string;

4. Write a function extractLinks that will go through your HTML source code and will
return all the links that it contains. Feel free to look into the HTML or RegExp library of
SML, but making your function only going through the string and extracting sequences like
the following will suffice:

<a href="extract me!">...
<img src="extract me!"> ...

You are not required to handle links other than the ones found in anchors and images. Your
function will have the following signature (get a string and return a list of strings which are
the links found):

val extractLinks = fn : string -> string list;

5. Mind the fact that these links might contain the protocol (”http://”), might be relative to
the root of the host (”/img/happy.png”), or might be relative to the current page (”nex-
t/index.html”). Your getPage function requires a host and a page as arguments, and the
page should be relative to the host root (i.e. absolute path). Write an SML function
normalizeLinks that, given a host, page and list of strings, will return a list of pairs
(host, page) that can be used by the getPage:

val normalizeLinks : string * string * string list -> (string * string) list;
normalizeLinks("www.example.com", "/en/test.html",

["http://www.google.com/something/x", "/img/happy.png", "next/index.html"]
);
val it = [

("www.google.com", "/something/x"),
("www.example.com", "/img/happy.png"),
("www.example.com", "/en/next/index.html")

] : (string * string) list;

6. This sub-task will be to write the wrapping crawler function.

Have a look at the following SML function that writes a string to a file:

fun writeToFile(file, content) =
let

val os = TextIO.openOut(file)
val vc = String.toString(content) (* we need an SML vector *)
val _ = TextIO.output(os, vc)
val _ = TextIO.flushOut(os)

in
TextIO.closeOut(os)

end;

Hint: You might want to extend this function to also handle folders, such that you can store the
pages or images relative to the root page you start your crawl on. However, you are not requested
to do so.

This function will be used in storing the HTML page to disk. Your crawler will have the
following signature:

val crawler : string * string * int -> unit;

The first two parameters are the host and the starting page (i.e. ”www.example.com” and
”/test/index.html”). The third parameter is an integer representing the maximum depth
you should go into. You will follow the following steps:
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(a) use getPage to retrieve the HTTP response

(b) use extractHTML to extract only the HTML part of the response

(c) write the HTML part to a file (see the note below!)

(d) use extractLinks and normalizeLinks to get the list of links to follow further

(e) recursively call the crawler method; remember to decrease the depth and not proceed
with a negative depth!

Note: There might be problems with storing images. We will not grade this problem based on the
output, but rather on how well you managed to follow the instructions and on your intermediary results.
Please think about what the problem with images is and write a short comment at the end of your sml
file!

Problem 2.81 (Ranking pages)
In this task you will gain some practical experience with a real-world web crawler and you will
come up with your own page ranking procedure!

Look into the man pages of wget (available on linux, use the tlab machines if you don’t have
linux already on your laptop; you might also find Windows ports of the program). wget has the
ability to follow links while saving the pages to disk, and also to keep the directory structure
consistent with the server.

Choose a web page of your preference (we recommend using a wikipedia page) and run wget

with a depth limit of your choice. Now inspect the output directory and observe items that might
help you in ranking your web pages (for example, number of links pointing to a web page, number
of images, length of the content or its age might be starting points!). Do not reinvent the wheel, or
reverse-engineer the Google PageRank algorithm! Be creative and make a good use of the features
that your starting page has (wikipedia has, for example, the links between related topics). Also,
do not take into consideration whether the features are (easily) computable.

You will have to supply a PDF document reporting your actions. Describe how you used wget
to mirror the site (do include the commands used!). Describe your ranking function (what items
you consider, how they influence the page score). Compile a table which contain these items, the
score of each item for each page and the final score of the page.

Finally, write down your observations and comments about the method that you employed.

2.5.6 Security by Encryption

Nothing here yet

2.5.7 An Overview over XML Technologies

Nothing here yet.

2.5.8 The Semantic Web

nothing here yet

2.6 Legal Foundations of Information Technology

2.6.1 Intellectual Property, Copyright, and Licensing

nothing here yet

2.6.2 Information Privacy

nothing here yet
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3 Search and Declarative Computation

3.1 Problem Solving and Search

3.1.1 Problem Solving

1 EdN:1
Problem 3.1 (Sudoku)

This question will give you an excuse to play Sudoku (see www.websudoku.com for explanation)
while doing homework. Consider using search to solve Sudoku puzzles: You are given a partially
filled grid to start, and already know there is an answer.

• Define a state representation for Sudoku answer search. A state is a partially filled, valid
grid in which no rows, column, or 3x3 square contains duplicated digits. Also specify what
transitions would be.

• If the puzzle begins with 28 digits filled, what is L, the length of the shortest path to goal
using your representation?

• On a typical PC, which search algorithm would you choose: BFS, DFS or IDS? Why?

Problem 3.2 (Define Problem Formulation)
Define the concept of Problem Formulation.

Problem 3.3: Does a finite state space always lead to a finite search tree? How about a finite
space state that is a tree? Justify your answers.

Problem 3.4 (Problem formulation)
You and your roommate just bought an 8 liter jug full of beer. In addition you have two smaller
empty jugs that can hold 5 and 3 liters respectively. Being good friends you want to share the
beer equally. For this you need to split the amount in two separate jugs and each should contain
exactly 4 liters. Write a formal description of this problem. What is one possible solution? What
is the cost of your solution? 20pt

20minProblem 3.5 (Problem formulation and solution)

a) Write a problem formulation and path cost for each of the following problems:

1. A monkey is in a room with a crate, with bananas suspended just out of reach on the
ceiling. The monkey would like to get the bananas.

2. You have to color a complex planar map using only four colors, with no two adjacent
regions to have the same color.

1EdNote: we should extract some problem formulation sub-problems from e.g. moving-knight
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b) Given the following concrete examples of the two problems from (a), provide a solution for
each of the examples that conforms the problem formulation you gave in (a) and specify the
cost of this solution according to the path cost you defined.

Hint: Refer to the slides for specifications regarding problem formulation and solution. Path cost is
a function that assigns cost to every operator.

8pt
10minProblem 3.6 (Search of the max element)

Formalize the task of finding the maximum element in a set of the integer numbers. What are the
properties of your search? Justify your answers.

3.1.2 Search

2 20minEdN:2
20ptProblem 3.7 (The Dog/Chicken/Grain Problem)

A farmer wants to cross a river with a dog, a chicken, and a sack of grain. He has a boat which
can hold himself and either of these three items. He must avoid that either dog and chicken or
chicken and grain are together alone on one river bank, since otherwise something gets eaten.

1. Represent the farmer’s problem of crossing the river without losing his goods as a search
problem.

2. Draw a sufficiently large portion of the search tree induced by this problem to exhibit a
solution.

3. Discuss three search strategies and their advantages and disadvantages in this scenario.

Hint: The farmer can also take something back over the river.

Problem 3.8 (Moving a Knight)
Consider the problem of moving a knight on a 3x4 board, with start and goal states labeled as
S and G in the figure below. The search space can be translated into the following graph. The
letter in each node is its name and you do not need to worry about its subscript for now.

2EdNote: need to take these problems apart, so that they do not mention specific search strategies
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Make the following assumptions:

• The algorithms do not go into infinite loops (i.e. once a node appears on a path, it will not
be considered again on this path)

• Nodes are selected in alphabetical order when the algorithm finds a tie.

Write the sequence of nodes in the order visited by the specified methods (until the goal is
reached). Note: You may find it useful to draw the search tree corresponding to the graph above.

• DFS

• BFS

3.1.3 Uninformed Search Strategies

Problem 3.9 (Uninformed Search)
Explain all uninformed search strategies introduced in class and compare their advantages and
disadvantages with respect to completeness, time, space, and optimality.

3 EdN:3
Problem 3.10 (Sudoku)

3EdNote: we need to take the sudoku problem apart and only have the third bullet point here
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This question will give you an excuse to play Sudoku (see www.websudoku.com for explanation)
while doing homework. Consider using search to solve Sudoku puzzles: You are given a partially
filled grid to start, and already know there is an answer.

• Define a state representation for Sudoku answer search. A state is a partially filled, valid
grid in which no rows, column, or 3x3 square contains duplicated digits. Also specify what
transitions would be.

• If the puzzle begins with 28 digits filled, what is L, the length of the shortest path to goal
using your representation?

• On a typical PC, which search algorithm would you choose: BFS, DFS or IDS? Why?

Problem 3.11: Describe a state space in which iterative deepening search performs much worse
than depth-first search (for example O(n2) vs. O(n)).

Problem 3.12 (Actions with Negative Costs)
Suppose that actions can have arbitrary large negative costs.

1. Explain why this possibility would force any optimal algorithm to explore the entire state
space.

2. Does it help if we insist that step costs must be greater than or equal than to some negative
constant c? Justify your answer.

50pt
Problem 3.13 (Implementing Search)
Implement the depth-first and breadth-first search algorithms in SML. The functions depthFirst
and breadthFirst take three arguments that make up the problem description:

1. the initial state

2. a function next that given a state x in the state tree returns at set of pairs (action,state):
the next states (i.e. the child nodes in the search tree) together with the actions that reach
them.

3. a predicate (i.e. a function that returns a Boolean value) goal that returns true if a state
is a goal state and false else.

the result of the functions should be the goal state together with a list of actions that reaches the
goal state from the initial state.

Hint:

1. Write an auxiliary function that takes the fringe (i.e. a list of unexpanded states together with the
plans to reach them) as an accumulator argument.

2. It is always good to treat the failure case with an exception.
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3. The problem may become simpler to think about, if you first write a function that does not care
about actions, which makes next simpler and also the return actions of the auxiliary function.

Problem 3.14 (Implementing Search)
Implement the depth-first and breadth-first search algorithms in SML. The corresponding func-
tions dfs and bfs take three arguments that make up the problem description:

1. the initial state

2. a function next that given a state x in the state tree returns at set of pairs (action,state):
the next states (i.e. the child nodes in the search tree) together with the actions that reach
them.

3. a predicate (i.e. a function that returns a Boolean value) goal that returns true if a state
is a goal state and false else.

The result of the functions should be a pair of two elements:

• a list of actions that reaches the goal state from the initial state

• the goal state

The signatures of the two functions should be:

dfs : ’a -> (’a -> (’b * ’a) list) -> (’a -> bool) -> ’b list * ’a
bfs : ’a -> (’a -> (’b * ’a) list) -> (’a -> bool) -> ’b list * ’a

where ’a is the type of states and ’b is the type of actions.
In case of an error or no solution found raise an InvalidSearch exception.
Hint:

1. Write an auxiliary function that takes the fringe (i.e. a list of unexpanded states together with the
plans to reach them) as an accumulator argument.

2. It is always good to treat the failure case with an exception.

3. The problem may become simpler to think about, if you first write a function that does not care
about actions, which makes next simpler and also the return actions of the auxiliary function.

4 EdN:4
30ptProblem 3.15 (A Trip Through Romania)

Represent the Romanian map we talked about in class in a concrete next function. Search with
the procedures from Problem 3.13 a trip from Arad to Bucharest. Compare the solution paths
and run times. 15pt
Problem 3.16 (Relations between search strategies)
Prove or refute each of the following statements:

1. Breadth-first search is a special case of uniform-cost search.

2. Breadth-first search, depth-first search, and uniform-cost search are special cases of best first
searches.

Problem 3.17 (Search Strategy Comparison on Tree Search)
Consider the tree shown below. The numbers on the arcs are the arc lengths.

4EdNote: make a separate problem in formaulation from the problem representation in SML and reference this here.
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Assume that the nodes are expanded in alphabetical order when no other order is specified by the
search, and that the goal is state G. No visited or expanded lists are used. What order would the
states be expanded by each type of search? Stop when you expand G. Write only the sequence of
states expanded by each search.

Search Type Sequence of States
Breadth First

Depth First

Iterative Deepening (step size 1)

Uniform Cost

Problem 3.18 (Missionaries and cannibals)
Three missionaries and three cannibals are on one side of a river, along with a boat that can hold
one or two people. The final goal is to get everyone to the other side, without ever leaving a group
of missionaries in one place outnumbered by the cannibals in that place.

1. Formulate the problem precisely. When defining the operators, it is not necessary that you
write every possible state → state combination, but you should make it clear how one would
derive the next state from the current one.

2. Suppose the next-function for depth first search (DFS) and breadth first search (BFS) ex-
pands a state to its successor states using the operators you have defined in 1. in the order
you have defined them. Operators that leave more cannibals than missionaries on one side
will not be considered. Likewise, operators that lead to the immediate previous state will
not be considered (e.g., after moving a cannibal from left to right, the next-function for this
state will not include a state where a cannibal moves from right to left). Draw the search
tree till depth 3. What are the first 5 nodes explored by DFS? What are the first 5 nodes
explored by BFS?

3. If you would implement this problem, would you rather use BFS or DFS to find the solution?
Briefly explain why?

50pt
Problem 3.19: Write the next function, goal predicate and initial_state variable for the
8-puzzle presented on the slides (please check the slides for the description). Then use these to
test your breadth-first and depth-first search algorithms from the previous problem.

Use the following :

datatype action = left|right|up|down;
type state = int list;(*9 elements, in order, 0 for the empty cell*)

68



Refer to the slides for the initial_state variable. Make sure that if an action is illegal for a
certain state, it does not appear in the output of next.

Sample testcase:

test call : next(initial_state);

output: [(left,[7,2,4,0,5,6,8,3,1]),(right,[7,2,4,5,6,0,8,3,1]),
(up,[7,0,4,5,2,6,8,3,1]),(down,[7,2,4,5,3,6,8,0,1])];

15pt
Problem 3.20 (Interpreting Search Results)
The state of Ingushetia has only four cities (A, B, C, and D) and a few two-way roads between
them, so that it can be modeled as an undirected graph with four nodes. The task is to go from
city A to city D. The UCS algorithm finds a solution to this task that is 10km shorter than the
one BFS finds. The solution of BFS in turn is 10km shorter than the one of the DFS algorithm.

Draw a map of Ingushetia with roads and their distances that satisfies both conditions. What
paths between A and D in your map will be found as solutions by each of those algorithms?

Note: All algorithms had repetition checking implemented, so that when a node is expanded, all
its children that belong to a list of previously expanded nodes during the execution of that algorihtm
are ignored. In addition, when no order of choosing a node for expansion is specified by an algorithm,
expansion in alphabetical order takes place.

14pt
Problem 3.21 (Treesort Function)
Your task is to write a treesort function in SML that sorts a list of integers by first creating a
binary search tree from the list and then loading the tree (in a sorted order) back into a list.

Use the following definition of a binary search tree:

• All leaves are empty nodes.

• All internal nodes carry a value and a left and a right subtree.

• The values of all nodes in a node’s left subtree are smaller than the node’s value and all
nodes in its right subtree are greater or equal to the node’s value.

The following tree is an example of a binary search tree:

4

1 7

0

e e

1

e e

6

e e

8

e 9

e e

Given the following datatype:

datatype searchtree = empty | node of searchtree*searchtree*int;

The tree above would be represented as follows:

node(node(node(empty,empty,0),node(empty,empty,1),1),
node(node(empty,empty,6), node(empty,node(empty,empty,9),8),7) , 4);

Write the functions using the searchtree datatype. The function sort should be of the following
type:

fn treesort: int list -> int list
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Problem 3.22 (Power Source Search)
A robot is on the 5x5 map shown below. It wants to reach a power source, but its sensors only
allow it to detect the source once it is in the same cell with it. Find a problem formulation in the
quadruple format presented in the lecture such that depth first search will find a solution after
expanding exactly 6 nodes.

Assume that the next function of the DFS algorithm used returns the (action, state) tuples
in the order in which the corresponding operators are defined. For example, if your operators are
jump and sing, then the next function called on state i would return a list [(jump, state j), (sing, state k)]

and not the other way around. (this is just an example, these operators will not do a very good
job ... :) )

Define a path cost for this problem. What is the cost of this solution? Is the solution optimal?
How many node expansions would BFS make considering the same next function?

R

P P

R represents the robot and P a power source.
5 EdN:5

Problem 3.23 (Maximum independent set)

An independent set of vertices in a graph G is a set where no two vertices are adjacent. The
maximum independent set of vertices in a graph is an independent set with the greatest number
of vertices. This number is denoted as α(G).

• Using what we have learned about search, how can you construct a representation that can
be used to find a maximum independent set in a graph?

• What search algorithm is most appropriate?

• Estimate the number of maximum independent sets in a graph

3.1.4 Informed Search Strategies

Problem 3.24 (A looping greedy search)
Draw a graph and give a heuristic so that a greedy search for a path from a node A to a node B
gets stuck in a loop. Draw the development of the search tree, starting from A, until one node is
visited for the second time.

Indicate, in one or two sentences, how the search algorithm could be modified or changed in
order to solve the problem without getting stuck in a loop.

Problem 3.25 (A∗ Theory)
What is the condition on the heuristic function that makes A∗ optimal? Does a heuristic with
this condition always exist? 10pt
Problem 3.26 (A variant of A∗)
Imagine an algorithm B∗ that uses the evaluation function f(n) = g(n) · h(n), where g(n) is the
path cost to the current node n, and h(n) is a heuristic function. Is this algorithm better or worse
than A∗? Explain your findings. What does h(n) represent?

Problem 3.27 (True or False on A∗)
True or False? Explain why.

5EdNote: take the next problem apart as well.
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1. A∗ search always expands fewer nodes than DFS does.

2. For any search space, there is always and admissible and monotone A∗ heuristic.

Problem 3.28 (Sudoku Revisited)

Remember the Sudoku problem from the last homework. You were asked which search algo-
rithm you would choose on a typical PC: BFS, DFS or IDS. Is A∗ better than your first choice?
What is an admissible heuristic for A∗? 12pt

15minProblem 3.29 (Monotone heuristics)
Let c(n, a, n′) be the cost for a step from node n to a successor node n′ for an action a. A heuristic
h is called monotone if h(n) ≤ h(n′) + c(n, a, n′). Prove or refute that if a heuristic is monotone,
it must be admissible. Construct a search problem and a heuristic that is admissible but not
monotone. Note: For the goal node g it holds h(g) = 0. Moreover we require that the goal must
be reachable and that h(n) ≥ 0.

Problem 3.30 (A Good Old Friend, the Maze)

Given a maze like the one above, consider using search to find the way from start to goal. The
shaded areas are walls. You start from S and can only go left, right, up or down (unless there
is a wall). All movements cost the same. The heuristic function is the Manhattan distance,
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h = |x1 − x2|+ |y1 − y2|. For the following questions, explanations are required (simple answer is
not enough).

1. Is this an admissible heuristic for A∗ for the maze problem?

2. Is it an admissible heuristic if you can move in 8 directions instead of 4 (so also diagonally),
if any movement still costs the same?

3. Which performs better with this heuristic, A∗ or simple Greedy?

4. For the case of moving in all 8 directions, is the Euclidean distance, he =
√

(x1 − x2)2 + (y1 − y2)2,
admissible?

5. For the case of moving in all 8 directions, provide an admissible heuristic that is different
from h and he, call it h1, such that h1 is non-trivial (non-constant and not the hardcoded
actual cost).

6. Getting back to the 4 direction movement, is he more efficient for A∗ than h?

45pt
Problem 3.31 (A∗ search on Jacobs campus)
Implement the A∗ search algorithm in SML and test it on the problem of walking from the main
gate to the entrance of Research 3 with linear distance as heuristic. The length of line segments
are annotated in the map below.

No function signature is provided, instead at the end of your program call your function so
that it prints the actions needed to reach the entrance and the associated cost.
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Problem 3.32 (Relaxed Problem)
The relaxed version of a search problem P is a problem P ′ with the same states as P , such that
any solution of P is also a solution of P ′. More precisely, if s′ is a successor of s in P, it is also
a successor in P ′ with the same cost. Prove or refute that for any state s, the cost c′(s) of the
optimal path between s and the goal in P ′ is an admissible A∗ heuristic for P .

Hint: Think about the graphical representation of the problems.
15pt

Problem 3.33 (Relations between search strategies)
Uniform-cost search is a special case of A∗ search.

Problem 3.34 (Global Solutions)
For each of the following algorithms, briefly state why or why not they are guaranteed to converge
to a global optimum on a problem P :

1. A∗ search with the heuristic from the problem above

2. Greedy search with the same heuristic

3. Hill Climbing

4. Genetic Algorithms

3.1.5 Local Search

Problem 3.35 (Local Search)
What is a local search algorithm?

1. What does the “fringe” known from generic search algorithms look like in a local search
algorithm?

2. What is the space complexity of local search?

3. Name two practical applications for local search.

4. Name a simple algorithm for local search. Give a brief overview of its advantages and
disadvantages.

Problem 3.36 (Greedy vs. Hill Climbing)
What is the fundamental difference between Greedy Search and Hill Climbing? Explain.

Problem 3.37 (Local Beam Search)
What known algorithm does Local Beam Search become if k = 1? 40pt
Problem 3.38 (Hill Climbing)
Consider a world with equal number of women and men. Every man is interested in a nonnegative
number of women and vice versa. You are given a matrix that specifies a directed graph of
interest between the people. Write an SML function that uses local search to find a pairing
{<man,woman>,<man,woman>,...} such that no man is paired up with > 1 women and vice versa.
A pairing is admissible if in every pair <man i, woman j> the two people are interested in each
other. An optimal pairing is the pairing with the highest cardinality of all the possible pairings in
a problem.

To accomplish this task follow the steps outlined below:

• Define what is a state in this problem

• Given any state, describe what the neighbours of this state are (i.e. describe how neighbours
are related). Hint: think about neighbours in the Traveling Salesman Problem

• Find and describe a heuristic. What is the optimal value of your heuristic?
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• Write an SML function pairup that takes an interest graph (represented as a matrix) and
an initial paring (not necessarily admissible) and uses hill climbing to return an admissible
pairing. A sample hill-climbing algorithm is provided in the slides. You may assume that
the format of the input matrix is correct

Input: The following matrix encodes the graph below:
Woman

< 0, 1 > < 1, 1 > < 1, 0 > < 0, 0 >
Man < 0, 0 > < 1, 1 > < 1, 1 > < 0, 0 >

< 0, 0 > < 0, 0 > < 1, 0 > < 1, 0 >
< 1, 1 > < 0, 0 > < 0, 0 > < 0, 1 >

The first value indicates if the man is interested in the woman, while the second value indicates
if the woman is interested in the man.

It would be encoded as follows:

val matrix = [[(false,true),(true,true),(true,false),(false,false)],[(false,false),(true,true),(true,true),(false,false)],
[(false,false),(false,false),(true,false),(true,true)],[(true,true),(false,false),(false,false),(false,true)]]

Use the following datatypes:

datatype man = man of int
datatype woman = woman of int
type pairing = (man * woman) list
type matrix = (bool * bool) list list

Function signature:

val pairup = fn : pairing -> matrix -> pairing

Sample run:

val matrix = [[(false,true),(true,true),(true,false),(false,false)],[(false,false),(true,true),(true,true),(false,false)],
[(false,false),(false,false),(true,false),(true,true)],[(true,true),(false,false),(false,false),(false,true)]];
val init = [(man 1,woman 2),(man 2,woman 3),(man 3,woman 1),(man 4,woman 4)];
pairup init matrix;
(*Ideally*)
val it = [(man 1,woman 2),(man 2,woman 3),(man 3,woman 4),(man 4,woman 1)] : (man * woman) list

Problem 3.39 (Easter Bunnies in Boxes)
Imagine there are n Easter bunnies and n different coloured boxes, and each bunny has specific
color preferences and will like their box on a scale of 1 to 10. We want to makes as many bunnies
as happy as we can, so the overall fitness of an assignment of bunnies in boxes will be the sum
of how much each bunny likes its box. An assignment is admissible if each bunny has exactly 1
box. Think about applying Genetic Algorithms for this problem: your task is to come up with
an encoding that allows only admissible states and with crossover and mutation operators that
preserve admissibility. Don’t take the term crossover too literally though - it is not a must that you
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split the chromosomes and cross over their parts, you can think about the concept of reproduction
in general. Similarly for mutation.

Problem 3.40 (Implementing simulated annealing)
Write an SML function that implements the simulated annealing algorithm to find the x value
where a function f(x) has a maximum. Your function should take the following arguments:

• f : real->real the SML implementation of f(x)

• (a,b) : real*real an interval [a; b] in which to search for the maximum

• schedule : int->real a function that maps time steps to temperature values

For example the maximum of f(x) = −(x − 2)2 in [0.0; 5.0] is at x = 2.0. Given a good
temperature schedule your implementation should be able to compute the maximum of sin(x)
with an accuracy of 0.0001. Show this at the end of your program by computing the maximum of
sin(x) in the interval [0.0; 5.0].

The complete signature of the function should look like this:
find_max : (real -> real) -> real * real -> (int -> real) -> real

Problem 3.41 (Simulated annealing schedules)
In the simulated annealing algorithm one has to choose a temperature schedule. Two possible
schedules are:

• The linear cooling scheme: Tk+1 = Tk − α = T0 − (k + 1) ∗ α

• The exponential cooling scheme: Tk+1 = αTk = αk+1T0 where α < 1.0 (the typical
value is 0.95, but this really depends on the problem - and the smaller this is, the less
iterations you will have).

The exponential cooling scheme typically performs better. Explain why this might be the case.
To help you with this you should do an experiment where you try to achieve the desired accuracy
in the pevious question by using both a linear and an exponential schedule.

Problem 3.42 (Simulated Annealing)
Assume that you are using Simulated Annealing to solve the 8Queens problem. The SA is at a
point where T = 3, the energy (fitness) of the current state is Ecurrent = 7 and the energy of the
neighboring state is Eneighbor = 4. With what probability will the neighbor be accepted as the
new state and why?

3.2 Logic Programming

3.2.1 Introduction to Logic Programming and PROLOG

nothing here

3.2.2 Programming as Search

These exercises should be tried by everybody. They will confront you with the main (conceptual)
problems of programming PROLOG, like relational programming, recursion, and a term language.
Problem 3.43: Build a database of facts about flight connections from Bremen Airport and
write some query predicates for connections. Consider it is furthermore plausible to assume that
whenever it is possible to take a flight from A to B, it is also possible to take a flight from B to
A.

3.2.3 Logic Programming as Resolution Theorem Proving

No problems supplied yet.
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