Last Name: First Name:

Matriculation Number:

Exam
 Artificial Intelligence 1

April 4, 2024

Please ignore the QR codes; do not write on them, they are for grading support

	To be used for grading, do not write here														
prob.	1.1	2.1	2.2	2.3	3.1	4.1	4.2	5.1	5.2	5.3	6.1	7.1	7.2	Sum	grade
total	10	8	6	7	6	5	6	6	8	7	7	6	8	90	
reach															

In the course Artificial Intelligence I/II we award bonus points for the first student who reports a factual error in an old exam. (Please report spelling/formatting errors as well.)

1 Prolog

Problem 1.1 (Analyzing a Prolog Program)

Consider the following Prolog program:

```
foo([XI_],X).
foo([_|L],X) :- foo(L,X).
good([], _, _).
good([X|Xs], Ys, XYs) :- goodX(X, Ys, XYs), good(Xs, Ys, XYs).
goodX(X, Ys, [pair(X,Y)|_]) :- foo(Ys, Y).
goodX(X, Ys, [_|XYs]) :- goodX(X, Ys, XYs).
```

1. Give a value for xys such that the query $\operatorname{good}([1,2]$, $[1,2]$, $x y s)$ returns true.

3 Points

Solution: For example, [pair $(1,1)$, pair $(2,1)]$.
2. Which definition from the course does the program $\operatorname{good}(X s, Y s, X Y s)$ implement?

Solution: It checks if a variable with domain Xs is arc-consistent with respect to a variable with domain Ys under a constraint given by the list of pairs XYs.

For the remaining questions, assume we swap the lines 1 and 2.
Explain (in about 2 sentences each) how this change effects program's of the form foo (s, t) regarding
3. ...correctness?

Solution: It has no effect. foo outputs only true/false and has no side-effects, so the order of cases does not matter.
4. ...efficiency?

Solution: Due to Prolog's depth-first search behavior, it will first traverse the entire list without doing anything, and then backtrack to check the second case for each element of the list. The is still linear but much slower. It also requires linear space instead of constant space.

2 Search

Problem 2.1 (Search Algorithms)
Consider the following directed graph:

Every node is labeled with $n: h(n)$ where n is the identifier of the node and $h(n)$ is the heuristic for estimating the cost from n to a goal node.
Each node's children are ordered alphabetically.
Every edge is labeled with its actual cost.
Assume you have already expanded the node A. List the next 4 nodes (i.e., excluding A) that will be expanded using the respective algorithm. If there is a tie, break it using alphabetical order.

1. Depth-first search

Solution: B, C, F, G
2. Breadth-first search

Solution: B, C, E, F
3. uniform-cost search

Solution: C, F, G, H
4. greedy search

Solution: B, C, G, I
5. A^{*}-search

2 Points

Solution: C, F, H, G

Problem 2.2 (Search in an Infinite Tree)
Consider an infinite tree defined as follows:

- The root has 1 child.
- Every other node has one more child than its parent.

Explain (in about 2 sentences each) what pitfalls we have to watch for (e.g., correctness, complexity, completeness, ...) when searching in this tree using ...

1. ...depth-first search.

Solution: The search is not complete because it infinitely recurses along the left-most branch without ever searching any other parts.
2. ...breadth-first search.

Solution: Because the number of nodes at depth n is $n!$, the search would be very slow for deep nodes. The queue of unexpanded nodes would run out of memory already at low depths.

Problem 2.3 (Search Problems)

Consider the family of search problems P_{n} given for $n=1,2, \ldots$ by $\langle S, A, T, I, G\rangle$ where

- $S=\{0,1, \ldots, n\}$
- $A=\{f, b, s\}$
- T is given by
- $T(f, x)=\{x \oplus 2\}$
- $T(b, x)=\{x \ominus 2\}$
- $T(s, x)=\left\{x^{2}\right\} \cap S$
where \oplus and \ominus are addition/subtraction modulo n.
- $I=\{0\}$
- $G=\{n-1\}$

1. For $n=19$, give the result of applying the action sequence f, f, s in state 0 .

Solution: 16
2. Under what circumstances does this problem have a solution?

Solution: If n is odd.
3. For $n=15$, explain what is special about applying the action sequence f, f, s to state 0 .

Solution: The third action in the sequence is not applicable because $T(s, 4)=\emptyset$.
4. Explain (in 1 sentence) why this problem represents a fully observable environment.

Solution: I is a singleton set.

3 Adversarial Search

Problem 3.1 (Minimax)

Consider the following minimax game tree for the maximizing player's turn. The values at the leaves are the static evaluation function values of those states; some of those values are currently missing.

1. Label the nodes I and C with their minimax value.

Solution: I: 5, C: 2
2. If possible, label the node \mathbf{E} with an evaluation function value that results in the player definitely choosing move \mathbf{C} (no matter how ties are broken). Otherwise, argue why that is impossible.

Solution: Any label < 2.
3. Now assume \mathbf{E} is labeled with 5 , and we use $\alpha \beta$-pruning. We expand child nodes in alphabetical order. Which nodes would be pruned?

Solution: I, N, O, J, M (or I,J,M)

4 Constraint Satisfaction

Problem 4.1 (Assignments and Solutions)
Consider the CSP given by

- Variables: $\{a, b, c, d\}$
- Domains: $D_{a}=D_{b}=\{0,1,2,3\}$ and $D_{c}=D_{d}=\{0,1,2,3,4,5\}$
- Constraints:$a<b$$b<d-c$$d-a>3$$d=2 c$

1. Check the constraints that make this CSP non-binary.

Solution: Only the second one (because it is ternary).
2. Give the unique solution to this $C S P$.

Solution: $(a, b, c, d)=(0,1,2,4)$
3. Check the true statements:The assignment $a=0, b=1$ is consistent.The assignment $a=0, b=1, c=2, d=3$ is consistent and total.The assignment $b=0, c=2, d=4$ is consistent and total.

Solution: Only the first statement is true.

Problem 4.2 (Relating CSP and SAT)

Like in the homework problem, we want to relate CSP and SAT.
Assume a binary CSP with variables X_{1}, \ldots, X_{n}, a finite domain D_{i} for every X_{i}, and a constraint $C_{i j} \subseteq$ $D_{i} \times D_{j}$ for every $1 \leq i<j \leq n$. A solution of this CSP instance is an assignment α mapping each X_{i} to a value in D_{i}.

1. Give an instance of SAT, i.e., a set P of propositional variables and a propositional formula F over 4 Points P, that is equivalent to this CSP problem.

Solution:

$$
\begin{array}{r}
P=\left\{P_{i v}: 1 \leq i \leq n, v \in D_{i}\right\} \\
F=\bigwedge_{1 \leq i \leq n} A_{i} \wedge \bigwedge_{1 \leq i<j \leq n} B_{i j}
\end{array}
$$

where

$$
A_{i}=\bigvee_{u \in D_{i}} P_{i u} \wedge \bigwedge_{u, v \in D_{i}, u \neq v} \neg\left(P_{i u} \wedge P_{i v}\right)
$$

(expresses that A_{i} has has exactly one value)

$$
B_{i j}=\bigvee_{(u, v) \in C_{i j}} P_{i u} \wedge P_{j v}
$$

(expresses that $C_{i j}$ is satisfied)
2. To show the equivalence, for every assignment α for the CSP instance, give an assignment φ for the SAT instance defined in the previous subproblem such that F is satisfied under φ iff all constraints are satisfied under α.

Solution: $\varphi\left(P_{i v}\right)=T$ iff $v=\alpha\left(X_{i}\right)$

5 Logic

Problem 5.1 (Propositional Logic)

Consider the formula $A=((p \vee q) \Rightarrow(p \wedge q)) \wedge((p \vee \neg q) \Rightarrow(p \vee \neg r))$ using propositional variables p, q, r.

1. Give all satisfying assignments for A.

Solution: $\langle\varphi(p), \varphi(q), \varphi(r)\rangle \in\{\langle F, F, F\rangle,\langle T, T, F\rangle,\langle T, T, T\rangle\}$
2. Give a formula in DNF that is equivalent to A.

Solution: $(p \wedge q \wedge \neg r) \vee(\neg p \wedge \neg q \wedge \neg r) \vee(p \wedge q \wedge r)$
(This can be read off off the list of satisfying assignments. Reading off a faulty list was also accepted.)
3. Turn A into a theorem by replacing exactly one occurrence of a connective with a different connective.

Solution: Change the \wedge in the middle to \vee.
(Reasoning: Neither conjunct of A is a theorem, so changing a connective inside one conjunct cannot suffice. So we need to change the \wedge. Replacing with \vee or \Rightarrow has the best chance of producing a theorem because they are true more often than \wedge. Only \vee works.)

Problem 5.2 (Modeling in First-Order Logic)

Consider the following situation:

- Some individuals are persons, some are animals.
- Persons and animals may like other persons or animals.
- Alice is a person, and she likes the animal Bubbles.
- For every person or animal, we can obtain its mother.

1. Model this situation in first-order logic by giving a signature, i.e., a list of function/predicate symbols with arity.

Solution:

- nullary function symbols: A (for Alice), B (for Bubbles)
- unary function symbols: m (for mother)
- unary predicate symbols: p (for person), a (for animal)
- binary predicate symbols: l (for like)

2. State formulas over your signature that capture the following properties:
3. Every individual is a person or an animal but not both.
4. Every mother likes their offspring.

Solution:

1. $\forall x . p(x) \vee a(x), \forall x . \neg(p(x) \wedge a(x))$
2. $\forall x . l(m(x), x)$
3. Give a model over your signature, i.e., a domain D and an interpretation $I(s)$ for every function/predicate symbol, in which all properties from the above subproblem hold.

Solution: E.g., $D=\mathbb{N}, I(A)=0, I(B)=1, I(m)(n)=n+2, I(p)=$ even, $I a=o d d$, $I(l)=\{(0,1)\} \cup\{(n+2, n): n \in \mathbb{N}\}$.

Problem 5.3 (Tableaux Calculus)

Consider the following tableau where $A=(p \wedge q) \vee(\neg p \wedge \neg q)$.

1. How can you tell that this tableau is saturated?

Solution: For every node, all subnodes resulting from applying the respective tableau rule are already on the branches emanating from it.
2. Explain how, using the tableau, we can find all satisfying assignments for A.

2 Points

Solution: Each branch that cannot be closed induces a falsifying assignment for A (because we started with A^{F}) by collecting the atomic formulas on it. Counting branches left to right, branch 1 can be closed on p and branch 4 on q. Branch 2 yields $\varphi(p)=F, \varphi(q)=T$, and branch 3 yields $\varphi(p)=T, \varphi(q)=F$.
The satisfying assignments are the other assignments, i.e., $\varphi(p)=\varphi(q)=T$ and $\varphi(p)=\varphi(q)=$ F.
3. Give the fully saturated tableau for the $\operatorname{root} A^{T}$.

Solution:

A^{T}	
$p \wedge q^{T}$	$\neg p \wedge \neg q^{T}$
p^{T}	$\neg p^{T}$
q^{T}	$\neg q^{T}$
	p^{F}
	q^{F}

6 Knowledge Representation

Problem 6.1 (ALC)

Consider the following description logic signature

- concept symbols: i (for instructor), s (for student), c (for course), p (for program)
- role symbol m (for is-member-of) used for
- instructors giving a course
- students taking a course
- students being enrolled in a program
- courses being part of a program

We use an extension of ALC, in which there are dual roles: there is a role m^{-1} that captures the relation has-as-member, e.g., $M K m A I$ iff $A I m^{-1} M K$.

1. Give an axiom for the above signature that captures that instructors can only be members of courses.

Solution: $i \sqsubseteq \forall m . c$
2. Give an axiom for the above signature that captures: courses that are taken by a student, must be given by an instructor.

Solution: $c \sqcap \exists m^{-1} . s \sqsubseteq \exists m^{-1} . i$
3. Calculate the translation to first-order logic of $s \sqsubseteq(\forall m . \exists m \cdot p)$.

Solution: $\forall x \cdot s(x) \Rightarrow \forall y \cdot m(x, y) \Rightarrow \exists z \cdot m(y, z) \wedge p(z)$
4. Given a model $\langle D, \llbracket-\rrbracket\rangle$, define an appropriate case of the interpretation mapping for the formula $\forall r^{-1}$.C.

Solution: $\llbracket \forall r^{-1} . C \rrbracket=\{u \in D \mid$ for $v \in D$, if $(v, u) \in \llbracket r \rrbracket$, then $v \in \llbracket C \rrbracket\}$

7 Planning

Problem 7.1 (Admissible Heuristics in Gripper)

Consider the following situation from the homeworks:

- We have two rooms, A and B, one robot initially located in room A, and n balls that are initially located on the floor in room A.
- The goal is to have all balls on the floor in room B .
- The robot can move between the rooms and has a gripper for picking up and releasing balls. Moving, picking up, and releasing are one action each.

Given state s, we write s_{A} and s_{B} for the number of balls on the floor in room A or B, i.e., $n-s_{A}-s_{B}$ is the number of balls held by the robot.

For each of the following heuristics, argue (by informal proof or counter-example) whether they are admissible.

1. Assume the gripper can hold up to $\mathbf{1}$ ball at a time.

Potential heuristic: $h(s)=n-s_{B}$.
Solution: Admissible. $h^{*}(s)>n-s_{B}=h(s)$ because every ball not yet in room B requires at least one release action.
2. Assume the gripper can hold up to $\mathbf{1}$ ball at a time.

Potential heuristic: $h(s)=4 \cdot s_{A}$.

Solution: Not admissible. Counter-example: $s_{A}=1, s_{B}=n-1$, robot in room A (holding 0 balls). $h^{*}(s)=3<4=h(s)$ because the robot must perform 3 actions for the last ball (pick up, move, release).
3. Assume the gripper can hold up to 2 balls at a time, which are picked up in one action and released in one action.
Potential heuristic: $h(s)=n-s_{B}$.

Solution: Not admissible. Counter-example: $s_{A}=0, s_{B}=n-2$, robot in room B (holding 2 balls). Then $h^{*}(s)=1<2=h(s)$.

Problem 7.2 (Relaxation)

We want to solve a STRIPS planning task.

1. Explain (in about 2 sentences) the purpose of relaxed planning.

2 Points

Solution: A relaxed problem is easier to solve than the original problem. Then the length of its optimal plan of the relaxed problem can be used as a heuristic for the original problem.
2. Explain (in about 2 sentences) why it is bad to relax too much or too little.

Solution: If we relax too little, the relaxed problem is still too difficult to solve. If we relax too much, the relaxed problem is so easy that it does not induce a useful heuristic.

Now consider a concrete task given by a finite set B of size n and

- facts: $\operatorname{in} A(b), \operatorname{in} B(b), \operatorname{held}(b)$ for $b \in B, \operatorname{Rfree}, \operatorname{Rin} A, \operatorname{Rin} B$
- actions

action	precondition	add list	delete list
move $_{A}$	RinB	RinA	RinB
move $_{B}$	RinA	RinB	RinA
pickup (b)	RinA, Rfree, inA(b)	held (b)	Rfree, inA (b)
release (b)	RinB, held (b)	inB (b), Rfree	held (b)

- initial state $I: \operatorname{in} A(b)$ for $b \in B$, Rfree, $\operatorname{Rin} A$
- goal state: $\operatorname{in} B(b)$ for $b \in B$

3. Let h^{+}be the heuristic obtained from the delete-relaxation. Give the value of $h^{+}(I)$.

Solution: $2 n+1\left(\right.$ move $_{B}$, pickup(1), release(1), \ldots, pickup(n), release $\left.(n)\right)$
4. Let h^{+}be the heuristic obtained from the only-adds-relaxation. Give the value of $h^{+}(I)$.

2 Points

Solution: n (release(1), ..., release(n))

