Assignmentl - Probability
Given: Apr 25 Due: May 2

Problem 1.1 (Simple Sample Spaces)

In many important situations including all problems treated in this course, the
sample space, probability measure, domains, and random variables can be given in
a simplified form, namely by:

« alist of random variable declarations Xy, ..., X, each consisting of

- aname such as X
- a finite domain such as Dy = {0, 1, 2, 3}
+ a probability function Q — [0;1] where Q = Dy, X .. X Dy, such that
ZecqP(e) =1

Define the corresponding probability space (Q, Q) and show that it satisfies the
Kolmogorov axioms.
Define the random variables Yy, ..., Y}, induced by the respective X;.

Solution: Q : P(Q) — [0;1] is defined by Q(A) = Z,c4P(e). (Note this is a finite
sum because all the Dy and thus Q and A are finite.)

To show the Kolmogorov axioms:

* Q(Q) = Z,eqP(e) =1

. Q(Ui Ap) = EeeU[ 4,P(e) = (because the A; are pairwise disjoint.) Z;X.e 4, P(e) =

Z;Q(A)).

For each X; with domain Dx,, we define a random variable Y; : Q — Dy, by

Y(x1,..., x,) = x; for (xq, ..., x,) € Q.

Problem 1.2 (Bayesian Rules)

Give the formulas and a one-sentence explanation of the following basic rules
in Bayesian inference:

1. Bayesrule

Solution: P(A | B) = P(B | A)P(A)/P(B)

The conditional probability of A given B multiplied by the probability of B is
the same as the conditional probability of B given A multiplied by the prob-
ability of A — both are equal to P(A,B). We can use that to compute one
conditional probability from the other.

2. Product rule

Solution: P(A,B) = P(A | B)P(B), The probability of A and B is the product



of the probability of B and the one of A given B. If A and B are independent,
this simplifies to P(A, B) = P(A)P(B).

3. Chain rule

SOlul‘iOVl.‘ P(Al, ,An) = P(An | A}’l—l’ 7A1) . P(An—l | An_z, ,Al) e
Iterated application of the product rule.

4. Marginalization

Solution: Marginalization of A with respectto Y: P(A) = Z,cgP(A,y) where

E is the set of values of Y. Since the probabilities of the values of Y sum to 1,
we can always introduce/remove a sum over all values.

5. Normalization

Solution: Normalization of X with respect to event e: P(X | e) = a(P(X,e))

where «a is the function that multiplies every element in a vector v (here: the
vector (P(X = x;,e),...,P(X = x,,e)) where the x; are the possible values
of X) by 1/Z;v;. The probability of X given e can be obtained by normalizing
the joint probability X and e.

Problem 1.3 (Basic Probability)

Let A, B, C be Boolean random variables, and let a, b, ¢ denote the atomic events
that A, B, C, respectively, are true. Which of the following equalities are always
true? Justify each of your answers in one sentence.

1. P(b) = P(a,b) + P(—a,b)

Solution: True (marginalization over A)

2. P(a) =P(a | b) + P(a | —-b)

Solution: Not true (e.g. P(a | b) = P(a | =b) = 0.6 would result in P(a) =
1.2)




3. P(a,b) = P(a) - P(b)

Solution: Not true (only true if A and B are stochastically independent)

4. P(a,b|c)-P(c)=P(c,a|b)-P(b)

Solution: True (using product rule, both sides become P(a, b, ¢))

5. P(aVvb) =P(a)+ P(b)

Solution: Not true (general form is P(a v b) = P(a) + P(b) — P(a, b))

6. P(a,mb)=(1—-P(b|a))-P(a)

Solution: True (1—P(b | a) = P(—b | a) and via product rule we get P(a, —b))

Problem 1.4 (Chained Production Elements)

An apparatus consists of six elements A,B,C,D, E,F. Assume the probabili-
ties P(by), that element X breaks down, are all stochastically independent, with
P(bA) = 5%, P(bB) = 10%, P(bc) = 15%, P(bD) = 20%, P(bE) = 25%, and
P(br) = 30%.

Note: We deliberately differentiate between not being operational and being broken.

If an element breaks, it is not operational; if an element is not operational, either it
or the linked element broke.

1. Assume the apparatus works if and only if at least A and B are operational,
C and D are operational, or E and F are operational. What is the probability
the apparatus works?

Solution: Let W be a random variable stating that the apparatus works. Let
Ox be a random variable indicating that element X is operational.



In this problem, oy is equivalent to =bx for all elements X.

P(w) =P(o4 Aog V Oc AOp V O A OF)
=1—P(=(04 Aog) A(0oc Aop) A=(0g A OF))

all events are independent
=1—P(=(04 A0p)) - P(=(0oc A 0p)) - P(—(0o A 0F))
=1- P(“‘OA \Y _‘OB) . P(_'OC \% _'OD) . P(_'OE \Y _'OF)
=1—P(byV bg)-P(bcV bp)-P(bg V br)
=1—(P(ba) + P(bg) — P(bs) - P(bp)) - (P(bc) + P(bp) — P(bc) - P(bp))
- (P(bg) + P(bg) — P(bg) - P(bF))
=1—(0.05+0.1 —(0.05-0.1)) - (0.15 + 0.2 — (0.15 - 0.2)) - (0.25 + 0.3 — (0.25 - 0.3))

2. Consider a different scenario, in which the elements A and C, D and F and
B and E are pairwise linked; such that if either of them breaks down, then
the linked element is not operational either. What is the probability that the
apparatus works now?

Solution: Using the exclusion principle:

P(w) =P(0o4 A0g Voc AopV og AOF)
= P(04,0p) + P(oc,0p) + P(0g, 0r) — P(04,0p,0c, 0p) — P(04, 0B, 0g, 0F) — P(0c, 0p, O, OF)
+ P(04,08,0c, 0p, OF, OF)
Due to the links, oy is equivalent to =by A —bg where X is the element that

X is linked with. So, for example, 04 is equivalent to by A =bc. This gives
us

P(w) = P(=by,=bc,—bg, —bg) +P(=by, =bc, —bp, =bg) + P(=bg, =bg, =bp, —br)

=P(04,08)
— P(nby, ~bp, 7bc, ~bp, ~bg, 7br) — P(mb 4, mbg, —be, 7bp, 7bg, 7bE)
— P(=by, nbp, 7bc, 7bp, by, 7bp) + P(mby, mbg, —be, mbp, 7bg, 7bE)
= P(nby, ~bc, ~bg, 7bg) + P(mby, 7bc, mbp, ~bg) + P(mbg, 7bg, ~bp, 7br)
— 2P(=by, bg, —be, ~bp, —bg, —bE)
= P(=b4)P(~bg)P(~bc)P(~bg) + P(mb4)P(~bc)P(—bp)P(~br) + P(—bp)P(~bp)P(~bg)P(~br)
— 2P(=b 4 )P(=bg)P(=bc)P(=bp)P(=bg)P(—br)
= 0.5450625 + 0.4522 + 0.378 — 2 - 0.305235 ~ 76%




Problem 1.5 (Probabilities in Python)
Complete the partial implementation of probabilities at https://kwarc. info/
teaching/AI/resources/AI2/probabilities/

Solution: Seehttps://kwarc.info/teaching/AI/resources/AI2/probabilities/
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