Assignment1 - Probability

Given: Apr 25 Due: May 2

Problem 1.1 (Simple Sample Spaces)

In many important situations including all problems treated in this course, the sample space, probability measure, domains, and random variables can be given in a simplified form, namely by:

- a list of random variable declarations X_{1}, \ldots, X_{n}, each consisting of
- a name such as X
- a finite domain such as $D_{X}=\{0,1,2,3\}$
- a probability function $\Omega \rightarrow[0 ; 1]$ where $\Omega=D_{X_{1}} \times \ldots \times D_{X_{n}}$ such that $\Sigma_{e \in \Omega} P(e)=1$

Define the corresponding probability space $\langle\Omega, Q\rangle$ and show that it satisfies the Kolmogorov axioms.
Define the random variables Y_{1}, \ldots, Y_{n} induced by the respective X_{i}.

Solution: $Q: \mathcal{P}(\Omega) \rightarrow[0 ; 1]$ is defined by $Q(A)=\Sigma_{e \in A} P(e)$. (Note this is a finite sum because all the D_{X} and thus Ω and A are finite.)

To show the Kolmogorov axioms:

- $Q(\Omega)=\Sigma_{e \in \Omega} P(e)=1$
- $Q\left(\bigcup_{i} A_{i}\right)=\Sigma_{e \in \bigcup_{i} A_{i}} P(e)=$ (because the A_{i} are pairwise disjoint.) $\Sigma_{i} \Sigma_{e \in A_{i}} P(e)=$ $\Sigma_{i} Q\left(A_{i}\right)$.
For each X_{i} with domain $D_{X_{i}}$, we define a random variable $Y_{i}: \Omega \rightarrow D_{X_{i}}$ by $Y_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ for $\left(x_{1}, \ldots, x_{n}\right) \in \Omega$.

Problem 1.2 (Bayesian Rules)

Give the formulas and a one-sentence explanation of the following basic rules in Bayesian inference:

1. Bayes rule

Solution: $P(A \mid B)=P(B \mid A) P(A) / P(B)$
The conditional probability of A given B multiplied by the probability of B is the same as the conditional probability of B given A multiplied by the probability of A - both are equal to $P(A, B)$. We can use that to compute one conditional probability from the other.
2. Product rule

Solution: $P(A, B)=P(A \mid B) P(B)$, The probability of A and B is the product
of the probability of B and the one of A given B. If A and B are independent, this simplifies to $P(A, B)=P(A) P(B)$.
3. Chain rule

Solution: $\quad P\left(A_{1}, \ldots, A_{n}\right)=P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right) \cdot P\left(A_{n-1} \mid A_{n-2}, \ldots, A_{1}\right) \cdot$ Iterated application of the product rule.
4. Marginalization

Solution: Marginalization of A with respect to $Y: P(A)=\Sigma_{y \in E} P(A, y)$ where E is the set of values of Y. Since the probabilities of the values of Y sum to 1 , we can always introduce/remove a sum over all values.

5. Normalization

Solution: Normalization of X with respect to event $e: P(X \mid e)=\alpha(P(X, e))$ where α is the function that multiplies every element in a vector v (here: the vector $\left\langle P\left(X=x_{1}, e\right), \ldots, P\left(X=x_{n}, e\right)\right\rangle$ where the x_{i} are the possible values of X) by $1 / \Sigma_{i} v_{i}$. The probability of X given e can be obtained by normalizing the joint probability X and e.

Problem 1.3 (Basic Probability)

Let A, B, C be Boolean random variables, and let a, b, c denote the atomic events that A, B, C, respectively, are true. Which of the following equalities are always true? Justify each of your answers in one sentence.

1. $P(b)=P(a, b)+P(\neg a, b)$

Solution: True (marginalization over A)
2. $P(a)=P(a \mid b)+P(a \mid \neg b)$

Solution: Not true (e.g. $P(a \mid b)=P(a \mid \neg b)=0.6$ would result in $P(a)=$ 1.2)
3. $P(a, b)=P(a) \cdot P(b)$

Solution: Not true (only true if A and B are stochastically independent)
4. $P(a, b \mid c) \cdot P(c)=P(c, a \mid b) \cdot P(b)$

Solution: True (using product rule, both sides become $P(a, b, c)$)
5. $P(a \vee b)=P(a)+P(b)$

Solution: Not true (general form is $P(a \vee b)=P(a)+P(b)-P(a, b))$
6. $P(a, \neg b)=(1-P(b \mid a)) \cdot P(a)$

Solution: $\operatorname{True}(1-P(b \mid a)=P(\neg b \mid a)$ and via product rule we get $P(a, \neg b))$

Problem 1.4 (Chained Production Elements)

An apparatus consists of six elements A, B, C, D, E, F. Assume the probabilities $P\left(b_{X}\right)$, that element X breaks down, are all stochastically independent, with $P\left(b_{A}\right)=5 \%, P\left(b_{B}\right)=10 \%, P\left(b_{C}\right)=15 \%, P\left(b_{D}\right)=20 \%, P\left(b_{E}\right)=25 \%$, and $P\left(b_{F}\right)=30 \%$.

Note: We deliberately differentiate between not being operational and being broken. If an element breaks, it is not operational; if an element is not operational, either it or the linked element broke.

1. Assume the apparatus works if and only if at least A and B are operational, C and D are operational, or E and F are operational. What is the probability the apparatus works?

Solution: Let W be a random variable stating that the apparatus works. Let O_{X} be a random variable indicating that element X is operational.

In this problem, o_{X} is equivalent to $\neg b_{X}$ for all elements X.

$$
\begin{aligned}
P(w)= & P\left(o_{A} \wedge o_{B} \vee o_{C} \wedge o_{D} \vee o_{E} \wedge o_{F}\right) \\
= & 1-P(\underbrace{\neg\left(o_{A} \wedge o_{B}\right) \wedge \neg\left(o_{C} \wedge o_{D}\right) \wedge \neg\left(o_{E} \wedge o_{F}\right)}_{\text {all events are independent }}) \\
= & 1-P\left(\neg\left(o_{A} \wedge o_{B}\right)\right) \cdot P\left(\neg\left(o_{C} \wedge o_{D}\right)\right) \cdot P\left(\neg\left(o_{E} \wedge o_{F}\right)\right) \\
= & 1-P\left(\neg o_{A} \vee \neg o_{B}\right) \cdot P\left(\neg o_{C} \vee \neg o_{D}\right) \cdot P\left(\neg o_{E} \vee \neg o_{F}\right) \\
= & 1-P\left(b_{A} \vee b_{B}\right) \cdot P\left(b_{C} \vee b_{D}\right) \cdot P\left(b_{E} \vee b_{F}\right) \\
= & 1-\left(P\left(b_{A}\right)+P\left(b_{B}\right)-P\left(b_{A}\right) \cdot P\left(b_{B}\right)\right) \cdot\left(P\left(b_{C}\right)+P\left(b_{D}\right)-P\left(b_{C}\right) \cdot P\left(b_{D}\right)\right) \\
& \cdot\left(P\left(b_{E}\right)+P\left(b_{F}\right)-P\left(b_{E}\right) \cdot P\left(b_{F}\right)\right) \\
= & 1-(0.05+0.1-(0.05 \cdot 0.1)) \cdot(0.15+0.2-(0.15 \cdot 0.2)) \cdot(0.25+0.3-(0.25 \cdot 0.3))
\end{aligned}
$$

2. Consider a different scenario, in which the elements A and C, D and F and B and E are pairwise linked; such that if either of them breaks down, then the linked element is not operational either. What is the probability that the apparatus works now?

Solution: Using the exclusion principle:

$$
\begin{aligned}
P(w)= & P\left(o_{A} \wedge o_{B} \vee o_{C} \wedge o_{D} \vee o_{E} \wedge o_{F}\right) \\
= & P\left(o_{A}, o_{B}\right)+P\left(o_{C}, o_{D}\right)+P\left(o_{E}, o_{F}\right)-P\left(o_{A}, o_{B}, o_{C}, o_{D}\right)-P\left(o_{A}, o_{B}, o_{E}, o_{F}\right)-P\left(o_{C}, o_{D}, o_{E}, o_{F}\right) \\
& +P\left(o_{A}, o_{B}, o_{C}, o_{D}, o_{E}, o_{F}\right)
\end{aligned}
$$

Due to the links, o_{X} is equivalent to $\neg b_{X} \wedge \neg b_{\tilde{X}}$ where \widetilde{X} is the element that X is linked with. So, for example, o_{A} is equivalent to $\neg b_{A} \wedge \neg b_{C}$. This gives us

$$
\begin{aligned}
P(w)= & \underbrace{P\left(\neg b_{A}, \neg b_{C}, \neg b_{B}, \neg b_{E}\right)}_{=P\left(o_{A}, o_{B}\right)}+P\left(\neg b_{A}, \neg b_{C}, \neg b_{D}, \neg b_{F}\right)+P\left(\neg b_{B}, \neg b_{E}, \neg b_{D}, \neg b_{F}\right) \\
& -P\left(\neg b_{A}, \neg b_{B}, \neg b_{C}, \neg b_{D}, \neg b_{E}, \neg b_{F}\right)-P\left(\neg b_{A}, \neg b_{B}, \neg b_{C}, \neg b_{D}, \neg b_{E}, \neg b_{F}\right) \\
& -P\left(\neg b_{A}, \neg b_{B}, \neg b_{C}, \neg b_{D}, \neg b_{E}, \neg b_{F}\right)+P\left(\neg b_{A}, \neg b_{B}, \neg b_{C}, \neg b_{D}, \neg b_{E}, \neg b_{F}\right) \\
= & P\left(\neg b_{A}, \neg b_{C}, \neg b_{B}, \neg b_{E}\right)+P\left(\neg b_{A}, \neg b_{C}, \neg b_{D}, \neg b_{F}\right)+P\left(\neg b_{B}, \neg b_{E}, \neg b_{D}, \neg b_{F}\right) \\
& -2 P\left(\neg b_{A}, \neg b_{B}, \neg b_{C}, \neg b_{D}, \neg b_{E}, \neg b_{F}\right) \\
= & P\left(\neg b_{A}\right) P\left(\neg b_{B}\right) P\left(\neg b_{C}\right) P\left(\neg b_{E}\right)+P\left(\neg b_{A}\right) P\left(\neg b_{C}\right) P\left(\neg b_{D}\right) P\left(\neg b_{F}\right)+P\left(\neg b_{B}\right) P\left(\neg b_{D}\right) P\left(\neg b_{E}\right) P\left(\neg b_{F}\right) \\
& -2 P\left(\neg b_{A}\right) P\left(\neg b_{B}\right) P\left(\neg b_{C}\right) P\left(\neg b_{D}\right) P\left(\neg b_{E}\right) P\left(\neg b_{F}\right) \\
= & 0.5450625+0.4522+0.378-2 \cdot 0.305235 \approx 76 \%
\end{aligned}
$$

Problem 1.5 (Probabilities in Python)
Complete the partial implementation of probabilities at https://kwarc.info/ teaching/AI/resources/AI2/probabilities/

Solution: Seehttps://kwarc.info/teaching/AI/resources/AI2/probabilities/

