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Abstract. We present a method for finding morphisms between formal
theories, both within as well as across libraries based on different logi-
cal foundations. As they induce new theorems in the target theory for
any of the source theory, theory morphisms are high-value elements of
a modular formal library. Usually, theory morphisms are manually en-
coded, but this practice requires authors who are familiar with source
and target theories at the same time, which limits the scalability of the
manual approach.
To remedy this problem, we have developed a morphism finder algorithm
that automates theory morphism discovery. In this paper we present an
implementation in the MMT system and show specific use cases. We fo-
cus on an application of theory discovery, where a user can check whether
a (part of a) formal theory already exists in some library, potentially
avoiding duplication of work or suggesting an opportunity for refactor-
ing.

1 Introduction

Motivation “Semantic Search” – a very suggestive term, which is alas seriously
under-defined – has often been touted as the “killer application” of semantic
technologies. With a view finder, we can add another possible interpretation:
searching mathematical ontologies (here modular theorem prover libraries) at
the level of theories – we call this theory classification.

The basic use case is the following: Jane, a mathematician, becomes inter-
ested in a class of mathematical objects, say – as a didactic example – something
she initially calls “beautiful subsets” of a base set B (or just “beautiful over B”).
These have the following properties Q:
1. the empty set is beautiful over B
2. every subset of a beautiful set is beautiful over B
3. If A and B are beautiful over B and A has more elements than B, then there

is an x ∈ A/B, such that B ∪ {x} is beautiful over B.
To see what is known about beautiful subsets, she types these three conditions
into a theory classifier, which computes any theories in a library L that match
these (after a suitable renaming). In our case, Jane learns that her “beautiful
sets” correspond to the well-known structure of matroids [MWP], so she can
directly apply matroid theory to her problems.



In extended use cases, a theory classifier find theories that share significant
structure with Q, so that Jane can formalize Q modularly with minimal effort.
Say Jane was interested in “dazzling subsets”, i.e. beautiful subsets that obey a
fourth condition, then she could just contribute a theory that extends matroid
by a formalization of the fourth condition – and maybe rethink the name.

In this paper we reduce the theory classification problem to the problem of
finding theory morphisms (views) between theories in a library L: given a query
theory Q, the algorithm computes all (total) views from Q into L and returns
presentations of target theories and the assignments made by the views.

Related Work Existing systems have so far only worked with explicitly given
views, e.g., in IMPS [FGT93] or Isabelle [Pau94]. Automatically and systemati-
cally searching for new views was first undertaken in [NK07] in 2006. However,
at that time no large corpora of formalized mathematics were available in stan-
dardized formats that would have allowed easily testing the ideas in practice.

This situation has changed since then as multiple such exports have become
available. In particular, we have developed the MMT language [RK13] and the
concrete syntax of the OMDoc XML format [Koh06] as a uniform representa-
tion language for such corpora. And we have translated multiple proof assistant
libraries into this format, among others those of PVS in [Koh+17]. Building on
these developments, we are now able, for the first time, to apply generic meth-
ods — i.e., methods that work at the MMT level — to search for views in these
libraries.

While inspired by the ideas of [NK07], our design and implementation are
completely novel. In particular, the theory makes use of the rigorous language-
independent definitions of theory and view provided by MMT, and the practical
implementation makes use of the MMT system, which provides high-level APIs
for these concepts.

[GK14] applies techniques related to ours to a related problem. Instead of
views inside a single corpus, they use machine learning to find similar constants
in two different corpora. Their results can roughly be seen as a single partial
view from one corpus to the other.

Approach and Contribution Our contribution is twofold. Firstly, we present the
design and implementation of a generic view finder that works with arbitrary
corpora represented in MMT. The algorithm tries to match two symbols by
unifying their types. This is made efficient by separating the term into a hashed
representation of its abstract syntax tree (which serves as a fast plausibility check
for pre-selecting matching candidates) and the list of symbol occurrences in the
term, into which the algorithm recurses.

Secondly, we apply this view finder in two case studies: In the first, we start
with an abstract theory and try to figure out if it already exists in the same
library – the use case mention above. In the second example, we write down a
simple theory of commutative operators in one language to find all commutative
operators in another library based on a different foundation.
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Overview In Section 2, we revise the basics of MMT and views. Section 3 presents
the view finding algorithm restricted to the intra-library case and showcases it
for the theory classification use case. In Section 4, we extend the algorithm to
inter-library view finding discuss results of applying it to the PVS/NASA library.
Section 5 concludes the paper and discusses additional applications.

2 Preliminaries: MMT and Views

Intuitively, Mmt is a declarative language for theories and views over an arbi-
trary object language. Its treatment of object languages is abstract enough to
subsume most logics and type theories which are practically relevant.

Fig. 1 gives an overview of the fundamental MMT concepts. In the simplest
case, theories Σ are lists of constant declarations c ∶ E, where E is an
expression that may use the previously declared constants. Naturally, E must
be subject to some type system (which MMT is also parametric in), but the
details of this are not critical for our purposes here. We say that Σ′ includes Σ
if it contains every constant declaration of Σ.

meta-theory: a fixed theory M

Theory Σ View σ ∶ Σ → Σ′

set of typed constant declarations c ∶ E assignments c↦ E′

Σ-expressions E formed from M - and Σ-constants mapped to Σ′ expressions

Fig. 1. Overview of MMT Concepts

Correspondingly, a view σ ∶ Σ → Σ′ is a list of assignments c ↦ e′ of
Σ′-expressions e′ to Σ-constants c. To be well-typed, σ must preserve typing,
i.e., we must have ⊢Σ′ e

′ ∶ σ(E). Here σ is the homomorphic extension of σ, i.e.,
the map of Σ-expressions to Σ′-expressions that substitutes every occurrence
of a Σ′-constant with the Σ′-expression assigned by σ. We call σ simple if the
expressions e′ are always Σ′-constants rather than complex expressions. The
type-preservation condition for an assignment c↦ c′ reduces to σ(E) = E′ where
E and E′ are the types of c and c′. We call σ partial if it does not contain an
assignment for every Σ-constant and total otherwise. A partial view from Σ to
Σ′ is the same as a total view from some theory included by Σ to Σ′.

Importantly, we can then show generally at the MMT-level that if σ is well-
typed, then σ preserves all typing and equality judgments over Σ. In particular,
if we represent proofs as typed terms, views preserve the theoremhood of propo-
sitions. This property makes views so valuable for structuring, refactoring, and
integrating large corpora.

MMT achieves language-independence through the use of meta-theories:
every MMT-theory may designate a previously defined theory as its meta-theory.
For example, when we represent the HOL Light library in MMT, we first write a
theory L for the logical primitives of HOL Light. Then each theory in the HOL
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Light library is represented as a theory with L as its meta-theory. In fact, we
usually go one step further: L itself is a theory, whose meta-theory is a logical
framework such as LF. That allows L to concisely define the syntax and inference
system of HOL Light.

However, for our purposes, it suffices to say that the meta-theory is some
fixed theory relative to which all concepts are defined. Thus, we assume that
Σ and Σ′ have the same meta-theory M , and that σ maps all M -constants to
themselves.

Γ ∶∶= (x ∶ E)∗

E ∶∶= c ∣ x ∣ E [Γ ] (E+)

It remains to define the exact syntax of expres-
sions. In the grammar on the right c refers to con-
stants (of the meta-theory or previously declared
in the current theory) and x refers to bound variables. Complex expressions are
of the form o [x1 ∶ t1, . . . , xm ∶ tm] (a1, . . . , an), where
– o is the operator that forms the complex expression,
– xi ∶ ti declares variable of type ti that are bound by o in subsequent variable

declarations and in the arguments,
– ai is an argument of o

The bound variable context may be empty, and we write o (a⃗) instead of o [⋅] (a⃗).
For example, the axiom ∀x ∶ set, y ∶ set. beautiful(x)∧ y ⊆ x⇒ beautiful(y)
would instead be written as

∀ [x ∶ set, y ∶ set] (⇒ (∧ (beautiful (x) ,⊆ (y, x)) ,beautiful (y)))

Finally, we remark on a few additional features of the MMT language that
are important for large-scale case studies but not critical to understand the
basic intuitions of results. MMT provides a module system that allows theories
to instantiate and import each other. The module system is conservative: every
theory can be elaborated into one that only declares constants. MMT constants
may carry an optional definiens, in which case we write c ∶ E = e. Defined
constants can be eliminated by definition expansion.

3 Intra-Library View Finding

Let C be a corpus of theories with the same fixed meta-theory M . We call
the problem of finding theory views between theories of C the view finding
problem and an algorithm that solves it a view finder. Note that a view finder
is sufficient to solve the theory classification use case from the introduction: Jane
provides a M -theory Q of beautiful sets, the view finder computes all (total)
views from Q into C.

Efficiency Considerations The cost of this problem quickly explodes. First of
all, it is advisable to restrict attention to simple views. Eventually we want to
search for arbitrary views as well. But that problem is massively harder because
it subsumes theorem proving: a view from Σ to Σ′ maps Σ-axioms to Σ′-proofs,
i.e., searching for a view requires searching for proofs.
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Secondly, if C has n theories, we have n2 pairs of theories between which to
search. (It is exactly n2 because the direction matters, and even views from a
theory to itself are interesting.) Moreover, for two theories with m and n con-
stants, there are nm possible simple views. (It is exactly nm because views may
map different constants to the same one.) Thus, we can in principle enumerate
and check all possible simple views in C. But for large C, it quickly becomes
important to do so in an efficient way that eliminates ill-typed or uninteresting
views early on.

Thirdly, it is desirable to search for partial views as well. In fact, identifying
refactoring potential in libraries is only possible if we find partial views: then we
can refactor the involved theories in a way that yields a total view. Moreover,
many proof assistant libraries do not follow the little theories paradigm or do
not employ any theory-like structuring mechanism at all. These can only be
represented as a single huge theory, in which case we have to search for partial
views from this theory to itself. While partial views can be reduced to and then
checked like total ones, searching for partial views makes the number of possible
views that must be checked much larger.

Finally, even for a simple view, checking reduces to a set of equality con-
straints, namely the constraints ⊢Σ′ σ(E) = E′ for the type-preservation condi-
tion. Depending on M , this equality judgment may be undecidable and require
theorem proving.

Algorithm Overview A central motivation for our algorithm is that equality
in M can be soundly approximated very efficiently by using a normalization
function on M -expressions. This has the additional benefit that relatively little
meta-theory-specific knowledge is needed, and all such knowledge is encapsulated
in a single well-understood function. This way we can implement view–search
generically for arbitrary M .

Our algorithm consists of two steps. First, we preprocess all constant decla-
rations in C with the goal of moving as much intelligence as possible into a step
whose cost is linear in the size of C. Then, we perform the view search on the
optimized data structures produced by the first step.

3.1 Preprocessing

The preprocessing phase computes for every constant declaration c ∶ E a normal
form E′ and then efficiently stores the abstract syntax tree of E′. Both steps are
described below.

Normalization involves two steps: MMT-level normalization performs generic
transformations that do not depend on the meta-theory M . These include elab-
oration of structured theories and definition expansion, which we mentioned in
Sect. 2. Importantly, we do not fully eliminate defined constant declarations
c ∶ E = e from a theory Σ: instead, we replace them with primitive constants
c ∶ E and replace every occurrence of c in other declarations with e. If Σ is the
domain theory, we can simply ignore c ∶ E (because views do not have to provide
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an assignment to defined constants). But if the Σ is the codomain theory, retain-
ing c ∶ E increases the number of views we can find; in particular in situations
where E is a type of proofs, and hence c a theorem.

Meta-theory-level normalization applies an M -specific normalization
function. In general, we assume this normalization to be given as a black box.
However, because many practically important normalization steps are widely
reusable, we provide a few building blocks, from which specific normalization
functions can be composed. Skipping the details, these include:
1. Top-level universal quantifiers and implications are rewritten into the func-

tion space of the logical framework using the Curry-Howard correspondence.
2. The order of curried domains of function types is normalized as follows: first

all dependent arguments types ordered by the first occurrence of the bound
variables; then all non-dependent argument types A ordered by the abstract
syntax tree of A.

3. Implicit arguments, whose value is determined by the values of the others
are dropped, e.g. the type argument of an equality. This has the additional
benefit or shrinking the abstract syntax trees and speeding up the search.

4. Equalities are normalized such that the left hand side has a smaller abstract
syntax tree.

Above multiple normalization steps make use of a total order on abstract syntax
trees. We omit the details and only remark that we try to avoid using the names
of constants in the definition of the order — otherwise, declarations that could
be matched by a view would be normalized differently. Even when breaking
ties between requires comparing two constants, we can first try to recursively
compare the syntax trees of their types.

Abstract Syntax Trees We define abstract syntax trees as pairs (t, s) where t
is subject to the grammar

t ∶∶= CNat ∣ VNat ∣ t [t
+
] (t+)

(where Nat is a non-terminal for natural numbers) and s is a list of constant
names. We obtain an abstract syntax tree from an MMT expression E by (i)
switching to de-Bruijn representation of bound variables and (ii) replacing all
occurrences of constants with Ci in such a way that every Ci refers to the i-th
element of s.

Abstract syntax trees have the nice property that they commute with the
application of simple views σ: If (t, s) represents E, then σ(E) is represented by
(t, s′) where s′ arises from s by replacing every constant with its σ-assignment.

The above does not completely specify i and s yet, and there are several
possible canonical choices among the abstract syntax trees representing the same
expression. The trade-off is subtle because we want to make it easy to both
identify and check views later on. We call (t, s) the long abstract syntax tree
for E if Ci replaces the i-th occurrence of a constant in E when E is read in left-
to-right order. In particular, the long tree does not merge duplicate occurrences
of the same constant into the same number. The short abstract syntax tree for
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E arises from the long one by removing all duplicates from s and replacing the
Ci accordingly.

Example 1. Consider again the axiom ∀x ∶ set, y ∶ set. beautiful(x) ∧ y ⊆ x⇒
beautiful(y) with internal representation

∀ [x ∶ set, y ∶ set] (⇒ (∧ (beautiful (x) ,⊆ (y, x)) ,beautiful (y))) .

The short syntax tree and list of constants associated with this term would
be:

t = C1 [C2,C2] (C3 (C4 (C5 (V2) ,C6 (V1, V2)) ,C5 (V1)))

s = (∀,set,⇒,∧,beautiful,⊆)

The corresponding long syntax tree is :

t = C1 [C2,C3] (C4 (C5 (C6 (V2) ,C7 (V1, V2)) ,C8 (V1)))

s = (∀,set,set,⇒,∧,beautiful,⊆,beautiful)

For our algorithm, we pick the long abstract syntax tree, which may appear
surprising. The reason is that shortness is not preserved when applying a simple
view: whenever a view maps two different constants to the same constant, the
resulting tree is not short anymore. Length, on the other hand, is preserved.
The disadvantage that long trees take more time to traverse is outweighed by
the advantage that we never have to renormalize the trees.

3.2 Search

Consider two constants c ∶ E and c′ ∶ E′, where E and E′ are preprocessed into
long abstract syntax trees (t, s) and (t′, s′). It is now straightforward to show
the following Lemma:

Lemma 1. The assignment c ↦ c′ is well-typed in a view σ if t = t′ (in which
case s and s′ must have the same length l) and σ also contains si ↦ s′i for
i = 1, . . . , l.

Of course, the condition about si ↦ s′i may be redundant if s contain duplicates;
but because s has to be traversed anyway, it is cheap to skip all duplicates. We
call the set of assignments si ↦ s′i the prerequisites of c↦ c′.

This lemma is the center of our search algorithm explained in

Lemma 2 (Core Algorithm). Consider two constant declarations c and c′ in
theories Σ and Σ′. We define a view by starting with σ = c ↦ c′ and recursively
adding all prerequisites to σ until
– either the recursion terminates
– or σ contains two different assignments for the same constant, in which case

we fail.
If the above algorithm succeeds, then σ is a well-typed partial simple view

from Σ to Σ′.
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Example 2. Consider two constants c and c′ with types ∀x ∶ set, y ∶ set. beau-
tiful(x)∧y ⊆ x⇒ beautiful(y) and ∀x ∶ powerset, y ∶ powerset. finite(x)∧
y ⊆ x⇒ finite(y). Their syntax trees are

t = t′ = C1 [C2,C3] (C4 (C5 (C6 (V2) ,C7 (V1, V2)) ,C8 (V1)))

s = (∀,set,set,⇒,∧,beautiful,⊆,beautiful)

s′ = (∀,powerset,powerset,⇒,∧,finite,⊆,finite)

Since t = t′, we set c ↦ c′ and compare s with s′, meaning we check (ignoring
duplicates) that ∀ ↦ ∀, set ↦ powerset, ⇒↦⇒, ∧ ↦ ∧, beautiful ↦ finite

and ⊆↦⊆ are all valid.

To find all views from Σ to Σ′, we first run the core algorithm on every pair
of Σ-constants and Σ′-constants. This usually does not yield big views yet. For
example, consider the typical case where theories contain some symbol declara-
tions and some axioms, in which the symbols occur. Then the core algorithm
will only find views that map at most one axiom.

Depending on what we intend to do with the results, we might prefer to
consider them individually (e.g. to yield alignments in the sense of [Kal+16]).
But we can also use these small views as building blocks to construct larger,
possibly total ones:

Lemma 3 (Amalgamating Views). We call two partial views compatible if
they agree on all constants for which both provide an assignment.

The union of compatible well-typed views is again well-typed.

Example 3. Consider the partial view from Example 2 and imagine a second
partial view for the axioms beautiful(∅) and finite(∅). The former has the
requirements

∀↦ ∀, set↦ powerset ⇒↦⇒ ∧↦ ∧ beautiful↦ finite ⊆↦⊆

The latter requires only set ↦ powerset and ∅ ↦ ∅. Since both views agree
on all assignments, we can merge all oo them them into a single view, mapping
both axioms and all requirements of both.

3.3 Optimizations

The above presentation is intentionally simple to convey the general idea. We
now describe a few advanced features of our implementation to enhance scala-
bility.

Caching Preprocessing Results Because the preprocessing performs normaliza-
tion, it can be time-consuming. Therefore, we allow for storing the preprocessing
results to disk and reloading them in a later run.
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Fixing the Meta-Theory We improve the preprocessing in a way that exploits
the common meta-theory, which is meant to be fixed by every view. All we have
to do is, when building the abstract syntax trees (t, s), to retain all references to
constants of the meta-theory in t instead of replacing them with numbers. With
this change, s will never contain meta-theory constants, and the core algorithm
will only find views that fix all meta-theory constants. Because s is much shorter
now, the view search is much faster.

It is worth pointing out that the meta-theory is not always as fixed as one
might think. Often we want to consider to be part of the meta-theory certain
constants that are defined early on in the library and then used widely. In PVS,
this makes sense, e.g., for all operations define in the Prelude library (the small
library shipped with PVS). Note that we still only have to cache one set of
preprocessing results for each library: changes to the meta-theory only require
minor adjustments to the abstract syntax trees without redoing the entire nor-
malization.

Biasing the Core Algorithm The core algorithm starts with an assignment c↦ c′

and then recurses into constant that occur in the declarations of c and c′. This
occurs-in relation typically splits the constants into layers. A typical theory de-
clares types, which then occur in the declarations of function symbols, which
then occur in axioms. Because views that only map type and function sym-
bols are rarely interesting (because they do not allow transporting non-trivial
theorems), we always start with assignments where c is an axiom.

Exploiting Theory Structure Libraries are usually highly structured using im-
ports between theories. If Σ is imported into Σ′, then the set of partial views
out of Σ′ is a superset of the set of partial views out of Σ. If implemented naively,
that would yield a quadratic blow-up in the number of views to consider.

Instead, when running our algorithm on an entire library, we only consider
views between theories that are not imported into other theories. In an additional
postprocessing phase, the domain and codomain of each found partial view σ
are adjusted to the minimal theories that make σ well-typed.

Fig. 2. “Beautiful Sets” in MMT Surface Syntax
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3.4 Implementation

Fig. 3. Views found for “Beautiful Sets”

We have implemented our
view finder algorithm in the
MMT system. A screenshot
of Jane’s theory of beauti-
ful sets is given in Figure
2. Right-clicking anywhere
within the theory allows
Jane to select MMT → Find

Views to... → MitM/smglom.
The latter menu offers a
choice of known libraries in
which the view finder should
look for codomain theories; MitM/smglom is the Math-in-the-Middle library based
that we have developed [Deh+16] to describe the common knowledge used in
various CICM systems.

Fig. 4. The Theory of Matroids in the MitM Library

After choosing MitM/smglom,
the view finder finds two
views (within less than one
second) and shows them
(Figure 3). The first of these
(View1) has a theory for
matroids as its codomain,
which is given in Figure 4.
Inspecting that theory and
the assignments in the view,
we see that it indeed repre-
sents the well-known corre-

spondence between beautiful sets and matroids.

4 Inter-Library View Finding

We now generalize to view finding to different libraries written in different logics.
Intuitively, the key idea is that we now have two fixed meta-theories M and M ′

and a fixed meta-view m ∶M →M ′. However, due to the various idiosyncrasies
of logics, tools’ library structuring features, individual library conventions, this
problem is significantly more difficult than intra-library view finding. For exam-
ple, unless the logics are closely related, meta-views usually do not even exist and
must be approximated. Therefore, a lot of tweaking is typically necessary, and it
is possible that multiple runs with different trade-offs give different interesting
results.

As an example, we present a large case study where we find views from the
MitM library used in the running example so far into the PVS/NASA library.
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4.1 The PVS/NASA Library

PVS [ORS92] is a proof assistant under active development based on a higher-
order logic with a number of advanced features. In addition to the Prelude li-
brary, which contains the most common domains of mathematical discourse and
is shipped with PVS itself, there is a large library of formal mathematics devel-
oped and maintained by NASA [PVS]. In [Koh+17], we represent PVS as a meta-
theory in MMT and implemented a translator that transforms both libraries into
MMT format. We use a meta-view that embeds MitM’s higher-order logic into
PVS’s higher-order logic and make sure that we normalize PVS-formulas in the
same way as MitM-formulas.

Theory Structure Normalization PVS’s complex and prevalently used parametric
theories critically affect view finding because they affect the structure of theories.
For example, the theory of groups group def in the NASA library has three
theory parameters (T,∗,one) for the signature of groups, and includes the theory
monoid def with the same parameters, and then declares the axioms for a group
in terms of these parameters. Without special treatment, we could only find
views from/into libraries that use the same theory structure.

We have investigated three approaches of handling parametric theories:

1. Simple treatment: We drop theory parameters and interpret references to
them as free variables that match anything. This is of course not sound
so that all found views must be double-checked. However, because practi-
cal search problems often do not require exact results, even returning all
potential views can be useful.

2. Covariant elimination: We treat theory parameters as if they were constants
declared in the body. In the above mentioned theory group def, we would
hence add three new constants T, ∗ and one with their corresponding types.
This works well in the common case where a parametric theory is not used
with two different instantiations in the same context.

3. Contravariant elimination: The theory parameters are treated as if they
were bound separately for every constant in the body of the theory. In
the above mentioned theory group def, we would change e.g. the unary
predicate inverse exists? with type T → bool to a function with type
(T ∶ pvstype) → (∗ ∶ T → T → T ) → (one ∶ T ) → (T → bool). This is closest
to the actual semantics of the PVS module system. But it makes finding in-
teresting views the least likely because it is the most sensitive to the modular
structure of individual theories.

We have implemented the first two approaches. The first is the most straight-
forward but it leads to many false positives and false negatives. We have found
the second approach to be the most useful for inter-library search since it most
closely corresponds to simple formalizations of abstract theories in other li-
braries. The third approach will be our method of choice when investigating
intra-library views of PVS/NASA in future work.
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4.2 Implementation

As a first use case, we can write down a theory for a commutative binary operator
using the MitM foundation, while targeting the PVS Prelude library – allowing
us to find all commutative operators, as in Figure 5 (using the simple approach
to theory parameters).

Fig. 5. Searching for Commutative Operators in PVS

This example also hints at a way to iteratively improve the results of the
view finder: since we can find properties like commutativity and associativity,
we can use the results to in turn inform a better normalization of the theory
by exploiting these properties. This in turn would potentially allow for finding
more views.

To evaluate the approaches to theory parameters we used a simple theory of
monoids in the MitM foundation and the theory of monoids in the NASA library
as domains for viewfinding with the whole NASA library as target using simple
and covariant approaches. The results are summarized in Figure 6.

Domain Normalization Simple Views Aggregated

NASA/monoid simple 388 154
MitM/monoid simple 32 17

NASA/monoid covariant 1026 566
MitM/monoid covariant 22 6

Fig. 6. Results of Inter- and Intra-Library View Finding in the PVS NASA Library
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Most of the results in the simple MitM→NASA case are artifacts of the theory
parameter treatment and view amalgamation – in fact only two of the 17 results
are meaningful (to operations on sets and the theory of number fields). In the
covariant case, the additional requirements lead to fuller (one total) and less
spurious views. With a theory from the NASA library as domain, the results are
already too many to be properly evaluated by hand. With the simple approach to
theory parameters, most results can be considered artifacts; in the covariant case,
the most promising results yield (partial) views into the theories of semigroups,
rings (both the multiplicative and additive parts) and most extensions thereof
(due to the duplication of theory parameters as constants).

5 Conclusion

We present a general MKM utility that given a MMT theory and an MMT library
L finds partial and total views into L. Such a view finder can be used to drive
various MKM applications ranging from theory classification to library merging
and refactoring. The theory discovery use case described in Sect. 3.4 is mostly
desirable in a setting where a user is actively writing or editing a theory, so the
integration in jEdit is sensible. However, the inter-library view finding would
be a lot more useful in a theory exploration setting, such as when browsing
available archives on MathHub [Ian+14] or in the graph viewer integrated in
Mmt [RKM17].

Future Work The current view finder is already efficient enough for the limited
libraries we used for testing. To increase efficiency, we plan to explore term
indexing techniques [Gra96] that support 1 ∶ n and even n ∶ m matching and
unification queries. The latter will be important for the library refactoring and
merging applications which look for all possible (partial and total) views in one
or between two libraries. As such library-scale operations will have to be run
together with theory flattening to a fixed point and re-run upon every addition
to the library, it will be important to integrate them with the MMT build system
and change management processes [AM10; Ian12].

Enabled Applications Our work enables a number of advanced applications.
Maybe surprisingly, a major bottleneck here concerns less the algorithm or soft-
ware design challenges but user interfaces and determining the right application
context.
– Model-/Countermodel Finding: If the codomain of a view is a theory

representing a specific model, it would tell Jane that those are examples of
her abstract theory. Furthermore, partial views – especially those that are
total on some included theory – could lead to insightful counterexamples.

– Library Refactoring: Given that the view finder looks for partial views,
we can use it to find natural extensions of a starting theory. Imagine Jane
removing the last of her axioms for “beautiful sets” – the other axioms (dis-
regarding finiteness of her sets) would allow her to find e.g. both Matroids
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and Ideals, which would suggest to her to possibly refactor her library such
that both extend her new theory. Additionally, surjective partial views would
inform her, that her theory would probably better be refactored as an ex-
tension of the codomain, which would allow her to use all theorems and
definitions therein.

– Theory Generalization: If we additionally consider views into and out
of the theories found, this can make theory discovery even more attractive.
For example, a view from a theory of vector spaces intro matroids could
inform Jane additionally, that her beautiful sets, being matroids, form a
generalization of the notion of linear independence in linear algebra.

– Folklore-based Conjecturing: If we have theory T describing (the prop-
erties of) a class O of objects under consideration and a view v ∶ S ↝ T ,
then we can use extensions of S′ in L with ι ∶ S ↪ S′ for making conjec-
tures about O: The v-images of the local axioms of S′ would make useful
properties to establish about O, since they allow pushing out v over ι to a
view v′ ∶ S′ ↝ T ′ (where T ′ extends T by the newly imported properties)
and gain v′(S′) as properties of O. Note that we would need to keep book
on our transformations during preprocessing and normalization, so that we
could use the found views for translating both into the codomain as well as
back from there into our starting theory. A useful interface might specifically
prioritize views into theories on top of which there are many theorems and
definitions that have been discovered.

Note that even though the algorithm is in principle symmetric, some aspects
often depend on the direction — e.g. how we preprocess the theories, which con-
stants we use as starting points or how we aggregate and evaluate the resulting
(partial) views (see Sections 3.3, 3.1 and 4.1).
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