
Theories as Types

Dennis Müller1, Florian Rabe1,2, and Michael Kohlhase1

1 Computer Science, FAU Erlangen-Nürnberg
2 LRI, Université Paris Sud

Abstract. Theories are an essential structuring principle that enable
modularity, encapsulation, and reuse in formal libraries and programs
(called classes there). Similar effects can be achieved by dependent record
types. While the former form a separate language layer, the latter are a
normal part of the type theory. This overlap in functionality can render
different systems non-interoperable and lead to duplication of work.

We present a type-theoretic calculus and implementation of a variant of
record types that for a wide class of formal languages naturally corre-
sponds to theories. Moreover, we can now elegantly obtain a contravari-
ant functor that reflects the theory level into the object level: for each
theory we obtain the type of its models and for every theory morphism a
function between the corresponding types. In particular this allows shal-
low – and thus structure-preserving – encodings of mathematical knowl-
edge and program specifications while allowing the use of object-level
features on models, e.g. equality and quantification.

1 Introduction

In the area of formal systems like type theories, logics, and specification and
programming languages, various language features have been studied that allow
for inheritance and modularity, e.g., theories, classes, contexts, and records. They
all share the motivation of grouping a list of declarations into a new entity such
as in R = ⟦x1 ∶ A1, . . . , xn ∶ An⟧. The basic intuition behind it is that R behaves
like a product type whose values are of the form jx1 ∶ A1 ∶= a1, . . . , xn ∶ An ∶= ano.
Such constructs are indispensable already for elementary applications such as
defining the algebraic structure of Semilattices (as in Figure 1), which we will
use as a running example.

Semilattice =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ∶ type
∧ ∶ U → U → U
assoc ∶ ⊢ ∀x, y, z ∶ U. (x ∧ y) ∧ z ≐ x ∧ (y ∧ z)
commutative ∶ . . .
idempotent ∶ . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 1. A Grouping of Declarations for Semilattices



Name of feature
System stratified integrated

ML signature/module record
C++ class class, struct
Java class class
Idris [Bra13] module record
Coq [Coq15] module record
HOL Light [Har96] ML signatures records
Isabelle [Wen09] theory, locale record
Mizar [TB85] article structure
PVS [ORS92] theory record
OBJ [Gog+93] theory
FoCaLiZe [Har+12] species record

Many systems sup-
port stratified group-
ing (where the lan-
guage is divided into
a lower level for the
base language and a
higher level that intro-
duces the grouping con-
structs) or integrated
grouping (where the
grouping construct is
one out of many type-
forming operations with-
out distinguished onto-
logical status), or both. The names of the grouping constructs vary between
systems, and we will call them theories and records in the sequel. An overview
of some representative examples is given in the table on the right.

The two approaches have different advantages. Stratified grouping permits
a separation of concerns between the core language and the module system. It
also captures high-level structure well in a way that is easy to manage and dis-
cover in large libraries, closely related to the advantages of the little theories
approach [FGT92]. But integrated grouping allows applying base language op-
erations (such as quantification or tactics) to the grouping constructs. For this
reason, the (relatively simple) stratified Coq module system is disregarded in
favor of records in major developments such as [Mat].

Allowing both features can lead to a duplication of work where the same hi-
erarchy is formalized once using theories and once using records. A compromise
solution is common in object-oriented programming languages, where classes be-
have very much like stratified grouping but are at the same time normal types
of the type system. We call this internalizing the higher level features. While
combining advantages of stratified and integrated grouping, internalizing is a
very heavyweight type system feature: stratified grouping does not change the
type system at all, and integrated grouping can be easily added to or removed
from a type system, but internalization adds a very complex type system fea-
ture from the get-go. It has not been applied much to logics and similar formal
systems: the only example we are aware of is the FoCaLiZe [Har+12] system. A
much weaker form of internalization is used in OBJ and related systems based
on stratified grouping: here theories may be used as (and only as) the types
of parameters of parametric theories. Most similarly to our approach, OCaml’s
first-class modules internalize the theory (called module type in OCaml) M as
the type moduleM ; contrary to both OO-languages and our approach, this kind
of internalization is in addition and unrelated to integrated grouping.

In any case, because theories usually allow for advanced declarations like
imports, definitions, and notations, as well as extra-logical declarations, system-
atically internalizing theories requires a correspondingly expressive integrated

2



grouping construct. Records with defined fields are comparatively rare; e.g.,
present in [Luo09] and OO-languages. Similarly, imports between record types
and/or record terms are featured only sporadically, e.g., in Nuprl [Con+86],
maybe even as an afterthought only.

Finally, we point out a closely related trade-off that is orthogonal to our
development: even after choosing either a theory or a record to define grouping,
many systems still offer a choice whether a declaration becomes a parameter or
a field. See [SW11] for a discussion.

Contribution We present the first formal system that systematically internalizes
theories into record types. The central idea is to use an operator Mod that turns
the theory T into the type Mod (T ), which behaves like a record type. We take
special care not to naively compute this record type, which would not scale well
to the common situations where theories with hundreds of declarations or more
are used. Instead, we introduce record types that allow for defined fields and
merging so that Mod (T ) preserves the structure of T .

Our approach combines the advantages of stratified and integrated grouping
in a lightweight language feature that is orthogonal to and can be easily com-
bined with other foundational language features. Concretely, it is realized as a
module in the Mmt framework [Rab17b], which allows for the modular design of
foundational languages. By combining our new modules with existing ones, we
obtain many formal systems with internalized theories. In particular, our typing
rules conform to the abstractions of Mmt so that Mmt’s type reconstruction
[Rab17a] is immediately applicable to our features. We showcase the potential
in a case study based on this implementation, and which is interesting in its own
right: A formal library of elementary mathematical concepts that systematically
utilizes Mod (⋅) throughout for algebraic structures, topological spaces etc.

Overview We formulate our approach in the setting of a dependently-typed λ-
calculus, which we recall in Sect. 2. This section also serves as a gentle primer for
defining language features in Mmt. Sect. 4 introduces our notion of record types,
based on which we introduce the model-operator in Sect. 5. Sect. 6 presents our
implementation and a major case study on elementary mathematics. This paper
is an extended version of [MRK18].

2 Preliminaries

We introduce the well-known dependently-typed lambda calculus as the starting
point of our development. The grammar is given in Figure 2. The only surprise
here is that we allow optional definitions in contexts; this is a harmless conve-
nience at this point but will be critical later on when we introduce records with
defined fields. As usual, we write T → T ′ instead of ∏x∶T T ′ when possible. We
also write T [x/T ′] for the usual capture-avoiding substitution of T ′ for x in T .

Mmt uses a bidirectional type system, i.e., we have two separate judgments
for type inference and type checking. Similarly, we have two equality judgments:

3



Γ ∶∶= ⋅ ∣ Γ,x[∶ T ][∶= T ] contexts
T ∶∶= x ∣ type ∣ kind variables and universes

∣ ∏x∶T ′ T ∣ λx ∶ T ′.T ∣ T1T2 dependent function types

Fig. 2. Grammar for Contexts and Expressions

one for checking equality of two given terms and one for reducing a term to
another one. Our judgments are given in Figure 3.

Adding record types in Section 4 will introduce non-trivial subtyping, e.g.,
⟦x ∶ T, y ∶ S⟧ is a subtype of ⟦x ∶ T ⟧.3 Therefore, we already introduce a subtyping
judgment here even though it is not needed for dependent function types yet.
For our purposes, it is sufficient (and desirable) to consider subtyping to be an
abbreviation: Γ ⊢ T1 <∶ T2 iff for all t Γ ⊢ t⇐ T1 implies Γ ⊢ t⇐ T2.

Judgment Intuition

⊢ Γ ctx Γ is a well-formed context

Γ ⊢ t⇐ T t checks against type/kind T .

Γ ⊢ t⇒ T type/kind of term t is inferred to be T

Γ ⊢ t1 ≡ t2 ∶ T t1 and t2 are equal at type T

Γ ⊢ t1 ↝ t2 t1 computes to t2
Γ ⊢ T1 <∶ T2 T1 is a subtype of T2

Fig. 3. Judgments

The pre/postconditions of these judgments are as follows: Γ ⊢ t ⇐ T
assumes that T is well-typed and implies that t is well-typed. Γ ⊢ t⇒ T implies
that both t and T are well-typed. Γ ⊢ t1 ↝ t2 implies that t2 is well-typed iff t1
is (which puts additional burden on computation rules that are called on not-
yet-type-checked terms). Equality and subtyping are only used for expressions
that are assumed to be well-typed, i.e., Γ ⊢ t1 ≡ t2 ∶ T implies Γ ⊢ ti ⇐ T , and
Γ ⊢ T1 <∶ T2 implies that Ti is a type/kind.

Remark 1 (Horizontal Subtyping and Equality). The equality judgment could
alternatively be formulated as an untyped equality t ≡ t′. That would require
some technical changes to the rules but would usually not be a huge difference.
In our case, however, the use of typed equality is critical.

For example, consider record values r1 = ja ∶= 1, b ∶= 1o and r2 = ja ∶= 1, b ∶= 2o
as well as record types R = ⟦a ∶ nat⟧ and S = ⟦a ∶ nat, b ∶ nat⟧. Due to horizontal
subtyping, we have S <∶ R and thus both ri ⇐ S and ri ⇐ R. This has the
advantage that the function S → R that throws away the field b becomes the
identity operation. Now our equality at record types behaves accordingly and
checks only for the equality of those fields required by the type. Thus, r1 ≡ r2 ∶ R
is true whereas r1 ≡ r2 ∶ S is false, i.e., the equality of two terms may depend on
the type at which they are compared. While seemingly dangerous, this makes

3 This is sometimes called horizontal subtyping. In that case, the straightforward
covariance rule for record types is called vertical subtyping.

4



sense intuitively: r1 can be replaced with r2 in any context that expects an
object of type R because in such a context the field b, where r1 and r2 differ, is
inaccessible.

Of course, this treatment of equality precludes downcasts: an operation that
casts the equal terms r1 ∶ R and r2 ∶ R into the corresponding unequal terms of
type S would be inconsistent. But such downcasts are still possible (and valuable)
at the meta-level. For example, a tactic GroupSimp(G,x) that simplifies terms
x in a group G can check if G is commutative and in that case apply more
simplification operations.

For U ∈ {type,kind}:

⊢⋅ ctx

⊢Γ ctx Γ⊢T⇐U

⊢Γ,x∶T ctx

⊢Γ ctx Γ⊢t⇐T

⊢Γ,x∶T ∶=t ctx

⊢Γ ctx Γ⊢t⇐T

⊢Γ,x∶=t ctx

⊢Γ ctx x∶T [∶=t]∈Γ

Γ⊢x⇒T

⊢Γ ctx x[∶T ′]∶=t∈Γ Γ⊢x⇒T

Γ⊢x≡t∶T
Γ⊢t⇒T ′ Γ⊢T≡T ′ ∶U

Γ⊢t⇐T

Γ⊢t1↝t′1 Γ⊢t2↝t′2 Γ⊢t′1≡t
′

2 ∶T

Γ⊢t1≡t2 ∶T

⊢Γ ctx

Γ⊢type⇒kind

Fig. 4. General Rules

The general rules of the framework are given in Figure 4. The upper row
contains the rules for contexts. Note that even though we allow the type T of
a variable to be omitted (which will be helpful for records later), that is only
allowed if a definiens t is present. (T must be inferable from t or otherwise
known from the environment.) The middle row contains the rules for looking up
the type and definition of variable. The bottom row contains the bidirectional-
ity rules, which algorithmically are the default rules that are applied when no
type (resp. equality) checking rules are available: switch to type inference (resp.
computation) and compare inferred and expected type (resp. the results). The
last rule introduces the two universes. We refer to [Rab17a] for the general rules
about equality, which we omit here. They consist of α-renaming and the rules
that make equality a congruence relation.

The specific rules for the dependent function types are given in Figure 5.
These rules follow a general pattern: The upper row contains one inference
rule for each constructor. The bottom row contains a type checking rule and
an equality checking rule (i.e., extensionality) at ∏-types as well as the usual
β-computation rule. We do not have an η-rule because it is equivalent to exten-
sionality.

We can now show that the usual variance rule for function types is derivable

Theorem 1. The following subtyping rule is derivable:

Γ ⊢ A <∶ A′ Γ,x ∶ A ⊢ B′ <∶ B
Γ ⊢∏x∶A′ B′ <∶∏x∶AB

5



For U ∈ {type,kind}:

Γ⊢A⇐type Γ,x∶A⊢B⇒U

Γ⊢∏x∶AB⇒U

Γ,x∶A⊢N⇒B

Γ⊢λx∶A.N⇒∏x∶AB

Γ⊢F⇒C Γ⊢C≡∏x∶AB∶U Γ⊢t⇐A

Γ⊢Ft⇒B[x/t]

Γ,x∶A⊢fx⇐B

Γ⊢f⇐∏x∶AB

Γ,x∶A⊢fx≡gx∶B

Γ⊢f≡g∶∏x∶AB

Γ⊢a⇐A

Γ⊢(λx∶A. t)a↝t[x/a]

Fig. 5. Rules for Dependent Function Types

Proof. Assume Γ ⊢ A <∶ A′, Γ ⊢ B′ <∶ B. We need to show Γ, f ∶∏x∶A′ B′ ⊢ f ⇐
∏x∶AB.

By Figure 5 we need to show Γ, f ∶∏x∶A′ B′, x ∶ A ⊢ fx⇐ B. Since Γ ⊢ A <∶ A′

we have Γ,x ∶ A ⊢ x⇐ A′ and consequently Γ, f ∶∏x∶A′ B′, x ∶ A ⊢ fx⇐ B′[x/x],
so the claim follows by Γ ⊢ B′ <∶ B.

Moreover, we can show that every well-typed term t has a principal type
T in the sense that (i) Γ ⊢ t ⇐ T and (ii) whenever Γ ⊢ t ⇐ T ′, then also
Γ ⊢ T <∶ T ′. The principal type is exactly the one inferred by our rules (see
Theorem 2).

3 Related Work

Languages can differ substantially in the syntax and semantics of these con-
structs. Our interest here is in one difference in particular, which we call the
difference between stratified and integrated grouping.

3.1 Analysis

With stratified grouping, the language is divided into a lower level for the
base language and a higher level that introduces the grouping constructs. For
example, the SML module system is stratified: it uses a simply typed λ-calculus
at the lower level and signatures for the type-like and structures for the value-like
grouping constructs at the higher level. Critically, the higher level constructs are
not valid objects at the lower level: even though signatures behave similarly to
types, they are not types of base language. With integrated grouping, only one
level exists: the grouping construct is one out of many type-forming operations
of the base language with no distinguished ontological status. For example, SML
also provides record types as a grouping construct that is integrated with the
type system.

Stratified languages have the advantage that they can be designed in a way
that yields a conservativity property: all higher level features can be seen as
abbreviations that can be compiled into base language. This corresponds to a
typical historical progression where a simple base language is designed first and
studied theoretically (e.g., the simply-typed λ-calculus) and grouping is added
later when practical applications demand it. But they have the disadvantage that
they tend towards a duplication of features: many operations of the lower level

6



are also desirable at the higher level. For example, SML functors are essentially
functions whose domain and codomain are signatures, a duplication of the func-
tion types that already exist in the base language. In logics, this problem is even
more severe because quantification and equality (and eventually tactics, decision
procedures etc.) quickly become desirable at the higher level as well, at which
point a duplication of features tends to become infeasible. A well-known exam-
ple of this trap is the stratified Coq module system (inspired by SML), which
practitioners often dismiss in favor of using record types, most importantly in
the mathematical components project [Mat].

This may lead us to believe that record types are the way to go — but this
is not ideal either. Record types usually do not support advanced declarations
like imports, definitions, and notations, which are commonplace in stratified
languages and indispensable in practice. Depending on the system, record types
may also forbid some declarations such as type declarations (which would require
a higher universe to hold the record type), dependencies between declarations
(which would require dependent types), and axioms (which do not fit the record
paradigm in systems that do not use a propositions-as-types design). And com-
plex definition principles such as for inductive types and recursive functions
are often placed into a stratified higher level just to handle their inherent diffi-
culty. Moreover, stratified grouping has proved very appropriate for organizing
extra-logical declarations such as prover instructions (e.g., tactics, rewrite rules,
unification hints) examples, sectioning, comments, and metadata. While some
systems use files as a simple, implicit higher level grouping construct, most sys-
tems use an explicit one. The exalted status of higher level grouping also often
supports documentation and readability because it makes the large-scale struc-
ture of a development explicit and obvious. This is particularly helpful when
formalizing software specifications or mathematical theories, whose structure
naturally corresponds to those offered by higher-level grouping. In their work on
integrating theorem prover libraries, the authors have experienced that this cor-
respondence makes it much easier to compare and integrate different stratified
formalizations of the same concepts.

3.2 Related Work

[Luo09] presents an extension of the logical framework LF with record types
with manifest fields. The latter are implemented using unit types and im-
plicit type coercions are used for prjecting the manifest fields. The main
difference is that our implementation uses the same contexts for both strat-
ified and integrated groupings, which allows for bridging the gap between
the two easily. Furthermore, we allow merging of records and record types
(see Section 4.2) to make manifest fields accessible without having to restate
them for each instance of a type.

OO-languages use classes for stratified groupings, the corresponding types of
which basically represent integrated groupings. Classes however can usually
only ever linearly extend one superclass and need all of their fields (except
for parameters) instantiated.

7



Interfaces (e.g. in Java) somewhat fix the latter problem by allowing almost
arbitrary mixing, but have different restrictions in that fields may not be
defined in interfaces at all.
Traits and Abstract Classes in Scala finally allow almost arbitrary mixing
and implementing or omitting of definitions. These probably come closest to
our implementation.

PVS [ORS92] is an interactive theorem prover system with a highly expressive
language. PVS uses theories (which may be parametric) for stratified group-
ings and records for integrated groupings, but no mechanism to convert
between the two exists.
While theories may extends arbitrary other theories, record types an only be
extended linearly and only by fields independent of the base type they extend
– so basically only two record types that are independently well-typed can
be merged.

Agda [Nor05] uses Modules (which may be parametric) for stratified groupings
and records for integrated groupings. While all “fields” in a Module need to
be defined, the parameters can be thought of as undefined fields in a record
type. Parameters are abstracted away when a module is closed.
Additionally, Agda has records. While there is no primitive way to convert
modules to record types, converting records to modules manually to open
all fields in the current context seems to be a popular trick.

Coq [Coq15] uses several variants of groupings:
● Simple dependent records for integrated groupings.
● Modules for stratified groupings, which can be extended by definitions

almost arbitrarily using module functors, but only linearly in their sig-
nature.

● Structures
● Type classes [SW11]

HOL Light [Har96] simply uses OCaml files for stratified groupings. Record
types are available, but simple and rarely used.

Isabelle [Wen09] has simple records for integrated groupings, and theories for
stratified groupings. Both records and record types are exensible.
Locales are structural features which can be used to switch from stratified
groupings to an integrated perspective, by generating predicates for the sig-
nature of a locale. While locales can be extended by definitions and provable
theorems, their signature is fixed. Extending locales is done by redeclaring
the corresponding signature in a sublocale, which generates the correspond-
ing proof obligations.

Idris [Bra13]
Nuprl [Con+86]
Mizar [TB85]
Maude [Cla+96] Uses views from theories to modules to convert from stratified

to internalized groupings; although theories are strictly limited to providing
(undefined) signatures, and hence only serve as interfaces to modules.

OCaml [ocaml] Uses modules and signatures for stratified and records for inte-
grated groupings. Modules can be used like values using first-class modules,
effectively allowing to treat them like objects in object-oriented languages.

8



4 Record Types with Defined Fields

We now introduce record types as an additional module of our framework by
extending the grammar and the rules. The basic intuition is that ⟦Γ ⟧ and jΓ o
construct record types and terms. We call a context fully typed resp. defined
if all fields have a type resp. a definition. In ⟦Γ ⟧, Γ must be fully typed and may
additionally contain defined fields. In jΓ o, Γ must be fully defined; the types are
optional and usually omitted in practice.

Because we frequently need fully defined contexts, we introduce a notational
convention for them: a context denoted by a lower case letters like γ is always
fully defined. In contrast, a context denoted by an upper case letter like Γ may
have any number of types or definitions.

4.1 Records

We extend our grammar as in Figure 6, where the previously existing parts are
grayed out.

Γ ∶∶= ⋅ ∣ Γ,x[∶ T ][∶= T ]
T ∶∶= x ∣ type ∣ kind

∣ ∏x∶T ′ T ∣ λx ∶ T ′.T ∣ T1T2

∣ ⟦Γ ⟧ ∣ jΓ o ∣ T.x record types, terms, projections

Fig. 6. Grammar for Records

Remark 2 (Field Names and Substitution in Records). Note that we use the same
identifiers for variables in contexts and fields in records. This allows reusing re-
sults about contexts when reasoning about and implementing records. In par-
ticular, it immediately makes our records dependent, i.e., both in a record type
and — maybe surprisingly — in a record term every variable x may occur in
subsequent fields. In some sense, this makes x bound in those fields. However,
record types are critically different from Σ-types: we must be able to use x in
record projections, i.e., x can not be subject to α-renaming.

As a consequence, capture-avoiding substitution is not always possible. This
is a well-known problem that is usually remedied by allowing every record to
declare a name for itself (e.g., the keyword this in many object-oriented lan-
guages), which is used to disambiguates between record fields and a variable in
the surrounding context (or fields in a surrounding record). We gloss over this
complication here and simply make substitution a partial function.

Before stating the rules, we introduce a few critical auxiliary definition:

Definition 1 (Substituting in a Record). We extend substitution t[x/t′] to
records:

9



– ⟦x1 ∶ T1, . . . , xn ∶ Tn⟧ [y/t]

= {⟦x1 ∶ T1[y/t], . . . , xi−1 ∶ Ti−1[y/t], xi ∶ Ti, . . . , xn ∶ Tn⟧ if y = xi
⟦x1 ∶ (T1[y/t]), . . . , xn ∶ (Tn[y/t])⟧ else

if none of the xi are free in t. Otherwise the substitution is undefined.

– jx1 ∶= t1, . . . , xn ∶= tno [y/t] = {jx1 ∶= t1, . . . , xn ∶= tno if y ∈ {x1, . . . , xn}
jx1 ∶= (t1[y/t]), . . . , xn ∶= (tn[y/t])o else

if none of the xi are free in t. Otherwise the substitution is undefined.
– (r.x)[y/t] = (r[y/t]).x.

Definition 2 (Substituting with a Record). We write t[r/∆] for the result
of substituting any occurrence of a variable x declared in ∆ with r.x

In the special case where r = jδo, we simply write t[δ] for t[jδo /δ], i.e., we
have t[x1 ∶= t1, . . . , xn ∶= tn] = t[xn/tn] . . . [x1/t1].

Formation:

⊢ Γ,∆ ctx ∆ fully typed max∆ ∈ {type,kind}
Γ ⊢ ⟦∆⟧⇒max∆

where max∆ is the maximal universe of all undefined fields in ∆
Introduction:

⊢ Γ,∆ ctx δ fully defined ∆ like δ but with all missing types inferred

Γ ⊢ jδo⇒ ⟦∆⟧

Elimination:
Γ ⊢ r⇒ ⟦∆1, x ∶ T [∶= t],∆2⟧

Γ ⊢ r.x⇒ T [r/∆1]
Type checking:

For x ∶ T [∶= t] ∈∆
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Γ ⊢ r.x⇐ T [r/∆]

additionally for x ∶ T ∶= t ∈∆
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Γ ⊢ r.x ≡ t[r/∆] ∶ T [r/∆] Γ ⊢ r⇒ R

Γ ⊢ r⇐ ⟦∆⟧

Equality checking (extensionality):

For every (x ∶ T ) ∈∆
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Γ ⊢ r1.x ≡ r2.x ∶ T [r1/∆]

Γ ⊢ r1 ≡ r2 ∶ ⟦∆⟧

Computation:

δ = δ1, x[∶ T ] ∶= t, δ2 Γ ⊢ jδo⇒ R

Γ ⊢ jδo .x↝ t[δ1]
Γ ⊢ r⇒ ⟦∆1, x ∶ T ∶= t,∆2⟧

Γ ⊢ r.x↝ t[r/∆1]

Fig. 7. Rules for Records

Our rules for records are given in Figure 7. Their roles are systematically
similar to the rules for functions: three inference rules for the three constructors

10



followed by a type and an equality checking rule for record types and the (in
this case: two) computation rules. We remark on a few subtleties below.

The formation rule is partial in the sense that not every context defines a
record type or kind. This is because the universe of a record type must be as
high as the universe of any undefined field to avoid inconsistencies. For example,
max(a ∶ nat) = type, max(a ∶ type) = kind and max(a ∶ kind) is not defined. If
we switched to a countable hierarchy of universes (which we avoid for simplicity),
we could turn every context into a record type.

The introduction rule infers the principal type of every record term. Because
we allow record types with defined fields, this is the singleton type containing
only that record term. This may seem awkward but does not present a problem
in practice, where type checking is preferred over type inference anyway.

The elimination rule is straightforward, but it is worth noting that it is
entirely parallel to the second computation rule.4

The type checking rule has a surprising premise that r must already be well-
typed (against some type R). Semantically, this assumption is necessary because
we only check the presence of the fields required by ⟦∆⟧ — without the extra
assumption, typing errors in any additional fields that r might have could go
undetected. In practice, we implement the rule with an optimization: If r is
a variable or a function application, we can efficiently infer some type for it.
Otherwise, if r = jδo, some fields of δ have already been checked by the first
premise, and we only need to check the remaining fields. The order of premises
matters in this case: we want to first use type checking for all fields for which ⟦∆⟧
provides an expected type before resorting to type inference on the remaining
fields.

In the equality checking rule, note that we only have to check equality at
undefined fields — the other fields are guaranteed to be equal by the assumption
that r1 and r2 have type ⟦∆⟧.

Like the type checking rule, the first computation rule needs the premise that
r is well-typed to avoid reducing an ill-typed into a well-typed term. In practice,
our framework implements computation with a boolean flag that tracks whether
the term to be simplified can be assumed to be well-typed or not; in the former
case, this assumption can be skipped.

The second computation rule looks up the definition of a field in the type of
the record. Both computation rules can be seen uniformly as definition lookup
rules — in the first case the definition is given in the record, in the second case
in its type.

Example 1. Figure 8 shows a record type of Semilattices (actually, this is a
kind because it contains a type field) analogous to the grouping in Figure 1
(using the usual encoding of axioms via judgments-as-types and higher-order
abstract syntax for first-order logic).

Then, given a record r ∶ Semilattice, we can form the record projection
r.∧, which has type r.U → r.U → r.U and r.assoc yields a proof that r.∧ is

4 Note that it does not matter how the fields of the record are split into ∆1 and ∆2

as long as ∆1 contains all fields that the declaration of x depends on.

11



Semilattice ∶=

LPPPPPPPPPN

U ∶ type
∧ ∶ U → U → U
assoc ∶ ⊢ ∀x, y, z ∶ U. (x ∧ y) ∧ z ≐ x ∧ (y ∧ z)
commutative ∶ . . .
idempotent ∶ . . .

MQQQQQQQQQO

Fig. 8. The (Record-)Kind of Semilattices

associative. The intersection on sets forms a semilattice so (assuming we have
proofs ∩−assoc, ∩−comm, ∩−idem with the corresponding types) we can give an
instance of that type as

interSL ∶ Semilattice ∶= jU ∶= Set,∧ ∶= ∩,assoc ∶= ∩−assoc, . . .o

Theorem 2 (Principal Types). Our inference rules infer a principal type for
each well-typed normal term.

Proof. Let Γ be a fixed well-typed context. We need to show that for any normal
expression t the inferred type is the most specific one, meaning if Γ ⊢ t ⇒ T ,
then for any T ′ with Γ ⊢ t⇐ T ′ we have Γ ⊢ T <∶ T ′.

If the only type checking rule applicable to a term t is an inference rule, then
the only way for t to check against a type T ′ which is not the inferred type T
is by first inferring T and then checking Γ ⊢ T <∶ T ′, so in these cases the claim
follows by default.

By induction on the grammar:

t = x and x ∶ T ∈ Γ , then Γ ⊢ t⇒ T , which is principal by default.
t = type then Γ ⊢ t⇒ kind, which is principal by default.
t = kind is untyped.
t =∏x∶AB then Γ ⊢ t⇒ U , where U ∈ {kind,type}, both of which are principal

by default.
t = λx ∶ A.t′ then for some B ∶ U we have Γ,x ∶ A ⊢ t′ ⇒ B, which is principal by

default.
t = fa then Γ ⊢ t ⇒ B[x/a], where Γ ⊢ f ⇒ ∏x∶AB Γ ⊢ a ⇒ A′ are both

principal types and for well-typedness Γ ⊢ A′ <∶ A needs to hold. Since t is
normal, f does not simplify to a lambda-expression and B[x/a] is principal
by default.

t = ⟦∆⟧ then Γ ⊢ t⇒ U , where U ∈ {kind,type}, both of which are unique and
hence principal.

t = jδo then Γ ⊢ r⇒ ⟦∆⟧, wheren ∆ contains the exact same variables, but with
all types inferred (and by induction hypothesis principal). For t to check
against a type, it has to have the form ⟦∆′⟧, hence we need to show that if
Γ ⊢ t⇐ ⟦∆′⟧, then Γ, r ∶ ⟦∆⟧ ⊢ r⇐ ⟦∆′⟧.
Consider the type checking rule for records in Figure 7 and let x ∶ T [∶= d] ∈
∆′. Since Γ ⊢ t⇐ ⟦∆′⟧, we have Γ ⊢ r.x⇐ T (and if x is defined in ∆′ also
Γ ⊢ t.x ≡ d ∶ T ) and since ∆ is inferred from t we have x ∶ T ′ ∶= d in ∆, where
by hypothesis T ′ is the principal type of d and hence Γ ⊢ T ′ <∶ T .

12



As a result, Γ, r ∶ ⟦∆⟧ ⊢ r.x ⇒ T ′, therefore Γ, r ∶ ⟦∆⟧ ⊢ r.x ⇐ T and
Γ, r ∶ ⟦∆⟧ ⊢ r.x ≡ d ∶ T and hence Γ, r ∶ ⟦∆⟧ ⊢ r ⇐ ⟦∆′⟧, which makes ⟦∆⟧
the principal type of t.

t = r.x Since t is normal, we have Γ ⊢ r.x ⇒ T [r/∆1] for some Γ ⊢ r ⇒
⟦∆1, x ∶ T,∆2⟧. Since the latter is by hypothesis the principal type of r,
for t to typecheck against some T ′ it needs to be the case that r type checks
against some R = ⟦∆′

1, x ∶ T ′,∆′
2⟧ and Γ ⊢ T <∶ T ′ holds by the principal

type of r.

In analogy to function types, we can derive the subtyping properties of record
types. We introduce context subsumption and then combine horizontal and ver-
tical subtyping in a single statement.

Definition 3 (Context Subsumption). For two fully typed contexts ∆i we
write Γ ⊢∆1 ↪∆2 iff for every declaration x ∶ T [∶= t] in ∆1 there is a declaration
x ∶ T ′[∶= t′] in ∆2 such that
– Γ ⊢ T ′ <∶ T and
– if t is present, then so is t′ and Γ ⊢ t ≡ t′ ∶ T

Intuitively, ∆1 ↪∆2 means that everything of ∆1 is also in ∆2. That yields:

Theorem 3 (Record Subtyping). The following rule is derivable:

Γ ⊢∆1 ↪∆2

Γ ⊢ ⟦∆2⟧ <∶ ⟦∆1⟧

Proof. Assume Γ ⊢ ∆1 ↪ ∆2. We need to show Γ, r ∶ ⟦∆2⟧ ⊢ r ⇐ ⟦∆1⟧. By the
type checking rule in Figure 7, for any x ∶ T [∶= t] ∈ ∆1, we need to show that
Γ, r ∶ ⟦∆2⟧ ⊢ r.x⇐ T (and if applicable Γ, r ∶ ⟦∆2⟧ ⊢ r.x ≡ t ∶ T ).

By definition of ∆1 ↪∆2, since x ∶ T [∶= t] ∈∆1, we have x ∶ T ′[∶= t] ∈∆2 and
Γ ⊢ T ′ <∶ T , and if x is defined in ∆1 the required equality holds as well, so the
type checking rule proves Γ, r ∶ ⟦∆2⟧ ⊢ r⇐ ⟦∆1⟧ and the claim follows.

4.2 Merging Records

We introduce an advanced operation on records, which proves critical for both
convenience and performance: Theories can easily become very large containing
hundreds or even thousands of declarations. If we want to treat theories as record
types, we need to be able to build big records from smaller ones without explod-
ing them into long lists. Therefore, we introduce an explicit merge operator +
on both record types and terms.

In the grammar, this is a single production for terms:

T ∶∶= T + T

The intended meaning of + is given by the following definition:

Definition 4 (Merging Contexts). Given a context ∆ and a (not necessarily
well-typed) context E, we define a partial function ∆⊕E as follows:

13



– ⋅ ⊕ E = E
– If ∆ = d,∆0 where d is a single declaration for a variable x:

● if x is not declared in E: (d,∆0) ⊕ E = d, (∆0 ⊕E)
● if E = E0, e,E1 where e is a single declaration for a variable x:

∗ if a variable in E0 is also declared in ∆0: ∆⊕E is undefined,
∗ if d and e have unequal types or unequal definitions: ∆⊕E is unde-

fined5,
∗ otherwise, (d,∆0) ⊕ (E0, e,E1) = E0,m, (∆0,E1) where m arises by

merging d and e.

Note that ⊕ is an asymmetric operator: While ∆ must be well-typed (relative
to some ambient context), E may refer to the names of ∆ and is therefore not
necessarily well-typed on its own.

We do not define the semantics of + via inference and checking rules. Instead,
we give equality rules that directly expand + into ⊕ when possible:

⊢ Γ, (∆1 ⊕∆2) ctx
Γ ⊢ ⟦∆1⟧ + ⟦∆2⟧↝ ⟦∆1 ⊕∆2⟧

⊢ Γ, (δ1 ⊕ δ2) ctx
Γ ⊢ jδ1o + jδ2o↝ jδ1 ⊕ δ2o

⊢ Γ, (∆⊕ δ) ctx
Γ ⊢ ⟦∆⟧ + jδo↝ j∆⊕ δo

In implementations some straightforward optimizations are needed to verify the
premises of these rules efficiently; we omit that here for simplicity. For example,
merges of well-typed records with disjoint field names are always well-typed, but
e.g., ⟦x ∶ nat⟧ + ⟦x ∶ bool⟧ is not well-typed even though both arguments are.

In practice, we want to avoid using the computation rules for + whenever
possible. Therefore, we prove admissible rules (i.e., rules that can be added
without changing the set of derivable judgments) that we use preferentially:

Theorem 4. If R1, R2, and R1+R2 are well-typed record types, then R1+R2 is
the greatest lower bound with respect to subtyping of R1 and R2. In particular,
Γ ⊢ r⇐ R1 +R2 iff Γ ⊢ r⇐ R1 and Γ ⊢ r⇐ R2

If Γ ⊢ ri ⇐ Ri and r1 + r2 is well-typed, then Γ ⊢ r1 + r2 ⇐ R1 +R2

Proof. – If R1 = ⟦∆1⟧ and R2 = ⟦∆2⟧ are well-typed record types, then R1 +
R2 ↝ ⟦∆1 ⊕∆2⟧. By definition of ⊕, any r ∶ R1 + R2 hence has all fields
defined that are required by both ⟦∆1⟧ and ⟦∆2⟧ and the other way around.

– By the rules for +, for r1 = jδ1o and jδ2o we get r1 + r2 = jδ1 ⊕ δ2o and if
R1 = ⟦∆1⟧ and R2 = ⟦∆2⟧, then (since Γ ⊢ ri ⇐ Ri) we have ∆1 ↪ δ1 and
∆2 ↪ δ2.
As can easily be verified, it follows that ∆1 ⊕ ∆2 ↪ δ1 ⊕ δ2, and hence
jδ1 ⊕ δ2o⇒ ⟦δ1 ⊕ δ2⟧ <∶ ⟦∆1 ⊕∆2⟧ = R1 +R2.

Inspecting the type checking rule in Figure 7, we see that a record r of type
⟦∆⟧ must repeat all defined fields of ∆. This makes sense conceptually but would

5 It is possible and important in practice to also define ∆ ⊕ E when the
types/definitions in d and e are provably equal. We omit that here for simplicity.

14



be a major inconvenience in practice. The merging operator solves this problem
elegantly as we see in the following example:

Example 2. Continuing our running example, we can now define a type of semi-
lattices with order (and all associated axioms) as in Figure 9.

SemilatticeOrder ∶= Semilattice +
LPPPPPN

≤ ∶ U → U → U ∶= λx, y ∶ U. x ≐ x ∧ y
refl ∶ ⊢ ∀a ∶ U. a ≤ a ∶= (proof)
. . .

MQQQQQO
interSLO ∶= SemilatticeOrder + interSL

Fig. 9. Running Example

Now the explicit merging in the type SemilatticeOrder allows the projec-
tion interSLO. ≤, which is equal to λx, y ∶ (interSLO.U) . (x ≐ x(interSLO.∧)y)
and interSLO.refl yields a proof that this order is reflexive – without needing
to define the order or prove the axiom anew for the specific instance interSL.

5 Internalizing Theories

5.1 Preliminaries: Theories

Θ ∶∶= ⋅ ∣ Θ, X = {Γ} ∣ Θ, X ∶X1 →X2 = {Γ} theory level
Γ ∶∶= ⋅ ∣ Γ,x[∶ T ][∶= T ] ∣ Γ, includeX includes
T ∶∶= x ∣ type ∣ kind

∣ ∏x∶T ′ T ∣ λx ∶ T ′.T ∣ T1T2

∣ ⟦Γ ⟧ ∣ jΓ o ∣ T.x ∣ T1 + T2

Fig. 10. A Simple Stratified Language

We introduce a minimal definition of stratified theories and theory mor-
phisms, which can be seen as a very simple fragment of the MMT language
[RK13]. The grammar is given in Figure 10, again graying out the previously
introduced parts.

Each of the two levels has its own context: Firstly, the theory level context
Θ introduces names X, which can be either theories X = {Γ} or morphisms
X ∶ P → Q = {Γ}, where P and Q are the names of previously defined theories.
Secondly, the expression level context Γ is as before but may additionally
contain includes includeX of other theories resp. morphisms X. We call a
context flat if it does not contain includes.

All judgments are as before except that they acquire a second context,
e.g., the typing judgment now becomes Θ;Γ ⊢ t ⇐ T . With this modification,
all rules for function and record types remain unchanged. However, we add the
restriction that Γ in ⟦Γ ⟧ and jΓ o must be flat.

15



We omit the rules for theories and morphisms for brevity and only sketch
their intuitions. We think of theories as named contexts and of morphisms as
named substitutions between contexts. Includes allow forming both modularly
by copying over the declarations of a previously named object. While theories
may contain arbitrary declarations, morphisms are restricted: Let Θ contain
P = {Γ} and Q = {∆}. Then a morphism V ∶ P → Q = {δ} is well-typed if δ
is fully defined (akin to record terms) and contains for each declaration x ∶ T
of P a declaration x = t where t may refer to all names declared in Q. V in-
duces a homomorphic extension V that maps P -expressions to Q-expressions.
The key property of morphisms is that, if V is well-typed, then Θ;P ⊢ t ⇐ T
implies Θ;Q ⊢ V (t)⇐ V (T ) and accordingly for equality checking and subtyp-
ing. Thus, theory morphisms preserve judgments and (via propositions-as-types
representations) truth. Moreover, it is straightforward to extend the above with
identity and composition so that theories and morphisms form a category. We
refer to [Rab17b] for details.

5.2 Internalization

We can now add the internalization operator, for which everything so far was
preparation. We add one production to the grammar:

T ∶∶= Mod (X)

The intended meaning of Mod (X) is that it turns a theory X into a record
type and a morphism X ∶ P → Q into a function Mod (Q) → Mod (P ). For sim-
plicity, we only state the rules for the case where all include declarations are at
the beginning of theory/morphism:

P = {includeP1, . . . ,includePn,∆} in Θ ∆ flat maxP defined

Θ;Γ ⊢ Mod (P )↝ Mod (P1) + . . . + Mod (Pn) + ⟦∆⟧
V ∶ P → Q = {includeV1, . . . ,includeVn, δ} in Θ δ flat

Θ;Γ ⊢ Mod (V )↝ λr ∶ Mod (Q) . Mod (P ) + (Mod (V1) r) + . . . + (Mod (Vn) r) + jδ[r]o
where we use the following abbreviations:
– In the rule for theories, maxP is the biggest universe occurring in any decla-

ration transitively included into P , i.e., maxP = max{maxP1, . . . ,maxPn,max∆}
(undefined if any argument is).

– In the rule for morphisms, δ[r] is the result of substituting in δ every refer-
ence to a declaration of x in Q with r.x.

In the rule for morphisms, the occurrence of Mod (P ) may appear redundant; but
it is critical to (i) make sure all defined declarations of P are part of the record
and (ii) provide the expected types for checking the declarations in δ.

Example 3. Consider the theories in Figure 11. Applying Mod (⋅) to these theo-
ries yields exactly the record types of the same name introduced in Section 4
(Figures 8 and 9), i.e., we have interSL⇐ Mod (Semilattice) and interSLO⇐
Mod (SemilatticeOrder). In particularly, Mod preserves the modular structure
of the theory.

16



theory Semilattice =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ∶ type
∧ ∶ U → U → U
assoc ∶ ⊢ ∀x, y, z ∶ U. (x ∧ y) ∧ z ≐ x ∧ (y ∧ z)
commutative ∶ . . .
idempotent ∶ . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

theory SemilatticeOrder =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

include Semilattice

order ∶ U → U → U ∶= λx, y ∶ U. x ≐ x ∧ y
refl ∶⊢ ∀a ∶ U. a ≤ a ∶= (proof)
. . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Fig. 11. A Theory of Semilattices

The basic properties of Mod (X) are collected in the following theorem:

Theorem 5 (Functoriality). Mod (⋅) is a monotonic contravariant functor from
the category of theories and morphisms ordered by inclusion to the category of
types (of any universe) and functions ordered by subtyping. In particular,
– if P is a theory in Θ and maxP ∈ {type,kind}, then Θ;Γ ⊢ Mod (P ) ⇐

maxP
– if V ∶ P → Q is a theory morphism in Θ;Γ ⊢ Mod (V )⇐ Mod (Q)→ Mod (P )
– if P is transitively included into Q, then Θ;Γ ⊢ Mod (Q) <∶ Mod (P )

Proof. – Follows immediately by the computation rule for Mod (P ).
– Follows immediately by the computation rule for Mod (V ) and the type check-

ing rule for λ.
– Follows immediately by the computation rule for Mod (P ) and Theorem 4.

An immediate advantage of Mod (⋅) is that we can now use the expression level
to define expression-like theory level operations. As an example, we consider the
intersection P ∩ P ′ of two theories, i.e., the theory that includes all theories
included by both P and P ′. Instead of defining it at the theory level, which
would begin a slippery slope of adding more and more theory level operations,
we can simply build it at the expression level:

P ∩ P ′ ∶= Mod (Q1) + . . . + Mod (Qn)

where the Qi are all theories included into both P and P ′.6

Note that the computation rules for Mod are efficient in the sense that the
structure of the theory level is preserved. In particular, we do not flatten the-
ories and morphisms into flat contexts, which would be a huge blow-up for big
theories.7

6 Note that because P ∩ P ′ depends on the syntactic structure of P and P ′, it only
approximates the least upper bound of Mod (P ) and Mod (P ′) and is not stable under,
e.g., flattening of P and P ′. But it can still be very useful in certain situations.

7 The computation of maxP may look like it requires flattening. But it is easy to
compute and cache its value for every named theory.

17



However, efficiently creating the internalization is not enough. Mod (X) is
defined via +, which is itself only an abbreviation whose expansion amounts
to flattening. Therefore, we establish admissible rules that allow working with
internalizations efficiently, i.e., without computing the expansion of +:

Theorem 6. Fix well-typed Θ, Γ and P = {includeP1, . . . ,includePn,∆} in
Θ. Then the following rules are admissible:

1≤i≤n
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Θ;Γ ⊢ r⇐ Mod (Pi)

x∶T ∈∆
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Θ;Γ ⊢ r.x⇐ T [r/P ]

x∶T ∶=t∈∆
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Θ;Γ ⊢ r.x ≡ t[r/P ] ∶ T [r/P ] Γ ⊢ r⇒ R

Θ;Γ ⊢ r⇐ Mod (P )

1≤i≤n
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Θ;Γ ⊢ ri ⇐ Mod (Pi)

1≤i,j≤n
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Θ;Γ ⊢ ri ≡ rj ∶ Pi ∩ Pj Θ;Γ ⊢ jδo [r/P ]⇐ ⟦∆⟧ Γ ⊢ r⇒ R

Θ;Γ ⊢ Mod (P ) + r1 + . . . + rn + jδo
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶r

⇒ Mod (P )

where [r/P ] abbreviates the substitution that replaces every x declared in a
theory transitively-included into P with r.x.8

The first rule in Theorem 6 uses the modular structure of P to check r at
type Mod (P ). If r is of the form jδo, this is no faster than flattening Mod (P )
all the way. But in the typical case where r is also formed modularly using a
similar structure as P , this can be much faster. The second rule performs the
corresponding type inference for an element of Mod (P ) that is formed following
the modular structure of P . In both cases, the last premise is again only needed
to make sure that r does not contain ill-typed fields not required by Mod (P ).
Also note that if we think of Mod (P ) as a colimit and of elements of Mod (P ) as
morphisms out of P , then the second rule corresponds to the construction of the
universal morphisms out of the colimit.

Example 4. We continue Ex. 3 and assume we have already checked interSL⇐
Mod (Semilattice) (*).

We want to check interSL + jδo ⇐ Mod (SemilatticeOrder). Applying the
first rule of Thm. 6 reduces this to multiple premises, the first one of which is
(*) and can thus be discharged without inspecting interSL.

Ex. 4 is still somewhat artificial because the involved theories are so small.
But the effect pays off enormously on larger theories.

Additionally, we can explicitly allow views within theories into the current
theory. Specifically, given a theory T , we allow a view

T = {. . . , V ∶ T ′ → ⋅ = {. . .}, . . . }
8 In practice, these substitutions are easy to implement without flattening r because

we can cache for every theory which theories it includes and which names it declares.

18



the codomain of which is the containing theory T (up to the point where V is
declared). 9 This view induces a view T /V ∶ T ′ → T in the top-level context Θ,
but importantly, within T (and its corresponding inner context Γ ) every variable
in V is defined via a valid term in Γ . Correspondingly, Mod (V ) is – in context Γ
– a constant function Mod (T ) → Mod (T ′) which we can consider as an element
of Mod (T ′) directly.

This allows for conveniently building instances of Mod (⋅) and all checking for
well-formedness is reduced to structurally checking the view to be well-formed,
effectively carrying over all efficiency advantages of structure checking and mod-
ular development of theories/views:

Theorem 7. Let Θ,Γ be well-formed and T /V ∶ T ′ → T = {. . .} in Θ, where Γ is
the current context within theory T containing V ∶ T ′ → ⋅ = {. . .}. The following
rule is admissible:

Θ;Γ ⊢ Mod (V )⇐ Mod (T ′)

Proof. We consider Mod (V ) an abbreviation for Mod (T /V ) (j⋅o). Since all def-
initions in Mod (T /V ) are well-typed terms in context Γ , the record j⋅o does
not actually occur anywhere in the simplified application Mod (T /V ) (j⋅o), which
makes this expression well-typed.

6 Implementation and Case Study

We have implemented a variant of the record types and the Mod (⋅)-operator
described here in the MMT-system (as part of [LFX]). They are used extensively
in the Math-in-the-Middle archive (MitM), which forms an integral part in the
OpenDreamKit [Deh+16] and MaMoRed [Koh+17] projects. In particular the
formalizations of algebra and topology are systematically built on top of the
concepts presented in this paper.

The archive sources can be found at [Mit], and its contents can be inspected
and browsed online at https://mmt.mathhub.info under MitM/smglom. Note
that the Mod (⋅) operator is called ModelsOf here.

For a particularly interesting example that occurs in MitM, consider the
theories for modules and vector spaces (over some ring/field) given in Figure 12,
which elegantly follow informal mathematical practice. Going beyond the syntax
introduced so far, these use parametric theories. Our implementation extends
Mod to parametric theories as well, namely in such a way that Mod (Module) ∶
∏R∶Mod(Ring) Mod (Module(R)) and correspondingly for fields. Thus, we obtain

Mod (VSpace) = λF ∶ Mod (Field) .((Mod (Module) F ) + . . .)

and, e.g., Mod (VSpace) R <∶ Mod (Module) R. Because of type-level parameters,
this requires some kind of parametric polymorphism in the type system. For
our approach, the shallow polymorphism module that is available in Mmt is
sufficient.
9 We’ll omit the adapted grammar for now.

19

https://mmt.mathhub.info


theory Ring =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ∶ type
+ ∶ U → U → U
⋅ ∶ U → U → U
assoc plus ∶ ⊢ ∀x, y, z ∶ U. (x + y) + z ≐ x + (y + z)
commutative plus ∶ . . .
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

theory Field =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

include Ring

inverses times ∶ ⊢ ∀x ∶ U. x ≠ 0⇒ ∃y. x ⋅ y ≐ 1
. . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭

theory Module(R ∶ Mod (Ring)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

include AbelianGroup

scalar mult ∶ R.U → U → U
. . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭

theory VSpace(F ∶ Mod (Field)) = {include Module(F )
. . .

}

Fig. 12. Theories for R-Modules and Vector Spaces

7 Conclusion

We have presented a formal system that allows to systematically combine the
advantages of stratified and integrated grouping mechanisms found in type the-
ories, logics, and specification/programming languages. Concretely, our system
allows internalizing theories into record types in a way that preserves their de-
fined fields and modular structure.

Our MitM case study shows that theory internalization is an important
feature of any foundation; especially if it interfaces to differing mathematical
software systems. Our experiments have also shown that (predicate) subtyping
makes internalization even stronger in practice. But type-inference in the com-
bined system induces non-trivial trade-offs; which we leave to future work.
Acknowledgements The work reported here has been kicked off by discussions
with Jacques Carette and William Farmer who have experimented with theory
internalizations into record types in the scope of their MathScheme system. We
acknowledge financial support from the OpenDreamKit Horizon 2020 European
Research Infrastructures project (#676541).

References

[Bra13] E. Brady. “Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation”. In: Journal of Functional Program-
ming 23.5 (2013), pp. 552–593.

[Cla+96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. “Principles of Maude”.
In: Proceedings of the First International Workshop on Rewriting Logic.
Ed. by J. Meseguer. Vol. 4. 1996, pp. 65–89.

20



[Con+86] R. Constable et al. Implementing Mathematics with the Nuprl Develop-
ment System. Prentice-Hall, 1986.

[Deh+16] P.-O. Dehaye et al. “Interoperability in the OpenDreamKit Project: The
Math-in-the-Middle Approach”. In: Intelligent Computer Mathematics 2016.
Ed. by M. Kohlhase, M. Johansson, B. Miller, L. de Moura, and F. Tompa.
LNAI 9791. Springer, 2016. url: https://github.com/OpenDreamKit/
OpenDreamKit/blob/master/WP6/CICM2016/published.pdf.

[FGT92] W. Farmer, J. Guttman, and F. Thayer. “Little Theories”. In: Conference
on Automated Deduction. Ed. by D. Kapur. 1992, pp. 467–581.

[Gog+93] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud.
“Introducing OBJ”. In: Applications of Algebraic Specification using OBJ.
Ed. by J. Goguen, D. Coleman, and R. Gallimore. Cambridge, 1993.

[Har+12] T. Hardin et al. The FoCaLiZe Essential. http://focalize.inria.fr/.
2012.

[Har96] J. Harrison. “HOL Light: A Tutorial Introduction”. In: Proceedings of
the First International Conference on Formal Methods in Computer-Aided
Design. Springer, 1996, pp. 265–269.

[Koh+17] M. Kohlhase, T. Koprucki, D. Müller, and K. Tabelow. “Mathematical
models as research data via flexiformal theory graphs”. In: Intelligent
Computer Mathematics (CICM) 2017. Ed. by H. Geuvers, M. England,
O. Hasan, F. Rabe, and O. Teschke. LNAI 10383. Springer, 2017. doi:
10.1007/978-3-319-62075-6.

[LFX] MathHub MMT/LFX Git Repository. url: http://gl.mathhub.info/
MMT/LFX (visited on 05/15/2015).

[Luo09] Z. Luo. “Manifest Fields and Module Mechanisms in Intensional Type
Theory”. In: Types for Proofs and Programs. Ed. by S. Berardi, F. Dami-
ani, and U. de’Liguoro. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 237–255.

[Mat] Mathematical Components. url: http://www.msr-inria.fr/projects/
mathematical-components-2/.

[Mit] MitM/smglom. url: https://gl.mathhub.info/MitM/smglom (visited on
02/01/2018).

[MRK18] D. Müller, F. Rabe, and M. Kohlhase. “Theories as Types”. In: ed. by
D. Galmiche, S. Schulz, and R. Sebastiani. Springer Verlag, 2018. url:
http://kwarc.info/kohlhase/papers/ijcar18-records.pdf.

[Nor05] U. Norell. The Agda WiKi. http://wiki.portal.chalmers.se/agda.
2005.

[ORS92] S. Owre, J. Rushby, and N. Shankar. “PVS: A Prototype Verification Sys-
tem”. In: 11th International Conference on Automated Deduction (CADE).
Ed. by D. Kapur. Springer, 1992, pp. 748–752.

[Rab17a] F. Rabe. “A Modular Type Reconstruction Algorithm”. In: ACM Trans-
actions on Computational Logic (2017). accepted pending minor revision;
see https://kwarc.info/people/frabe/Research/rabe_recon_17.pdf.

[Rab17b] F. Rabe. “How to Identify, Translate, and Combine Logics?” In: Journal
of Logic and Computation 27.6 (2017), pp. 1753–1798.

[RK13] F. Rabe and M. Kohlhase. “A Scalable Module System”. In: Information
and Computation 230.1 (2013), pp. 1–54.

[SW11] B. Spitters and E. van der Weegen. “Type Classes for Mathematics in
Type Theory”. In: CoRR abs/1102.1323 (2011). arXiv: 1102.1323. url:
http://arxiv.org/abs/1102.1323.

21

https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
http://focalize.inria.fr/
https://doi.org/10.1007/978-3-319-62075-6
http://gl.mathhub.info/MMT/LFX
http://gl.mathhub.info/MMT/LFX
http://www.msr-inria.fr/projects/mathematical-components-2/
http://www.msr-inria.fr/projects/mathematical-components-2/
https://gl.mathhub.info/MitM/smglom
http://kwarc.info/kohlhase/papers/ijcar18-records.pdf
http://wiki.portal.chalmers.se/agda
https://kwarc.info/people/frabe/Research/rabe_recon_17.pdf
https://arxiv.org/abs/1102.1323
http://arxiv.org/abs/1102.1323


[TB85] A. Trybulec and H. Blair. “Computer Assisted Reasoning with MIZAR”.
In: Proceedings of the 9th International Joint Conference on Artificial In-
telligence. Ed. by A. Joshi. Morgan Kaufmann, 1985, pp. 26–28.

[Wen09] M. Wenzel. The Isabelle/Isar Reference Manual. http://isabelle.in.
tum.de/documentation.html, Dec 3, 2009. 2009.

[Coq15] Coq Development Team. The Coq Proof Assistant: Reference Manual.
Tech. rep. INRIA, 2015.

22

http://isabelle.in.tum.de/documentation.html
http://isabelle.in.tum.de/documentation.html

	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Analysis
	3.2 Related Work

	4 Record Types with Defined Fields
	4.1 Records
	4.2 Merging Records

	5 Internalizing Theories
	5.1 Preliminaries: Theories
	5.2 Internalization

	6 Implementation and Case Study
	7 Conclusion

