
Understanding the Pragmatics of Module
Systems for Mathematics

Mihnea Iancu, Michael Kohlhase, Florian Rabe

Computer Science, Jacobs University, Bremen, Germany
initial.last@jacobs-university.de

Abstract. Knowledge representation languages for mathematics must
balance expressivity and minimality. The former increases coverage and
ease of modeling whereas the latter simplifies implementing and meta-
logical reasoning.

While extensibility at the object-level is well-understood, the richness
of mathematical language has made it difficult to approach pragmatic
module-level features systematically. Indeed, state-of-the-art languages
provide a wide variety of advanced structuring constructs, often differing
strongly across languages.

In this paper we propose a novel concept for the OMDoc/MMT format
that allows naturally representing many important pragmatic features
as well as their semantics. This includes such diverse features as gen-
erative functor applications, record types, (co)inductive types, sections,
structured proofs, and realms. Most notably, these pragmatic features
take the form of self-contained, maximally reusable modules that can be
flexibly instantiated when modeling languages in MMT. We have imple-
mented this new concept in the MMT system along with modules for
important individual features.

1 Introduction

Designing a representation language for mathematics suited to mathematical
knowledge management involves adequately capturing those aspects of mathe-
matical knowledge that are relevant for machine-driven practical applications.
For instance, proof checking requires explicit representations of the semantics
of types and definitions but can largely ignore structure. Meanwhile, change
management needs to introspect the structures used to organize the knowledge
(e.g. namespaces, modules, records) and compute dependencies between them.
In practice, we often observe a trade-off between a shallow encoding in a strong
language and a deep encoding in a simple language.

For restricted domains, language, system and applications are often designed
together for a specific goal (e.g. in a proof assistant), but this makes it hard to
repurpose the system for new applications. For generic systems and languages on
the other hand (like Mmt and OMDoc), it is desirable to provide a rich struc-
ture level in order to allow adequately representing the structuring mechanisms
used in mathematics. However, generic approaches must also identify a minimal



set of structuring primitives to allow for simple meta-theoretical reasoning or
complex algorithms such as parsing or type inference.

In this paper, we propose a language design that addresses this trade-off in
generic representation languages. Our goal is to provide a scalable, extensible
structure level. Our design allows complex structural language features to be
defined from the ground up in terms of a basic set of primitive features. Struc-
tured declarations can be strictified by elaborating them to the core language
when needed so that all algorithms can work on arbitrarily complex declarations.
Therefore, the rich structure can be leveraged by some applications while being
ignored by others.

The basic idea of this design is not new. Indeed, proof assistants like Coq
[Coq15] or Isabelle [Pau94] are implemented in a way that allows programmers to
add new kinds of declarations, which are elaborated into lower-level declarations.
This is used for example in the datatype package of Isabelle [Bla+14]. Our main
contribution is to capture the extension process at a very high-level of generality
while still being able to fix the abstract syntax of the extended language once and
for all. This is crucial to allow knowledge management algorithms (in particular,
the many algorithms already part of Mmt) to be implemented generically, i.e.,
independent of what structural features are added in the feature.

This paper is organized as follows. In Section 2, we recap the parts of OM-
Doc/Mmt, which we use as the underlying core language. Section 3 introduces
the infrastructure for structural language extensions. We look at concrete in-
stances and develop a varied array of Mmt structural features in Section 4.
Finally, Section 5 concludes the paper and discusses future work.

2 MMT/OMDoc

OMDoc [Koh06] is a rich representation language for mathematical knowledge
with a large set of primitives motivated by expressivity and user familiarity. The
Mmt [RK13b] language is a complete redesign of the formal core of OMDoc
focusing on foundation-independence, scalability, modularity and minimality.

OMDoc and Mmt exemplify the trade-off discussed above and this paper
is part of an ongoing effort to extend the Mmt core with a layer of structural
extensions which recover the expressivity of OMDoc. This effort was started
in [HKR12] which introduced an extension language for the statement level.
It provided syntactic means for defining pragmatic language features and their
semantics in terms of strict OMDoc. It this paper, we take a step further and
give a much more expressive extension mechanism for both the statement and
module levels. Then, the pragmatics from [HKR12] become a special case.

In Figure 1, we show a fragment of the Mmt grammar that we need in the
remainder of this paper. Meta-symbols of the BNF format are given in color.

The central notion in Mmt is that of a diagram containing modules which
are either theories or views. Mmt theories are named sets of statements and
are used to represent formal constructs such as logical frameworks, logics, and
theories. At the statement level Mmt has includes and constants. Constants
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are meant to represent a variety of OMDoc declarations and are simply named
symbols with an optional type and definition. The types and definitions are Mmt
expressions which are based on OpenMath and include variable and symbol
references as well as application and binding. Finally, Mmt views are morphisms
between two theories that map constants in the source theory to expressions in
the target theories. They are used to represent a variety of concepts including
models of a theory, implementations of a specification and instances of a class.
Finally, global names (or Mmt URIs) provide unique global identifiers for each
Mmt declaration, which are essential for scalability. Concretely, a Mmt module
with local name m in diagram γ has URI γ?m and a statement with local name
s inside m has URI γ?m?s. Additionally, we use the term declarations to
encompass both Mmt modules and statements.

Declaration D ::= M | S
Module Level

Diagram γ ::= M∗

Module M ::= T | V
Theory T ::= l = {S∗}
View V ::= l : g → g = {S∗}

Statement Level
Statement S ::= C | I
Constant C ::= l[ : E][ = E]
Include I ::= include g

Object Level
Expression E ::= l | g | E E∗ | E Γ.E
Context Γ ::= · | Γ, l[ : E]

Identifiers
Global name g ::= URI[?l[?l]]
Local name l ::= String

Fig. 1: Mmt Grammar

The semantics of Mmt pro-
vides an inference systems that
includes in particular two judg-
ments for typing and equality of
expressions. Via Curry-Howard,
the former includes provability,
e.g., a theorem F is represented
as a constant with type F , whose
definiens is the proof. We have to
omit the details here for reasons of
brevity. We only emphasize that
Mmt is foundation-independent:
The syntax does not assume any
special constants (e.g., λ), and
the semantic does not assume any
special typing rules (e.g., func-
tional extensionality). Instead,
any such foundation-specific as-
pects are supplied by special
Mmt theories called founda-
tions. For example, the founda-
tion for the logical framework LF [HHP93] declares constants for type, λ, Π,
and @ (for application) as well as the necessary typing rules. Thus, the Mmt
module system governs, e.g., which typing rules are available in which theory.
The details can be found in [Rab14].

3 Structural Features in MMT

Our extension of Mmt starts from the observation that statement and module-
level declarations often have internal structure that differs from the structure of
their semantics.
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Definition 1. Let X be a set, then
{∅, X} is a topology on X, it is
called the trivial topology and
〈X, {∅, X}〉 the indiscrete space
over X.

emptyset

∅

triv top

T (X) := {∅, X}
top space

X,O

v = {O 7→ T (X)}

v

Fig. 2: Structural Dimorphism in Mathematics

3.1 Motivation

Consider the hybrid of a definition and a theorem on the left of Figure 2: This
kind of “definition” is commonly used in informal mathematics and pragmati-
cally combines two actions into one aggregated form: i) the assertion that {∅, X}
is a topology on X and ii) defining the trivial topology as {∅, X} and the in-
discrete space over X as 〈X, {∅, X}〉. In MMT, this would correspond to the
theory graph on the right in Figure 2. But note that the informal definition and
the formal theory graph have corresponding sub-structures – here names and
definienda. We call this phenomenon structural dimorphism1

To account for this we introduce a new kind of structural element which we
call pragmatic declaration in MMT that has two distinct sets of declarations:
one for the internal perspective of the declaration, namely the components from
which it is formed and one for the external perspective, namely its semantics
as visible from the containing module or theory graph. These two aspects are
typically conflated in mathematical representation languages but making them
explicit allows us to capture uniformly many commonly occurring phenomena
from both formal languages and common mathematical language (CML).

In our example above, the full content of Figure 2 can be seen as the in-
stance of a particular pragmatic declaration we need for understanding CML.
But pragmatic declarations can do more: they allow us to uniformly model and
adequately represent the internal/external aspects of structurally complex dec-
laration containers such as records or structured proofs (with inline lemmas,
sub-proofs, etc.). That is what we focus on in this paper, we model it as the
case where the externals of a pragmatic declaration are practically inferable (or
computable) from its internals in a process we call elaboration. We call such
pragmatic declarations, derived declarations. Note that the practicality of
elaboration is not a fixed point but is relative to the efficiency of algorithms
and, in the informal case, the capability of natural language understanding. In
particular, the definition on the left of Figure 2 cannot currently be automati-
cally elaborated into the theory graph on the right.

3.2 Formal Definitions

Syntax We introduce two additional primitives to the Mmt system and lan-
guage. Firstly, structural features define the syntax and (via elaboration)

1 cf. the usage in crystallography the phenomenon that some substances have two
chemically identical but crystallographically distinct forms.
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semantics of a new pragmatic declaration. Secondly, derived declarations are
concrete instances of these structural features.

To allow full flexibility for language designers the former is not syntactically
constrained: A structural feature is an arbitrary elaboration function. However,
derived declarations are part of the Mmt grammar, and the same general syntax
is used for derived declarations of all features. Thus, we can introduce almost
arbitrary new features and still have algorithms that treat them uniformly.

Definition 1 (Derived Declarations). We extend the Mmt grammar in Fig-
ure 1 with the following production:

Derived declarations Dd ::= l : l E∗ = {S∗}

Given a derived declaration l : f E1, . . . , Em = {S1, . . . , Sn}, we call l its name,
f its feature, the Ei its arguments, and the Si its internal declarations.

We differentiate between derived statementsDs that occur inside theories and
derived modules Dm that occur inside a diagram. For simplicity, we do not cover
the case of derived declarations in views. They are redundant because a view
can instead provide a constant declaration for any constant in the elaboration
of its domain. However, it is also possible (and often useful) for views to contain
derived declarations, and this is supported by our implementation.

Definition 2 (Structural Features). A structural feature is a tuple 〈f, n, E〉
for a name f and a number n ∈ N.

Here the elaboration function E must map any derived declaration Dd of the
form l : f E1, . . . , En = {ΣS} to a list of declarations ΣD which we call the
external declarations of Dd.

Structural features are extra-linguistic and are defined in papers (as in Sec-
tion 4) or implemented in Mmt plugins, but not necessarily in Mmt syntax.
However, not every Mmt theory may use any structural feature — we piggy-
back on Mmt’s modular foundation management: We define that a derived dec-
laration can only be well-formed if its feature is provided by or included into the
current foundation.

Inference System The judgments that we need to define the semantics of
derived declarations are given in Figure 3. Most of these are essentially the same
as used for Mmt in [RK13a].

The key novelty are the judgments for elaboration. γ `m S  Σ defines
result of elaborating a statement S, and γ ` M . Σ describes the result of
elaborating all statements in a module. Similarly, γ ` M  ΣM defines result
of elaborating a module M , and γ `M . ΣM describes the result of elaborating
all modules in a diagram.

To simplify the inference system at this point, we assume that elaboration is
fully recursive, i.e., its result is always a list of strict Mmt declarations.

To define the elaboration semantics, we crucially add rules for the lookup
judgment: ` γ(g) ⇒ S describes that the identifier g resolves to the statement

5



Judgment Intuition new

` γ γ is a well-formed theory graph γ
γ `M adding M at the end of γ preserve well-formedness of γ
γ `m D if m is the URI of a module in γ, then adding D at the end of

the body of m preserves well-formedness of γ
γ, Γ `T E wff expression E is well-formed over theory T in context Γ

γ `m S  Σ statement S in module m elaborates to Σ X
γ `M . Σ the elaborated body of the module M is Σ X
γ ` M  Σm module M in diagram γ elaborates to ΣM X
` γ . ΣM the elaboration of a diagram γ is ΣM X
` Σ(l)⇒ D Σ contains declaration D with name l
` γ(g)⇒ S looking up URI g in γ yields (module or declaration) S

Fig. 3: Judgments

S. Thus, by defining appropriate identifiers and their lookup, we can control how
users can refer to the declarations obtained by elaboration.

` ·

` γ(T )⇒ undefined

γ ` T = {·}

` γ(v)⇒ undefined

γ ` v : S → T = {·}

` γ(m?c)⇒ undefined [γ, · `m E wff] [γ, · `m E′
wff]

γ `m c[ : E][ = E′]

` γ(m′)⇒M m,m′ compatible

`m include m′

Fig. 4: Basic Rules for Building Diagrams

Our rules subtly change the existing rules for Mmt. Therefore, we repeat
the most important rules needed to understand the effect of our new rules in
Figure 4 and 5.

The rules in Figure 4 govern the building of diagrams by adding statements
one by one. For reasons of brevity, all rules omit the hypotheses necessary for
well-typedness. For example, γ `m c : E = E′ requires that E′ has type E.
Similarly, we gloss over the details of include declarations. By saying that m and
m′ must be compatible we mean that modules m may include module m′ only
if that does not conflict with the declarations already in m. Most importantly,
each declaration in a theory must have a unique name, and a view may provide
at most one declaration for each constant in its domain.

The rules in Figure 5 define the well-formed expressions relative to a theory
T . We omit the straightforward but tedious rules for binders as well as the ones
for views.
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` γ(T?c)⇒ c[ : E][ = E′]

γ, · `T c wff

` Γ (x)⇒ x[ : E]

γ, Γ `T x wff

γ, Γ `T Ei wff i = 0, . . . , n

γ, Γ `T E0E1 . . . En wff

accordingly

γ, Γ `T E0 Γ0.E1 wff

Fig. 5: Rules for Building Expressions

γ ` T = {·} . · ` · . ·

γ ` T = {Θ} . Θ′ γ `T D  Σ

γ ` T = {Θ,D} . Θ′, Σ

` γ . γ′ γ ` M  ΣM

` γ,M . γ′, ΣM

γ `m include m  include m γ `m c[ : E][ = E′]  c[ : E][ = E′]

γ ` T = {Σ} . Σ′

γ ` T = {Σ}  T = {Σ′} γ ` v : S → T = {Σ}  v : S → T = {Σ}

Fig. 6: Rules for Elaboration

Then we are ready to state our new rules. The rules in Figure 6 govern
elaboration. Modules are elaborated declaration-wise, and include and constant
declarations elaborate to themselves. Similarly, diagrams are elaborated module-
wise, theories elaborate recursively and views elaborate to themselves. The rules
for elaborating a derived declaration must be provided by the respective struc-
tural feature.

While structural feature may define the elaboration arbitrarily, the basic
syntax of derived declarations is fixed. This is captured by the rules in Figure 7.
They describe the syntactic properties of a derived declaration D of the form
d : f E1, . . . , En = {Σ} relative to its container C which is a theory for a derived
statement and a diagram for a derived module. We may append D to C if : (i)
d is a fresh name in C; (ii) all arguments Ei are well-formed expressions over C;
(iii) the declarations in Σ are well-formed relative to C. If C is a diagram this
implies the only well-formed arguments are references to modules and the only
valid features are Mmt-level features, since nothing else is visible outside of a
theory.
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` γ(T?ds)⇒ undefined γ, · `T Ei wff i = 1, . . . , n ` γ, T/ds = {include T, Σ}

γ `T ds : f E1, . . . , En = {Σ}

` γ(dm)⇒ undefined γ, · ` Ei wff i = 1, . . . , n ` γ, dm = {Σ}

γ ` dm : f E1, . . . , En = {Σ}

Fig. 7: Foundation-Independent Rules for Derived Declarations

3.3 Referencing Derived Declarations

In addition to the elaboration rules above, we also extend the rules for URIs in
order to preserve the crucial Mmt invariant that every declaration has an unique
URI. For the scope of this paper, we adopt the perspective that elaboration is
fully recursive (rather than incremental). Therefore we do not need URIs for
partially elaborated forms in the case of derived declarations nested into each
other. However, we do note that incremental elaboration is useful in practice
(e.g. for efficiency or for algorithms implementing special behavior for particular
features) and we do cover it in the implementation.

The judgments are given in Figure 8 and formalize URI-based lookup in
Mmt diagrams with respect to derived declarations. Their behavior follow the
intuitions described above and allow acess to both the internal and external
declarations of each derived declaration. Lookup for non-derived declarations is
unaffected.

` γ(m)⇒M γ `M . Σ ` Σ(s)⇒ S

` γ(m?s)⇒ S

` γ(m?d)⇒ d : f E = {Σ} ` Σ(s)⇒ S

` γ(m/d?c)⇒ C

` γ . γ′ ` γ′(m)⇒M

` γ(m)⇒M

` γ(m)⇒ m : f E = {Σ} ` Σ(s)⇒ S

` γ(m?c)⇒ C

Fig. 8: Rules for Lookup of URIs
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4 A Library of Structural Features

We apply our language to obtain a library of reusable structural features. Thus,
when representing languages in Mmt, users can import the precise structural
features needed for their target language (or define their own features if not yet
in the library). Our objective is to explore the breadth of applications; therefore,
we have opted to give many features even if that means that not every feature
can be defined in all detail.

Before describing individual features, we introduce some auxiliary definitions.
In the Mmt implementation, these are provided as utility functions.

Definition 3 (Renaming). For a partial function r from names to names, we
write [r]Σ for the result of replacing in Σ for every c with r(c) = d
– every declaration named c with the corresponding declaration named d,
– every expression E with the expression obtained by replacing every occur-

rence of a name c or c/l in E with d or d/l, respectively.
We write [c/ ]Σ for [. . . , n 7→ c/n, . . .]Σ where the ellipsis runs over the

names of all declarations in Σ.

Definition 4 (Translation). For a partial function t from names to expres-
sions, we write t(E) for the result of replacing in E every occurrence of a name
c for which t(c) = E′ with E′.

4.1 Derived Statements

Local Scopes Structuring mathematical developments by grouping similar or re-
lated declarations together is common in both informal and formal mathematics.
For example, LATEX uses sectioning and environments, OMDoc uses <tgroup>

elements, and many proof assistants use modules.
The structural feature scope of arity 0 yields the simplest special case. It is

defined by γ `T s : scope = {Σ}  [s/ ]Σ. Here the external declarations are
the same as the internal ones except for qualifying them with the name of the
scope.

Sections Sections are similar to local scopes except they may contain local vari-
ables, i.e., constants which are in scope only inside the section but not visible
from the outside. This is well-known from informal mathematics and also part of
some proof assistants like Coq (which allows declaring Variables in a Section).
The idea is that some constants (the local variables) (i) behave like normal con-
stants from the perspective of the internal declarations, (ii) but do not appear
among the external declarations because all externals abstract over them.

We use a structural feature section with arity 0 and define γ `T s : section =
{Σ0}  Σ2 as follows. First, let Σ1 be the recursive elaboration of Σ0. We
define Σ2 by induction on the declarations in Σ1:
– For every constant without definiens, nothing. These are the local variables.
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– For every constant declaration C of the form c[ : E] = E′, let Γ be the
context containing all local variable declarations that precede C. Then Σ2

contains c[ : ΠΓ.t(E)] = λΓ.t(E′) where t is defined below.
Abstracting away local variables is not foundation-independent: It requires a

foundation with a Π and λ binder such as LF. This is necessary to bind the local
variables as seen above. Thus, the feature section must be defined in a foundation
that imports a theory for a dependently-typed λ-calculus.

Moreover, because every constant c elaborates to a function that takes the
local variables as arguments, every reference to it must be applied to these local
variables. This is the purpose of the translation t: It translates every reference
a Σ1-constant c that is not a local variable to @ c c1 . . . cn, where the ci are the
names of the constants in Γ . Here @ is the constant for function application that
goes with Π and λ.

There are multiple variants of this feature. Firstly, Σ2 does not use the name
of the section as a qualifier for the external declarations. Alternatively, we could
qualify the declarations as with scope. Secondly, Σ2 abstracts over all local vari-
ables that precede a constant declaration C. Alternatively, we could abstract only
over those that actually occur in C. Thirdly, we could also use local definitions,
i.e., specially marked defined constants that are eliminated during elaboration,
namely by expanding their definitions.

Generative Pushout Generative pushouts are already a primitive part of the
Mmt language [RK13a], where they are called structures due to their inspira-
tion by the SML module system. We can now recover them as a special unary
structural features structure.

The intuition behind γ `T s : structure E = {Φ}  Σ′ is that
– E is an expression evaluating to some theory, say with body Σ,
– Φ is interpreted as a partial morphism from Σ to T , say with domain Σ0,
– adding Σ′ to T yields the pushout of Φ and the inclusion Σ0 ↪→ Σ.

Concretely, Σ′ arises from [s/ ]Σ by merging in all declarations in Φ. For
example, if Σ contains c : A and Φ contains c = a, then Σ′ contains s/c :
[s/ ]A = a. We refer to [RK13a] for the details.

Structured Proofs Both formal and informal proofs are usually highly structured,
using local definitions and assumptions for intermediate proof steps. Core Mmt,
on the other hand, represents proofs as expressions that correspond to derivations
in an appropriate inference system.

We introduce a unary structural feature proof that elaborates into a single
declarations. We have γ `T s : proof E = {Σ}  s : E = p, i.e., E is
the assertion to prove and the structured proof Σ is flattened into a single proof
object p. For a given Σ, we define p by induction on Σ using a judgment Σ � p.

There are various declarations that are useful to allow in Σ. The simplest
case is a defined constant, which can represent both a local definition and a local
lemma:

Σ � p

c[ : E] = E′, Σ � c 7→ E′(p)
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The second most important case are undefined constant declarations. In a
foundation with universal quantifier ∀ and implication ⇒ and corresponding
introduction rules ∀I and ⇒I , they can represent a local parameters or a local
assumption, respectively. These can be elaborated into the application of the
corresponding introduction rule: Depending on whether E is a proposition (left)
or a type (right), we put

Σ � p

c : E, Σ � ∀Ic : E.p

Σ � p

c : E, Σ �⇒I c : E.p

Recall that derived declarations can be nested. Nested structured proofs can
be used to elegantly represent case distinctions and similar proof principles,
which have to branch into one structured proof for each case. Because every
structured proof elaborates into a single defined constant, the case for defined
constants above is already enough to handle the elaboration of nested structures
proofs.

The cases above are already expressive enough to represent basic OMDoc
proofs [Koh06]. There the proof steps are symbol declarations (which correspond
to parameters above), definitions (local definitions), hypotheses (local assump-
tions) and derivations which can be direct (lemmas) or OMDoc subproofs
(nested derived proofs). But, we can also define auxiliary structural features
that are only allowed inside a proof to capture more advanced proof principles.

(Co-)Inductive Data Types Most proof assistants support inductive data types,
either as a primitive feature or as an elaborated feature. They can be very
naturally represented using a structural feature inductive of arity 0. The intended
syntax and semantics are best explained by example:

Nat : inductive = {n : type, z : n, s : n→ n}

i.e., the internal declarations declare the constructed type and its constructors.
For the elaboration, we have γ `T i : inductive = {Σ}  [i/ ]Σ, G, where G
is the list of generated induction axioms and recursion schemata. Coinductive
data types can be represented accordingly using a feature coinductive.

The details of the allowed internal declarations and the generated external
declarations in G may vary widely depending on the used foundation and the
choice of (co)induction principles. For example, we need at least some kind of
simple type theory to state the internal declarations. However, we cannot allow
any internal declaration: It is usually required that the return type of each
constructor is declared inside Σ, and negative occurrences of the constructed
type in the constructors may be restricted.

Note that our representation requires explicitly declaring the constructed
type. This is advantageous because it allows representing many different variants
uniformly. For example, if we allow more than one internal type declaration, we
obtain groups of mutually inductive types. If we allow parametric types, e.g.,
list : type→ type, we obtain families of inductive types.
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Similarly, we can generalize what constructors are allowed. If we allow iden-
tity types as return types, we can represent the higher inductive types recently
studied in homotopy type theory [The15]. If we allow declaring rewrite rules, we
can define inductive functions for selectors and testers as in PVS [ORS92] or for
induction-recursion style definitions as in Agda [Nor05].

Record Types Record types can be treated dually to inductive types. Indeed,
we can think of them as labeled product types (i.e., with named rather than
numbered projections) and of the latter as (recursive) labeled coproduct types
(with named injections). Thus, the internal declarations could contain a type
r : type and some projections of the form pi : r → Ei.

However, we can also use a slightly simpler structural feature that is often
more elegant. Here we omit the internal declaration of r and only declare the
fields as pi : Ei. Then we have, for example,

γ `T r : record = {. . . , fi : Ei, . . . , }  

r/type : type, r/make : E1 → . . .→ En → E′ → r/type, . . . , r/fi : r/type → Ei, . . .

The case of dependent record types is handled accordingly.

4.2 Derived Modules

Diagrammatic Pushouts A convenient way of defining theories, particularly in
highly modular domains such as algebraic structures is to combine two theories to
produce a larger one. A particularly common case is that of pushouts – shown in
Figure 10 – where two theories B and B′ that share an A via two morphisms mB

and m′B , are joined to produce a new theory C. C and the induced morphisms iB
and iB′ cannot be constructed generically as it is non-trivial how to enforce that
iB and i′B agree on the assignments for A-symbols. But, in the presence of a logic
with strong enough equality, this can be enforced by adding the corresponding
equality judgments at the logic level.

A

B B′

C

mB mB′

iB iB′

Fig. 9: Elaboration of
diagrammatic pushouts

But, another issue which is avoiding name clashes
(by producing unique names) for the statements con-
structed in C. The standard solution for Mmt is to
use different local scopes (as described above in Sec-
tion 4.1) for statements produced via B and B′. But
this can quickly result in unwieldy theories with unin-
tuitive statement names. An alternative, described in
[CO12] is to give renamings as additional arguments
to the combine operation which are used to produce
the names in C.

Below, we introduce diagrammatic pushouts as a binary structural feature
combine with a semantics inspired from [CO12]. The arguments are the two
morphisms mB and mB′ therefore inducing their shared domain (A), and their
codomains (B and B′). The default generated names in the elaboration are
added a local scope. Then, the internals can be used to add unscoped names
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for all or some statements by giving aliases as Mmt constants. We define the
elaboration of a derived module C = c : combine mB ,mB′ = {Σ} as containing
the following:

– the import from B as the generative pushout L = left : structure B = {·}.
We denote by iL the morphism from B to C induced by L.

– the import from B′ as the generative pushout R = right : structure B′ = {·}
with iR being the induced morphism.

– an equality judgement ax/ca = ` iL(mB(ca))
.
= iR(mB′(ca)) for each state-

ment ca ∈ A, where
.
= is the equality of the current logic.

– the aliases in Σ, for instance c = left/cb for adding c as an alias for the
constant cb from B.

A B

i/left

i/right

i

Fig. 10: Elaboration of
Theory Isomorphisms

Theory Isomorphisms Different definitions or devel-
opments yielding equivalent concepts is a regular oc-
currence in both formal and informal mathematics. In
module systems like Mmt, this typically manifests as
theories that are isomorphic. We introduce theory iso-
morphism as a binary structural feature isomorphism
where the two arguments refer to the theories in ques-
tion, and the internals are the pairs of equivalent sym-
bols that define the isomorphism represented as Mmt
constants.

We define the elaboration of a derived declaration
i : isomorphism A,B = {Σ} to be the two views
i/left : A → B = {Σ} and i/right : B → A = {Σr} where Σr is constructed
inductively as follows:

– Σr starts out as the empty body {·}
– for every constant ca = cb in Σ (representing a symbol pair) we add cb = ca

to Σr

Effectively, Σr is the reverse of Σ and we obtain the diagram in Figure 10 as
the result of elaboration.

Realms A realm [CFK14] is a theory graph construct formed from a set of
equivalent formal developments called pillars together with an interface theory
that aggregates the symbols from each pillar. The pillars are sets of theories
where each of them is a conservative extension of one distinguished theory called
the base. Realms are useful because they abstract from an underlying formal
development and provide practitioners with just the useful symbols and theorems
via the interface theory. Common examples are the different ways to define
natural or real numbers, groups or topologies.

For a formal description of realms we refer to [CFK14] and also to [IK15]
where an algorithmic procedure for producing the interface theory from the
pillars was developed. Here, we simply reframe realms as a structural extension
and omit the details.
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We first define pillars as an auxiliary structural feature pillar with flexible
arity. The arguments represent (references to) the theories that form the pillar
with the first argument being the base theory.

>1

⊥1

>...

⊥...

>n

⊥n

r/face

r/v1 r/v... r/vn

p1 p... pn

i1 in

Fig. 11: Elaboration of a Realms

Then, a realm is a nullary structural fea-
ture realm whose internal declarations are ei-
ther pillars or isomorphisms. The elaboration
function for a realm r : realm = {Σ} with
n pillars is a theory r/face (the interface
theory) together with n views r/vi that jus-
tify the interface theory as an abstraction of
each pillar. The theory and views are con-
structed following the face-generation algo-
rithm described in [IK15] which basically tra-
verses the pillars to produce the face by ag-
gregating statements that are unique modulo
the given isomorphisms. Figure 11 shows the
diagram obtained as the result of elaboration.

5 Conclusion and Future Work

In this paper we returned to the ever-present design question for mathematical
representation languages: how can we balance expressivity pragmatic adequacy
with scalability and implementability issues. We identified structural dimorphism
between the external and internal views as a central property of many pragmatic
language features and used it as the main component of a new language feature in
the OMDoc/Mmt format: derived declarations where the internal declarations
can be elaborated to external ones. We have worked out the details of this
extension and have shown that the new feature can capture many extensions of
Mmt that were present in OMDoc and even re-interpret some of the features
of OMDoc itself. The extension and re-interpretation have been implemented
in the Mmt system and have led to a simplification and further regularization
of the code base.

The primary goal for future research is to extend the notion of derived decla-
rations to full “pragmatic declarations”, where current technology does not allow
elaboration, and we need to resort to parallel markup at the structure level in-
stead. We conjecture that most of the mechanisms presented in this paper still
hold.
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