
stex-isem.tex 1265 2010-03-09 10:54:39Z ako

STEX – A System for Flexible Formalization of Linked Data

Andrea Kohlhase
German Research Center for
Artificial Intelligence (DFKI)

Enrique-Schmidt-Str. 5
28359 Bremen, Germany

Andrea.Kohlhase@dfki.de

Michael Kohlhase
Jacobs University Bremen

P. O. Box 750561
28725 Bremen, Germany
m.kohlhase@jacobs-

university.de

Christoph Lange
Jacobs University Bremen

P. O. Box 750561
28725 Bremen, Germany

ch.lange@jacobs-
university.de

ABSTRACT
We present the STEX system, a semantic extension of LATEX,
that allows for producing high-quality PDF documents for
(proof)reading and printing, as well as semantic XML/OM-
Doc documents for the Web or further processing. Originally
created as an invasive, semantic frontend for XML docu-
ments, we use STEX in a Software Engineering case study as
a formalization tool and upgrade it to deal with modular pre-
semantic vocabularies and relations and generating Linked
Data based on all structural explications. We present a tool
chain that starts with an STEX editor and ultimately serves
the generated documents as XHTML+RDFa Linked Data
via an OMDoc-enabled, versioned XML database.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Representation languages; I.7.2
[Document and Text Processing]: Document Prepara-
tion

Keywords
formalization, LATEX, linked data, software engineering, se-
mantic authoring, annotation, metadata, RDFa, vocabular-
ies, ontologies

1. INTRODUCTION
An important issue in the Semantic Web community was
and still is the “Authoring Problem”: How can we convince
people not only to use semantic technologies, but prepare
them for creating semantic documents (in a broad sense)
too? Here, we were interested in formalizing a collection of
LATEX documents into a set of files in the OMDoc format,
an XML vocabulary specialized for managing mathematical
information, and further on to Linked Data for interactive
browsing and querying on the Semantic Web.

Concretely, the object of the study was a safety component
for autonomous mobile service robots developed and cer-

tified as SIL-3 standard compliant (see [10]) in the course
of the 3-year project “Sicherungskomponente für Autonome
Mobile Systeme (SAMS)” at the German Research Center
for Artificial Intelligence (DFKI). Certification required the
software development to follow the V-model (figure 1) and
to be based on a verification of certain safety properties in
the proof checker Isabelle [30]. The V-model mandates e. g.
that relevant document fragments get justified and linked to
corresponding fragments in other members of the document
collection in an iterative refinement process (the arms of the
‘V’ from the upper left over the bottom to the upper right
and in-between in figure 1).

Figure 1: A Document View on the V-Model

System development with respect to this regime results in a
highly interconnected collection of design documents, certi-
fication documents, code, formal specifications, and formal
proofs. This collection of documents “SAMSDocs” [31] make
up the basis of a case study in the context of the FormalSafe
project [9] at DFKI Bremen, where they serve as a basis for
research on machine-supported change management, infor-
mation retrieval, and document interaction. In this paper,
we report on the formalization project of the collection of
LATEX documents which were created in SAMS (that we will
also abbreviate with SAMSDocs).

Not surprisingly, the interplay between the fields Semantic
Web and Human-Computer Interaction played an important
role as the “Authoring Problem” of the first is often tackled
via methods of the second. One such approach is that of “in-
vasive technology” [17] with the basic idea that from a user’s
perspective, semantic authoring and general editing are the
same, so why not offer semantic functionalities as an exten-
sion of well-known editing systems, thereby ‘invading’ the
existent ones. Therefore, we started out with an invasive

stex-isem.tex 1265 2010-03-09 10:54:39Z ako

OMDoc frontend for LATEX documents called STEX [22].
Notably, it evolved in a participatory design process in our
project into an invasive formalization tool. We started with
LATEX not only because a good portion of our case study was
written in it, but also as LATEX constitutes the state-of-the
art authoring solution for many scientific/technical/mathe-
matical document collections. Despite its text-based nature
it is the most efficient tool for the task.

In section 2, we will present the STEX system, especially its
realization of Linked Data creation. Then we describe in
section 3 the formalization process of SAMSDocs with STEX,
our challenges, and our solutions. In section 4 we report the
enhancements of STEX realized in and for the case study.
Having STEX documents with Linked Data and ontological
markup, we describe (potential) services and their imple-
mentation design in section 5. Section 6 concludes the pa-
per.

2. STEX: OBJ.-ORIENTED LATEX MARKUP
STEX [22, 33] is a variant of LATEX that is geared towards
marking up the semantic structure underlying a document.
The main concept in STEX is that of a “semantic macro”,
i. e., a TEX command sequence S that represents a mean-
ingful (mathematical) concept C: the TEX formatter will
expand S to the presentation of C. For instance, the com-
mand sequence \positiveReals (from listing 1) is a se-
mantic macro that represents a mathematical symbol — the
set R+ of positive real numbers. While the use of semantic
macros is generally considered a good markup practice for
scientific documents (e. g., because they allow to adapt no-
tation by macro redefinition and thus increase reusability),
regular TEX/LATEX does not offer any infrastructural sup-
port for this. STEX does just this by adopting a semantic,
‘object-oriented’ approach to semantic macros by grouping
them into “modules”, which are linked by an “imports” rela-
tion. To get a better intuition, consider

Listing 1: An STEX module for Real Numbers
\begin{module}[id=reals]
\importmodule[../background/sets]{sets}
\symdef{Reals}{\mathbb{R}}
\symdef{greater}[2]{#1>#2}

5 \symdef{positiveReals}{\Reals^+}
\begin{definition}[id=posreals.def,
title=Positive Real Numbers]
$\defeq\positiveReals

{\setst{\inset{x}\Reals}{\greater{x}0}}$
10 \end{definition}

...
\end{module}

which would be formatted to

Definition 2.1 (Positive Real Numbers): R+ := {x ∈ R | x > 0}
Here, STEX’s \symdef macro generates a respective seman-
tic macro, for instance the \positiveReals with repre-
sentation R+. Note that the markup in the module reals
has access to semantic macros \setst (“set such that”) and
\inset (element-hood) from the module sets that was
imported by the document \importmodule directive from
the ../background/sets.tex. Furthermore, it has ac-
cess to the \defeq (definitional equality) that was in turn
imported by the module sets.

From this example we can already see an organizational ad-
vantage of STEX over LATEX: we can define the (semantic)

macros close to where the corresponding concepts are de-
fined, and we can (recursively) import mathematical mod-
ules. But the main advantage of markup in STEX is that it
can be transformed to XML via the LATEXML system [28]:
Listing 2 shows the OMDoc [21] representation generated
from the STEX sources in listing 1. OMDoc is a content-
oriented representation format for mathematical knowledge
that extends the formula markup formats OpenMath [5] and
MathML [2].

Listing 2: An XML Version of Listing 1
<theory xml:id="reals">
<imports from="../background/sets.omdoc#sets"/>
<symbol xml:id="Reals"/>
<notation>

5 <prototype><OMS cd="reals" name="Reals"/></prototype>
<rendering><m:mo>R</m:mo></rendering>

</notation>
<symbol xml:id="greater"/><notation>. . .</notation>
<symbol xml:id="positiveReals"/><notation>. . .</notation>

10 <definition xml:id="posreals.def" for="positiveReals">
<meta property="dc:title">Positive Real Numbers</meta>
<OMOBJ>
<OMA>
<OMS cd="mathtalk" name="defeq"/>

15 <OMS cd="reals" name="positiveReals"/>
<OMA>

<OMS cd="sets" name="setst"/>
<OMA>
<OMS cd="sets" name="inset"/>

20 <OMV name="x"/>
<OMS cd="reals" name="reals"/>
</OMA>
<OMA>
<OMS cd="reals" name="greater"/>

25 <OMV name="x"/>
<OMI>0</OMI>

</OMA>
</OMA>

</OMA>
30 </OMOBJ>

</definition>
. . .

</theory>

One thing that jumps out from the XML in this listing
is that it incorporates all the information from the STEX
markup that was invisible in the PDF produced by format-
ting it with TEX.

OMDoc itself has been used as a storage and exchange for-
mat for automated theorem provers, software verification
systems, e-learning software, and other applications [21, chap-
ter 26], but due to its focus on semantic structures, it is not
intended to be consumed by human readers. The Java-based
JOMDoc [15] library uses the notation elements to gener-
ate human-readable XHTML+MathML from OMDoc. Fig-
ure 2 shows the result of rendering the document from list-
ing 2 in a MathML-aware browser. In contrast to the PDF
output we can directly create from STEX, XHTML+MathML
allows for interactivity. In particular, our JOBAD Java-
Script framework enables modular services, which utilize the
semantic structure of the mathematical formulae [11]. In our
rendered documents, each formula in human-readable Pre-
sentation MathML carries the original semantic OpenMath
representation of the formula, as shown in listing 2, as a
hidden annotation.

We have implemented client-side JOBAD services for fold-
ing and unfolding subterms of formulae and for control-

stex-isem.tex 1265 2010-03-09 10:54:39Z ako

ling the display of redundant brackets in complex formu-
lae, which exclusively rely on the annotations inside the
document. The symbol definition lookup service, shown in
figure 2, interacts with a server backend: It traverses the
links to symbol and their corresponding definition el-
ements that are established by the OMS elements in Open-
Math – for example, <OMS cd="sets" name="inset"/>
encodes the URI ../background/sets.omdoc#inset –
and retrieves the document at that URI as XHTML+MathML.1

JOBAD’s ability to integrate an arbitrary number of ser-
vices, which can talk to different server backends and which
are enabled depending on the context, i. e., the semantic
structure of the part of a mathematical formula that the user
has selected, turns our rendered mathematical documents
into powerful mashups [24]. On any symbol, for example,
definition lookup is enabled. On any expression where a
number is multiplied with a special symbol representing a
physical unit, a unit conversion client that talks to a remote
unit conversion web service is enabled. The JOBAD archi-
tecture has been designed without depending on a particular
backend; for most of our services we are using the extensible
XML-aware database TNTBase [35, 36, 8], which has special
support for OMDoc and integrates the JOMDoc rendering
library.

Figure 2: Listing 1 as Dynamic XHTML+MathML

3. FORMALIZATION WITH STEX
In this section we describe the process of formalizing the
SAMSDocs collection of LATEX documents created in the course
of the SAMS project with the STEX system. We use the
user’s perspective to point to the requirements for STEX that
evolved in this process.

As we all know all too well: Formalizing is never easily done.
In our project we had the additional challenge of doing it
without corruption of the PDF layout that was produced
with LATEX. Here, STEX fits well as it generates PDF and
transforms to XML. In figure 3 we can see the general course
of action:

i) we identified document fragments (“objects”) that con-
stitute a coherent, meaningful unit like the state of a
document“vg.” or its description“zur Prüfung vorgelegt
[submitted for certification]”, then

1This is the MathML way of representing Linked Data. In
section 5, we will see how this feature has been extended to
RDFa Linked Data.

ii) we translated it into the STEX format, realizing for ex-
ample that “vg.” is a recurring symbol and “zur Prü-
fung vorgelegt” its definition (therefore designing the
SAMSDocs macro “SDdef”), and finally

iii) we polished these macros in the STEX specific sty-files so
that the PDF layout remained as before and the XML
represented the intended logical structure, for instance
the use of the XML nodes “symbol” and “definition”.

Note that definitions are common objects in mathematical
documents, therefore STEX naturally provides a definition
environment. So why didn’t we use that? Because the
OMDoc document model underlying the STEX→LATEXML
transformation does not allow definitions in tables as these
are stand-alone objects from an ontological perspective. If
one authors a formal document, this view is taken, so no
problem arises, but if one formalizes an existing document,
layout and cognitive side-conditions have to be taken into
account. We therefore realized that we could not simply
add basic STEX markup to the LATEX source yielding formal
objects, we rather needed to add pre-formal markup in the
formalization process (we speak of (semantic) preload-
ing).

Whenever project-wide layout schemes were discovered, that
were frequently used, we extended the macro set of STEX
suitably (enabling preloading the project structure). The ta-
ble layout for example was often used for lists of symbol def-
initions. So we created the SDTab-def environment which
can host as many SDdef commands as wanted. This helped
the efficiency of the formalizing process tremendously.

Another difference between authoring and semantic preload-
ing consisted in the order of the formalization steps. While
the order of the first typically consists of “chunking” (i. e.,
building up structure e. g. by setting up theories),“spotting”
(i. e., coining objects), and “relating” (i. e., explicating re-
lationships between objects or structures), the order of the
second is made up of spotting, then relating or chunking.
The last two were done simultaneously, because STEX offers
a very handy inheritance scheme for symbol macros — as
long as the chunks are in order, which could be sensibly done
for some but not for all at this stage in the formalization pro-
cess. Generally, many ‘guiding’ services of STEX, that STEX
considered to be features, turned out to be too rigid.

As a consequence we heavily used very light annotations at
the beginning: It was sufficient to identify a certain doc-
ument fragment and to mark it with a referencable ID like
“zustand-doc-vg”. Shortly afterwards, we realized that some
more basic markup was necessary, since we wanted to expli-
cate our knowledge of types/categories of these objects and
their conceptual belonging. For this we developed a set of
“ad-hoc semantification macros” with named attributes
like SDobject[id], SDmore[id, cat, for],
SDisa[id,cat,for,follows,theory,imports,tab],
or SDreferences[id, file,refid]2. The ‘more’ func-
tionality provided by SDmore was required due to logically
contiguous objects that were interspersed in a document.
With this set we preloaded the document structure (which is

2We use subsets of a general attributes set for all of our
STEX extensions to lower the learning curve for the use of
the markup macros.

stex-isem.tex 1265 2010-03-09 10:54:39Z ako

Figure 3: The Formalization Workflow via STEX: Definition Table of “document state”

quite different from the layout structure, e. g. by subsections
that is supported by STEX core features, see DCMsubsection
in figure 3). Note that the ad-hoc semantification macros
enabled the formalizer to develop her own metadata vocab-
ulary.

As soon as the document boundaries went down, we real-
ized that an object had many occurrences in several of the
documents in the SAMSDocs collection. For example, first
an object was introduced as a high-level concept in the con-
tract, then it was specified in another document, refined in
a detailed specification, implemented in the code, reviewed
at some stage, and so on until it was finally described in the
manual. Thus, we had to preload the collection structure as
well, which consisted in the development process model, the
V-model as seen in figure 1. Here, we built our personal V-
model macros, e. g. SemVMrefines, SemVMimplements,
or SemVMdescribesUse.

Additionally, we created an STEX extension especially suited
for preloading the organizational structure. This is consid-
ered different from the project structure as organizational
markup is very probable to be reusable for other projects
with the same organizational structure. For example, SAMS
used a document version management as well as a docu-
ment review history, so that environments VMchangelist,
VMcertification with corresponding list entry macros
VMchange, VMcertified were built. Another example is
the processing state of a document, which can be marked up

Figure 4: Referencing a “document state”

easily by using the macro VMdocstate as seen in figure 4.

We noted that the necessary formalization depth of some
documents was naturally deeper than others. For example,
it didn’t seem sensible to formalize the contract too much
as it was created as a high-level communication document,
whereas the detailed specification needed a lot of formaliza-
tion. The manual had an interesting mixed state of formality
and informality, as it was again geared towards communica-
tion, but it needs to be very precise.

In conclusion we note that the mathematical content of the
documents (i. e., the mathematical objects and their rela-
tions) was only one of the knowledge sources that needed to

stex-isem.tex 1265 2010-03-09 10:54:39Z ako

be formalized and marked up. All the arrows in figure 1 are
examples of relations between document fragments in the
SAMSDocs corpus that needed to be made explicit. For situ-
ations like these, we had added RDFa [1] as a flexible meta-
data framework to the OMDoc format [27]. In the course
of the case study, the RDFa integration was revised and ex-
tended and will be part of the upcoming OMDoc version
1.3 [23]. The main idea for this integration is to realize
that any concrete document markup format can only treat
a certain set of objects and their relations via its respec-
tive native markup infrastructure. All other objects and
relations can be added via RDFa annotations to the host
language, if the latter is XML-based. It is crucial to realize
that for machine support, the metadata objects and rela-
tions are given a machine-processable meaning via suitable
ontologies. Moreover, ontologies are just special cases of
(mathematical) theories, which import appropriate theories
for the logical background, e. g. description logic, and whose
symbols are the entities (class, properties, individuals) of
ontologies. Thus, STEX and OMDoc can play a dual role for
linked data in documents with mathematical content. They
can be used as markup formats for the documents and at
the same time as the markup formats for the ontologies. We
have explored this correspondence for OMDoc in previous
work and implemented a translation between OMDoc and
OWL [27, 26]; the design and extension of the STEX frontend
is one of the contributions of this paper.

4. A METADATA-EXTENSION OF STEX
To understand our contribution note that we can view LATEX
and STEX as frameworks for defining domain-specific vocab-
ularies in classes and packages; LATEX is used for layout as-
pects, and STEX can additionally handle the semantic as-
pects of the vocabularies. STEX uses this approach to define
special markup e. g. for definitions (see lines 10 and 31 in
listing 2). Note that to define STEX markup functionality
like the definition environment, we have to provide a
LATEX environment definition (so that the formatting via
LATEX works) and a LATEXML binding (to specify the XML
transformation for the definition environment). As the
OMDoc vocabulary is finite and fixed, STEX can (and does)
supply special LATEX macros and environments and their
LATEXML bindings. But the situation is different for the
flexible, RDFa-based metadata extension in OMDoc 1.3 we
mentioned above. At the start of the SAMSDocs preloading
effort, STEX already supported a common subset of metadata
vocabularies. For instance the Dublin Core title element
in line 11 of listing 2 is the transformation result of using
the KeyVal [7] pair title=. . . in the optional argument of
the definition environment.

For the SAMSDocs case study we started in the same way
by adding a package with LATEXML binding to STEX. The
\VMdocstate macro shown in the “STEX” box of figure 4
allowed us to annotate a document with its processing state.
This is transformed to an RDFa-annotated omdoc root el-
ement, as shown in the “OMDoc” box underneath and in
the black, solid parts of the RDF graph in figure 5. We can
already see that the STEX extension for SAMSDocs exactly
consists in a domain-specific metadata vocabulary exten-
sion, and that using the custom vocabulary hides markup
complexity from the author. Again, SAMSDocs only needed
a finite vocabulary extension, so this approach was feasible,

but of restricted applicability, since developing the SAMSDocs
package for STEX involves insights into STEX internals and
LATEXML bindings. Thus this extension approach lacks flex-
ible user-extensibility that is needed to scale up.

To enable user-extensibility, we add a new declaration form
\keydef to the core STEX functionality — like \symdef
in that it is inherited via the “imports” relation, only that
it defines a KeyVal key instead of a semantic macro. To
understand its application, we rationally reconstruct the
v:hasState relation from the example in the OMDoc box
of figure 4. To do this, we use STEX to create a meta-
data vocabulary for document states: we create a module
certification which defines the hasState metadata re-
lation and adds it to the KeyVal keys of the document
environment. The metalanguage macro is a variant of
importmodule that imports the meta language, i. e., the
language in which the meaning of the new symbols is ex-
pressed; here we use OWL.

Listing 3: A Metadata Ontology for Certification
\begin{module}[id=certification]
\metalanguage[../background/owl]{owl}
\keydef{document}{hasState}
\symdef{zustand-doc-vg}[1]{vg. #1}

5 \begin{definition}[for=hasState]
A document {\definiendum[hasState]{has state}} x, iff
the project manager decrees it so.
\end{definition}
\begin{definition}[for=zustand-doc-vg]

10 A document has state \definiendum[zustand-doc-vg]{vg. x},
iff it has been submitted to x for certification.
\end{definition}
\end{module}

So, if we import the certification metadata module, we
can write

\importmodule[../ontologies/cert]{certification}
\begin{document}[hasState=zustand-doc-vg]
. . .
\end{document}

to generate RDFa annotations that correspond to the red
dotted arrow in figure 5. Note that in the state of for-
malization shown in figure 4, the SAMSDocs-specific RDF
vocabulary still has a pre-semantic structure. With the

STEX extension we can express that the processing state
is actually intended to be a symbol in a metadata the-
ory, not just some semantic object in some file. In list-
ing 3 we use the \symdef directive to generate the symbol
zustand-doc-vg and \keydef to generate a metadata
relation hasState that is expressed by a key of the same
name, which is added to the document environment. When
processed by LATEXML, \keydef takes care of generating
correct URIs for the metadata relations and their target re-
sources, resulting in an RDFa output syntactically similar
to figure 4. In conclusion we note that the STEX exten-
sion allows us to rationally recreate the effect we previously
achieved with the custom \VMdocstate and \SDreferences
NoObj macros. Note that we did not have to extend the
LATEXML bindings at all for this extension.

5. STEX DOCUMENTS AS LINKED DATA
The translation of classical STEX to OMDoc and further to
XHTML+MathML (see section 2) enables interactive ser-
vices for mathematical structures. Now, that STEX sup-
ports formalization with arbitrary metadata (cf. section 4),

stex-isem.tex 1265 2010-03-09 10:54:39Z ako

Figure 5: RDF View on a “doc. state” Assignment

it should also be possible to utilize these metadata for ser-
vices. The JOBAD service architecture (see section 2) gives
uniform access to common queries in the document brows-
ing user interface. In the SAMSDocs scenario this might be a
query for all persons who have worked on the current doc-
ument. This can directly be answered from the metadata
of the revision log. Another typical query would consist in
asking for all parts of a specification that have to be re-
certified. Answering this query involves revision logs (for
finding documents that have changed since the last certifi-
cation), the collection structure (V-model dependencies of
changed parts), and the mathematical structure (logical de-
pendencies). In [18] we have elaborated on such SAMSDocs

queries from the point of view of their stakeholders (like en-
gineers, project managers, certifiers), particularly exploring
the multi-dimensionality of the formal structures. Here, we
will summarize the extensions made to our system architec-
ture to enable these services.

As a first step, we made the JOMDoc renderer preserve the
RDFa metadata from the OMDoc documents, now gener-
ating XHTML+MathML+RDFa. Additionally, the mathe-
matical structures had to be preserved in the rendered out-
put. Even though OMDoc uses native non-RDFa markup
for these structures, exploiting the OMDoc ontology we can
transform it into RDF form (see [25, 8] for more informa-
tion). Existing JOBAD services recognized mathematical
formulae in XHTML presentations of OMDoc documents by
their semantic structure (e. g. whether they use previously
defined symbols or physical units). Similarly, new services
can recognize whether a chunk of an XHTML document is,
e. g., an implementation of a specification fragment, and by
which user requirement that is induced. Compared to the
previously existing definition lookup service, the principle of
retrieving content from a target URI and displaying it in a
popup remained the same, the URIs are just provided by
different annotations.

Secondly, we have extended the folding of subterms of math-
ematical formulae to higher-level structures, such as require-
ments, code fragments, or steps of structured proofs. We
have implemented this using the rdfQuery JavaScript li-
brary [34], which parses all RDFa annotations of a doc-
ument into a local triple store that can be queried using
SPARQL-like JavaScript functions. On the server side, we
have extended TNTBase [35], our versioned database back-
end and web server/application framework to accept com-
mits of STEX documents, automatically convert them to OM-
Doc, and then serve OMDoc, XHTML+MathML+RDFa,
and, optionally, RDF/XML, according to the Linked Data
best practices [14].

Even the pre-semantic annotations like the ones shown in
figure 4 afford interactive services: A generic reference can
already be utilized for lookup and navigation. Providing
additional information in the instance document or in the
ontology (e. g. the knowledge about the target of a reference
being a symbol or a processing state) allows for making the
service user interface more specific and enables the display
of more relevant related information. For the generic pre-
semantic “references” relation, it does not make sense to dis-
play a list of all semantic objects that it relates to each other,
as that list would be large and there would be no obvious
way of ranking or filtering it. But once more specific link
types are used, such as the “has state” link, that information
can be used to display a list of documents grouped by state.

Queries across documents cannot be answered using the
above-mentioned rdfQuery: client side queries require a com-
bination of querying a local triple store and crawling links.
In our setup, we have experimented with SQUIN [13], a fron-
tend to the Semantic Web Client library [4], which gives ac-
cess to Linked Data via a simple HTTP frontend at very low
integration costs: If the server provides standard-compliant
Linked Data, then the client simply has to access the URL of
the SQUIN server, providing a SPARQL query as a param-
eter. An alternative would have been AJAR library, a part
of the Tabulator Linked Data browser [3], which implements
the same functionality in JavaScript. In our setup, SQUIN
acts as a proxy between the client-side JavaScript code and
our Linked Data. While a Linked Data crawler is most flexi-
ble when data are distributed across many servers (e. g. when
an OMDoc document links to DBpedia), its query answer-
ing capabilities are only as good as the Linked Data being
served. For example, if the RDF(a) does not contain back-
links (like links from a mathematical theory to the theories
it imports and to the theories by which it is imported), then
an AJAR- or SQUIN-powered client cannot query links in
both directions. Moreover, the performance of such a so-
lution is limited, as it requires memory for the local triple
store as well processor time for query answering on the client
side. Therefore, in the SAMSDocs setting, where the queries
are currently limited to a document collection on a single
server, the best solution is storing the triples on that same
server, and making them accessible via a standard query in-
terface. Concretely, we make a SPARQL endpoint available
as an extension to TNTBase [8]. In a larger Software En-
gineering scenario (like a document collection of a company
with multiple departments) a combination with a Linked
Data crawler may have advantages: if all these departments
publish their document collections as Linked Data in the
company intranet (see for instance [32] for the actuality
of this example), crawling these may reveal previously un-
known connections, e. g. colleagues dealing with structurally
similar problems who could lend advice. Note that local vo-
cabularies resulting from ad-hoc semantification need not be
a barrier to knowledge exchange: Linked Data practices rec-
ommend connecting occurrences of semantically equivalent
resources in different data sets by owl:sameAs. Alterna-
tively, if it turns out that one department uses a “better”
vocabulary for their data, the STEX metadata extensions
make it easy to adopt it: all we have to do is to change the

STEX bindings or \keydefs.

6. CONCLUSION AND FUTURE WORK

stex-isem.tex 1265 2010-03-09 10:54:39Z ako

We reported on a formalization case study, where we use
the STEX format, a document formatting system and spec-
ification platform for semantic, mathematical vocabularies,
on a document corpus from Software Engineering. To cope
with the the multi-dimensional semantic structure implicit
in the document collection, we extended STEX into a markup
platform for semi-formal ontologies and Linked Data (in our
case semi-formal documents with RDFa-based metadata an-
notations).

The work reported here is related to, but different from
the SALT format [12], which also allows to embed Linked
Data relations into LATEX. SALT embeds a fixed set of
rhetorical and bibliographical relations as annotations in the
generated PDF, whereas STEX allows a flexible set of rela-
tions, which it only embeds as RDFa into the generated OM-
Doc and XHTML+MathML. We have concentrated on the
XHTML+MathML target, since it supports dynamic inter-
actions via our JOBAD system. An export of the metadata
relations to PDF should be possible with the technology em-
ployed in SALT, we leave this to future work.

The key observation from our case study is that if we use

STEX as a human- and document-oriented frontend for Linked
Data documents, we can approach the formalization of semi-
formal document collections as a process of “document and
ontology co-development”, where (in our case pre-existing)
documents are semantically preloaded with inter- and intra-
document relations, whose meaning is given by (project-
specific or general, reusable) metadata ontologies. As we
have seen in section 3, preloading documents and developing
metadata ontologies in a joint frontend format reduces for-
malization barriers; for instance, we often have to elaborate
informal document fragments into the metadata ontologies;
see the discussion about “vg.”.

For practical applicability of the STEX-based approach, ma-
chine support for authoring and managing STEX document
collections is crucial. As a client-side counterpart to the
integrated repository and Linked Data publishing solution
provided by TNTBase [8], we are currently developing an in-
tegrated collection authoring environment STEXIDE for STEX
on the basis of the Eclipse framework [16]. We expect that
extending STEXIDE to operationalize the new STEX func-
tionality presented in this paper will turn it into an IDE
for document collection and ontology co-development that
will enable authors to cope with the complexities of dealing
with large collections of semi-formalized documents. On the
other hand, we expect the modular STEXIDE system to be
a good basis for deploying supportive services in a flexible
document collection environment.

We conjecture that the STEX based workflow for document
and ontology co-development can be extended to arbitrary
Linked Data applications. We are currently working on two

STEX extensions:

Flexible Metadata for LATEX Documents Our exper-
imental rdfameta package [20] redefines common LATEX
commands (e. g. the sectioning macros) so that they in-
clude optional KeyVal arguments that can be extended by
\keydef commands. With this extension, we can add RDFa
metadata to any existing LATEX document and generate linked

data (XHTML+RDFa documents) via the LATEXML trans-
lator. Currently the coverage of the rdfmeta package is
minimal; we will extend this in the future.

Generating OWL-XML from STEX In the original STEX
workflow, we use the OMDoc format for representing on-
tologies. This allows a deeper mathematical modeling and
documentation than OWL, which is widely used on the Se-
mantic Web. Even though we have a working translation of
OMDoc ontologies to OWL (encoded as RDF/XML)[27], a
direct STEX to OWL transformation would be nice. Simply
using our experimental owl2onto class [19] instead of the
omdoc class from STEX in the LATEX preamble will cause
LATEXML to generate OWL – here in the direct OWL XML
serialization – instead of OMDoc for documents with re-
stricted markup.

Acknowledgments. The authors gratefully acknowledge the
careful work of Christoph Lüth, Holger Täubig, and Dennis
Walter that went into preparing the SAMS document collec-
tion, which is the basis of this paper. Moreover, we like to
thank the members of the FormalSafe project for valuable
discussions.

7. REFERENCES
[1] B. Adida and M. Birbeck. RDFa Primer. W3C

Working Group Note, World Wide Web Consortium
(W3C), Oct. 2008.

[2] R. Ausbrooks, S. Buswell, D. Carlisle,
G. Chavchanidze, S. Dalmas, S. Devitt, A. Diaz,
S. Dooley, R. Hunter, P. Ion, M. Kohlhase, A. Lazrek,
P. Libbrecht, B. Miller, R. Miner, M. Sargent,
B. Smith, N. Soiffer, R. Sutor, and S. Watt.
Mathematical Markup Language (MathML) version
3.0. W3C Candidate Recommendation of 15 December
2009, World Wide Web Consortium, 2009.

[3] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,
R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analyzing linked data on the
semantic web. In Proceedings of the The 3rd

International Semantic Web User Interaction
Workshop (SWUI06), Nov. 2006.

[4] C. Bizer, T. Gauß, R. Cyganiak, and O. Hartig.
Semantic web client library. http://www4.wiwiss.
fu-berlin.de/bizer/ng4j/semwebclient/,
seen Feb. 2010.

[5] S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar,
M. Gaetano, and M. Kohlhase. The Open Math
standard, version 2.0. Technical report, The Open
Math Society, 2004.

[6] J. Carette, L. Dixon, C. Sacerdoti Coen, and S. M.
Watt, editors. MKM/Calculemus 2009 Proceedings,
number 5625 in LNAI. Springer Verlag, July 2009.

[7] D. Carlisle. The keyval package. The Comprehensive
TEX Archive Network, 1999. Part of the TEX
distribution.

[8] C. David, M. Kohlhase, C. Lange, F. Rabe,
N. Zhiltsov, and V. Zholudev. Publishing math lecture
notes as linked data. In L. Aroyo, G. Antoniou, and
E. Hyvönen, editors, ESWC, Lecture Notes in
Computer Science. Springer, June 2010. In press.

stex-isem.tex 1265 2010-03-09 10:54:39Z ako

[9] FormalSafe.
http://www.dfki.de/sks/formalsafe/, seen
Dec. 2008.

[10] U. Frese, D. Hausmann, C. Lüth, H. Täubig, and
D. Walter. The importance of being formal. In
H. Hungar, editor, International Workshop on the
Certification of Safety-Critical Software Controlled
Systems SafeCert’08, volume 238 of Electronic Notes
in Theoretical Computer Science, pages 57–70, Sept.
2008.

[11] J. Giceva, C. Lange, and F. Rabe. Integrating web
services into active mathematical documents. In
Carette et al. [6], pages 279–293.

[12] T. Groza, S. Handschuh, K. Möller, and S. Decker.
SALT – semantically annotated LATEX for scientific
publications. In E. Franconi, M. Kifer, and W. May,
editors, ESWC, number 4519 in Lecture Notes in
Computer Science, pages 518–532. Springer, 2007.

[13] O. Hartig and J. Sequeda. SQUIN – query the web of
linked data. http://squin.sourceforge.net,
seen Feb. 2010.

[14] T. Heath et al. Linked data – connect distributed data
across the web – guides and tutorials. http:
//linkeddata.org/guides-and-tutorials,
seen Feb. 2010.

[15] JOMDoc project — Java library for OMDoc
documents. http://jomdoc.omdoc.org, 2010. seen
Feb.

[16] C. Jucovschi and M. Kohlhase. sTeXIDE: An
integrated development environment for sTeX
collections. submitted to MKM (Mathematical
Knowledge Management) 2010, 2010.

[17] A. Kohlhase. Overcoming Proprietary Hurdles:
CPoint as Invasive Editor. In F. de Vries, G. Attwell,
R. Elferink, and A. Tödt, editors, Open Source for
Education in Europe: Research and Practise, pages
51–56, Heerlen, The Netherlands, Nov. 2005. Open
Universiteit Nederland, Open Universiteit Nederland.
Proceedings at
http://hdl.handle.net/1820/483.

[18] A. Kohlhase, M. Kohlhase, and C. Lange. Dimensions
of formality: A case study for MKM in software
engineering. submitted to MKM (Mathematical
Knowledge Management) 2010, 2010.

[19] M. Kohlhase. owl2onto.cls: Marking up OWL2
Ontologies in sTeX.
https://svn.kwarc.info/repos/stex/trunk/
sty/owl2onto/owl2onto.pdf.

[20] M. Kohlhase. RDFa metadata in LATEX.
https://svn.kwarc.info/repos/stex/trunk/
sty/rdfmeta/rdfmeta.pdf.

[21] M. Kohlhase. OMDoc – An open markup format for
mathematical documents [Version 1.2]. Number 4180
in LNAI. Springer Verlag, Aug. 2006.

[22] M. Kohlhase. Using LATEX as a semantic markup
format. Mathematics in Computer Science,
2(2):279–304, 2008.

[23] M. Kohlhase. An open markup format for
mathematical documents OMDoc [version 1.3]. Draft
Specification, 2010.

[24] M. Kohlhase, J. Giceva, C. Lange, and V. Zholudev.
JOBAD – interactive mathematical documents. In

B. Endres-Niggemeyer, V. Zacharias, and P. Hitzler,
editors, AI Mashup Challenge 2009, KI Conference,
Sept. 2009.

[25] C. Lange. The OMDoc document ontology. web page
at http:
//kwarc.info/projects/docOnto/omdoc.html,
seen August 2008.

[26] C. Lange. Semantic Web Collaboration on Semiformal
Mathematical Knowledge. PhD thesis, Jacobs
University Bremen, 2010. submission expected in
spring 2010.

[27] C. Lange and M. Kohlhase. A mathematical approach
to ontology authoring and documentation. In Carette
et al. [6], pages 389–404.

[28] B. Miller. LaTeXML: A LATEX to XML converter. Web
Manual at http://dlmf.nist.gov/LaTeXML/,
seen March 2010.

[29] MKM 2010, 2010. submitted to MKM (Mathematical
Knowledge Management) 2010.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Number 2283 in LNCS. Springer, 2002.

[31] SAMS. SAMSDocs: The document collection of the
SAMS project, 2009.
http://www.sams-projekt.de.

[32] F.-P. Servant. Linking enterprise data. In C. Bizer,
T. Heath, K. Idehen, and T. Berners-Lee, editors,
Linked Data on the Web (LDOW 2008), number 369
in CEUR Workshop Proceedings, Apr. 2008.

[33] Semantic Markup for LaTeX, seen July 2009. available
at http://kwarc.info/projects/stex/.

[34] J. Tennison et al. rdfQuery – RDF processing in your
browser.
http://code.google.com/p/rdfquery/, seen
Feb. 2010.

[35] V. Zholudev and M. Kohlhase. TNTBase: a versioned
storage for XML. In Proceedings of Balisage: The
Markup Conference 2009, Balisage Series on Markup
Technologies. Mulberry Technologies, Inc., 2009.
available at http:
//kwarc.info/vzholudev/pubs/balisage.pdf.

[36] V. Zholudev, M. Kohlhase, and F. Rabe. A [insert xml
format] database for [insert cool application]. In
Proceedings of XML Prague 2010, 2010.

