The GLIF System: A Framework for
Inference-Based Natural-Language
Understanding

Jan Frederik Schaefer and Michael Kohlhagel0000—0002—9859—6337]

Computer Science, FAU Erlangen-Niirnberg

Abstract. With the Grammatical Logical Inference Framework (GLIF),
a user can implement the core of symbolic language understanding sys-
tems by describing three components, each of which is based on a declara-
tive framework: parsing (with the Grammatical Framework GF), seman-
tics construction (with MMT), and inference (with ELPI). The logical
frameworks underlying these tools are all based on LF, which makes the
connection very natural. Example applications are the prototyping of
controlled natural languages for mathematics or experiments with new
approaches to natural-language semantics. We use Jupyter notebooks for
a unified interface that allows quick development of small ideas as well
as testing on example sentences.

1 Introduction

Mathematical research and application is increasingly supported by software —
e.g. computer algebra systems help with computational tasks and proof checkers
can be used to formally verify results. However, while mathematicians are used
to natural language (like English 4+ formulas), such software systems typically
require a formal input language. This raises the entry barrier not just for us-
ing mathematical software, but also for understanding the results: The formal
verification of a proposition is of little use if the proposition or its axioms are
unintelligible. Ideally, the software would accept natural language as input, but
the formalization of general natural language is a very hard problem. An easier
approach is to design formal input languages that imitate natural mathematical
language, which we will call controlled mathematical languages.

To support the design of such languages, we introduce GLIF, the Grammatical
Logical Inference Framework. GLIF allows users to implement natural-language
understanding systems, by describing a pipeline consisting of three steps: pars-
ing, semantics construction (mapping parse trees to logical expressions), and
inference. In the context of controlled mathematical languages, the logical ex-
pressions may simply be expressions in the (formal) input language of some
mathematical software. Each step in the pipeline is based on a different frame-
work: Parsing and grammar development are based on the Grammatical Frame-
work (GF) |], semantics construction and logic development are based on
MMT | |, and inference is based on ELPI |], an extension of AProlog.

2 Jan Frederik Schaefer, Michael Kohlhase

GLIF is an extension of the Grammatical Logical Framework (GLF) [I{S], which
doesn’t have an inference component.

The inference step is essentially the “understanding part” in the pipeline.
Depending on the application, it can have a variety of functions. It may simply
modify the results of the semantics construction, which is, by design, bound to be
compositional, with more complex operations, such as simplification or semantic
pruning. The inference step can also be used for ambiguity resolution (e.g. by
discarding contradictory readings) or even for theorem proving.

We have successfully used GLIF (and GLF) for various smaller experiments in
the area of natural-language semantics as well as a one-semester lecture in logic-
based natural language processing. More recently, we started reimplementing a
variant of ForThelL |], the language of the System of Automated Deduction.
As a running example, we will use a made-up language for specifying physical
properties of different objects with the example sentence

“the ball has a mass of 5 kg and a kinetic energy of 12 mN”,

where we use the inference step to disambiguate whether “12 mN” stands for
“12 meter Newton” or “12 milli Newton”.

2 Preliminaries: MMT

Before diving into details of the GLIF pipeline, we need to briefly introduce MMT,
the center-piece of GLIF. MMT is a modular, foundation-independent knowledge
representation framework. Knowledge is represented in the form of theories,
which contain a sequence of symbol declarations. Theories can be linked via
theory morphisms, which map symbols in the source theory to symbols in the
target theory. While MMT aims at foundation-independence, in practice most
theories are based on the Edinburgh Logical Framework LF or extensions of it —
e.g. we need integer literals for our running example. GLIF exploits the similarity
of LF with the logical frameworks underlying GF and ELPI, which results in very
intuitive transitions between the systems.

concret% abstract] 8¢) lang.".': logic gen) logic"."')
....... AN e 5
syntax syntax : theory : N +DT . syntax : rules
 theory | ymtax
N 7’

— e VvV L L P)

.
~ 1 , 1 ’

u MR

string | Parser | parse | Sem. Constr. | logical | Inference | result
(GF) tree (MMT) expr. (ELPI)

Fig.1. The GLIF Pipeline: [indicates elements that have to be specified and
indicates elements that can be generated automatically.

GLIF: A Framework for Inference-Based NL Understanding 3
3 The GLIF System

Figure 1 illustrates the GLIF pipeline. For the first step (parsing), we use the
Grammatical Framework (GF), which provides powerful mechanisms for the de-
velopment of natural language grammars and comes with a library that im-
plements the basic morphology and syntax of various languages. GF grammars
come in two parts: abstract syntax and concrete syntax. The abstract syntax
specifies the parse trees supported by the grammar in a type-theoretical fash-
ion, while the concrete syntax describes how these parse trees correspond to
strings in a language. If a sentence is ambiguous according to the grammar, GF
generates multiple parse trees. For our example sentence (“the ball has a mass
of 5 kg and a kinetic energy of 12 mN”), the two parse trees shown in Figure 2.

state state
/\ A
theball addMeasurement theball addMeasurement
measure toMeasurements measure toMeasurements
mass 5 kilo measure mass 5 kilo measure

gram eKin 12 unitCombine gram eKin 12 milli

N |
meter newton newton

Fig. 2. The ambiguity of mN results in two different parse trees.

We connect GF to MMT by reinterpreting the abstract syntax as an MMT
theory (the language theory). This lets us interpret the parse trees as terms
in that theory. The target of the semantics construction is an MMT theory that
describes the logic syntax and a domain theory. At the heart of the semantics
construction is now a view — a particular type of theory morphism — that maps
every symbol in the language theory to an object in the target logic/domain
theory. The translation of parse trees to logical expressions thus boils down to
applying a view to an MMT term. The compositionality of this process typically
means that some subtrees have to be translated to A-functions. In our case, for
example, “a mass of 5 kg” gets translated to A\x.mass = (quant 5 kilo gram).
The addMeasurement node, which combines measurements M and N, becomes
Ar.Mx A Nz. After the semantics construction, the A-functions are eliminated
through S-reduction, which gives us the following two logical expressions:

(mass theball (quant 5 kilo gram)) A (ekin theball (quant 12 milli Newton))
(mass theball (quant 5 kilo gram)) A (ekin theball (quant 12 meter - Newton))

4 Jan Frederik Schaefer, Michael Kohlhase

For the inference step, we use ELPI, an extension of AProlog. The advantage
of choosing AProlog over classical prolog variants is that variable binding can be
naturally represented through M-expressions, which is needed for many logics,
including first-order logic. MMT supports the transition to ELPI| by generating
the signature of the logic and domain theory and by exporting the generated
logical expressions in ELPI syntax. MMT can also generate ELPI provers from
calculi specified in MMT |].

For our example, we use the inference step to perform a dimensional analysis,
which rejects the wrong reading.

In [11]: parse "the ball has a mass of 5 k g"

state theball (toMeasurements (measure mass 5 (kilo gram)))

In [12]: p "the ball has a mass of 5 k g and a kinetic energy of 12 m N" | construct -v SemConstr
(mass theball (quant 5 kilo gram))a(ekin theball (quant 12 milli Newton))

(mass theball (quant 5 kilo gram))a(ekin theball (quant 12 meter-Newton))

In [13]: p "the ball has a kinetic energy of 12 m N" | construct -elpi | elpi dimAnalysis check

(ekin ball (quant 12 (milli newton)))
REJECTED: milli newton has dimension mass*length/(time*time) but expected
length*length*mass/(time*time)

(ekin ball (quant 12 (mult meter newton)))
ACCEPTED

Fig. 3. The results of parsing, semantics construction and inference in Jupyter

To improve accessibility GLIF can be used through Jupyter notebooks via a
custom kernel (Figure 3). The notebooks can be used to test the entire GLIF
pipeline. For smaller projects, grammars and MMT content can be implemented
directly in the notebook. Other features include the (visual) display of parse
trees and stub generation e.g. for the semantics construction.

4 Conclusion

We have presented GLIF, a declarative framework in which natural-language
understanding systems can be prototyped by specifying) a grammar, i) a
target logic and domain theory, 74) the semantics construction,) and inference
rules, which can be generated for some applications, as described in |].
We have tested the GLIF pipeline in different case studies and used it in a one-
semester course on logic-based natural-language semantics. One of the larger case
studies is our on-going effort to re-implement a variant of ForThelL, the controlled
mathematical language of the System for Automated Deduction (SAD). The
grammar currently has 38 different node types and 52 different production rules.
Like in SAD, the target of our semantics construction is first-order logic. It can
parse e.g. the definition “a subset of S is a set T such that every element of

GLIF: A Framework for Inference-Based NL Understanding 5

T belongs to S”, which results (after some a-renaming for readability) in the
logical expression

VT.(subsetof T S) < (set T) AVx.(elementof x T) AT = (belongto x S) AT

GLIF can be used through Jupyter notebooks, which increases the accessibility
significantly. The Jupyter kernel can be found at |]. The code and notebook
for the running example can be found at [Dim)].

References

[Dim] Dimensional Analysis in GLIF. URL: https://gl.mathhub.info /
comma/glf/- /tree/master /source\ %2Fcicm?2020 (visited on 03/22/2020).

[GLIF| GLIF. URL: https://github.com/KWARC/GLIF (visited on 03/22,/2020).

[Koh+20] Michael Kohlhase et al. “Logic-Independent Proof Search in Logical
Frameworks (extended report)”. extended report of conference sub-
mission. 2020. URL: https://kwarc.info/kohlhase /submit /mmtelpi.
pdf.

[KS] Michael Kohlhase and Jan Frederik Schaefer. “GF + MMT = GLF —
From Language to Semantics through LF”. In: LEMTP 2019, Pro-
ceedings. Electronic Proceedings in Theoretical Computer Science
(EPTCS). URL: https://kwarc.info/kohlhase/submit /1fmtp-19.pdf.

[MMT)] MMT - Language and System for the Uniform Representation of
Knowledge. URL: https://uniformal.github.io/.

[Pas07] Andrei Paskevich. The syntax and semantics of the ForTheL lan-
guage. 2007.

[Ranl11] Aarne Ranta. Grammatical Framework: Programming with Multi-
lingual Grammars. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7
(Cloth). Stanford: CSLI Publications, 2011.

[SCT15] Claudio Sacerdoti Coen and Enrico Tassi. The ELPI system. 2015.
URL: https://github.com/LPCIC/elpi.

https://gl.mathhub.info/comma/glf/-/tree/master/source\%2Fcicm2020
https://gl.mathhub.info/comma/glf/-/tree/master/source\%2Fcicm2020
https://github.com/KWARC/GLIF
https://kwarc.info/kohlhase/submit/mmtelpi.pdf
https://kwarc.info/kohlhase/submit/mmtelpi.pdf
https://kwarc.info/kohlhase/submit/lfmtp-19.pdf
https://uniformal.github.io/
https://github.com/LPCIC/elpi

	The GLIF System: A Framework for Inference-Based Natural-Language Understanding

