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Abstract. Structural language features are those that introduce new
kinds of declarations as opposed to those that only add expressions.
They pose a significant challenge when representing languages in meta-
languages such as standard formats like OMDoc or logical frameworks
like LF. It is desirable to use shallow representations where a structural
language feature is represented by the analogous feature of the meta-
language, but the richness of structural language features in practical
languages makes this difficult. Therefore, the current state of the art is
to encode unrepresentable structural language features in terms of more
elementary ones, but that makes the representations difficult to reuse
and verify. This challenge is exacerbated by the fact that many languages
allow users to add new structural language features that are elaborated
into a small trusted kernel, which allows for a large and growing set of
features.
In this paper we extend the Mmt representation framework with a
generic concept of structural features. This allows defining exactly the
language features needed for elegant shallow embeddings of object lan-
guages. The key achievement here is to make this concept expressive
enough to cover complex practical features while retaining the simplic-
ity of existing meta-languages. We exemplify our framework with rep-
resentations of various important structural features including datatype
definitions and theory instantiations.

1 Introduction and Related Work

Motivation Language design is generally subject to the expressivity-simplicity
trade-off. In particular, designing a representation language for mathematics in-
volves adequately capturing the ways how mathematical knowledge is expressed
in practice. On the other hand, the language must be as simple as possible to
allow establishing meta-theoretical properties and obtaining (and maintaining!)
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scalable implementations. This problem is exacerbated by the fact that the lan-
guage features needed in the long run are often not apparent at the beginning of
a project. Moreover, depending on the availability of resources and the interests
of the user community, languages and systems may be used in applications not
foreseen by the developers.

Because retroactive changes become increasingly costly once meta-theory or
implementation have been developed, adding new language features is often not
feasible. In a curse-of-success effect, language developers may find themselves
overwhelmed by feature requests from users, which they cannot add easily or
at all without breaking developments by other users. Therefore, it becomes im-
portant to design languages with extensibility in mind. This is particularly dif-
ficult for structural features, and especially challenging for meta-languages such
as standardized representation formats like OMDoc [Koh06] or logical frame-
works like LF [HHP93]: These languages partially derive their value from being
simple and elegant and cannot afford constantly adding features. On the other
hand, they cannot afford fixing the set of structural features either: That would
require encoding all other features via complex, often non-compositional trans-
lations, which are difficult to verify and preclude interoperability.

A particularly successful model used in many proof assistants has been a two-
component design: firstly, a small, fixed, and carefully-designed kernel is used
as the ultimate arbiter of correctness; secondly, a higher-level and more flexible
component reads user input and translates it into the kernel syntax, a process we
call elaboration. For example, major proof assistants like Coq [Coq15] and Is-
abelle [Pau94] have over time arrived at this model, and attention is increasingly
shifting towards the elaboration component. Pure LCF systems like HOL Light
[Har96] can be seen as an extreme case with the host programming language as
the (Turing-complete) higher-level language.

Elaboration is typically implemented programmatically, i.e., via arbitrary
code in the tool’s underlying programming language. In the simplest case, a
new kind of declaration could be introduced as a type N <∶ D where N holds
the declarations and D is an abstract interface for arbitrary declarations, to-
gether with a function N → List(D) that elaborates an instance of N into other
declarations. If the logic is sufficiently strong, tools may use reflection to define
programmatic elaboration inside the logic as done for Idris in [CB16] and Lean in
[EUR+17]. Concrete examples of high-level language features with elaboration-
based semantics include

– HOL-style subtype definitions [Gor88], elaborated into an axiomatic specifi-
cation of a new type,

– Mizar’s many different definition principles, elaborated into axiomatic spec-
ifications of new function symbols,

– Isabelle’s so-called derived specification elements including inductive, record,
and quotient types, elaborated subtype definitions of some appropriately
large type, see e.g., [BHL+14],

– PVS’s inductive types, elaborated into an axiomatic specification of the in-
duction properties,
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– Coq’s record types, elaborated into inductive types with a single constructor,
– Coq’s sections, elaborated into kernel declarations that abstract over all

variables declared in the section.
As the examples already indicate, elaboration is recursive, e.g., the elaboration
of an Isabelle inductive type definition may lead to a subtype definition, which
is then elaborated further. It may also be nested, e.g., the elaboration of a
nested Coq section first generates declarations in its parent section, which is
then elaborated later.

But the elaboration-based approach has two major difficulties. Firstly, elab-
oration necessarily destroys the high-level structure. If only the kernel represen-
tation is effectively available to other applications (as we found is often the case,
see [KR20]), it becomes harder to transfer and reuse developments. Secondly,
programmatic elaboration offers a high degree of flexibility but also makes it
harder to analyze or implement high-level declarations generically.

In a response to these issues, we introduced declaration patterns in [HKR12]
and [Hor14]. They allowed describing elaboration declaratively inside the logic
rather than programmatically. Declaration patterns were successful in many
cases including typical logical declarations [HR15], Mizar’s definition principles
[IKRU13], and HOL type definitions [KR14]. But, being fully declarative, they
expectedly could not cover many practically important examples. For example,
to elaborate an inductive data type definition, one has to generate an inequality
axiom for every pair of constructors — something that quickly becomes awkward
to describe without a general purpose programming language.

Contribution We expand on the declarative approach of [HKR12,Hor14] by ex-
tending the Mmt framework with a generic extension mechanism based on pro-
grammatic elaboration. Critically, despite being very general, the declarations
introduced by structural features share the same simple syntactic shape, which
allows for simple specifications and uniform implementations.

Because Mmt allows implementing logical frameworks such as LF, this imme-
diately yields corresponding extensions of these. Our design was strongly moti-
vated by and evaluated in our work on exporting proof assistant libraries [KR20],
where we had to model many high-level language features of proof assistants. For
example, we have already used our design to represent PVS includes [KMOR17]
or Coq-style sections [MRSC19] (see Subsection 4.2).

Overview This paper is organized as follows. In Section 2, we recap the parts of
OMDoc/Mmt, which we use as the underlying core language. Section 3 intro-
duces the infrastructure for structural language extensions. We look at concrete
instances and develop a varied array of Mmt structural features in Section 4.
Finally, Section 6 concludes the paper and discusses future work.

2 Preliminaries

OMDoc is a rich representation language for mathematical knowledge with a
large set of primitives motivated by expressivity and user familiarity. The Mmt
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[RK13] language is a complete redesign of the formal core of OMDoc focusing
on foundation-independence, scalability, modularity and minimality.

In Figure 1, we show a fragment of the Mmt grammar that we need in the
remainder of this paper. Meta-symbols of the BNF format are given in color.

Module Level
Diagram γ ::= Mod∗

Module Mod ::= Thy
Theory Thy ::= T = {Dec∗}

Statement Level
Declaration Dec ::= c[ ∶ E ][ ∶= E ]

∣ Thy ∣ include l
Object Level

Expression E ::= x ∣ c ∣ x ∶ E
∣ x(E∗) ∣ c(E∗)

x, c, T represent variable, constant, and
theory names (strings) respectively

Fig. 1. Mmt Grammar

The central notion in Mmt is that
of a diagram consisting of a list of
modules. For our purposes, theories
are the only modules we need. Mmt
theories are named sets of statements
and are used to represent formal con-
structs such as logical frameworks, log-
ics, and theories. At the declaration
level Mmt has includes and con-
stants. Constants are meant to repre-
sent a variety of OMDoc declarations
and are simply named symbols with an
optional type and definition. The types
and definitions are Mmt expressions
which are based on OpenMath and in-
clude variable and symbol references as well as application and binding.

The semantics of Mmt provides an inference systems that includes in partic-
ular two judgments for typing and equality of expressions. Via Curry-Howard,
the former includes provability, e.g., a theorem F is represented as a constant
with type F , whose definiens is the proof. We have to omit the details here for
brevity. We only emphasize that Mmt is foundation-independent: The syntax
does not assume any special constants (e.g., λ), and the semantics does not as-
sume any special typing rules (e.g., functional extensionality). Instead, any such
foundation-specific aspects are supplied by special Mmt theories called foun-
dations. For example, the foundation for the logical framework LF [HHP93]
declares constants for type, λ, Π, and @ (for application) as well as the nec-
essary typing rules. Thus, the Mmt module system governs, e.g., which typing
rules are available in which theory. The details can be found in [Rab17].

3 Structural Features

Before we come to a formal definition, let us consider record types as an
example for a structural feature.

A record type R is a collection of typed (in our case, optionally additionally
defined) fields x ∶ T . A record term r is a collection of assignments x ∶= d for
each field, such that if R contains x ∶ T , then d has type T . In dependent
record types, T may additionally refer to previous fields.

For any such record term r ∶ R, we then have a projection operator “.” such
that r.x has type T and (if r is not primitive) r.x = d. As such, a record type
R = ⟦ x1 ∶ T1 . . . xn ∶ Tn ⟧ can be implemented as a high-level structure that
elaborates into
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– A single constructor ConR ∶ T1 → . . .→ Tn → R,
– for each field x ∶ T in R, a projection function ⋅.x of type R → T , and
– Axioms asserting injectivity and surjectivity of the constructor, as well as

appropriate equalities implying that constructor and projection functions
commute appropriately.

We will return to this example in more detail in Subsection 4.1.
There is a notable correspondance between record type declarations and the-

ories, in that both consist (primarily) of declarations of the form x ∶ T . It thus
seems attractive to reuse the grammar of theories to allow for declaring record
types as a high-level feature, motivating the following:

Definition 1. We extend the Mmt grammar by a new production rule:

Dec ∶∶= d ∶ f (E∗) = {Dec∗}

We call this a derived declaration of the structural feature f. d is the name
of the derived declaration, the E are its parameters and the Decs its internal
declarations.

Definition 2. A structural feature is a triple (f, v, ε), where:
1. f is the name of the feature,
2. v is a validity predicate on derived declarations

D ∶= d ∶ f (F1 . . . Fn) = {S1 . . . Sm}

If v(D) holds, we call D a (well-formed) derived declaration of f.
3. ε is called an elaboration function, mapping a derived declaration D of

f to its elaboration: a set of declarations, which we also call the external
declarations of D.

Once a derived declaration is declared, we will (almost) never care about
its internal declarations anymore. The corresponding structural feature checks
whether a derived declaration D conforms to some specific pattern, checking its
components and internal declarations separately (possibly generating errors),
and elaborates D into a set of external declarations based on its con-
stituents. Since checking often requires elaboration (and vice versa), the Mmt
implementation unifies ε and v into a single method. The external declarations
specify the intended semantics of the derived declaration.

The structural feature itself is written in Scala using the Mmt-API, which
provides dedicated abstractions, and acts as a rule similarly to the typing rules
mentioned in Section 2. Just like typing rules , structural features (or rather,
their derived declarations) can thus be made available in precisely those theories
where they are deemed valid.

For the rest of this paper, we will assume various extensions of LF as our
foundations. If our external declarations contain axioms, we assume some fixed
logic declared in the foundation, providing a type prop, an operator ⊢ of type
prop→ type, a typed equality operator ≐ ∶ ∏A∶typeA→ A→ prop and the usual
logical connectives.

5



However, it should be noted that the structural features presented herein can
be easily adapted to any logic sufficiently strong to allow for defining (equivalents
to) their external declarations.

4 Examples

We will now show the practical utility of these relatively abstract definitions in
some paradigmatic cases at the declaration and module levels.

4.1 Datatypes

Inductive Types Structural features can provide a convenient syntax for
declaring inductive types. Consider for example a (parametric) type of lists
List(A) of type A, which can be defined as the inductive type generated by the
two constructors nil ∶ List(A) and cons ∶ A → List(A) → List(A). We devise
two structural features with names induct and indef, allowing us to declare
inductive types and inductive definitions respectively, as in Figure 24. Naturally,
parametric inductive types require a logic with (at least) shallow polymorphism.

induct Lists (A:type) ∣∣ =
List : type
nil : List
cons : A → List → List ∣∣ # 1 :: 2

indef Conc (Lists , B : type, ls : List B) ∣∣ =
conc : List B → List B ∣∣ # 3 ++ 2
Nil = ls
Cons = [b:B,l : List B] b :: (conc l )

Fig. 2. Lists as an Inductive Type and Concatenation as an Inductive Definition

If the underlying logic L provides primitive typing features that subsume
inductive types, such as W-Types, induct and indef can elaborate into their
(usually syntactically cumbersome) L-correspondents. A structural feature elab-
orating into W-types is described in [Mül19].

In the absence of such a typing feature, we can instead elaborate into the
corresponding constructors and axioms (expressed in some logic declared in our
foundation) asserting their collective injectivity and surjectivity, in the manner
which we will describe shortly. Importantly, we can use the same validity predi-
cate and feature name for both variants, preserving the syntax of the structural
features across logics. This ensures that whenever L′ extends L by an inductive
typing feature, any L-theory using induct and indef remains a valid L′-theory,
but the elaboration in the stronger logic will consist of defined constants.

4 These listings show our actual formalizations in concrete syntax and use a few se-
mantically inessential features that go beyond the syntax introduced in Figure 1.
Most notably, # introduces a notation and ∣∣ separates declaration components.
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Elaborating induct A derived declaration

Dind ∶ induct (t1 ∶ T1 . . . tn ∶ Tn) = {S1 . . . Sm}

is elaborated as follows:

1. Any type-level declaration Si ∶ type is elaborated into

Dind/Si ∶ ∏
t1∶T1,...,tn∶Tn

type.

This allows for mutually inductive and parametric types.
Let I1 . . . Ik be the type-level declarations of Dind. The remaining declara-
tions need to either i) have type Ii, or ii) have type T ′1 → . . . → T ′k → Ii for
some types T ′1 . . . T

′

k, and are thus assumed to be constructors.
2. For each remaining Si ∶ T → Ii

5, we extend the elaboration by the constructor

Dind/Si ∶ ∏
t1∶T1,...,tn∶Tn

T → Ii

3. (No-confusion) For each constructor Si, we add
– an axiom that Si is injective in each argument, and
– an axiom, that Sj(a) ≠ Si(b) for any other constructor Si ≠ Sj and

sequences or arguments (a) (b) of adequate arity and types.
4. (No-junk) Several axioms that guarantee that the inductively defined types

in the elaboration are initial models of their respective model category.
This is the trickiest part of the construction and treated in detail in [Rot20].

Elaborating indef Having an inductive type TI elaborated from Dind, we can
design indef to allow for conveniently specifying inductive definitions and con-
sequently (using judgments-as-types) proofs by induction.6

A derived declaration Ddef ∶ indef (Dind, t1 ∶ T1 . . . tn ∶ Tn) = {S1 . . . Sm}
has to satisfy the following properties (which collectively constitute the validity
predicate) in order to be considered well-formed:

1. The first declaration S1 has to have function type TI → A for some type A.
2. For every constructor con ∶ T ′1 → . . . → T ′k → TI , there has to be an Si with

the same name, being a defined constant

con ∶ T ′1 → . . .→ T ′k → A ∶= λa1 ∶ T ′1, . . . , ak ∶ T ′k. t

The elaboration then consists of the following external declarations:

1. A constant Ddef /S1 ∶ ∏t1∶T1,...,tn∶Tn
TI → A,

2. For every constructor con ∶ T ′1 → . . . → T ′k → TI and corresponding internal
declaration con ∶ T ′1 → . . .→ T ′k → A ∶= λa1 ∶ T ′1, . . . , ak ∶ T ′k. t, an axiom

Ddef /con ∶ ∏

t1 ∶T1,...,tn ∶Tn

∏

a1 ∶T
′

1
,...,ak ∶T

′

k

⊢ Ddef /S1(t1, . . . , tn,con(a1, . . . , ak)) ≐ t

5 For notational simplicity, we only consider the case of unary constructors; the gen-
eralization to n-ary constructors is clear

6 For simplicity, we restrict ourselves to the case where Dind elaborates into a single
inductive type (ignoring mutual induction).
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Records In [MRK18,Mül19], we describe an operator Mod, which takes as ar-
gument a (reference to a) theory T and returns a (dependent) record type with
manifest fields whose fields correspond to the declarations in T – effectively
yielding a type of models of T . This assumes a background logic L with record
types as a typing feature.

For the common case that we want to have the Mod-type be i) a named
record type and ii) only need T in order to define Mod T , we can introduce a
structural feature rectp with the same functionality as Mod. In this case, the
validity predicate accepts any theory and the elaboration simply consists of a
named record with the inner declarations as fields. If a derived declaration of
rectp has additional parameters ti ∶ Ti, these are λ-bound to the corresponding
external declaration; i.e. a derived declaration

Drectp ∶ rectp (R, t1 ∶ T1, . . . tn ∶ Tn) = {s1 ∶ T ′1[ ∶= d1] . . . sm ∶ T ′m[ ∶= dm]}

elaborates to

R ∶ ∏
t1∶T1,...,tn∶Tn

type ∶= λt1 ∶ T1, . . . , tn ∶ Tn. ⟦ s1 ∶ T ′1[ ∶= d1] . . . sm ∶ T ′m[ ∶= dm] ⟧ .

Analogously, we can introduce a structural feature rectm with derived dec-
larations Drectm ∶ rectm (r, Drectp F1 . . . Fn) = {S1 . . . Sm}, where each Si is
a defined constant whose name corresponds to an (undefined) field of R. Addi-
tional parameters ti ∶ Ti are again λ-bound; i.e. a derived declaration

Drectm ∶ rectm (Drectp, t1 ∶ T1 . . . tn ∶ Tn R) = {s1 ∶= d1 . . . sm ∶= dm}

elaborates to the named record term

r ∶ ∏
t1∶T1,...,tn∶Tn

R ∶= λt1 ∶ T1, . . . , tn ∶ Tn. j s1 ∶= d1 . . . sm ∶= dm o .

One big advantage of this approach in MMT surface syntax is that each field
in a rectm-declaration can be checked separately against the corresponding field
in the record type, whereas the elaborated expression j s1 ∶= d1 . . . sm ∶= dm o
is treated as a single term and checked in whole. While this does not make a sig-
nificant difference for the type checking component, it allows for better localizing
errors when they occur, and correspondingly more helpful error messages.

In a logic L without a notion of record types, the structural feature rectp

can instead elaborate a derived declaration in the manner described in Section 3.

4.2 Module System

MMT Structures are an Mmt primitive kind of theory morphisms, that es-
sentially behave like named includes with modification: A structure S ∶ T1 → T2
makes all declarations in T1 accessible in T2, but allows for

– supplying additional names (aliases) to constants via @-annotations,
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– changing notations of constants and

– supplying definientia for previously undefined constants.

In particular, unlike includes, multiple structures with the same domain are not
idempotent. A typical example for structures is given in Figure 3: A theory of
rings is constructed using two structures for addition (from AbelianGroup) and
multiplication (from Monoid) whose universes are defined to be the same type
R and whose operations and units are renamed and provided with adequate
notations. The axioms in the domain theories are thus automatically imported
into Ring.

theory Monoid =
U : type
op : U → U → U ∣∣# 1 ○2
unit : U ∣∣ # e
axiom1 : ⊢ ∀ [ x] x ○ e ≐ x
...

theory AbelianGroup =
include ?Monoid
inv : U → U ∣∣# 1 ˆ−1
axiom1 : ⊢ ∀ [ x] x ○ (x ˆ−1) ≐ e
...

theory Ring =
R : type
structure addition : ?AbelianGroup =

U = R ∣∣∣∣
op @ plus ∣∣ # 1 + 2
unit @ zero ∣∣ # O
inv @ minus ∣∣ # − 1

structure multiplication : ?Monoid =
U = R ∣∣∣∣
op @ times ∣∣ # 1 ⋅ 2
unit @ one ∣∣ # I

...

Fig. 3. Theories for Monoids, Abelian Groups and Rings using Structures

As mentioned, structures are Mmt primitives. However, they can be easily
defined using structural features: A derived declaration S ∶ structure (T1) =
{S1 . . . Sm} satisfies the validity predicate iff:

1. T1 is a valid theory,

2. any constant Si shares a name with a constant in T1 and

3. for any defined constant Si = (c ∶= d) with c ∶ T in T1, we demand that
d type checks against T ′, where T ′ is T with constant references from T1
appropriately substituted by their S-counterparts.
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The elaboration then consists simply of the appropriately modified copies of the
declarations in T1 with their names prefixed by S/.

Coq-Style Sections In [MRSC19], we present an import of the Coq Library
into the MMT system. In order to preserve the original syntax of the library as
closely as possible, this necessitated mirroring Coq’s module system (Sections,
Modules, Module Types) within MMT, which was done using structural features.
Exemplary, we will look at Coq Sections.

A Coq Section is a named theory, in which it is allowed to introduce variables
via declarations. After a section ends, its contents are accessible with all variables
becoming Π-bound to all subsequent declarations.

Section Well founded Nat.
Variable A : Type.
Variable f : A −> nat.
Definition ltof (a b:A)

:= f a < f b.
Definition gtof (a b:A)

:= f b > f a.
End Well founded Nat.

Section Well founded Nat =
A : type ∣∣ role Variable
f : A → nat ∣∣ role Variable
ltof : A → A → prop ∣∣

= [a,b] f a < f b
gtof : A → A → prop ∣∣

= [a,b] f a > f b

Fig. 4. A Coq Section and its MMT Counterpart

Figure 4 shows an
example of a Coq sec-
tion. A and f are
declared as variables
and used like con-
stants in the remain-
der of the section.
The defined constant
ltof within the sec-
tion hence takes two
arguments a, b. After the section is closed however, ltof is used as a quater-
nary function, with its arguments being the type A, the function f and the two
arguments a, b.

The right side of Figure 4 shows the same Section, but expressed in MMT
syntax using a new structural features Section. Variables are marked with the
role Variable flag. The validity predicate accepts any theory. A derived decla-
ration D = Sec ∶ Section () = {S1 . . . Sn} is elaborated as follows:

1. Any constant with the role Variable flag is not elaborated,
2. for any other constant Si = c ∶ T [ ∶= d], let v1 ∶ T1 . . . vn ∶ Tn be all

variables declared in D prior to Si. Then extend the elaboration of D by

Sec/c ∶ ∏
v1∶T1,...,vn∶Tn

T [ ∶= λv1 ∶ T1, . . . , vn ∶ Tn. d]

PVS-Style Includes In [KMOR17,Mül19], we present an import of the PVS
Prelude and NASA Libraries into the MMT system. One of the peculiarities
of the PVS language is their prevalent use of parametric theories. These are
commonly used whenever results involving multiple models of the same theory
are needed; e.g. a theory of groups in PVS would be parametric in the sig-
nature of groups (i.e. Group(U, ○, e, −1)), such that whenever a result relating
two groups would be needed, the containing theory would simply import two
instances of the theory of groups with different parameters. Additionally, para-
metric theories can be included “as is”, in which case the parameters can be
provided individually each time a symbol from the included theory is used (e.g.
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Group?associativity[Z,+,0,−]). Effectively this makes each constant in the
included theory take additional arguments for the theory parameters.

While MMT supports parametric theories, they are treated quite differently
than in PVS. Theory parameters need to be supplied whenever a parametric
theory is included, and by the definitional property of implicit morphisms
(which includes are, see [RM18]), at most one theory morphism between two
theories may be implicit. This means that a parametric theory can only be
included in another theory once with one fixed set of parameters supplied.

As with Coq sections, we hence opted for using a structural feature ParInclude
whose derived declarations take a single parameter T for the included theory and
no inner declarations. The elaboration of such a derived declaration then con-
sists of the constants in T with the theory parameters of T being Π-bound
analogously to our treatment of Variables in Coq sections above. This treatment
subsumes all possible use cases of includes in PVS.

Notably, this comes at the cost of blowing up theories massively, since any
use of the feature copies all declarations of the included theory in its elaboration,
slowing down various MMT services noticeably. However, since the declarations
can be elaborated individually, this allows for future improvements by potentially
treating the elaborations lazily.

While the grammar presented in this paper requires derived declarations to
be named – as the actual abstract syntax of Mmt does –, the actual concrete
syntax allows specific features (such as ParInclude) to omit names. This way,
include-like features do not have to be named by a user, and internal names are
generated instead.

4.3 Declaration Patterns

Now we recover the declarative special case introduced in [HKR12,Hor14] as a
special case of our structural features.

Specification A declaration pattern is a structural features whose elaboration is
so simple that it can be specified declaratively in the meta-language. We recap
the definition of [HKR12].

A declaration pattern is a declaration of the form pattern P (Γ ) = {∆}
where P is the name of the pattern, Γ = x1 ∶ E1, . . . , xm ∶ Em is a context declar-
ing parameters that are bound in ∆ = D1, . . . ,Dn, and the Di are declarations.
The Di can be arbitrary declarations, and we assume they can be elaborated
into constant declarations c1 ∶ F1, . . . , cn ∶ Fn.

Thus, a declaration pattern is essentially the same as a theory with some
parameters. It is also similar to a parametric record type — except that it does
not introduce a type, i.e., P (e1, . . . , em) cannot be used as a type. The latter
ensures that any declaration (including type declarations) that can be used in
theories can also be used in patterns.

An instance of the pattern P (assumed to be declared as above) is a declara-
tion of the form instance p ∶ P (e1, . . . , em) where p is the name of the instance
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and the ei satisfy ei ∶ E′

i where E′ arises from E by substituting each preced-
ing xi with ei. The semantics of such an instance declaration is that it induces
the declarations p/c1 ∶ F ′

1, . . . , p/cn ∶ F ′

n, where the p/ci are qualified names and
the F ′

i arise as above. Thus, ∆ can be seen as the declarative definition of the
elaboration of the instance p.

Implementation Declaration patterns introduce two new kinds of declarations
(patterns and instances), and we capture them with two structural features.

Firstly, the structural feature for patterns uses the name f = pattern. A
derived declaration P ∶ pattern (A1, . . . ,Am) = {∆} is valid iff each Ai is
of the form xi ∶ Ei and concatenating those yields a valid context, and if the
declarations in ∆ are valid relative to that context. It elaborates to nothing.

Secondly, the structural feature for instances uses the name f = instance.
A derived declaration p ∶ instance (A) = {} is valid iff A is of the form
P (e1, . . . , em) for a pattern P that was declared in the current scope and the ei
satisfy the respective type constraints. Defining the elaboration of such a derived
declaration is straightforward and proceeds exactly as specified above.

We do not touch on the issues of concrete syntax in this paper, it is straight-
forward to see that only simple notational rules are needed to make these derived
declarations mimic the concrete syntax of [HKR12] entirely. This is already sup-
ported by our implementation.

Notably, the resulting implementation of declaration patterns is significantly
simpler and easier to read, understand, and verify than the existing prototype
implementation that had been built as a part of [Hor14]. This is because all the
bureaucracy of elaboration is now covered uniformly by the framework so that
the code can focus on the semantically relevant details. But more importantly,
the prototype implementation was developed as an extension of Mmt in a PhD
thesis and was never well-integrated with the rest of the code. Such a deep
integration would have gone beyond the resources and purpose of that PhD
thesis. Because structural features are now deeply integrated with Mmt out of
the box, our new implementation is not only simpler but also better than the
old prototype.

5 Module-Level Features

Definition To simplify the presentation, we have so far only considered structural
features that extend the syntax inside theories. But it is natural to also consider
extending the module-level syntax. We specify and implement this in essentially
the same way. The key step is to allow derived declarations as modules, i.e., we
add a production to the Mmt grammar and and speak of derived modules:

Mod ∶∶=m ∶ f (E∗) = {Dec∗}

Module-level structural features are defined and used in the same way as
above except for two subtleties. Firstly, the elaboration of a derived module
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may only produce other modules. This makes sense as toplevel declaration must
elaborate to other toplevel declarations.

Secondly, it is difficult how to specify where a module-level structural feature
may be used. For derived declaration, which occur inside a theory, this is easy:
the declaration may be used if the respective structural feature rule is visible
to the containing theory. But derived modules, which may occur on toplevel, do
not have a containing theory. It is not desirable to introduce a global scope that
would define which module-level features are in scope as that would preclude
restricting a module-level feature to specific object-languages. We are still ex-
perimenting with different designs for this issue. For now we use the containing
file as the scope.

Diagram Definitions In [SR19], we added diagram expressions and diagram defi-
nitions in Mmt. The former are expressions that use special constants to capture
the syntax of Mmt diagrams (i.e., the non-terminal γ). The latter are modules of
the form diagram d = E. Their semantics is that i) E is evaluated into a diagram
expression, say declaring theories Ti = {∆i} and ii) new modules d/Ti = {∆i}
are created.

It is straightforward to realize this as a module-level structural feature. In
fact, the implementation of structural features reported in this paper predates
the work in [SR19], which already used them to implement diagram definitions.

Theory Morphisms and Logical Relations In Section 2, we mentioned that Mmt
supports other modules than theories. Two such features have been realized so
far.

Firstly, views are modules of the form v ∶ S → T = {Dec∗}. These have
been a primitive feature of Mmt from the beginning. We can easily realize the
syntax of views as derived modules. This is tempting because it would allow
significantly simplifying the language. However, a currently unsolved problem is
that the semantics cannot be reduced to elaboration: A view cannot in general
be elaborated into anything simpler.

Secondly, [RS13] introduced logical relations as a module-level declaration.
Rabe never implemented them in Mmt because they, like views, are syntactically
a special case of derived modules so that it made sense to defer their implemen-
tation until a general solution for derived modules is available. We intend to
revisit them in future work.

6 Conclusion

We have presented a meta-language-based infrastructure of structural features
in the Mmt system and some paradigmatic examples that show its power. Struc-
tural features allow flexibly extending formal mathematical languages with new
kinds of declarations without having to enlarge the trusted core of the system. In
a meta-logical system, structural features are especially interesting because we
need them to represent object languages and because the module system itself
can restrict their availability to particular object logics.
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The work presented here was to a large extent motivated by and developed
for building exports of theorem prover libraries. In these, structural features
allowed defining derived language features of theorem prover languages so that
exports could stay shallow, i.e., structure-preserving, while also capturing the
deep elaboration into kernel features that is needed for verification. Without the
infrastructure presented in this paper, only deep implementations would have
been possible and we would have been restricted to much less structured —
and thus less searchable and reusable — exports. Moreover, it will prove critical
for interoperability and library translations between theorem provers: even if
target and source system have the exact same structural feature, a translation is
practically very difficult if the intermediate representation is based on only the
elaborated declarations.

In future work, we plan to represent more advanced features of theorem
prover languages, starting with Isabelle and Coq. An open theoretical question
is how to translate derived declarations along views in such a way that translation
commutes with elaboration — this does not hold for every structural feature, and
establishing sufficient criteria would be very valuable for modular reasoning in
large libraries. Finally, we will improve Mmt’s abilities to represent the concrete
syntax of derived declarations in order to mimic even more closely arbitrary
object language syntax; this will allow for prototyping domain-specific languages
in a way that entirely hides the logical framework from the user.
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